>>> z3: Building community/z3 4.11.2-r0 (using abuild 3.10.0_rc1-r2) started Thu, 27 Oct 2022 23:59:23 +0000 >>> z3: Checking sanity of /home/buildozer/aports/community/z3/APKBUILD... >>> z3: Analyzing dependencies... >>> z3: Installing for build: build-base cmake python3 samurai (1/14) Installing libbz2 (1.0.8-r3) (2/14) Installing xz-libs (5.2.7-r0) (3/14) Installing libarchive (3.6.1-r1) (4/14) Installing rhash-libs (1.4.3-r1) (5/14) Installing libuv (1.44.2-r0) (6/14) Installing cmake (3.24.2-r0) (7/14) Installing libffi (3.4.4-r0) (8/14) Installing gdbm (1.23-r0) (9/14) Installing mpdecimal (2.5.1-r1) (10/14) Installing readline (8.2.0-r0) (11/14) Installing sqlite-libs (3.39.4-r0) (12/14) Installing python3 (3.10.8-r3) (13/14) Installing samurai (1.2-r2) (14/14) Installing .makedepends-z3 (20221027.235927) Executing busybox-1.35.0-r27.trigger OK: 279 MiB in 107 packages >>> z3: Cleaning up srcdir >>> z3: Cleaning up pkgdir >>> z3: Fetching https://distfiles.alpinelinux.org/distfiles/v3.17/z3-4.11.2.tar.gz % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 0 146 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 curl: (22) The requested URL returned error: 404 >>> z3: Fetching https://github.com/Z3Prover/z3/archive/z3-4.11.2.tar.gz % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 43713 0 43713 0 0 31515 0 --:--:-- 0:00:01 --:--:-- 31515 100 5301k 0 5301k 0 0 2488k 0 --:--:-- 0:00:02 --:--:-- 7077k >>> z3: Fetching https://distfiles.alpinelinux.org/distfiles/v3.17/z3-4.11.2.tar.gz >>> z3: Checking sha512sums... z3-4.11.2.tar.gz: OK >>> z3: Unpacking /var/cache/distfiles/v3.17/z3-4.11.2.tar.gz... -- The CXX compiler identification is GNU 12.2.1 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: /usr/bin/g++ - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Z3 version 4.11.2.0 -- Failed to find git directory. CMake Warning at CMakeLists.txt:44 (message): Disabling Z3_INCLUDE_GIT_DESCRIBE Call Stack (most recent call first): CMakeLists.txt:93 (disable_git_describe) CMake Warning at CMakeLists.txt:48 (message): Disabling Z3_INCLUDE_GIT_HASH Call Stack (most recent call first): CMakeLists.txt:94 (disable_git_hash) -- CMake generator: Ninja -- Build type: MinSizeRel -- Found PythonInterp: /usr/bin/python3 (found suitable version "3.10.8", minimum required is "3") -- PYTHON_EXECUTABLE: /usr/bin/python3 -- Detected target architecture: arm -- Not using libgmp -- Not using Z3_API_LOG_SYNC -- Thread-safe build -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success -- Found Threads: TRUE -- Performing Test HAS__Wall -- Performing Test HAS__Wall - Success -- C++ compiler supports -Wall -- Treating only serious compiler warnings as errors -- Performing Test HAS__Werror_odr -- Performing Test HAS__Werror_odr - Success -- C++ compiler supports -Werror=odr -- LTO disabled -- Performing Test BUILTIN_ATOMIC -- Performing Test BUILTIN_ATOMIC - Success -- CMAKE_CXX_FLAGS: "-Os -fomit-frame-pointer -Werror=odr " -- CMAKE_EXE_LINKER_FLAGS: "-Wl,--as-needed,-O1,--sort-common" -- CMAKE_STATIC_LINKER_FLAGS: "" -- CMAKE_SHARED_LINKER_FLAGS: "-Wl,--as-needed,-O1,--sort-common" -- CMAKE_CXX_FLAGS_MINSIZEREL: "-Os -DNDEBUG" -- CMAKE_EXE_LINKER_FLAGS_MINSIZEREL: "" -- CMAKE_SHARED_LINKER_FLAGS_MINSIZEREL: "" -- CMAKE_STATIC_LINKER_FLAGS_MINSIZEREL: "" -- Z3_COMPONENT_CXX_DEFINES: $<$:Z3DEBUG>;$<$:_EXTERNAL_RELEASE>;$<$:_EXTERNAL_RELEASE>;-D_MP_INTERNAL;$<$:_TRACE> -- Z3_COMPONENT_CXX_FLAGS: -Wall -- Z3_DEPENDENT_LIBS: Threads::Threads -- Z3_COMPONENT_EXTRA_INCLUDE_DIRS: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src;/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src -- Z3_DEPENDENT_EXTRA_CXX_LINK_FLAGS: -- CMAKE_INSTALL_LIBDIR: "lib" -- CMAKE_INSTALL_BINDIR: "bin" -- CMAKE_INSTALL_INCLUDEDIR: "include" -- CMAKE_INSTALL_PKGCONFIGDIR: "lib/pkgconfig" -- CMAKE_INSTALL_Z3_CMAKE_PACKAGE_DIR: "lib/cmake/z3" -- Adding component util -- Adding component polynomial -- Adding rule to generate "algebraic_params.hpp" -- Adding component dd -- Adding component hilbert -- Adding component simplex -- Adding component automata -- Adding component interval -- Adding component realclosure -- Adding rule to generate "rcf_params.hpp" -- Adding component subpaving -- Adding component ast -- Adding rule to generate "pp_params.hpp" -- Adding component params -- Adding rule to generate "arith_rewriter_params.hpp" -- Adding rule to generate "array_rewriter_params.hpp" -- Adding rule to generate "bool_rewriter_params.hpp" -- Adding rule to generate "bv_rewriter_params.hpp" -- Adding rule to generate "fpa_rewriter_params.hpp" -- Adding rule to generate "fpa2bv_rewriter_params.hpp" -- Adding rule to generate "pattern_inference_params_helper.hpp" -- Adding rule to generate "poly_rewriter_params.hpp" -- Adding rule to generate "rewriter_params.hpp" -- Adding rule to generate "seq_rewriter_params.hpp" -- Adding rule to generate "solver_params.hpp" -- Adding component rewriter -- Adding component normal_forms -- Adding rule to generate "nnf_params.hpp" -- Adding component macros -- Adding component model -- Adding rule to generate "model_evaluator_params.hpp" -- Adding rule to generate "model_params.hpp" -- Adding component tactic -- Adding rule to generate "tactic_params.hpp" -- Adding component substitution -- Adding component euf -- Adding component smt_params -- Adding rule to generate "smt_params_helper.hpp" -- Adding component parser_util -- Adding rule to generate "parser_params.hpp" -- Adding component grobner -- Adding component sat -- Adding rule to generate "sat_asymm_branch_params.hpp" -- Adding rule to generate "sat_params.hpp" -- Adding rule to generate "sat_scc_params.hpp" -- Adding rule to generate "sat_simplifier_params.hpp" -- Adding component nlsat -- Adding rule to generate "nlsat_params.hpp" -- Adding component core_tactics -- Adding component subpaving_tactic -- Adding component aig_tactic -- Adding component arith_tactics -- Adding component solver -- Adding rule to generate "combined_solver_params.hpp" -- Adding rule to generate "parallel_params.hpp" -- Adding component cmd_context -- Adding component extra_cmds -- Adding component smt2parser -- Adding component mbp -- Adding component qe_lite -- Adding component solver_assertions -- Adding component pattern -- Adding component bit_blaster -- Adding component lp -- Adding component sat_smt -- Adding component sat_tactic -- Adding component nlsat_tactic -- Adding component ackermannization -- Adding rule to generate "ackermannization_params.hpp" -- Adding rule to generate "ackermannize_bv_tactic_params.hpp" -- Adding component proofs -- Adding component fpa -- Adding component proto_model -- Adding component smt -- Adding component bv_tactics -- Adding component smt_tactic -- Adding component sls_tactic -- Adding rule to generate "sls_params.hpp" -- Adding component qe -- Adding component muz -- Adding rule to generate "fp_params.hpp" -- Adding component dataflow -- Adding component transforms -- Adding component rel -- Adding component clp -- Adding component tab -- Adding component bmc -- Adding component ddnf -- Adding component spacer -- Adding component fp -- Adding component ufbv_tactic -- Adding component sat_solver -- Adding component smtlogic_tactics -- Adding rule to generate "qfufbv_tactic_params.hpp" -- Adding component fpa_tactics -- Adding component fd_solver -- Adding component portfolio -- Adding component opt -- Adding rule to generate "opt_params.hpp" -- Adding component api -- Adding component api_dll -- Adding component fuzzing -- Emitting rules to build Z3 python bindings -- Emitting rules to install Z3 python bindings -- CMAKE_INSTALL_PYTHON_PKG_DIR not set. Trying to guess -- Detected Python package directory: "/usr/lib/python3.10/site-packages" -- Python bindings will be installed to "/usr/lib/python3.10/site-packages" -- Building documentation disabled -- Configuring done -- Generating done -- Build files have been written to: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build [1/847] Copying "visitor.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/visitor.py [2/847] Copying "socrates.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/socrates.py [3/847] Copying "mus/mss.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/mss.py [4/847] Copying "mus/marco.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/marco.py [5/847] Copying "hamiltonian/hamiltonian.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/hamiltonian.py [6/847] Copying "example.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/example.py [7/847] Copying "complex/complex.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/complex.py [8/847] Copying "all_interval_series.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/all_interval_series.py [9/847] Building CXX object src/math/subpaving/CMakeFiles/subpaving.dir/subpaving_mpq.cpp.o [10/847] Building CXX object src/math/subpaving/CMakeFiles/subpaving.dir/subpaving_mpfx.cpp.o [11/847] Building CXX object src/math/subpaving/CMakeFiles/subpaving.dir/subpaving_mpff.cpp.o [12/847] Building CXX object src/math/subpaving/CMakeFiles/subpaving.dir/subpaving_mpf.cpp.o [13/847] Building CXX object src/math/subpaving/CMakeFiles/subpaving.dir/subpaving_hwf.cpp.o [14/847] Building CXX object src/math/subpaving/CMakeFiles/subpaving.dir/subpaving.cpp.o [15/847] Building CXX object src/math/interval/CMakeFiles/interval.dir/dep_intervals.cpp.o [16/847] Building CXX object src/math/interval/CMakeFiles/interval.dir/interval_mpq.cpp.o [17/847] Building CXX object src/math/automata/CMakeFiles/automata.dir/automaton.cpp.o [18/847] Building CXX object src/math/simplex/CMakeFiles/simplex.dir/bit_matrix.cpp.o [19/847] Building CXX object src/math/simplex/CMakeFiles/simplex.dir/model_based_opt.cpp.o [20/847] Building CXX object src/math/simplex/CMakeFiles/simplex.dir/simplex.cpp.o [21/847] Building CXX object src/math/hilbert/CMakeFiles/hilbert.dir/hilbert_basis.cpp.o [22/847] Building CXX object src/math/dd/CMakeFiles/dd.dir/dd_pdd.cpp.o [23/847] Building CXX object src/math/dd/CMakeFiles/dd.dir/dd_fdd.cpp.o [24/847] Building CXX object src/math/dd/CMakeFiles/dd.dir/dd_bdd.cpp.o [25/847] Building CXX object src/util/CMakeFiles/util.dir/zstring.cpp.o [26/847] Building CXX object src/util/CMakeFiles/util.dir/z3_exception.cpp.o [27/847] Building CXX object src/util/CMakeFiles/util.dir/warning.cpp.o [28/847] Building CXX object src/util/CMakeFiles/util.dir/util.cpp.o [29/847] Building CXX object src/util/CMakeFiles/util.dir/trace.cpp.o [30/847] Building CXX object src/util/CMakeFiles/util.dir/timeout.cpp.o [31/847] Building CXX object src/util/CMakeFiles/util.dir/timeit.cpp.o [32/847] Building CXX object src/util/CMakeFiles/util.dir/tbv.cpp.o [33/847] Building CXX object src/util/CMakeFiles/util.dir/symbol.cpp.o [34/847] Building CXX object src/util/CMakeFiles/util.dir/statistics.cpp.o [35/847] Building CXX object src/util/CMakeFiles/util.dir/state_graph.cpp.o [36/847] Building CXX object src/util/CMakeFiles/util.dir/stack.cpp.o [37/847] Building CXX object src/util/CMakeFiles/util.dir/smt2_util.cpp.o [38/847] Building CXX object src/util/CMakeFiles/util.dir/small_object_allocator.cpp.o [39/847] Building CXX object src/util/CMakeFiles/util.dir/s_integer.cpp.o [40/847] Building CXX object src/util/CMakeFiles/util.dir/sexpr.cpp.o [41/847] Building CXX object src/util/CMakeFiles/util.dir/scoped_timer.cpp.o [42/847] Building CXX object src/util/CMakeFiles/util.dir/scoped_ctrl_c.cpp.o [43/847] Building CXX object src/util/CMakeFiles/util.dir/rlimit.cpp.o [44/847] Building CXX object src/util/CMakeFiles/util.dir/region.cpp.o [45/847] Building CXX object src/util/CMakeFiles/util.dir/rational.cpp.o [46/847] Building CXX object src/util/CMakeFiles/util.dir/prime_generator.cpp.o [47/847] Building CXX object src/util/CMakeFiles/util.dir/permutation.cpp.o [48/847] Building CXX object src/util/CMakeFiles/util.dir/params.cpp.o [49/847] Building CXX object src/util/CMakeFiles/util.dir/page.cpp.o [50/847] Building CXX object src/util/CMakeFiles/util.dir/mpz.cpp.o [51/847] Building CXX object src/util/CMakeFiles/util.dir/mpq_inf.cpp.o [52/847] Building CXX object src/util/CMakeFiles/util.dir/mpq.cpp.o [53/847] Building CXX object src/util/CMakeFiles/util.dir/mpn.cpp.o [54/847] Building CXX object src/util/CMakeFiles/util.dir/mpfx.cpp.o [55/847] Building CXX object src/util/CMakeFiles/util.dir/mpff.cpp.o [56/847] Building CXX object src/util/CMakeFiles/util.dir/mpf.cpp.o [57/847] Building CXX object src/util/CMakeFiles/util.dir/mpbq.cpp.o [58/847] Building CXX object src/util/CMakeFiles/util.dir/min_cut.cpp.o [59/847] Building CXX object src/util/CMakeFiles/util.dir/memory_manager.cpp.o [60/847] Building CXX object src/util/CMakeFiles/util.dir/luby.cpp.o [61/847] Building CXX object src/util/CMakeFiles/util.dir/lbool.cpp.o [62/847] Building CXX object src/util/CMakeFiles/util.dir/inf_s_integer.cpp.o [63/847] Building CXX object src/util/CMakeFiles/util.dir/inf_rational.cpp.o [64/847] Building CXX object src/util/CMakeFiles/util.dir/inf_int_rational.cpp.o [65/847] Building CXX object src/util/CMakeFiles/util.dir/hwf.cpp.o [66/847] Building CXX object src/util/CMakeFiles/util.dir/hash.cpp.o [67/847] Building CXX object src/util/CMakeFiles/util.dir/gparams.cpp.o [68/847] Building CXX object src/util/CMakeFiles/util.dir/fixed_bit_vector.cpp.o [69/847] Building CXX object src/util/CMakeFiles/util.dir/env_params.cpp.o [70/847] Building CXX object src/util/CMakeFiles/util.dir/debug.cpp.o [71/847] Building CXX object src/util/CMakeFiles/util.dir/common_msgs.cpp.o [72/847] Building CXX object src/util/CMakeFiles/util.dir/cmd_context_types.cpp.o [73/847] Building CXX object src/util/CMakeFiles/util.dir/bit_vector.cpp.o [74/847] Building CXX object src/util/CMakeFiles/util.dir/bit_util.cpp.o [75/847] Building CXX object src/util/CMakeFiles/util.dir/approx_set.cpp.o [76/847] Building CXX object src/util/CMakeFiles/util.dir/approx_nat.cpp.o [77/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/math/polynomial/algebraic_params.hpp" from "algebraic_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/polynomial/algebraic_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/math/polynomial/algebraic_params.hpp" [78/847] Building CXX object src/math/polynomial/CMakeFiles/polynomial.dir/upolynomial_factorization.cpp.o [79/847] Building CXX object src/math/polynomial/CMakeFiles/polynomial.dir/upolynomial.cpp.o [80/847] Building CXX object src/math/polynomial/CMakeFiles/polynomial.dir/sexpr2upolynomial.cpp.o [81/847] Building CXX object src/math/polynomial/CMakeFiles/polynomial.dir/rpolynomial.cpp.o [82/847] Building CXX object src/math/polynomial/CMakeFiles/polynomial.dir/polynomial.cpp.o [83/847] Building CXX object src/math/polynomial/CMakeFiles/polynomial.dir/polynomial_cache.cpp.o [84/847] Building CXX object src/math/polynomial/CMakeFiles/polynomial.dir/algebraic_numbers.cpp.o [85/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/solver_params.hpp" from "solver_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/solver_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/solver_params.hpp" [86/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/seq_rewriter_params.hpp" from "seq_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/seq_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/seq_rewriter_params.hpp" [87/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/rewriter_params.hpp" from "rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/rewriter_params.hpp" [88/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/poly_rewriter_params.hpp" from "poly_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/poly_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/poly_rewriter_params.hpp" [89/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/pattern_inference_params_helper.hpp" from "pattern_inference_params_helper.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/pattern_inference_params_helper.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/pattern_inference_params_helper.hpp" [90/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/fpa2bv_rewriter_params.hpp" from "fpa2bv_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/fpa2bv_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/fpa2bv_rewriter_params.hpp" [91/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/fpa_rewriter_params.hpp" from "fpa_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/fpa_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/fpa_rewriter_params.hpp" [92/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/bv_rewriter_params.hpp" from "bv_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/bv_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/bv_rewriter_params.hpp" [93/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/bool_rewriter_params.hpp" from "bool_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/bool_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/bool_rewriter_params.hpp" [94/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/array_rewriter_params.hpp" from "array_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/array_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/array_rewriter_params.hpp" [95/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/arith_rewriter_params.hpp" from "arith_rewriter_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/params/arith_rewriter_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/params/arith_rewriter_params.hpp" [96/847] Building CXX object src/params/CMakeFiles/params.dir/context_params.cpp.o [97/847] Building CXX object src/params/CMakeFiles/params.dir/pattern_inference_params.cpp.o [98/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/math/realclosure/rcf_params.hpp" from "rcf_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/realclosure/rcf_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/math/realclosure/rcf_params.hpp" [99/847] Building CXX object src/math/realclosure/CMakeFiles/realclosure.dir/realclosure.cpp.o [100/847] Building CXX object src/math/realclosure/CMakeFiles/realclosure.dir/mpz_matrix.cpp.o [101/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/smt/params/smt_params_helper.hpp" from "smt_params_helper.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/smt/params/smt_params_helper.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/smt/params/smt_params_helper.hpp" [102/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/theory_str_params.cpp.o [103/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/theory_seq_params.cpp.o [104/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/theory_pb_params.cpp.o [105/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/theory_bv_params.cpp.o [106/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/theory_array_params.cpp.o [107/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/theory_arith_params.cpp.o [108/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/smt_params.cpp.o [109/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/qi_params.cpp.o [110/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/preprocessor_params.cpp.o [111/847] Building CXX object src/smt/params/CMakeFiles/smt_params.dir/dyn_ack_params.cpp.o [112/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ast/pp_params.hpp" from "pp_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/pp_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ast/pp_params.hpp" [113/847] Building CXX object src/test/fuzzing/CMakeFiles/fuzzing.dir/expr_rand.cpp.o [114/847] Building CXX object src/test/fuzzing/CMakeFiles/fuzzing.dir/expr_delta.cpp.o [115/847] Building CXX object src/ast/proofs/CMakeFiles/proofs.dir/proof_utils.cpp.o [116/847] Building CXX object src/ast/proofs/CMakeFiles/proofs.dir/proof_checker.cpp.o [117/847] Building CXX object src/ast/rewriter/bit_blaster/CMakeFiles/bit_blaster.dir/bit_blaster_rewriter.cpp.o [118/847] Building CXX object src/ast/rewriter/bit_blaster/CMakeFiles/bit_blaster.dir/bit_blaster.cpp.o [119/847] Building CXX object src/math/grobner/CMakeFiles/grobner.dir/pdd_solver.cpp.o [120/847] Building CXX object src/math/grobner/CMakeFiles/grobner.dir/pdd_simplifier.cpp.o [121/847] Building CXX object src/math/grobner/CMakeFiles/grobner.dir/grobner.cpp.o [122/847] Building CXX object src/ast/euf/CMakeFiles/euf.dir/euf_egraph.cpp.o [123/847] Building CXX object src/ast/euf/CMakeFiles/euf.dir/euf_etable.cpp.o [124/847] Building CXX object src/ast/euf/CMakeFiles/euf.dir/euf_enode.cpp.o [125/847] Building CXX object src/ast/substitution/CMakeFiles/substitution.dir/unifier.cpp.o [126/847] Building CXX object src/ast/substitution/CMakeFiles/substitution.dir/substitution_tree.cpp.o [127/847] Building CXX object src/ast/substitution/CMakeFiles/substitution.dir/substitution.cpp.o [128/847] Building CXX object src/ast/substitution/CMakeFiles/substitution.dir/matcher.cpp.o [129/847] Building CXX object src/ast/macros/CMakeFiles/macros.dir/quasi_macros.cpp.o [130/847] Building CXX object src/ast/macros/CMakeFiles/macros.dir/macro_util.cpp.o [131/847] Building CXX object src/ast/macros/CMakeFiles/macros.dir/quantifier_macro_info.cpp.o [132/847] Building CXX object src/ast/macros/CMakeFiles/macros.dir/macro_manager.cpp.o [133/847] Building CXX object src/ast/macros/CMakeFiles/macros.dir/macro_finder.cpp.o [134/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/mk_extract_proc.cpp.o [135/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/var_subst.cpp.o [136/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/value_sweep.cpp.o [137/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/th_rewriter.cpp.o [138/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/seq_skolem.cpp.o [139/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/seq_rewriter.cpp.o [140/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/seq_eq_solver.cpp.o [141/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/seq_axioms.cpp.o [142/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/rewriter.cpp.o [143/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/recfun_rewriter.cpp.o [144/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/quant_hoist.cpp.o [145/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/push_app_ite.cpp.o [146/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/pb2bv_rewriter.cpp.o [147/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/pb_rewriter.cpp.o [148/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/mk_simplified_app.cpp.o [149/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/maximize_ac_sharing.cpp.o [150/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/label_rewriter.cpp.o [151/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/inj_axiom.cpp.o [152/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/hoist_rewriter.cpp.o [153/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/func_decl_replace.cpp.o [154/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/fpa_rewriter.cpp.o [155/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/factor_rewriter.cpp.o [156/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/factor_equivs.cpp.o [157/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/expr_safe_replace.cpp.o [158/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/expr_replacer.cpp.o [159/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/enum2bv_rewriter.cpp.o [160/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/elim_bounds.cpp.o [161/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/dl_rewriter.cpp.o [162/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/distribute_forall.cpp.o [163/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/der.cpp.o [164/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/datatype_rewriter.cpp.o [165/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/char_rewriter.cpp.o [166/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/cached_var_subst.cpp.o [167/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/bv_rewriter.cpp.o [168/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/bv_elim.cpp.o [169/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/bv_bounds.cpp.o [170/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/bool_rewriter.cpp.o [171/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/bit2int.cpp.o [172/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/ast_counter.cpp.o [173/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/array_rewriter.cpp.o [174/847] Building CXX object src/ast/rewriter/CMakeFiles/rewriter.dir/arith_rewriter.cpp.o [175/847] Building CXX object src/ast/CMakeFiles/ast.dir/well_sorted.cpp.o [176/847] Building CXX object src/ast/CMakeFiles/ast.dir/value_generator.cpp.o [177/847] Building CXX object src/ast/CMakeFiles/ast.dir/used_vars.cpp.o [178/847] Building CXX object src/ast/CMakeFiles/ast.dir/static_features.cpp.o [179/847] Building CXX object src/ast/CMakeFiles/ast.dir/special_relations_decl_plugin.cpp.o [180/847] Building CXX object src/ast/CMakeFiles/ast.dir/shared_occs.cpp.o [181/847] Building CXX object src/ast/CMakeFiles/ast.dir/seq_decl_plugin.cpp.o [182/847] Building CXX object src/ast/CMakeFiles/ast.dir/reg_decl_plugins.cpp.o [183/847] Building CXX object src/ast/CMakeFiles/ast.dir/recfun_decl_plugin.cpp.o [184/847] Building CXX object src/ast/CMakeFiles/ast.dir/quantifier_stat.cpp.o [185/847] Building CXX object src/ast/CMakeFiles/ast.dir/pp.cpp.o [186/847] Building CXX object src/ast/CMakeFiles/ast.dir/pb_decl_plugin.cpp.o [187/847] Building CXX object src/ast/CMakeFiles/ast.dir/occurs.cpp.o [188/847] Building CXX object src/ast/CMakeFiles/ast.dir/num_occurs.cpp.o [189/847] Building CXX object src/ast/CMakeFiles/ast.dir/macro_substitution.cpp.o [190/847] Building CXX object src/ast/CMakeFiles/ast.dir/has_free_vars.cpp.o [191/847] Building CXX object src/ast/CMakeFiles/ast.dir/func_decl_dependencies.cpp.o [192/847] Building CXX object src/ast/CMakeFiles/ast.dir/fpa_decl_plugin.cpp.o [193/847] Building CXX object src/ast/CMakeFiles/ast.dir/format.cpp.o [194/847] Building CXX object src/ast/CMakeFiles/ast.dir/for_each_expr.cpp.o [195/847] Building CXX object src/ast/CMakeFiles/ast.dir/for_each_ast.cpp.o [196/847] Building CXX object src/ast/CMakeFiles/ast.dir/expr_substitution.cpp.o [197/847] Building CXX object src/ast/CMakeFiles/ast.dir/expr_stat.cpp.o [198/847] Building CXX object src/ast/CMakeFiles/ast.dir/expr_map.cpp.o [199/847] Building CXX object src/ast/CMakeFiles/ast.dir/expr_functors.cpp.o [200/847] Building CXX object src/ast/CMakeFiles/ast.dir/expr_abstract.cpp.o [201/847] Building CXX object src/ast/CMakeFiles/ast.dir/expr2var.cpp.o [202/847] Building CXX object src/ast/CMakeFiles/ast.dir/expr2polynomial.cpp.o [203/847] Building CXX object src/ast/CMakeFiles/ast.dir/dl_decl_plugin.cpp.o [204/847] Building CXX object src/ast/CMakeFiles/ast.dir/display_dimacs.cpp.o [205/847] Building CXX object src/ast/CMakeFiles/ast.dir/decl_collector.cpp.o [206/847] Building CXX object src/ast/CMakeFiles/ast.dir/datatype_decl_plugin.cpp.o [207/847] Building CXX object src/ast/CMakeFiles/ast.dir/cost_evaluator.cpp.o [208/847] Building CXX object src/ast/CMakeFiles/ast.dir/char_decl_plugin.cpp.o [209/847] Building CXX object src/ast/CMakeFiles/ast.dir/bv_decl_plugin.cpp.o [210/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_util.cpp.o [211/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_translation.cpp.o [212/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_pp_dot.cpp.o [213/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_smt_pp.cpp.o [214/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_smt2_pp.cpp.o [215/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_printer.cpp.o [216/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_pp_util.cpp.o [217/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_lt.cpp.o [218/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast_ll_pp.cpp.o [219/847] Building CXX object src/ast/CMakeFiles/ast.dir/ast.cpp.o [220/847] Building CXX object src/ast/CMakeFiles/ast.dir/array_decl_plugin.cpp.o [221/847] Building CXX object src/ast/CMakeFiles/ast.dir/arith_decl_plugin.cpp.o [222/847] Building CXX object src/ast/CMakeFiles/ast.dir/act_cache.cpp.o In file included from /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/ast.h:22, from /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/proofs/proof_checker.h:21, from /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/proofs/proof_checker.cpp:6: In member function 'void vector::resize(SZ) [with T = expr*; bool CallDestructors = false; SZ = unsigned int]', inlined from 'bool proof_checker::check1_basic(proof*, expr_ref_vector&)' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/proofs/proof_checker.cpp:574:38: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/util/vector.h:612:13: warning: 'void* __builtin_memset(void*, int, unsigned int)' specified bound 4294967292 exceeds maximum object size 2147483647 [-Wstringop-overflow=] 612 | new (it) T(); | ^~~~~~~~~~~~ In file included from /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.cpp:24: In constructor 'recfun::case_def::case_def(recfun::case_def&&)', inlined from 'vector& vector::push_back(T&&) [with T = recfun::case_def; bool CallDestructors = true; SZ = unsigned int]' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/util/vector.h:541:9, inlined from 'recfun::def* recfun::def::copy(recfun::util&, ast_translation&)' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.cpp:83:33: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.h:58:11: warning: '.recfun::case_def::m_def' may be used uninitialized [-Wmaybe-uninitialized] 58 | class case_def { | ^~~~~~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.cpp: In member function 'recfun::def* recfun::def::copy(recfun::util&, ast_translation&)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.cpp:83:50: note: '' declared here 83 | r->m_cases.push_back(case_def(tr.to())); | ^ In constructor 'recfun::case_def::case_def(recfun::case_def&&)', inlined from 'vector& vector::push_back(T&&) [with T = recfun::case_def; bool CallDestructors = true; SZ = unsigned int]' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/util/vector.h:541:9, inlined from 'recfun::def* recfun::def::copy(recfun::util&, ast_translation&)' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.cpp:83:33: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.h:58:11: warning: '.recfun::case_def::m_immediate' may be used uninitialized [-Wmaybe-uninitialized] 58 | class case_def { | ^~~~~~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.cpp: In member function 'recfun::def* recfun::def::copy(recfun::util&, ast_translation&)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/recfun_decl_plugin.cpp:83:50: note: '' declared here 83 | r->m_cases.push_back(case_def(tr.to())); | ^ [223/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/parsers/util/parser_params.hpp" from "parser_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/parsers/util/parser_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/parsers/util/parser_params.hpp" [224/847] Building CXX object src/parsers/util/CMakeFiles/parser_util.dir/simple_parser.cpp.o [225/847] Building CXX object src/parsers/util/CMakeFiles/parser_util.dir/scanner.cpp.o [226/847] Building CXX object src/parsers/util/CMakeFiles/parser_util.dir/pattern_validation.cpp.o [227/847] Building CXX object src/parsers/util/CMakeFiles/parser_util.dir/cost_parser.cpp.o [228/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_simplifier_params.hpp" from "sat_simplifier_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/sat/sat_simplifier_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_simplifier_params.hpp" [229/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_scc_params.hpp" from "sat_scc_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/sat/sat_scc_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_scc_params.hpp" [230/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_params.hpp" from "sat_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/sat/sat_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_params.hpp" [231/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_asymm_branch_params.hpp" from "sat_asymm_branch_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/sat/sat_asymm_branch_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/sat/sat_asymm_branch_params.hpp" [232/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_xor_finder.cpp.o [233/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_watched.cpp.o [234/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_solver.cpp.o [235/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_simplifier.cpp.o [236/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_scc.cpp.o [237/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_probing.cpp.o [238/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_prob.cpp.o [239/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_parallel.cpp.o [240/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_npn3_finder.cpp.o [241/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_mus.cpp.o [242/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_model_converter.cpp.o [243/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_lut_finder.cpp.o [244/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_lookahead.cpp.o [245/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_local_search.cpp.o [246/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_integrity_checker.cpp.o [247/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_gc.cpp.o [248/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_elim_vars.cpp.o [249/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_elim_eqs.cpp.o [250/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_drat.cpp.o [251/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_ddfw.cpp.o [252/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_cutset.cpp.o [253/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_cut_simplifier.cpp.o [254/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_config.cpp.o [255/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_cleaner.cpp.o [256/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_clause_use_list.cpp.o [257/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_clause_set.cpp.o [258/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_clause.cpp.o [259/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_binspr.cpp.o [260/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_big.cpp.o [261/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_bcd.cpp.o [262/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_asymm_branch.cpp.o [263/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_anf_simplifier.cpp.o [264/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_aig_finder.cpp.o [265/847] Building CXX object src/sat/CMakeFiles/sat.dir/sat_aig_cuts.cpp.o [266/847] Building CXX object src/sat/CMakeFiles/sat.dir/dimacs.cpp.o [267/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ast/normal_forms/nnf_params.hpp" from "nnf_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ast/normal_forms/nnf_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ast/normal_forms/nnf_params.hpp" [268/847] Building CXX object src/ast/normal_forms/CMakeFiles/normal_forms.dir/pull_quant.cpp.o [269/847] Building CXX object src/ast/normal_forms/CMakeFiles/normal_forms.dir/nnf.cpp.o [270/847] Building CXX object src/ast/normal_forms/CMakeFiles/normal_forms.dir/name_exprs.cpp.o [271/847] Building CXX object src/ast/normal_forms/CMakeFiles/normal_forms.dir/elim_term_ite.cpp.o [272/847] Building CXX object src/ast/normal_forms/CMakeFiles/normal_forms.dir/defined_names.cpp.o [273/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/model/model_params.hpp" from "model_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/model/model_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/model/model_params.hpp" [274/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/model/model_evaluator_params.hpp" from "model_evaluator_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/model/model_evaluator_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/model/model_evaluator_params.hpp" [275/847] Building CXX object src/smt/proto_model/CMakeFiles/proto_model.dir/proto_model.cpp.o [276/847] Building CXX object src/ast/fpa/CMakeFiles/fpa.dir/fpa2bv_rewriter.cpp.o [277/847] Building CXX object src/ast/fpa/CMakeFiles/fpa.dir/fpa2bv_converter.cpp.o [278/847] Building CXX object src/ast/fpa/CMakeFiles/fpa.dir/bv2fpa_converter.cpp.o [279/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/user_solver.cpp.o [280/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/sat_th.cpp.o [281/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/recfun_solver.cpp.o [282/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_solver.cpp.o [283/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_queue.cpp.o [284/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_model_fixer.cpp.o [285/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_mbi.cpp.o [286/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_mam.cpp.o [287/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_eval.cpp.o [288/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_ematch.cpp.o [289/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/q_clause.cpp.o [290/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/pb_solver.cpp.o [291/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/pb_pb.cpp.o [292/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/pb_internalize.cpp.o [293/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/pb_constraint.cpp.o [294/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/pb_card.cpp.o [295/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/fpa_solver.cpp.o [296/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_solver.cpp.o [297/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_relevancy.cpp.o [298/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_proof_checker.cpp.o [299/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_proof.cpp.o [300/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_model.cpp.o [301/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_invariant.cpp.o [302/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_internalize.cpp.o [303/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/euf_ackerman.cpp.o [304/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/dt_solver.cpp.o [305/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/bv_solver.cpp.o [306/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/bv_invariant.cpp.o [307/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/bv_internalize.cpp.o [308/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/bv_delay_internalize.cpp.o [309/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/bv_ackerman.cpp.o [310/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/atom2bool_var.cpp.o [311/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/array_solver.cpp.o [312/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/array_model.cpp.o [313/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/array_internalize.cpp.o [314/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/array_diagnostics.cpp.o [315/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/array_axioms.cpp.o [316/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/arith_solver.cpp.o [317/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/arith_internalize.cpp.o [318/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/arith_diagnostics.cpp.o [319/847] Building CXX object src/sat/smt/CMakeFiles/sat_smt.dir/arith_axioms.cpp.o [320/847] Building CXX object src/qe/mbp/CMakeFiles/mbp.dir/mbp_term_graph.cpp.o [321/847] Building CXX object src/qe/mbp/CMakeFiles/mbp.dir/mbp_solve_plugin.cpp.o [322/847] Building CXX object src/qe/mbp/CMakeFiles/mbp.dir/mbp_plugin.cpp.o [323/847] Building CXX object src/qe/mbp/CMakeFiles/mbp.dir/mbp_datatypes.cpp.o [324/847] Building CXX object src/qe/mbp/CMakeFiles/mbp.dir/mbp_arrays.cpp.o [325/847] Building CXX object src/qe/mbp/CMakeFiles/mbp.dir/mbp_arith.cpp.o [326/847] Building CXX object src/model/CMakeFiles/model.dir/value_factory.cpp.o [327/847] Building CXX object src/model/CMakeFiles/model.dir/struct_factory.cpp.o [328/847] Building CXX object src/model/CMakeFiles/model.dir/numeral_factory.cpp.o [329/847] Building CXX object src/model/CMakeFiles/model.dir/model_v2_pp.cpp.o [330/847] Building CXX object src/model/CMakeFiles/model.dir/model_smt2_pp.cpp.o [331/847] Building CXX object src/model/CMakeFiles/model.dir/model_pp.cpp.o [332/847] Building CXX object src/model/CMakeFiles/model.dir/model_macro_solver.cpp.o [333/847] Building CXX object src/model/CMakeFiles/model.dir/model_implicant.cpp.o [334/847] Building CXX object src/model/CMakeFiles/model.dir/model_evaluator.cpp.o [335/847] Building CXX object src/model/CMakeFiles/model.dir/model.cpp.o [336/847] Building CXX object src/model/CMakeFiles/model.dir/model_core.cpp.o [337/847] Building CXX object src/model/CMakeFiles/model.dir/model2expr.cpp.o [338/847] Building CXX object src/model/CMakeFiles/model.dir/func_interp.cpp.o [339/847] Building CXX object src/model/CMakeFiles/model.dir/datatype_factory.cpp.o [340/847] Building CXX object src/model/CMakeFiles/model.dir/array_factory.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/sat/smt/arith_diagnostics.cpp: In member function 'virtual expr* arith::arith_proof_hint::get_hint(euf::solver&) const': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/sat/smt/arith_diagnostics.cpp:174:39: warning: 'name' may be used uninitialized [-Wmaybe-uninitialized] 174 | func_decl* d = m.mk_func_decl(symbol(name), args.size(), sorts.data(), range); | ^~~~~~~~~~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/sat/smt/arith_diagnostics.cpp:141:21: note: 'name' was declared here 141 | char const* name; | ^~~~ [341/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/tactic/tactic_params.hpp" from "tactic_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/tactic_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/tactic/tactic_params.hpp" [342/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/max_bv_sharing_tactic.cpp.o [343/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/elim_small_bv_tactic.cpp.o [344/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/dt2bv_tactic.cpp.o [345/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bv_size_reduction_tactic.cpp.o [346/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bv_bounds_tactic.cpp.o [347/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bv_bound_chk_tactic.cpp.o [348/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bvarray2uf_tactic.cpp.o [349/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bvarray2uf_rewriter.cpp.o [350/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bv1_blaster_tactic.cpp.o [351/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bit_blaster_tactic.cpp.o [352/847] Building CXX object src/tactic/bv/CMakeFiles/bv_tactics.dir/bit_blaster_model_converter.cpp.o [353/847] Building CXX object src/qe/lite/CMakeFiles/qe_lite.dir/qe_lite.cpp.o [354/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/recover_01_tactic.cpp.o [355/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/purify_arith_tactic.cpp.o [356/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/propagate_ineqs_tactic.cpp.o [357/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/probe_arith.cpp.o [358/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/pb2bv_tactic.cpp.o [359/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/pb2bv_model_converter.cpp.o [360/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/normalize_bounds_tactic.cpp.o [361/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/nla2bv_tactic.cpp.o [362/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/linear_equation.cpp.o [363/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/lia2pb_tactic.cpp.o [364/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/lia2card_tactic.cpp.o [365/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/fm_tactic.cpp.o [366/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/fix_dl_var_tactic.cpp.o [367/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/factor_tactic.cpp.o [368/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/eq2bv_tactic.cpp.o [369/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/diff_neq_tactic.cpp.o [370/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/degree_shift_tactic.cpp.o [371/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/card2bv_tactic.cpp.o [372/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/bv2real_rewriter.cpp.o [373/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/bv2int_rewriter.cpp.o [374/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/bound_propagator.cpp.o [375/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/bound_manager.cpp.o [376/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/arith_bounds_tactic.cpp.o [377/847] Building CXX object src/tactic/arith/CMakeFiles/arith_tactics.dir/add_bounds_tactic.cpp.o [378/847] Building CXX object src/tactic/aig/CMakeFiles/aig_tactic.dir/aig_tactic.cpp.o [379/847] Building CXX object src/tactic/aig/CMakeFiles/aig_tactic.dir/aig.cpp.o [380/847] Building CXX object src/math/subpaving/tactic/CMakeFiles/subpaving_tactic.dir/subpaving_tactic.cpp.o [381/847] Building CXX object src/math/subpaving/tactic/CMakeFiles/subpaving_tactic.dir/expr2subpaving.cpp.o [382/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/collect_occs.cpp.o [383/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/tseitin_cnf_tactic.cpp.o [384/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/symmetry_reduce_tactic.cpp.o [385/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/split_clause_tactic.cpp.o [386/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/special_relations_tactic.cpp.o [387/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/solve_eqs_tactic.cpp.o [388/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/simplify_tactic.cpp.o [389/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/reduce_invertible_tactic.cpp.o [390/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/reduce_args_tactic.cpp.o [391/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/propagate_values_tactic.cpp.o [392/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/pb_preprocess_tactic.cpp.o [393/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/occf_tactic.cpp.o [394/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/nnf_tactic.cpp.o [395/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/injectivity_tactic.cpp.o [396/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/elim_uncnstr_tactic.cpp.o [397/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/elim_term_ite_tactic.cpp.o [398/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/dom_simplify_tactic.cpp.o [399/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/distribute_forall_tactic.cpp.o [400/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/der_tactic.cpp.o [401/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/ctx_simplify_tactic.cpp.o [402/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/collect_statistics_tactic.cpp.o [403/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/cofactor_term_ite_tactic.cpp.o [404/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/nlsat/nlsat_params.hpp" from "nlsat_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/nlsat/nlsat_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/nlsat/nlsat_params.hpp" [405/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/static_matrix.cpp.o [406/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/square_sparse_matrix.cpp.o [407/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/square_dense_submatrix.cpp.o [408/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/scaler.cpp.o [409/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/row_eta_matrix.cpp.o [410/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/random_updater.cpp.o [411/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/permutation_matrix.cpp.o [412/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nra_solver.cpp.o [413/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_tangent_lemmas.cpp.o [414/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_solver.cpp.o [415/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_order_lemmas.cpp.o [416/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_monotone_lemmas.cpp.o [417/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_intervals.cpp.o [418/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_grobner.cpp.o [419/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_core.cpp.o [420/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_common.cpp.o [421/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nla_basics_lemmas.cpp.o [422/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/nex_creator.cpp.o [423/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/monomial_bounds.cpp.o [424/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/mon_eq.cpp.o [425/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/matrix.cpp.o [426/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_utils.cpp.o [427/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lu.cpp.o [428/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_solver.cpp.o [429/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_settings.cpp.o [430/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_primal_simplex.cpp.o [431/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_primal_core_solver.cpp.o [432/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_dual_simplex.cpp.o [433/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_dual_core_solver.cpp.o [434/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lp_core_solver_base.cpp.o In constructor '{anonymous}::undo_bound::undo_bound(expr*, const {anonymous}::interval&, bool)', inlined from 'virtual bool {anonymous}::bv_bounds_simplifier::assert_expr(expr*, bool)' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp:292:37: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp:169:68: warning: '' may be used uninitialized [-Wmaybe-uninitialized] 169 | undo_bound(expr* e, const interval& b, bool fresh) : e(e), b(b), fresh(fresh) {} | ^~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp: In member function 'virtual bool {anonymous}::bv_bounds_simplifier::assert_expr(expr*, bool)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp:292:61: note: '' declared here 292 | m_scopes.insert(undo_bound(t1, interval(), true)); | ^ In constructor '{anonymous}::undo_bound::undo_bound(expr*, const {anonymous}::interval&, bool)', inlined from 'virtual bool {anonymous}::dom_bv_bounds_simplifier::assert_expr(expr*, bool)' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp:586:40: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp:169:68: warning: '' may be used uninitialized [-Wmaybe-uninitialized] 169 | undo_bound(expr* e, const interval& b, bool fresh) : e(e), b(b), fresh(fresh) {} | ^~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp: In member function 'virtual bool {anonymous}::dom_bv_bounds_simplifier::assert_expr(expr*, bool)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/bv/bv_bounds_tactic.cpp:586:64: note: '' declared here 586 | m_scopes.push_back(undo_bound(t1, interval(), true)); | ^ [435/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lar_core_solver.cpp.o [436/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/lar_solver.cpp.o [437/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/int_solver.cpp.o [438/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/int_gcd_test.cpp.o [439/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/int_cube.cpp.o [440/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/int_branch.cpp.o [441/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/indexed_vector.cpp.o [442/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/horner.cpp.o [443/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/hnf_cutter.cpp.o [444/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/gomory.cpp.o [445/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/factorization_factory_imp.cpp.o [446/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/factorization.cpp.o [447/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/emonics.cpp.o [448/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/eta_matrix.cpp.o [449/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/dense_matrix.cpp.o [450/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/core_solver_pretty_printer.cpp.o [451/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/binary_heap_upair_queue.cpp.o [452/847] Building CXX object src/math/lp/CMakeFiles/lp.dir/binary_heap_priority_queue.cpp.o [453/847] Building CXX object src/nlsat/CMakeFiles/nlsat.dir/nlsat_types.cpp.o [454/847] Building CXX object src/nlsat/CMakeFiles/nlsat.dir/nlsat_solver.cpp.o [455/847] Building CXX object src/nlsat/CMakeFiles/nlsat.dir/nlsat_interval_set.cpp.o [456/847] Building CXX object src/nlsat/CMakeFiles/nlsat.dir/nlsat_explain.cpp.o [457/847] Building CXX object src/nlsat/CMakeFiles/nlsat.dir/nlsat_evaluator.cpp.o [458/847] Building CXX object src/nlsat/CMakeFiles/nlsat.dir/nlsat_clause.cpp.o [459/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/cofactor_elim_term_ite.cpp.o [460/847] Building CXX object src/tactic/core/CMakeFiles/core_tactics.dir/blast_term_ite_tactic.cpp.o [461/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/tactic.cpp.o [462/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/tactical.cpp.o [463/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/replace_proof_converter.cpp.o [464/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/proof_converter.cpp.o [465/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/probe.cpp.o [466/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/model_converter.cpp.o [467/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/horn_subsume_model_converter.cpp.o [468/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/goal_util.cpp.o [469/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/goal_shared_occs.cpp.o [470/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/goal_num_occurs.cpp.o [471/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/goal.cpp.o [472/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/generic_model_converter.cpp.o [473/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/equiv_proof_converter.cpp.o [474/847] Building CXX object src/tactic/CMakeFiles/tactic.dir/dependency_converter.cpp.o In file included from /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/lp_dual_core_solver.cpp:25: In member function 'void lp::lp_dual_core_solver::find_q_on_tight_set() [with T = double; X = double]', inlined from 'void lp::lp_dual_core_solver::find_q_and_tight_set() [with T = double; X = double]' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/lp_dual_core_solver_def.h:650:24, inlined from 'bool lp::lp_dual_core_solver::ratio_test() [with T = double; X = double]' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/lp_dual_core_solver_def.h:672:29: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/lp_dual_core_solver_def.h:634:13: warning: 'max_pivot' may be used uninitialized [-Wmaybe-uninitialized] 634 | if (r > max_pivot) { | ^~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/lp_dual_core_solver_def.h: In member function 'bool lp::lp_dual_core_solver::ratio_test() [with T = double; X = double]': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/lp_dual_core_solver_def.h:630:7: note: 'max_pivot' was declared here 630 | T max_pivot; | ^~~~~~~~~ [475/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/solver/combined_solver_params.hpp" from "combined_solver_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/solver/combined_solver_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/solver/combined_solver_params.hpp" [476/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/tactic/sls/sls_params.hpp" from "sls_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/sls/sls_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/tactic/sls/sls_params.hpp" [477/847] Building CXX object src/tactic/sls/CMakeFiles/sls_tactic.dir/sls_tactic.cpp.o [478/847] Building CXX object src/tactic/sls/CMakeFiles/sls_tactic.dir/sls_engine.cpp.o [479/847] Building CXX object src/tactic/sls/CMakeFiles/sls_tactic.dir/bvsls_opt_engine.cpp.o [480/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/solver/parallel_params.hpp" from "parallel_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/solver/parallel_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/solver/parallel_params.hpp" [481/847] Building CXX object src/tactic/fd_solver/CMakeFiles/fd_solver.dir/smtfd_solver.cpp.o [482/847] Building CXX object src/tactic/fd_solver/CMakeFiles/fd_solver.dir/pb2bv_solver.cpp.o [483/847] Building CXX object src/tactic/fd_solver/CMakeFiles/fd_solver.dir/fd_solver.cpp.o [484/847] Building CXX object src/tactic/fd_solver/CMakeFiles/fd_solver.dir/enum2bv_solver.cpp.o [485/847] Building CXX object src/tactic/fd_solver/CMakeFiles/fd_solver.dir/bounded_int2bv_solver.cpp.o [486/847] Building CXX object src/sat/sat_solver/CMakeFiles/sat_solver.dir/inc_sat_solver.cpp.o [487/847] Building CXX object src/nlsat/tactic/CMakeFiles/nlsat_tactic.dir/qfnra_nlsat_tactic.cpp.o [488/847] Building CXX object src/nlsat/tactic/CMakeFiles/nlsat_tactic.dir/nlsat_tactic.cpp.o [489/847] Building CXX object src/nlsat/tactic/CMakeFiles/nlsat_tactic.dir/goal2nlsat.cpp.o [490/847] Building CXX object src/sat/tactic/CMakeFiles/sat_tactic.dir/sat_tactic.cpp.o [491/847] Building CXX object src/sat/tactic/CMakeFiles/sat_tactic.dir/sat2goal.cpp.o [492/847] Building CXX object src/sat/tactic/CMakeFiles/sat_tactic.dir/goal2sat.cpp.o [493/847] Building CXX object src/solver/assertions/CMakeFiles/solver_assertions.dir/asserted_formulas.cpp.o [494/847] Building CXX object src/parsers/smt2/CMakeFiles/smt2parser.dir/smt2scanner.cpp.o [495/847] Building CXX object src/parsers/smt2/CMakeFiles/smt2parser.dir/smt2parser.cpp.o [496/847] Building CXX object src/parsers/smt2/CMakeFiles/smt2parser.dir/marshal.cpp.o [497/847] Building CXX object src/cmd_context/extra_cmds/CMakeFiles/extra_cmds.dir/proof_cmds.cpp.o [498/847] Building CXX object src/cmd_context/extra_cmds/CMakeFiles/extra_cmds.dir/subpaving_cmds.cpp.o [499/847] Building CXX object src/cmd_context/extra_cmds/CMakeFiles/extra_cmds.dir/polynomial_cmds.cpp.o [500/847] Building CXX object src/cmd_context/extra_cmds/CMakeFiles/extra_cmds.dir/dbg_cmds.cpp.o [501/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/tactic_manager.cpp.o [502/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/tactic_cmds.cpp.o [503/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/simplify_cmd.cpp.o [504/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/pdecl.cpp.o [505/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/parametric_cmd.cpp.o [506/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/eval_cmd.cpp.o [507/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/echo_tactic.cpp.o [508/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/cmd_util.cpp.o [509/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/cmd_context_to_goal.cpp.o [510/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/cmd_context.cpp.o [511/847] Building CXX object src/cmd_context/CMakeFiles/cmd_context.dir/basic_cmds.cpp.o [512/847] Building CXX object src/solver/CMakeFiles/solver.dir/tactic2solver.cpp.o [513/847] Building CXX object src/solver/CMakeFiles/solver.dir/solver2tactic.cpp.o [514/847] Building CXX object src/solver/CMakeFiles/solver.dir/solver_pool.cpp.o [515/847] Building CXX object src/solver/CMakeFiles/solver.dir/solver_na2as.cpp.o [516/847] Building CXX object src/solver/CMakeFiles/solver.dir/solver.cpp.o [517/847] Building CXX object src/solver/CMakeFiles/solver.dir/smt_logics.cpp.o [518/847] Building CXX object src/solver/CMakeFiles/solver.dir/parallel_tactic.cpp.o [519/847] Building CXX object src/solver/CMakeFiles/solver.dir/mus.cpp.o [520/847] Building CXX object src/solver/CMakeFiles/solver.dir/combined_solver.cpp.o [521/847] Building CXX object src/solver/CMakeFiles/solver.dir/check_logic.cpp.o [522/847] Building CXX object src/solver/CMakeFiles/solver.dir/check_sat_result.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/nla_core.cpp: In member function 'bool nla::core::elist_is_consistent(const std::unordered_set&) const': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/nla_core.cpp:1192:13: warning: 'p' may be used uninitialized [-Wmaybe-uninitialized] 1192 | if (check_monic(m_emons[j]) != p) | ^~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/math/lp/nla_core.cpp:1186:10: note: 'p' was declared here 1186 | bool p; | ^ [523/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ackermannization/ackermannization_params.hpp" from "ackermannization_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ackermannization/ackermannization_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ackermannization/ackermannization_params.hpp" [524/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ackermannization/ackermannize_bv_tactic_params.hpp" from "ackermannize_bv_tactic_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/ackermannization/ackermannize_bv_tactic_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ackermannization/ackermannize_bv_tactic_params.hpp" [525/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/lackr_model_converter_lazy.cpp.o [526/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/lackr_model_constructor.cpp.o [527/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/lackr.cpp.o [528/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/ackr_model_converter.cpp.o [529/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/ackr_helper.cpp.o [530/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/ackr_bound_probe.cpp.o [531/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/ackermannize_bv_tactic.cpp.o [532/847] Building CXX object src/ackermannization/CMakeFiles/ackermannization.dir/ackermannize_bv_model_converter.cpp.o [533/847] Generating "database.h" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/ast/pattern/database.h" [534/847] Building CXX object src/tactic/ufbv/CMakeFiles/ufbv_tactic.dir/ufbv_tactic.cpp.o [535/847] Building CXX object src/tactic/ufbv/CMakeFiles/ufbv_tactic.dir/ufbv_rewriter_tactic.cpp.o [536/847] Building CXX object src/tactic/ufbv/CMakeFiles/ufbv_tactic.dir/ufbv_rewriter.cpp.o [537/847] Building CXX object src/tactic/ufbv/CMakeFiles/ufbv_tactic.dir/quasi_macros_tactic.cpp.o [538/847] Building CXX object src/tactic/ufbv/CMakeFiles/ufbv_tactic.dir/macro_finder_tactic.cpp.o [539/847] Building CXX object src/qe/CMakeFiles/qe.dir/qsat.cpp.o [540/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_tactic.cpp.o [541/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_mbp.cpp.o [542/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_mbi.cpp.o [543/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_dl_plugin.cpp.o [544/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_datatype_plugin.cpp.o [545/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe.cpp.o [546/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_cmd.cpp.o [547/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_bv_plugin.cpp.o [548/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_bool_plugin.cpp.o [549/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_array_plugin.cpp.o [550/847] Building CXX object src/qe/CMakeFiles/qe.dir/qe_arith_plugin.cpp.o [551/847] Building CXX object src/qe/CMakeFiles/qe.dir/nlqsat.cpp.o [552/847] Building CXX object src/qe/CMakeFiles/qe.dir/nlarith_util.cpp.o [553/847] Building CXX object src/smt/tactic/CMakeFiles/smt_tactic.dir/unit_subsumption_tactic.cpp.o [554/847] Building CXX object src/smt/tactic/CMakeFiles/smt_tactic.dir/smt_tactic_core.cpp.o [555/847] Building CXX object src/smt/tactic/CMakeFiles/smt_tactic.dir/ctx_solver_simplify_tactic.cpp.o [556/847] Building CXX object src/smt/CMakeFiles/smt.dir/watch_list.cpp.o [557/847] Building CXX object src/smt/CMakeFiles/smt.dir/uses_theory.cpp.o [558/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_wmaxsat.cpp.o [559/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_utvpi.cpp.o [560/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_user_propagator.cpp.o [561/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_str_regex.cpp.o [562/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_str_mc.cpp.o [563/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_str.cpp.o [564/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_special_relations.cpp.o [565/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_seq.cpp.o [566/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_recfun.cpp.o [567/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_pb.cpp.o [568/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_opt.cpp.o [569/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_lra.cpp.o [570/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_fpa.cpp.o [571/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_dummy.cpp.o [572/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_dl.cpp.o [573/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_diff_logic.cpp.o [574/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_dense_diff_logic.cpp.o [575/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_datatype.cpp.o [576/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_char.cpp.o [577/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_bv.cpp.o [578/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_array_full.cpp.o [579/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_array.cpp.o [580/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_array_base.cpp.o [581/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_array_bapa.cpp.o [582/847] Building CXX object src/smt/CMakeFiles/smt.dir/theory_arith.cpp.o [583/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt2_extra_cmds.cpp.o [584/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_value_sort.cpp.o [585/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_theory.cpp.o [586/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_statistics.cpp.o [587/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_solver.cpp.o [588/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_setup.cpp.o [589/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_relevancy.cpp.o [590/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_quick_checker.cpp.o [591/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_quantifier.cpp.o [592/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_parallel.cpp.o [593/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_model_generator.cpp.o [594/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_model_finder.cpp.o [595/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_model_checker.cpp.o [596/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_lookahead.cpp.o [597/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_literal.cpp.o [598/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_kernel.cpp.o [599/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_justification.cpp.o [600/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_internalizer.cpp.o [601/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_implied_equalities.cpp.o [602/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_for_each_relevant_expr.cpp.o [603/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_farkas_util.cpp.o [604/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_enode.cpp.o [605/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_context_stat.cpp.o [606/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_context_pp.cpp.o [607/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_context_inv.cpp.o [608/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_context.cpp.o [609/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_consequences.cpp.o [610/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_conflict_resolution.cpp.o [611/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_clause_proof.cpp.o [612/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_clause.cpp.o [613/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_checker.cpp.o [614/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_cg_table.cpp.o [615/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_case_split_queue.cpp.o [616/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_arith_value.cpp.o [617/847] Building CXX object src/smt/CMakeFiles/smt.dir/smt_almost_cg_table.cpp.o [618/847] Building CXX object src/smt/CMakeFiles/smt.dir/seq_regex.cpp.o [619/847] Building CXX object src/smt/CMakeFiles/smt.dir/seq_offset_eq.cpp.o [620/847] Building CXX object src/smt/CMakeFiles/smt.dir/seq_ne_solver.cpp.o [621/847] Building CXX object src/smt/CMakeFiles/smt.dir/seq_eq_solver.cpp.o [622/847] Building CXX object src/smt/CMakeFiles/smt.dir/seq_axioms.cpp.o [623/847] Building CXX object src/smt/CMakeFiles/smt.dir/qi_queue.cpp.o [624/847] Building CXX object src/smt/CMakeFiles/smt.dir/old_interval.cpp.o [625/847] Building CXX object src/smt/CMakeFiles/smt.dir/mam.cpp.o [626/847] Building CXX object src/smt/CMakeFiles/smt.dir/fingerprints.cpp.o [627/847] Building CXX object src/smt/CMakeFiles/smt.dir/expr_context_simplifier.cpp.o [628/847] Building CXX object src/smt/CMakeFiles/smt.dir/dyn_ack.cpp.o [629/847] Building CXX object src/smt/CMakeFiles/smt.dir/arith_eq_solver.cpp.o [630/847] Building CXX object src/smt/CMakeFiles/smt.dir/arith_eq_adapter.cpp.o [631/847] Building CXX object src/ast/pattern/CMakeFiles/pattern.dir/pattern_inference.cpp.o [632/847] Building CXX object src/ast/pattern/CMakeFiles/pattern.dir/expr_pattern_match.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/smt/theory_pb.cpp: In member function 'bool smt::theory_pb::validate_implies(app_ref&, app_ref&)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/smt/theory_pb.cpp:1598:15: warning: unused variable 'is_sat' [-Wunused-variable] 1598 | lbool is_sat = k.check(); | ^~~~~~ [633/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/muz/base/fp_params.hpp" from "fp_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/base/fp_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/muz/base/fp_params.hpp" [634/847] Building CXX object src/muz/fp/CMakeFiles/fp.dir/horn_tactic.cpp.o [635/847] Building CXX object src/muz/fp/CMakeFiles/fp.dir/dl_register_engine.cpp.o [636/847] Building CXX object src/muz/fp/CMakeFiles/fp.dir/dl_cmds.cpp.o [637/847] Building CXX object src/muz/fp/CMakeFiles/fp.dir/datalog_parser.cpp.o [638/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_arith_kernel.cpp.o [639/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_conjecture.cpp.o [640/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_convex_closure.cpp.o [641/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_concretize.cpp.o [642/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_sat_answer.cpp.o [643/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_pdr.cpp.o [644/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_mbc.cpp.o [645/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_iuc_proof.cpp.o [646/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_callback.cpp.o [647/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_cluster.cpp.o [648/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_expand_bnd_generalizer.cpp.o [649/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_ind_lemma_generalizer.cpp.o [650/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_global_generalizer.cpp.o [651/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_arith_generalizers.cpp.o [652/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_quant_generalizer.cpp.o [653/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_sem_matcher.cpp.o [654/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_qe_project.cpp.o [655/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_mev_array.cpp.o [656/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_antiunify.cpp.o [657/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_matrix.cpp.o [658/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_unsat_core_plugin.cpp.o [659/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_unsat_core_learner.cpp.o [660/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_proof_utils.cpp.o [661/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_legacy_mbp.cpp.o [662/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_iuc_solver.cpp.o [663/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_cluster_util.cpp.o [664/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_util.cpp.o [665/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_sym_mux.cpp.o [666/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_prop_solver.cpp.o [667/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_manager.cpp.o [668/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_generalizers.cpp.o [669/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_farkas_learner.cpp.o [670/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_dl_interface.cpp.o [671/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_context.cpp.o [672/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_legacy_frames.cpp.o [673/847] Building CXX object src/muz/spacer/CMakeFiles/spacer.dir/spacer_legacy_mev.cpp.o [674/847] Building CXX object src/muz/ddnf/CMakeFiles/ddnf.dir/ddnf.cpp.o [675/847] Building CXX object src/muz/bmc/CMakeFiles/bmc.dir/dl_bmc_engine.cpp.o [676/847] Building CXX object src/muz/tab/CMakeFiles/tab.dir/tab_context.cpp.o [677/847] Building CXX object src/muz/clp/CMakeFiles/clp.dir/clp_context.cpp.o [678/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/udoc_relation.cpp.o [679/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/rel_context.cpp.o [680/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/karr_relation.cpp.o [681/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/doc.cpp.o [682/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_table_relation.cpp.o [683/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_table.cpp.o [684/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_sparse_table.cpp.o [685/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_sieve_relation.cpp.o [686/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_relation_manager.cpp.o [687/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_product_relation.cpp.o [688/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_mk_simple_joins.cpp.o [689/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_mk_similarity_compressor.cpp.o [690/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_mk_explanations.cpp.o [691/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_lazy_table.cpp.o [692/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_interval_relation.cpp.o [693/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_instruction.cpp.o [694/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_finite_product_relation.cpp.o [695/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_external_relation.cpp.o [696/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_compiler.cpp.o [697/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_check_table.cpp.o [698/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_bound_relation.cpp.o [699/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/dl_base.cpp.o [700/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/check_relation.cpp.o [701/847] Building CXX object src/muz/rel/CMakeFiles/rel.dir/aig_exporter.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_sem_matcher.cpp: In member function 'bool spacer::sem_matcher::operator()(expr*, expr*, substitution&, bool&)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_sem_matcher.cpp:87:49: warning: unused variable 'e3' [-Wunused-variable] 87 | expr *e1 = nullptr, *e2 = nullptr, *e3 = nullptr, *e4 = nullptr, *e5 = nullptr; | ^~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_sem_matcher.cpp:87:64: warning: unused variable 'e4' [-Wunused-variable] 87 | expr *e1 = nullptr, *e2 = nullptr, *e3 = nullptr, *e4 = nullptr, *e5 = nullptr; | ^~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_sem_matcher.cpp:87:79: warning: unused variable 'e5' [-Wunused-variable] 87 | expr *e1 = nullptr, *e2 = nullptr, *e3 = nullptr, *e4 = nullptr, *e5 = nullptr; | ^~ [702/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_synchronize.cpp.o [703/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_elim_term_ite.cpp.o [704/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_array_instantiation.cpp.o [705/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_array_eq_rewrite.cpp.o [706/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_transforms.cpp.o [707/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_unfold.cpp.o [708/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_unbound_compressor.cpp.o [709/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_subsumption_checker.cpp.o [710/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_slice.cpp.o [711/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_separate_negated_tails.cpp.o [712/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_scale.cpp.o [713/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_rule_inliner.cpp.o [714/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_quantifier_instantiation.cpp.o [715/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_quantifier_abstraction.cpp.o [716/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_magic_symbolic.cpp.o [717/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_magic_sets.cpp.o [718/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_loop_counter.cpp.o [719/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_karr_invariants.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_convex_closure.cpp:34:6: warning: 'bool {anonymous}::is_sorted(const vector&)' defined but not used [-Wunused-function] 34 | bool is_sorted(const vector &data) { | ^~~~~~~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_convex_closure.cpp:25:6: warning: 'bool {anonymous}::is_int_matrix(const spacer::spacer_matrix&)' defined but not used [-Wunused-function] 25 | bool is_int_matrix(const spacer::spacer_matrix &matrix) { | ^~~~~~~~~~~~~ [720/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_interp_tail_simplifier.cpp.o [721/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_filter_rules.cpp.o [722/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_coi_filter.cpp.o [723/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_coalesce.cpp.o [724/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_bit_blast.cpp.o [725/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_backwards.cpp.o [726/847] Building CXX object src/muz/transforms/CMakeFiles/transforms.dir/dl_mk_array_blast.cpp.o [727/847] Building CXX object src/muz/dataflow/CMakeFiles/dataflow.dir/dataflow.cpp.o [728/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/rule_properties.cpp.o [729/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/hnf.cpp.o [730/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_util.cpp.o [731/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_rule_transformer.cpp.o [732/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_rule_subsumption_index.cpp.o [733/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_rule_set.cpp.o [734/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_rule.cpp.o [735/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_costs.cpp.o [736/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_context.cpp.o In file included from /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_global_generalizer.h:22, from /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_global_generalizer.cpp:19: In member function 'void spacer::convex_closure::set_bv(unsigned int)', inlined from 'void spacer::lemma_global_generalizer::subsumer::setup_cvx_closure(spacer::convex_closure&, const spacer::lemma_cluster&)' at /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_global_generalizer.cpp:225:18: /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_convex_closure.h:140:17: warning: 'bv_width' may be used uninitialized [-Wmaybe-uninitialized] 140 | m_bv_sz = sz; | ~~~~~~~~^~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_global_generalizer.cpp: In member function 'void spacer::lemma_global_generalizer::subsumer::setup_cvx_closure(spacer::convex_closure&, const spacer::lemma_cluster&)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_global_generalizer.cpp:223:14: note: 'bv_width' was declared here 223 | unsigned bv_width; | ^~~~~~~~ [737/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/dl_boogie_proof.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_cluster.cpp: In member function 'void spacer::lemma_cluster_finder::cluster(spacer::lemma_ref&)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_cluster.cpp:381:27: warning: loop variable 'l' of type 'const spacer::lemma_ref&' {aka 'const ref&'} binds to a temporary constructed from type 'spacer::lemma* const' [-Wrange-loop-construct] 381 | for (const lemma_ref &l : neighbours) { | ^ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_cluster.cpp:381:27: note: use non-reference type 'const spacer::lemma_ref' {aka 'const ref'} to make the copy explicit or 'spacer::lemma* const&' to prevent copying /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/muz/spacer/spacer_cluster.cpp:383:14: warning: unused variable 'added' [-Wunused-variable] 383 | bool added = cluster->add_lemma(l, false); | ^~~~~ [738/847] Building CXX object src/muz/base/CMakeFiles/muz.dir/bind_variables.cpp.o [739/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/tactic/smtlogics/qfufbv_tactic_params.hpp" from "qfufbv_tactic_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/tactic/smtlogics/qfufbv_tactic_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/tactic/smtlogics/qfufbv_tactic_params.hpp" [740/847] Building CXX object src/tactic/portfolio/CMakeFiles/portfolio.dir/solver_subsumption_tactic.cpp.o [741/847] Building CXX object src/tactic/portfolio/CMakeFiles/portfolio.dir/solver2lookahead.cpp.o [742/847] Building CXX object src/tactic/portfolio/CMakeFiles/portfolio.dir/smt_strategic_solver.cpp.o [743/847] Building CXX object src/tactic/portfolio/CMakeFiles/portfolio.dir/default_tactic.cpp.o [744/847] Building CXX object src/tactic/fpa/CMakeFiles/fpa_tactics.dir/qffplra_tactic.cpp.o [745/847] Building CXX object src/tactic/fpa/CMakeFiles/fpa_tactics.dir/qffp_tactic.cpp.o [746/847] Building CXX object src/tactic/fpa/CMakeFiles/fpa_tactics.dir/fpa2bv_tactic.cpp.o [747/847] Building CXX object src/tactic/fpa/CMakeFiles/fpa_tactics.dir/fpa2bv_model_converter.cpp.o [748/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/smt_tactic.cpp.o [749/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/quant_tactics.cpp.o [750/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfuf_tactic.cpp.o [751/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfufbv_tactic.cpp.o [752/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfufbv_ackr_model_converter.cpp.o [753/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfnra_tactic.cpp.o [754/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfnia_tactic.cpp.o [755/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qflra_tactic.cpp.o [756/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qflia_tactic.cpp.o [757/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfidl_tactic.cpp.o [758/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfbv_tactic.cpp.o [759/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfauflia_tactic.cpp.o [760/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/qfaufbv_tactic.cpp.o [761/847] Building CXX object src/tactic/smtlogics/CMakeFiles/smtlogic_tactics.dir/nra_tactic.cpp.o [762/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/opt/opt_params.hpp" from "opt_params.pyg" INFO:root:Using /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/opt/opt_params.pyg INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/opt/opt_params.hpp" [763/847] Building CXX object src/opt/CMakeFiles/opt.dir/wmax.cpp.o [764/847] Building CXX object src/opt/CMakeFiles/opt.dir/totalizer.cpp.o [765/847] Building CXX object src/opt/CMakeFiles/opt.dir/sortmax.cpp.o [766/847] Building CXX object src/opt/CMakeFiles/opt.dir/pb_sls.cpp.o [767/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_solver.cpp.o [768/847] Building CXX object src/opt/CMakeFiles/opt.dir/optsmt.cpp.o [769/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_preprocess.cpp.o [770/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_parse.cpp.o [771/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_pareto.cpp.o [772/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_lns.cpp.o [773/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_cores.cpp.o [774/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_context.cpp.o [775/847] Building CXX object src/opt/CMakeFiles/opt.dir/opt_cmds.cpp.o [776/847] Building CXX object src/opt/CMakeFiles/opt.dir/maxsmt.cpp.o [777/847] Building CXX object src/opt/CMakeFiles/opt.dir/maxlex.cpp.o [778/847] Building CXX object src/opt/CMakeFiles/opt.dir/maxcore.cpp.o [779/847] Generating api_commands.cpp;api_log_macros.cpp;api_log_macros.h Faking emission of 'z3/z3core.py' Generated '/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/api_log_macros.h' Generated '/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/api_log_macros.cpp' Generated '/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/api_commands.cpp' Generated '12' [780/847] Building CXX object src/api/CMakeFiles/api.dir/api_log_macros.cpp.o [781/847] Building CXX object src/api/CMakeFiles/api.dir/api_commands.cpp.o [782/847] Building CXX object src/api/CMakeFiles/api.dir/z3_replayer.cpp.o [783/847] Building CXX object src/api/CMakeFiles/api.dir/api_tactic.cpp.o [784/847] Building CXX object src/api/CMakeFiles/api.dir/api_stats.cpp.o [785/847] Building CXX object src/api/CMakeFiles/api.dir/api_special_relations.cpp.o [786/847] Building CXX object src/api/CMakeFiles/api.dir/api_solver.cpp.o [787/847] Building CXX object src/api/CMakeFiles/api.dir/api_seq.cpp.o [788/847] Building CXX object src/api/CMakeFiles/api.dir/api_rcf.cpp.o [789/847] Building CXX object src/api/CMakeFiles/api.dir/api_quant.cpp.o [790/847] Building CXX object src/api/CMakeFiles/api.dir/api_qe.cpp.o [791/847] Building CXX object src/api/CMakeFiles/api.dir/api_polynomial.cpp.o [792/847] Building CXX object src/api/CMakeFiles/api.dir/api_pb.cpp.o [793/847] Building CXX object src/api/CMakeFiles/api.dir/api_parsers.cpp.o [794/847] Building CXX object src/api/CMakeFiles/api.dir/api_params.cpp.o [795/847] Building CXX object src/api/CMakeFiles/api.dir/api_opt.cpp.o [796/847] Building CXX object src/api/CMakeFiles/api.dir/api_numeral.cpp.o [797/847] Building CXX object src/api/CMakeFiles/api.dir/api_model.cpp.o [798/847] Building CXX object src/api/CMakeFiles/api.dir/api_log.cpp.o [799/847] Building CXX object src/api/CMakeFiles/api.dir/api_goal.cpp.o [800/847] Building CXX object src/api/CMakeFiles/api.dir/api_fpa.cpp.o [801/847] Building CXX object src/api/CMakeFiles/api.dir/api_datatype.cpp.o [802/847] Building CXX object src/api/CMakeFiles/api.dir/api_datalog.cpp.o [803/847] Building CXX object src/api/CMakeFiles/api.dir/api_context.cpp.o [804/847] Building CXX object src/api/CMakeFiles/api.dir/api_config_params.cpp.o [805/847] Building CXX object src/api/CMakeFiles/api.dir/api_bv.cpp.o [806/847] Building CXX object src/api/CMakeFiles/api.dir/api_ast_vector.cpp.o [807/847] Building CXX object src/api/CMakeFiles/api.dir/api_ast_map.cpp.o [808/847] Building CXX object src/api/CMakeFiles/api.dir/api_ast.cpp.o [809/847] Building CXX object src/api/CMakeFiles/api.dir/api_array.cpp.o [810/847] Building CXX object src/api/CMakeFiles/api.dir/api_arith.cpp.o [811/847] Building CXX object src/api/CMakeFiles/api.dir/api_algebraic.cpp.o [812/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/dll/gparams_register_modules.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/dll/gparams_register_modules.cpp" [813/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/shell/mem_initializer.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/shell/mem_initializer.cpp" [814/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/shell/install_tactic.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/shell/install_tactic.cpp" [815/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/shell/gparams_register_modules.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/shell/gparams_register_modules.cpp" [816/847] Building CXX object src/shell/CMakeFiles/shell.dir/gparams_register_modules.cpp.o [817/847] Building CXX object src/shell/CMakeFiles/shell.dir/lp_frontend.cpp.o [818/847] Building CXX object src/shell/CMakeFiles/shell.dir/z3_log_frontend.cpp.o [819/847] Building CXX object src/shell/CMakeFiles/shell.dir/smtlib_frontend.cpp.o [820/847] Building CXX object src/shell/CMakeFiles/shell.dir/opt_frontend.cpp.o [821/847] Building CXX object src/shell/CMakeFiles/shell.dir/mem_initializer.cpp.o [822/847] Building CXX object src/shell/CMakeFiles/shell.dir/main.cpp.o [823/847] Building CXX object src/shell/CMakeFiles/shell.dir/install_tactic.cpp.o [824/847] Building CXX object src/shell/CMakeFiles/shell.dir/drat_frontend.cpp.o [825/847] Building CXX object src/shell/CMakeFiles/shell.dir/dimacs_frontend.cpp.o [826/847] Building CXX object src/shell/CMakeFiles/shell.dir/datalog_frontend.cpp.o [827/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/dll/mem_initializer.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/dll/mem_initializer.cpp" [828/847] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/dll/install_tactic.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/api/dll/install_tactic.cpp" [829/847] Building CXX object src/api/dll/CMakeFiles/api_dll.dir/install_tactic.cpp.o [830/847] Building CXX object src/api/dll/CMakeFiles/api_dll.dir/mem_initializer.cpp.o [831/847] Building CXX object src/api/dll/CMakeFiles/api_dll.dir/gparams_register_modules.cpp.o [832/847] Building CXX object src/api/dll/CMakeFiles/api_dll.dir/dll.cpp.o [833/847] Linking CXX shared library libz3.so.4.11.2.0 [834/847] Linking CXX executable z3 [835/847] Creating library symlink libz3.so.4.11 libz3.so [836/847] Copying "z3test.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3test.py [837/847] Copying "z3/z3util.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3util.py [838/847] Copying "z3/z3types.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3types.py [839/847] Copying "z3/z3rcf.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3rcf.py [840/847] Copying "z3/z3printer.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3printer.py [841/847] Copying "z3/z3poly.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3poly.py [842/847] Copying "z3/z3num.py" to /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3num.py [843/847] Generating z3consts.py INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3consts.py" [847/847] Generating z3core.py Faking emission of 'api_log_macros.h' Faking emission of 'api_log_macros.cpp' Faking emission of 'api_commands.cpp' Generated '8' Generated '11' Generated '12' Generated '/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/python/z3/z3core.py' [1/125] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/test/gparams_register_modules.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/test/gparams_register_modules.cpp" [2/125] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/test/mem_initializer.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/test/mem_initializer.cpp" [3/125] Generating "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/test/install_tactic.cpp" INFO:root:Generated "/home/buildozer/aports/community/z3/src/z3-z3-4.11.2/build/src/test/install_tactic.cpp" [4/125] Building CXX object src/test/CMakeFiles/test-z3.dir/install_tactic.cpp.o [5/125] Building CXX object src/test/CMakeFiles/test-z3.dir/zstring.cpp.o [6/125] Building CXX object src/test/CMakeFiles/test-z3.dir/lp/nla_solver_test.cpp.o [7/125] Building CXX object src/test/CMakeFiles/test-z3.dir/lp/lp.cpp.o [8/125] Building CXX object src/test/CMakeFiles/test-z3.dir/vector.cpp.o [9/125] Building CXX object src/test/CMakeFiles/test-z3.dir/var_subst.cpp.o [10/125] Building CXX object src/test/CMakeFiles/test-z3.dir/value_sweep.cpp.o [11/125] Building CXX object src/test/CMakeFiles/test-z3.dir/value_generator.cpp.o [12/125] Building CXX object src/test/CMakeFiles/test-z3.dir/upolynomial.cpp.o [13/125] Building CXX object src/test/CMakeFiles/test-z3.dir/uint_set.cpp.o [14/125] Building CXX object src/test/CMakeFiles/test-z3.dir/udoc_relation.cpp.o [15/125] Building CXX object src/test/CMakeFiles/test-z3.dir/trigo.cpp.o [16/125] Building CXX object src/test/CMakeFiles/test-z3.dir/totalizer.cpp.o [17/125] Building CXX object src/test/CMakeFiles/test-z3.dir/total_order.cpp.o [18/125] Building CXX object src/test/CMakeFiles/test-z3.dir/timeout.cpp.o [19/125] Building CXX object src/test/CMakeFiles/test-z3.dir/theory_pb.cpp.o [20/125] Building CXX object src/test/CMakeFiles/test-z3.dir/theory_dl.cpp.o [21/125] Building CXX object src/test/CMakeFiles/test-z3.dir/tbv.cpp.o [22/125] Building CXX object src/test/CMakeFiles/test-z3.dir/symbol_table.cpp.o [23/125] Building CXX object src/test/CMakeFiles/test-z3.dir/symbol.cpp.o [24/125] Building CXX object src/test/CMakeFiles/test-z3.dir/substitution.cpp.o [25/125] Building CXX object src/test/CMakeFiles/test-z3.dir/string_buffer.cpp.o [26/125] Building CXX object src/test/CMakeFiles/test-z3.dir/stack.cpp.o [27/125] Building CXX object src/test/CMakeFiles/test-z3.dir/sorting_network.cpp.o [28/125] Building CXX object src/test/CMakeFiles/test-z3.dir/solver_pool.cpp.o [29/125] Building CXX object src/test/CMakeFiles/test-z3.dir/smt_context.cpp.o [30/125] Building CXX object src/test/CMakeFiles/test-z3.dir/smt2print_parse.cpp.o [31/125] Building CXX object src/test/CMakeFiles/test-z3.dir/small_object_allocator.cpp.o [32/125] Building CXX object src/test/CMakeFiles/test-z3.dir/simplifier.cpp.o [33/125] Building CXX object src/test/CMakeFiles/test-z3.dir/simplex.cpp.o [34/125] Building CXX object src/test/CMakeFiles/test-z3.dir/simple_parser.cpp.o [35/125] Building CXX object src/test/CMakeFiles/test-z3.dir/scoped_timer.cpp.o [36/125] Building CXX object src/test/CMakeFiles/test-z3.dir/sat_user_scope.cpp.o [37/125] Building CXX object src/test/CMakeFiles/test-z3.dir/sat_lookahead.cpp.o [38/125] Building CXX object src/test/CMakeFiles/test-z3.dir/sat_local_search.cpp.o [39/125] Building CXX object src/test/CMakeFiles/test-z3.dir/region.cpp.o [40/125] Building CXX object src/test/CMakeFiles/test-z3.dir/rcf.cpp.o [41/125] Building CXX object src/test/CMakeFiles/test-z3.dir/rational.cpp.o [42/125] Building CXX object src/test/CMakeFiles/test-z3.dir/random.cpp.o [43/125] Building CXX object src/test/CMakeFiles/test-z3.dir/quant_solve.cpp.o [44/125] Building CXX object src/test/CMakeFiles/test-z3.dir/quant_elim.cpp.o [45/125] Building CXX object src/test/CMakeFiles/test-z3.dir/qe_arith.cpp.o [46/125] Building CXX object src/test/CMakeFiles/test-z3.dir/proof_checker.cpp.o [47/125] Building CXX object src/test/CMakeFiles/test-z3.dir/prime_generator.cpp.o [48/125] Building CXX object src/test/CMakeFiles/test-z3.dir/polynorm.cpp.o [49/125] Building CXX object src/test/CMakeFiles/test-z3.dir/polynomial.cpp.o [50/125] Building CXX object src/test/CMakeFiles/test-z3.dir/permutation.cpp.o [51/125] Building CXX object src/test/CMakeFiles/test-z3.dir/pdd_solver.cpp.o [52/125] Building CXX object src/test/CMakeFiles/test-z3.dir/pdd.cpp.o [53/125] Building CXX object src/test/CMakeFiles/test-z3.dir/pb2bv.cpp.o [54/125] Building CXX object src/test/CMakeFiles/test-z3.dir/parray.cpp.o [55/125] Building CXX object src/test/CMakeFiles/test-z3.dir/optional.cpp.o [56/125] Building CXX object src/test/CMakeFiles/test-z3.dir/old_interval.cpp.o [57/125] Building CXX object src/test/CMakeFiles/test-z3.dir/object_allocator.cpp.o [58/125] Building CXX object src/test/CMakeFiles/test-z3.dir/no_overflow.cpp.o [59/125] Building CXX object src/test/CMakeFiles/test-z3.dir/nlsat.cpp.o [60/125] Building CXX object src/test/CMakeFiles/test-z3.dir/nlarith_util.cpp.o [61/125] Building CXX object src/test/CMakeFiles/test-z3.dir/mpz.cpp.o [62/125] Building CXX object src/test/CMakeFiles/test-z3.dir/mpq.cpp.o [63/125] Building CXX object src/test/CMakeFiles/test-z3.dir/mpfx.cpp.o [64/125] Building CXX object src/test/CMakeFiles/test-z3.dir/mpff.cpp.o [65/125] Building CXX object src/test/CMakeFiles/test-z3.dir/mpf.cpp.o [66/125] Building CXX object src/test/CMakeFiles/test-z3.dir/mpbq.cpp.o [67/125] Building CXX object src/test/CMakeFiles/test-z3.dir/model_retrieval.cpp.o [68/125] Building CXX object src/test/CMakeFiles/test-z3.dir/model_evaluator.cpp.o [69/125] Building CXX object src/test/CMakeFiles/test-z3.dir/model_based_opt.cpp.o [70/125] Building CXX object src/test/CMakeFiles/test-z3.dir/model2expr.cpp.o [71/125] Building CXX object src/test/CMakeFiles/test-z3.dir/memory.cpp.o [72/125] Building CXX object src/test/CMakeFiles/test-z3.dir/mem_initializer.cpp.o [73/125] Building CXX object src/test/CMakeFiles/test-z3.dir/matcher.cpp.o [74/125] Building CXX object src/test/CMakeFiles/test-z3.dir/map.cpp.o [75/125] Building CXX object src/test/CMakeFiles/test-z3.dir/main.cpp.o [76/125] Building CXX object src/test/CMakeFiles/test-z3.dir/list.cpp.o [77/125] Building CXX object src/test/CMakeFiles/test-z3.dir/karr.cpp.o [78/125] Building CXX object src/test/CMakeFiles/test-z3.dir/interval.cpp.o [79/125] Building CXX object src/test/CMakeFiles/test-z3.dir/inf_rational.cpp.o [80/125] Building CXX object src/test/CMakeFiles/test-z3.dir/hwf.cpp.o [81/125] Building CXX object src/test/CMakeFiles/test-z3.dir/horn_subsume_model_converter.cpp.o [82/125] Building CXX object src/test/CMakeFiles/test-z3.dir/hilbert_basis.cpp.o [83/125] Building CXX object src/test/CMakeFiles/test-z3.dir/heap_trie.cpp.o [84/125] Building CXX object src/test/CMakeFiles/test-z3.dir/heap.cpp.o [85/125] Building CXX object src/test/CMakeFiles/test-z3.dir/hashtable.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/simplifier.cpp: In function 'void test_datatypes()': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/simplifier.cpp:87:21: warning: variable 'int_list' set but not used [-Wunused-but-set-variable] 87 | Z3_sort int_ty, int_list; | ^~~~~~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/simplifier.cpp: In function 'void test_array()': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/simplifier.cpp:168:12: warning: unused variable 's2' [-Wunused-variable] 168 | Z3_ast s2 = Z3_mk_const(ctx, Z3_mk_string_symbol(ctx,"s2"), i); | ^~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/simplifier.cpp:177:12: warning: variable 'rxy' set but not used [-Wunused-but-set-variable] 177 | Z3_ast rxy = Z3_simplify(ctx, exy); | ^~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/simplifier.cpp:196:12: warning: unused variable 'sel1' [-Wunused-variable] 196 | Z3_ast sel1 = Z3_mk_select(ctx, x1, n1); | ^~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/simplifier.cpp:197:12: warning: unused variable 'sel2' [-Wunused-variable] 197 | Z3_ast sel2 = Z3_mk_select(ctx, x1, n4); | ^~~~ [86/125] Building CXX object src/test/CMakeFiles/test-z3.dir/gparams_register_modules.cpp.o [87/125] Building CXX object src/test/CMakeFiles/test-z3.dir/get_implied_equalities.cpp.o [88/125] Building CXX object src/test/CMakeFiles/test-z3.dir/get_consequences.cpp.o [89/125] Building CXX object src/test/CMakeFiles/test-z3.dir/for_each_file.cpp.o [90/125] Building CXX object src/test/CMakeFiles/test-z3.dir/fixed_bit_vector.cpp.o [91/125] Building CXX object src/test/CMakeFiles/test-z3.dir/finder.cpp.o [92/125] Building CXX object src/test/CMakeFiles/test-z3.dir/factor_rewriter.cpp.o [93/125] Building CXX object src/test/CMakeFiles/test-z3.dir/f2n.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/memory.cpp: In function 'void hit_me(const char*)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/memory.cpp:42:25: warning: catching polymorphic type 'class std::bad_alloc' by value [-Wcatch-value=] 42 | catch (std::bad_alloc) { | ^~~~~~~~~ [94/125] Building CXX object src/test/CMakeFiles/test-z3.dir/ext_numeral.cpp.o [95/125] Building CXX object src/test/CMakeFiles/test-z3.dir/expr_substitution.cpp.o [96/125] Building CXX object src/test/CMakeFiles/test-z3.dir/expr_rand.cpp.o [97/125] Building CXX object src/test/CMakeFiles/test-z3.dir/ex.cpp.o [98/125] Building CXX object src/test/CMakeFiles/test-z3.dir/escaped.cpp.o [99/125] Building CXX object src/test/CMakeFiles/test-z3.dir/egraph.cpp.o [100/125] Building CXX object src/test/CMakeFiles/test-z3.dir/doc.cpp.o [101/125] Building CXX object src/test/CMakeFiles/test-z3.dir/dl_util.cpp.o [102/125] Building CXX object src/test/CMakeFiles/test-z3.dir/dl_table.cpp.o [103/125] Building CXX object src/test/CMakeFiles/test-z3.dir/dl_relation.cpp.o [104/125] Building CXX object src/test/CMakeFiles/test-z3.dir/dl_query.cpp.o [105/125] Building CXX object src/test/CMakeFiles/test-z3.dir/dl_product_relation.cpp.o [106/125] Building CXX object src/test/CMakeFiles/test-z3.dir/dl_context.cpp.o [107/125] Building CXX object src/test/CMakeFiles/test-z3.dir/diff_logic.cpp.o [108/125] Building CXX object src/test/CMakeFiles/test-z3.dir/ddnf.cpp.o [109/125] Building CXX object src/test/CMakeFiles/test-z3.dir/datalog_parser.cpp.o [110/125] Building CXX object src/test/CMakeFiles/test-z3.dir/cube_clause.cpp.o [111/125] Building CXX object src/test/CMakeFiles/test-z3.dir/cnf_backbones.cpp.o [112/125] Building CXX object src/test/CMakeFiles/test-z3.dir/check_assumptions.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/no_overflow.cpp:532:97: warning: 'visibility' attribute ignored on non-class types [-Wattributes] 532 | typedef Z3_ast (Z3_API *NO_OVFL_ARITH_FUNC)(Z3_context ctx, Z3_ast t1, Z3_ast t2, bool is_signed); | ^ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/no_overflow.cpp:533:73: warning: 'visibility' attribute ignored on non-class types [-Wattributes] 533 | typedef Z3_ast (Z3_API *ARITH_FUNC)(Z3_context ctx, Z3_ast t1, Z3_ast t2); | ^ [113/125] Building CXX object src/test/CMakeFiles/test-z3.dir/chashtable.cpp.o [114/125] Building CXX object src/test/CMakeFiles/test-z3.dir/buffer.cpp.o [115/125] Building CXX object src/test/CMakeFiles/test-z3.dir/bit_vector.cpp.o [116/125] Building CXX object src/test/CMakeFiles/test-z3.dir/bits.cpp.o [117/125] Building CXX object src/test/CMakeFiles/test-z3.dir/bit_blaster.cpp.o [118/125] Building CXX object src/test/CMakeFiles/test-z3.dir/bdd.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/hwf.cpp: In function 'void bug_is_int()': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/hwf.cpp:106:21: warning: dereferencing type-punned pointer will break strict-aliasing rules [-Wstrict-aliasing] 106 | double val = *(double*)(raw_val); | ^~~~~~~~~~~~~~~~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/hwf.cpp:106:14: warning: 'raw_val' is used uninitialized [-Wuninitialized] 106 | double val = *(double*)(raw_val); | ^~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/hwf.cpp:105:14: note: 'raw_val' declared here 105 | unsigned raw_val[2] = { 2147483648u, 1077720461u }; | ^~~~~~~ [119/125] Building CXX object src/test/CMakeFiles/test-z3.dir/ast.cpp.o [120/125] Building CXX object src/test/CMakeFiles/test-z3.dir/arith_simplifier_plugin.cpp.o [121/125] Building CXX object src/test/CMakeFiles/test-z3.dir/arith_rewriter.cpp.o [122/125] Building CXX object src/test/CMakeFiles/test-z3.dir/api.cpp.o [123/125] Building CXX object src/test/CMakeFiles/test-z3.dir/api_bug.cpp.o [124/125] Building CXX object src/test/CMakeFiles/test-z3.dir/algebraic.cpp.o /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/qe_arith.cpp: In function 'void add_random_ineq(expr_ref_vector&, opt::model_based_opt&, random_gen&, const svector&, unsigned int, unsigned int)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/qe_arith.cpp:367:12: warning: enumeration value 't_divides' not handled in switch [-Wswitch] 367 | switch (rel) { | ^ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/qe_arith.cpp:367:12: warning: enumeration value 't_div' not handled in switch [-Wswitch] /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/api.cpp: In function 'void test_mk_distinct()': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/api.cpp:102:12: warning: unused variable 'd' [-Wunused-variable] 102 | Z3_ast d = Z3_mk_distinct(ctx, 2, args); | ^ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/dl_relation.cpp: In function 'void datalog::test_bound_relation()': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/dl_relation.cpp:250:22: warning: unused variable 'x0x3' [-Wunused-variable] 250 | unsigned x0x3[2] = { 0, 3 }; | ^~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/lp/lp.cpp: In function 'void lp::solve_some_mps(argument_parser&)': /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/lp/lp.cpp:1925:34: warning: 'max_iters' may be used uninitialized [-Wmaybe-uninitialized] 1925 | process_test_file(file_dir, file_name, args_parser, out_dir, max_iters, time_limit, successes, failures, inconclusives); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /home/buildozer/aports/community/z3/src/z3-z3-4.11.2/src/test/lp/lp.cpp:1902:14: note: 'max_iters' was declared here 1902 | unsigned max_iters, time_limit; | ^~~~~~~~~ [125/125] Linking CXX executable test-z3 PASS (test random :time 0.00 :before-memory 0.96 :after-memory 0.96) PASS (test random :time 0.00 :before-memory 0.96 :after-memory 0.96) PASS (test symbol_table :time 0.00 :before-memory 0.96 :after-memory 0.96) PASS (test symbol_table :time 0.00 :before-memory 0.96 :after-memory 0.96) PASS (test region :time 0.00 :before-memory 0.96 :after-memory 0.96) PASS (test region :time 0.00 :before-memory 0.96 :after-memory 0.96) foo boo foo PASS (test symbol :time 0.00 :before-memory 0.96 :after-memory 0.96) foo boo foo PASS (test symbol :time 0.00 :before-memory 0.96 :after-memory 0.96) i: 0 i: 1000 i: 2000 i: 3000 i: 4000 i: 5000 i: 6000 i: 7000 i: 8000 i: 9000 i: 10000 i: 11000 i: 12000 i: 13000 i: 14000 i: 15000 i: 16000 i: 17000 i: 18000 i: 19000 i: 20000 i: 21000 i: 22000 i: 23000 i: 24000 i: 25000 i: 26000 i: 27000 i: 28000 i: 29000 i: 30000 i: 31000 i: 32000 i: 33000 i: 34000 i: 35000 i: 36000 i: 37000 i: 38000 i: 39000 i: 40000 i: 41000 i: 42000 i: 43000 i: 44000 i: 45000 i: 46000 i: 47000 i: 48000 i: 49000 i: 50000 i: 51000 i: 52000 i: 53000 i: 54000 i: 55000 i: 56000 i: 57000 i: 58000 i: 59000 i: 60000 i: 61000 i: 62000 i: 63000 i: 64000 i: 65000 i: 66000 i: 67000 i: 68000 i: 69000 i: 70000 i: 71000 i: 72000 i: 73000 i: 74000 i: 75000 i: 76000 i: 77000 i: 78000 i: 79000 i: 80000 i: 81000 i: 82000 i: 83000 i: 84000 i: 85000 i: 86000 i: 87000 i: 88000 i: 89000 i: 90000 i: 91000 i: 92000 i: 93000 i: 94000 i: 95000 i: 96000 i: 97000 i: 98000 i: 99000 i: 0 i: 1000 i: 2000 i: 3000 i: 4000 i: 5000 i: 6000 i: 7000 i: 8000 i: 9000 i: 10000 i: 11000 i: 12000 i: 13000 i: 14000 i: 15000 i: 16000 i: 17000 i: 18000 i: 19000 i: 20000 i: 21000 i: 22000 i: 23000 i: 24000 i: 25000 i: 26000 i: 27000 i: 28000 i: 29000 i: 30000 i: 31000 i: 32000 i: 33000 i: 34000 i: 35000 i: 36000 i: 37000 i: 38000 i: 39000 i: 40000 i: 41000 i: 42000 i: 43000 i: 44000 i: 45000 i: 46000 i: 47000 i: 48000 i: 49000 i: 50000 i: 51000 i: 52000 i: 53000 i: 54000 i: 55000 i: 56000 i: 57000 i: 58000 i: 59000 i: 60000 i: 61000 i: 62000 i: 63000 i: 64000 i: 65000 i: 66000 i: 67000 i: 68000 i: 69000 i: 70000 i: 71000 i: 72000 i: 73000 i: 74000 i: 75000 i: 76000 i: 77000 i: 78000 i: 79000 i: 80000 i: 81000 i: 82000 i: 83000 i: 84000 i: 85000 i: 86000 i: 87000 i: 88000 i: 89000 i: 90000 i: 91000 i: 92000 i: 93000 i: 94000 i: 95000 i: 96000 i: 97000 i: 98000 i: 99000 i: 0 i: 1000 i: 2000 i: 3000 i: 4000 i: 5000 i: 6000 i: 7000 i: 8000 i: 9000 i: 10000 i: 11000 i: 12000 i: 13000 i: 14000 i: 15000 i: 16000 i: 17000 i: 18000 i: 19000 i: 20000 i: 21000 i: 22000 i: 23000 i: 24000 i: 25000 i: 26000 i: 27000 i: 28000 i: 29000 i: 30000 i: 31000 i: 32000 i: 33000 i: 34000 i: 35000 i: 36000 i: 37000 i: 38000 i: 39000 i: 40000 i: 41000 i: 42000 i: 43000 i: 44000 i: 45000 i: 46000 i: 47000 i: 48000 i: 49000 i: 50000 i: 51000 i: 52000 i: 53000 i: 54000 i: 55000 i: 56000 i: 57000 i: 58000 i: 59000 i: 60000 i: 61000 i: 62000 i: 63000 i: 64000 i: 65000 i: 66000 i: 67000 i: 68000 i: 69000 i: 70000 i: 71000 i: 72000 i: 73000 i: 74000 i: 75000 i: 76000 i: 77000 i: 78000 i: 79000 i: 80000 i: 81000 i: 82000 i: 83000 i: 84000 i: 85000 i: 86000 i: 87000 i: 88000 i: 89000 i: 90000 i: 91000 i: 92000 i: 93000 i: 94000 i: 95000 i: 96000 i: 97000 i: 98000 i: 99000 PASS (test heap :time 0.02 :before-memory 0.96 :after-memory 1.06) i: 0 i: 1000 i: 2000 i: 3000 i: 4000 i: 5000 i: 6000 i: 7000 i: 8000 i: 9000 i: 10000 i: 11000 i: 12000 i: 13000 i: 14000 i: 15000 i: 16000 i: 17000 i: 18000 i: 19000 i: 20000 i: 21000 i: 22000 i: 23000 i: 24000 i: 25000 i: 26000 i: 27000 i: 28000 i: 29000 i: 30000 i: 31000 i: 32000 i: 33000 i: 34000 i: 35000 i: 36000 i: 37000 i: 38000 i: 39000 i: 40000 i: 41000 i: 42000 i: 43000 i: 44000 i: 45000 i: 46000 i: 47000 i: 48000 i: 49000 i: 50000 i: 51000 i: 52000 i: 53000 i: 54000 i: 55000 i: 56000 i: 57000 i: 58000 i: 59000 i: 60000 i: 61000 i: 62000 i: 63000 i: 64000 i: 65000 i: 66000 i: 67000 i: 68000 i: 69000 i: 70000 i: 71000 i: 72000 i: 73000 i: 74000 i: 75000 i: 76000 i: 77000 i: 78000 i: 79000 i: 80000 i: 81000 i: 82000 i: 83000 i: 84000 i: 85000 i: 86000 i: 87000 i: 88000 i: 89000 i: 90000 i: 91000 i: 92000 i: 93000 i: 94000 i: 95000 i: 96000 i: 97000 i: 98000 i: 99000 i: 0 i: 1000 i: 2000 i: 3000 i: 4000 i: 5000 i: 6000 i: 7000 i: 8000 i: 9000 i: 10000 i: 11000 i: 12000 i: 13000 i: 14000 i: 15000 i: 16000 i: 17000 i: 18000 i: 19000 i: 20000 i: 21000 i: 22000 i: 23000 i: 24000 i: 25000 i: 26000 i: 27000 i: 28000 i: 29000 i: 30000 i: 31000 i: 32000 i: 33000 i: 34000 i: 35000 i: 36000 i: 37000 i: 38000 i: 39000 i: 40000 i: 41000 i: 42000 i: 43000 i: 44000 i: 45000 i: 46000 i: 47000 i: 48000 i: 49000 i: 50000 i: 51000 i: 52000 i: 53000 i: 54000 i: 55000 i: 56000 i: 57000 i: 58000 i: 59000 i: 60000 i: 61000 i: 62000 i: 63000 i: 64000 i: 65000 i: 66000 i: 67000 i: 68000 i: 69000 i: 70000 i: 71000 i: 72000 i: 73000 i: 74000 i: 75000 i: 76000 i: 77000 i: 78000 i: 79000 i: 80000 i: 81000 i: 82000 i: 83000 i: 84000 i: 85000 i: 86000 i: 87000 i: 88000 i: 89000 i: 90000 i: 91000 i: 92000 i: 93000 i: 94000 i: 95000 i: 96000 i: 97000 i: 98000 i: 99000 i: 0 i: 1000 i: 2000 i: 3000 i: 4000 i: 5000 i: 6000 i: 7000 i: 8000 i: 9000 i: 10000 i: 11000 i: 12000 i: 13000 i: 14000 i: 15000 i: 16000 i: 17000 i: 18000 i: 19000 i: 20000 i: 21000 i: 22000 i: 23000 i: 24000 i: 25000 i: 26000 i: 27000 i: 28000 i: 29000 i: 30000 i: 31000 i: 32000 i: 33000 i: 34000 i: 35000 i: 36000 i: 37000 i: 38000 i: 39000 i: 40000 i: 41000 i: 42000 i: 43000 i: 44000 i: 45000 i: 46000 i: 47000 i: 48000 i: 49000 i: 50000 i: 51000 i: 52000 i: 53000 i: 54000 i: 55000 i: 56000 i: 57000 i: 58000 i: 59000 i: 60000 i: 61000 i: 62000 i: 63000 i: 64000 i: 65000 i: 66000 i: 67000 i: 68000 i: 69000 i: 70000 i: 71000 i: 72000 i: 73000 i: 74000 i: 75000 i: 76000 i: 77000 i: 78000 i: 79000 i: 80000 i: 81000 i: 82000 i: 83000 i: 84000 i: 85000 i: 86000 i: 87000 i: 88000 i: 89000 i: 90000 i: 91000 i: 92000 i: 93000 i: 94000 i: 95000 i: 96000 i: 97000 i: 98000 i: 99000 PASS (test heap :time 0.02 :before-memory 1.06 :after-memory 1.06) PASS (test hashtable :time 0.00 :before-memory 1.06 :after-memory 1.06) PASS (test hashtable :time 0.00 :before-memory 1.06 :after-memory 1.06) sizeof(rational): 24 int64_max: 9223372036854775807, INT64_MAX: 9223372036854775807, int64_max.get_int64(): 9223372036854775807, int64_max.get_uint64(): 9223372036854775807 running tst6 running tst7 running tst8 running tst9 41000000000000 -7000000000000 -5 6000000000000 41000000000000 == 41000000000000 -41000000000000 -7000000000000 6 1000000000000 -41000000000000 == -41000000000000 -41000000000000 7000000000000 -6 1000000000000 -41000000000000 == -41000000000000 41000000000000 7000000000000 5 6000000000000 41000000000000 == 41000000000000 41 -7 -5 6 41 == 41 -41 -7 6 1 -41 == -41 -41 7 -6 1 -41 == -41 41 7 5 6 41 == 41 running rational_tester::tst1 (multiplication with big rationals :time 3.26 :before-memory 1.31 :after-memory 32.08) (multiplication with floats: :time 0.00 :before-memory 32.08 :after-memory 32.08) Testing multiplication performance using small ints (multiplication with rationals :time 0.01 :before-memory 53.09 :after-memory 53.09) (multiplication with floats: :time 0.00 :before-memory 53.09 :after-memory 53.09) Testing multiplication performance using small rationals (multiplication with rationals :time 0.17 :before-memory 53.09 :after-memory 53.09) (multiplication with floats: :time 0.00 :before-memory 53.09 :after-memory 53.09) test12 0: 1 1: 0 2: 0 3: 0 4: 0 5: 0 6: 0 7: 0 8: 0 9: 0 10: 0 11: 0 12: 0 13: 0 14: 0 15: 0 16: 0 17: 0 18: 0 19: 0 20: 0 21: 0 22: 0 23: 0 24: 0 25: 0 26: 0 27: 0 28: 0 29: 0 30: 0 31: 0 32: 0 33: 0 34: 1 35: 0 36: 0 37: 1 38: 1 39: 0 40: 0 41: 1 42: 1 43: 1 44: 0 45: 0 46: 0 47: 1 48: 1 49: 0 50: 1 51: 1 52: 0 53: 0 54: 0 55: 1 56: 1 57: 1 58: 1 59: 0 60: 1 61: 1 62: 0 63: 0 64: 0 65: 0 66: 0 67: 0 68: 0 69: 0 70: 1 71: 1 72: 1 73: 1 74: 1 75: 0 76: 0 77: 0 78: 0 79: 1 80: 1 81: 0 82: 1 83: 1 84: 0 85: 1 86: 0 87: 1 88: 0 89: 1 90: 1 91: 1 92: 1 93: 1 94: 0 95: 1 96: 1 97: 0 98: 0 99: 1 100: 0 101: 0 102: 0 103: 0 104: 1 105: 0 106: 1 107: 1 108: 0 109: 1 110: 1 111: 1 112: 1 PASS (test rational :time 3.92 :before-memory 1.06 :after-memory 1.03) sizeof(rational): 24 int64_max: 9223372036854775807, INT64_MAX: 9223372036854775807, int64_max.get_int64(): 9223372036854775807, int64_max.get_uint64(): 9223372036854775807 running tst6 running tst7 running tst8 running tst9 41000000000000 -7000000000000 -5 6000000000000 41000000000000 == 41000000000000 -41000000000000 -7000000000000 6 1000000000000 -41000000000000 == -41000000000000 -41000000000000 7000000000000 -6 1000000000000 -41000000000000 == -41000000000000 41000000000000 7000000000000 5 6000000000000 41000000000000 == 41000000000000 41 -7 -5 6 41 == 41 -41 -7 6 1 -41 == -41 -41 7 -6 1 -41 == -41 41 7 5 6 41 == 41 running rational_tester::tst1 (multiplication with big rationals :time 3.26 :before-memory 1.31 :after-memory 32.08) (multiplication with floats: :time 0.00 :before-memory 32.08 :after-memory 32.08) Testing multiplication performance using small ints (multiplication with rationals :time 0.01 :before-memory 53.09 :after-memory 53.09) (multiplication with floats: :time 0.00 :before-memory 53.09 :after-memory 53.09) Testing multiplication performance using small rationals (multiplication with rationals :time 0.17 :before-memory 53.09 :after-memory 53.09) (multiplication with floats: :time 0.00 :before-memory 53.09 :after-memory 53.09) test12 0: 1 1: 0 2: 0 3: 0 4: 0 5: 0 6: 0 7: 0 8: 0 9: 0 10: 0 11: 0 12: 0 13: 0 14: 0 15: 0 16: 0 17: 0 18: 0 19: 0 20: 0 21: 0 22: 0 23: 0 24: 0 25: 0 26: 0 27: 0 28: 0 29: 0 30: 0 31: 0 32: 0 33: 0 34: 1 35: 0 36: 0 37: 1 38: 1 39: 0 40: 0 41: 1 42: 1 43: 1 44: 0 45: 0 46: 0 47: 1 48: 1 49: 0 50: 1 51: 1 52: 0 53: 0 54: 0 55: 1 56: 1 57: 1 58: 1 59: 0 60: 1 61: 1 62: 0 63: 0 64: 0 65: 0 66: 0 67: 0 68: 0 69: 0 70: 1 71: 1 72: 1 73: 1 74: 1 75: 0 76: 0 77: 0 78: 0 79: 1 80: 1 81: 0 82: 1 83: 1 84: 0 85: 1 86: 0 87: 1 88: 0 89: 1 90: 1 91: 1 92: 1 93: 1 94: 0 95: 1 96: 1 97: 0 98: 0 99: 1 100: 0 101: 0 102: 0 103: 0 104: 1 105: 0 106: 1 107: 1 108: 0 109: 1 110: 1 111: 1 112: 1 PASS (test rational :time 3.92 :before-memory 1.03 :after-memory 1.03) PASS (test inf_rational :time 0.00 :before-memory 1.03 :after-memory 1.03) PASS (test inf_rational :time 0.00 :before-memory 1.03 :after-memory 1.03) PASS (test ast :time 0.01 :before-memory 1.03 :after-memory 1.07) PASS (test ast :time 0.01 :before-memory 1.07 :after-memory 1.07) PASS (test optional :time 0.00 :before-memory 1.07 :after-memory 1.07) PASS (test optional :time 0.00 :before-memory 1.07 :after-memory 1.07) b: 000001000001100000001000000000100001000000000000000000000000000000000000000001111000000000000000000010000000000 b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000 b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000 b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000 b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000 0100001110 0100011110 ----- 10001 b1(size32): 00000000000000000000000100100011 ------ b1: 10100 ------ b1: 00100 PASS (test bit_vector :time 0.00 :before-memory 1.07 :after-memory 1.07) b: 000001000001100000001000000000100001000000000000000000000000000000000000000001111000000000000000000010000000000 b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000 b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000 b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000 b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 10000 0100001110 0100011110 ----- 10001 b1(size32): 00000000000000000000000100100011 ------ b1: 10100 ------ b1: 00100 PASS (test bit_vector :time 0.00 :before-memory 1.07 :after-memory 1.07) 0000010000 0100001110 0100011110 PASS (test fixed_bit_vector :time 0.00 :before-memory 1.07 :after-memory 1.07) 0000010000 0100001110 0100011110 PASS (test fixed_bit_vector :time 0.00 :before-memory 1.07 :after-memory 1.07) [] [] [] 0000000000000000000000000000000 1111111111111111111111111111111 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 0000000000000000000000000011111 11111111111111111111111111x1011 -> 11111111111111111111111111x01 00000000000 11111111111 xxxxxxxxxxx 00000011111 111111x1011 -> 111111x01 000000000000000 111111111111111 xxxxxxxxxxxxxxx 000000000011111 1111111111x1011 -> 1111111111x01 0000000000000000 1111111111111111 xxxxxxxxxxxxxxxx 0000000000011111 11111111111x1011 -> 11111111111x01 00000000000000000 11111111111111111 xxxxxxxxxxxxxxxxx 00000000000011111 111111111111x1011 -> 111111111111x01 PASS (test tbv :time 0.00 :before-memory 1.07 :after-memory 1.07) [] [] [] 0000000000000000000000000000000 1111111111111111111111111111111 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 0000000000000000000000000011111 11111111111111111111111111x1011 -> 11111111111111111111111111x01 00000000000 11111111111 xxxxxxxxxxx 00000011111 111111x1011 -> 111111x01 000000000000000 111111111111111 xxxxxxxxxxxxxxx 000000000011111 1111111111x1011 -> 1111111111x01 0000000000000000 1111111111111111 xxxxxxxxxxxxxxxx 0000000000011111 11111111111x1011 -> 11111111111x01 00000000000000000 11111111111111111 xxxxxxxxxxxxxxxxx 00000000000011111 111111111111x1011 -> 111111111111x01 PASS (test tbv :time 0.00 :before-memory 1.07 :after-memory 1.07) xxxx \ {xxx0} xxx (or (and true (not (not true))) (and true (not (not false)))) true {xx10} {xxxx \ {x0x1, x1x0}} {x110} 11111 00000 xxxxx 01010 10100 00000 xxxxx 11111 \ {00000} -> 11111 11111 -> 111 x1x11 -> xx1 x1x11 \ {11111} -> xx1 \ {111} 1111111111 0000000000 xxxxxxxxxx 0000001010 0000010100 0000000000 xxxxxxxxxx 1111111111 \ { 0000000000} -> 1111111111 1111111111 -> 11111111 11111x1x11 -> 11111xx1 11111x1x11 \ { 1111111111} -> 11111xx1 \ {11111111} 1111111111111111111111111111111111111111111111111111111111111111111111 0000000000000000000000000000000000000000000000000000000000000000000000 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 0000000000000000000000000000000000000000000000000000000000000000001010 0000000000000000000000000000000000000000000000000000000000000000010100 0000000000000000000000000000000000000000000000000000000000000000000000 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1111111111111111111111111111111111111111111111111111111111111111111111 \ { 0000000000000000000000000000000000000000000000000000000000000000000000} -> 1111111111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111 -> 11111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111x1x11 -> 11111111111111111111111111111111111111111111111111111111111111111xx1 11111111111111111111111111111111111111111111111111111111111111111x1x11 \ { 1111111111111111111111111111111111111111111111111111111111111111111111} -> 11111111111111111111111111111111111111111111111111111111111111111xx1 \ { 11111111111111111111111111111111111111111111111111111111111111111111} PASS (test doc :time 8.51 :before-memory 1.07 :after-memory 1.08) xxxx \ {xxx0} xxx (or (and true (not (not true))) (and true (not (not false)))) true {xx10} {xxxx \ {x0x1, x1x0}} {x110} 11111 00000 xxxxx 01010 10100 00000 xxxxx 11111 \ {00000} -> 11111 11111 -> 111 x1x11 -> xx1 x1x11 \ {11111} -> xx1 \ {111} 1111111111 0000000000 xxxxxxxxxx 0000001010 0000010100 0000000000 xxxxxxxxxx 1111111111 \ { 0000000000} -> 1111111111 1111111111 -> 11111111 11111x1x11 -> 11111xx1 11111x1x11 \ { 1111111111} -> 11111xx1 \ {11111111} 1111111111111111111111111111111111111111111111111111111111111111111111 0000000000000000000000000000000000000000000000000000000000000000000000 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 0000000000000000000000000000000000000000000000000000000000000000001010 0000000000000000000000000000000000000000000000000000000000000000010100 0000000000000000000000000000000000000000000000000000000000000000000000 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1111111111111111111111111111111111111111111111111111111111111111111111 \ { 0000000000000000000000000000000000000000000000000000000000000000000000} -> 1111111111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111 -> 11111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111x1x11 -> 11111111111111111111111111111111111111111111111111111111111111111xx1 11111111111111111111111111111111111111111111111111111111111111111x1x11 \ { 1111111111111111111111111111111111111111111111111111111111111111111111} -> 11111111111111111111111111111111111111111111111111111111111111111xx1 \ { 11111111111111111111111111111111111111111111111111111111111111111111} PASS (test doc :time 8.31 :before-memory 1.08 :after-memory 1.08) {xxx \ {0x1}} {xxx \ {0x0, 1x1}} {0xxx \ {00xx, 0101, 0111}} {} {} {0x01 \ {0001, 0101, 0101}} {} {} {x1xx \ {01xx, 0101, x100}, x1x1 \ {x111, 1101}} {} {} {} {} {} {} {x1xx \ {x10x, 11x1, 0100}} {} {1xx1 \ {1001, 1x11, 1011}} {1xx0 \ {1000, 1x00, 1100}, 1xxx \ {11x1, 1x11, 1111}} {x1x1 \ {1101, 0111, x111, 11x1}} {xxx0 \ {x110, 0010, x000}} {} {} {xx00 \ {0000, x000}, 0x00 \ {0000, 0100, 0100}} {10xx \ {1001, 1000, 1010}} {0000 \ {0000}} {1x1x \ {1x10, 1x11}} {x11x \ {0111, x111}} {1x1x \ {1110, 1011, 1x10, 1x11, 111x}} {} {1x0x \ {1x01, 1000, 1000}} {} {0xx0 \ {0000, 00x0, 0100}} {} {} {x1x1 \ {0101, 11x1, 1111}, 0x11 \ {0011}} {10x0 \ {1000, 1010}} {} {xxxx \ {011x, 1x01}, 0xx1 \ {0x01, 00x1, 0011}, 1xxx \ {11xx, 11x0, 100x}} {x10x \ {110x, 0101, 0100}, 1x01 \ {1101}} {0x0x \ {0100, 0001, 010x, 000x}, 0101} {0xx0 \ {0000, 0110, 0x00}} {} {} {10xx \ {10x1, 10x0, 1000}} {1xx0 \ {1x10, 11x0, 1010}, xxx1 \ {x1x1, 0011, x101}} {x0x0 \ {x0x0}, x1x1 \ {x1x1}} {x1x1 \ {1101, x101}, 0x0x \ {0001, 0101, 010x}} {} {} {01xx \ {011x, 010x, 0110}, x000 \ {1000, 0000}} {xx1x \ {xx10, 101x, 101x}, 0x10 \ {0010, 0110, 0110}} {1x1x \ {1x1x}, 1010 \ {1010}} {x0x0 \ {x010, x000, 10x0}} {0xx1 \ {0101, 0111, 0011}, 0x00 \ {0000}} {0000 \ {0000}} {x1x0 \ {1100, 1110, 0110}} {100x \ {1001, 1000}} {0000 \ {0000}} {1xx1 \ {1111, 11x1, 1101}, x0xx \ {x001, x000, x0x0}} {0x00 \ {0000}, xx1x \ {001x, 1x11, 1x11}} {1111, 0000 \ {0000}, 1x1x \ {1110, 1011, 1x10}} {1x1x \ {1111, 101x, 1010}} {xx1x \ {111x, 001x, xx10}} {1x1x \ {1110, 1011, 101x, 1x11}} {} {0xx0 \ {0x00, 0110, 0100}} {} {0x1x \ {0111, 001x, 0x11}} {00x0 \ {0010, 0000}} {1010 \ {1010}} {100x \ {1000}, xx10 \ {0110, x010, 0x10}, xx0x \ {1101, 1100, 100x}} {0x0x \ {000x, 0001, 0100}} {0x0x \ {0100, 0001, 000x}} {x0xx \ {x001, 10x1, x01x}} {x0xx \ {1011, 0000}, 110x \ {1101, 1100, 1100}} {xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx01, xx1x}, 0x0x \ {0100, 0001, 0x01, 010x, 000x, 000x}} {x001 \ {1001, 0001}} {xx0x \ {1100, 0x0x, x10x}, 000x \ {0001}} {0101 \ {0101}} {x001 \ {1001, 0001, 0001}} {10xx \ {1011, 1001, 10x0}} {0101 \ {0101}} {} {0x00 \ {0000, 0100}} {} {x1xx \ {01x1, 010x, x1x0}} {011x \ {0111, 0110}, x00x \ {x001, 1000}, xxxx \ {0000, 00xx, 0111}} {1x1x \ {1110, 1011, 1x10, 111x, 101x}, 0x0x \ {0100, 0001, 0x00, 010x}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xxx0}} {01xx \ {01x1, 0110}} {} {} {x111 \ {0111, 1111}, 101x \ {1010, 1011}} {} {} {x101 \ {1101}} {x1xx \ {1101, 01xx, x101}, 1x0x \ {1x01, 1x00}} {0101 \ {0101}} {001x \ {0010}, 1x1x \ {1111, 1010, 1x10}} {0x0x \ {0000, 0x01, 000x}, 10xx \ {100x, 10x0, 1011}} {1x1x \ {1110, 1011, 1x10, 101x, 111x}} {} {1x00 \ {1000}} {} {xx11 \ {0011, 1111, 1111}} {xxx1 \ {1101, 1111, 0111}} {1111} {00xx \ {00x0, 00x1, 0001}} {10x0 \ {1000}, x10x \ {0100, x101, x100}} {x0x0 \ {x0x0}, 0x0x \ { 0100, 0001, 0x00, 0x01, 0x01, 010x, 000x}} {xx01 \ {1001, 0x01, 0101}} {011x \ {0111, 0110}} {} {} {x1xx \ {x10x, 1101, 0111}, xx11 \ {0111, 1111, 1x11}} {} {xx00 \ {0000, 0x00, 0100}} {x11x \ {0111, 111x, x111}, x01x \ {x011, x010, x010}} {} {11x1 \ {1101}} {1x1x \ {1011, 1110, 1x10}} {1111} {0x00 \ {0000, 0100}} {0xxx \ {0x00, 0101, 0001}} {0000 \ {0000}} {x0x0 \ {10x0, 1000}, 0x0x \ {0x00, 0000, 010x}} {xxx1 \ {xx11, xx01, x0x1}, 0xx0 \ {0100, 01x0}} {x0x0 \ {1000, 0010}, 0101 \ {0101}, 0000 \ {0000}} {x1x0 \ {01x0, 0110}} {x010 \ {1010, 0010}} {1010 \ {1010}} {x1x0 \ {1110, 1100, x100}} {1xx1 \ {1011, 1111}} {} {0xx0 \ {0000, 0x00, 01x0}} {x0x1 \ {x001, 1001, 0011}, 01xx \ {0111, 0110, 010x}, 0xx1 \ {0101, 0111, 0111}} {x0x0 \ {1000, 0010, x000, 10x0, 00x0, x000}} {1x0x \ {1x00, 1100}, x0xx \ {x00x, 1000, x001}, 100x \ {1001, 1000}} {xx0x \ {xx01, 1100, 010x}} {0x0x \ {0100, 0001, 0x00, 010x}} {1x1x \ {111x, 1010}, x001 \ {1001, 0001}} {xx0x \ {0000, x000, 1101}} {0101 \ {0101}} {xx11 \ {0111, 0011, 0011}, 00x0 \ {0010, 0000}} {0xxx \ {0x1x, 011x, 011x}} {1111 \ {1111}, x0x0 \ {1000, 0010, x010, x000, 10x0}} {} {11x1 \ {1101, 1111}, xxx1 \ {0x11, xx11, 1x01}} {} {0xx1 \ {0x01, 00x1, 0111}, xx01 \ {1001, x001, x101}, 1xx0 \ {1x10, 1000, 1100}} {01xx \ {011x, 01x0, 01x1}} {x1x1 \ {x1x1}, 0101 \ {0101}, x0x0 \ {x0x0}} {x0xx \ {0000, 10x1, 10x1}} {x010 \ {1010, 0010}} {1010 \ {1010}} {xx00 \ {1000, 0x00, x000}, 00x0 \ {0000, 0010}} {x100 \ {0100, 1100, 1100}, xx00 \ {x100, x000, 1000}} {0000 \ {0000}} {x010 \ {1010, 0010, 0010}, 000x \ {0001}} {10xx \ {10x1, 101x}} {1010 \ {1010}, 0x0x \ {0100, 0001, 0x01, 010x}} {x1xx \ {11x1, x10x, 1100}, 0x11 \ {0111, 0011}} {} {} {0x10 \ {0110}} {} {} {} {xx11 \ {1x11, x011}, 111x \ {1110}} {} {xx1x \ {0x10, x011, 111x}} {0xx0 \ {0100, 01x0, 00x0}, 10xx \ {10x1, 1010}} {1010 \ {1010}, 1x1x \ {1110, 1011, 111x, 101x}} {} {011x \ {0111, 0110}, 01x1 \ {0111, 0101}} {} {x1x0 \ {1100, 01x0, 1110}, 1x0x \ {1000, 110x}} {10xx \ {1000, 100x, 1011}, 0xx0 \ {0100, 0x10, 0x00}, 00xx \ {001x, 00x1, 0011}} {x0x0 \ {1000, 0010, 00x0, 00x0, x000, x010}, x0x0 \ {1000, 0010, 10x0, x000, x010}, 0000 \ {0000}, 0x0x \ {0100, 0001, 010x, 0x00}} {11x0 \ {1110, 1100, 1100}} {1x1x \ {111x, 1x11, 1111}, x110 \ {0110, 1110, 1110}, 00xx \ {00x0, 000x, 0011}} {1010 \ {1010}, x0x0 \ {x0x0}} {0x11 \ {0111, 0011, 0011}, x1xx \ {110x, 111x, 0100}} {xxxx \ {110x, xx10, 11x0}} {1111 \ {1111}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, 10xx, xx00}} {} {xx0x \ {xx00, 0000, x001}, 0x01 \ {0101}, xx0x \ {xx01, 1001, x100}} {} {0xxx \ {0010, 0x00, 0xx0}} {xx00 \ {x100, 1x00, 1000}} {0000 \ {0000}} {xxx0 \ {1100, 0010, 1x10}, xx01 \ {1001, 0101}} {x010 \ {0010, 1010}} {1010 \ {1010}} {x111 \ {1111, 0111}, x00x \ {1001, 0001, 0001}} {010x \ {0100}} {0x0x \ {0100, 0001, 000x, 0x01, 0x01}} {xx11 \ {0011, x111, 0x11}, 1x00 \ {1000, 1100}} {1xx1 \ {1x01, 1101, 1101}, 010x \ {0101, 0100}} {1111, 0000 \ {0000}} {00xx \ {00x1, 001x, 0001}} {x11x \ {0111, 0110, 011x}} {1x1x \ {1x1x}} {0xxx \ {010x, 0x01}} {1x11 \ {1111, 1011, 1011}} {1111 \ {1111}} {x1x0 \ {0110, 0100}, x01x \ {x010, 001x, 0010}} {} {} {1xxx \ {1101, 10x0, 1x11}, x1x1 \ {01x1, 1111}} {00x1 \ {0001, 0011}} {x1x1 \ {1101, 0111, x111, 01x1, 11x1}} {0x01 \ {0001}, xxx1 \ {1x01, 0001, 10x1}} {1x1x \ {1x11, 1011, 1011}, 00xx \ {000x, 001x, 00x1}} {0101 \ {0101}, 1111 \ {1111}, x1x1 \ {x1x1}} {1xxx \ {1xx0, 111x, 1x1x}, x0x1 \ {0011, 10x1}, x01x \ {101x, 001x}} {10x0 \ {1010, 1000}, 11x1 \ {1111, 1101, 1101}} {x0x0 \ {x0x0}, x1x1 \ {1101, 0111, x111, 11x1, 01x1, 01x1}, 1010 \ {1010}, 1111 \ {1111}} {x01x \ {1010, x010, 0011}} {1x11 \ {1111, 1011}} {1111 \ {1111}} {} {010x \ {0100, 0101}, xx00 \ {x000, 0100}} {} {xxx0 \ {x100, x010, 1x00}, xxx1 \ {0001, 1011, 1x01}} {x010 \ {1010, 0010}, xx0x \ {x101, x10x, 1000}} {1010 \ {1010}, 0000, 0101} {x0xx \ {1000, 1010, 00x0}, xx00 \ {0100, 1x00, 0x00}} {01xx \ {0101, 01x0, 0100}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, 01xx, x0xx, 00xx, xx00, xx10}, 0000 \ {0000}} {x0x1 \ {0001, 1011}, 010x \ {0101}} {x110 \ {1110, 0110, 0110}, 0x00 \ {0000}, 10xx \ {1001, 101x, 1010}} {x1x1 \ {1101, 0111, 01x1, 11x1}, 0000, 0x0x \ {0100, 0001, 0x01, 010x}} {00xx \ {00x0, 000x, 0001}} {101x \ {1011, 1010, 1010}} {1x1x \ {1110, 1011, 1x10, 111x, 101x, 101x}} {01xx \ {0100, 0101}, 10xx \ {10x1, 1001, 1011}} {xx01 \ {1001, x001, 0001}, 0xx1 \ {0111, 0001, 0101}} {0101 \ {0101}, x1x1 \ {1101, 0111, x101, 01x1}} {11x1 \ {1111, 1101, 1101}, x0x1 \ {10x1, 00x1}} {xxxx \ {0x11, 0x1x, 00x0}, x111 \ {0111, 1111}, x10x \ {0101, 110x, 1101}} {x1x1 \ {1101, 0111, x111, x101, x101}, 1111 \ {1111}, 0101 \ {0101}} {000x \ {0001, 0000, 0000}, xx10 \ {0110, x010, 1x10}} {01xx \ {01x1, 011x, 0101}} {0x0x \ { 0100, 0001, 0x01, 0x00, 0x00, 010x, 010x}, 1010 \ {1010}} {10xx \ {101x, 10x0, 10x0}, 1x0x \ {1x01, 1000, 110x}} {x011 \ {0011, 1011}, xxx1 \ {1011, 0x01, 1x11}} {1111 \ {1111}, x1x1 \ {1101, 0111, x111}, 0101 \ {0101}} {xx01 \ {x001, 0001, 0001}, xxxx \ {x10x, 1011, 10x1}, xx00 \ {0x00, 1x00, x000}} {0xx0 \ {0x00, 0110, 0000}, x1x0 \ {x110, 0100, x100}} {x0x0 \ {1000, 0010, 00x0}, 0000 \ {0000}} {0xx0 \ {01x0, 0010, 0110}, 111x \ {1111, 1110, 1110}} {xx1x \ {001x, 0010, 011x}} {1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}} {11xx \ {111x, 110x}} {x10x \ {x100, 1101, 0101}} {0x0x \ {0x0x}} {x10x \ {010x, 1100}} {} {} {10x1 \ {1001, 1011}, xx0x \ {0100, 000x, 1x0x}} {x00x \ {1001, 000x, 0000}} {0101 \ {0101}, 0x0x \ {0100, 0001, 010x, 0x00}} {x1x1 \ {1101, x101}} {001x \ {0011, 0010}} {1111 \ {1111}} {xx00 \ {0100, 1000, x000}} {0x10 \ {0010, 0110}, xx1x \ {0x10, x111, x110}} {} {x1x0 \ {0100, x100, 0110}, x0x1 \ {1011, 10x1, x011}} {0x1x \ {011x, 001x, 0x10}} {1010 \ {1010}, 1111 \ {1111}} {000x \ {0001, 0000, 0000}, 0x1x \ {001x, 0x10, 011x}} {01xx \ {01x1, 010x, 0110}} {0x0x \ {0x0x}, 1x1x \ {1x1x}} {0x0x \ {0100, 010x, 000x}} {x101 \ {0101}} {0101 \ {0101}} {x10x \ {x100, 0101, 1100}, 1x0x \ {1x01, 1100}, xx1x \ {111x, 1011, 0010}} {} {} {1xxx \ {101x, 10x1, 1110}} {1x00 \ {1100, 1000}} {0000 \ {0000}} {01xx \ {011x, 01x1}, x11x \ {0110, x110, 0111}} {x1xx \ {11xx, 01x1, 1101}, 01xx \ {01x0, 0100, 010x}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x1xx, 01xx}, xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x0xx, 00xx, 0xxx}, 1x1x \ {1110, 1011, 1x10, 111x}, 1x1x \ {1110, 1011, 1x10, 101x}} {011x \ {0111, 0110}} {x110 \ {1110, 0110}, xx00 \ {0x00, 1x00, x100}} {1010 \ {1010}} {10xx \ {1001, 1011, 101x}} {xxxx \ {x10x, 1000, 00xx}, 0x0x \ {0100, 0x01, 0000}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx01, xx11, xx1x, 00xx}, 0x0x \ {0100, 0001, 0x01, 010x, 000x}} {x10x \ {010x, x101, 0101}, 0x0x \ {000x, 0100, 0x01}, x0x0 \ {10x0}} {11xx \ {11x0}} {0x0x \ {0100, 0001, 0x01, 000x}, x0x0 \ {x0x0}} {} {00xx \ {000x, 00x1, 0011}, 0x1x \ {0110, 001x, 011x}} {} {xx01 \ {1x01, 1101, 1101}} {x11x \ {0111, 1111, 011x}, xx00 \ {x000, 1000, x100}, 0x10 \ {0110, 0010, 0010}} {} {0x0x \ {0100, 000x, 010x}, 1x0x \ {1101, 1x01, 1001}} {} {} {} {x001 \ {1001, 0001}} {} {xxx1 \ {0xx1, 0x11, x1x1}, x00x \ {1001, 000x, 000x}} {xx01 \ {0101, 1001, x101}, x01x \ {0010, 1010, 001x}} {0101, 1111} {xx01 \ {0x01, 1101}} {x11x \ {x111, 0110, x110}} {} {001x \ {0010}, 0xxx \ {011x, 0x00}} {} {} {x01x \ {x010, 101x, 101x}, 100x \ {1001, 1000, 1000}} {} {} {1x0x \ {1101, 110x, 110x}, x100 \ {0100}} {111x \ {1111, 1110}} {} {x1xx \ {01x0, 11x1, x11x}, 100x \ {1001, 1000}, x011 \ {1011, 0011}} {x1x0 \ {1100, 0100}} {x0x0 \ {1000, 0010, x010, 00x0}, 0000 \ {0000}} {x1x1 \ {1111, 0111, 01x1}, xxxx \ {0010, 00x1, 1010}} {} {} {xx00 \ {1000, 0000, 0100}} {} {} {11xx \ {1101, 11x1, 11x0}} {10x1 \ {1011, 1001, 1001}} {x1x1 \ {x1x1}} {01xx \ {01x0, 0100, 011x}} {1xx0 \ {1010, 1100, 11x0}, 01xx \ {0110, 010x, 0100}} {x0x0 \ {x0x0}, xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xxx0, xx00, xx1x, 10xx, 0xxx, 00xx}} {00x0 \ {0010, 0000, 0000}, 10x0 \ {1010}} {x110 \ {1110}, x010 \ {1010, 0010}} {1010 \ {1010}} {} {xxxx \ {000x, 010x, x11x}} {} {} {xxx0 \ {x010, x100, x0x0}} {} {x100 \ {0100}, x0xx \ {x000, 00x0}} {xxx0 \ {0110, x100, x0x0}} {0000 \ {0000}, x0x0 \ {1000, 0010, x000, 00x0}} {} {x0xx \ {1001, 0001, 0011}, x0xx \ {x000, 0000, x001}} {} {0xx0 \ {00x0, 0000, 01x0}, 1x01 \ {1001, 1101, 1101}} {1xxx \ {101x, 10x1, 1100}, 000x \ {0001, 0000, 0000}, 1x0x \ {1x01, 100x, 1001}} {x0x0 \ {x0x0}, 0000 \ {0000}, 0101 \ {0101}} {1xxx \ {1xx0, 10x0, 1001}, 0x10 \ {0110, 0010}} {x00x \ {1001, x001}} {0x0x \ {0100, 0001, 0x00, 010x}} {001x \ {0011, 0010, 0010}} {xxx0 \ {x000, 1010, 0000}, x0xx \ {000x, 00x0, 10x1}} {1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}} {0x00 \ {0000, 0100}} {11x0 \ {1110, 1100, 1100}, 11x0 \ {1100, 1110, 1110}, 101x \ {1010, 1011, 1011}} {0000 \ {0000}} {} {} {} {00xx \ {000x, 001x, 00x1}} {} {} {x011 \ {1011, 0011}, x01x \ {0010, 001x, x010}} {} {} {010x \ {0101, 0100, 0100}, xxx0 \ {0110, 1xx0, 1100}, x00x \ {000x, 1001}} {01xx \ {0110, 0111, 0100}} {x0x0 \ {1000, 0010, 10x0, 00x0}, 0x0x \ {0100, 0001, 000x, 0x01}} {x0x0 \ {1000, 0010, x000}} {100x \ {1001}, 1xx0 \ {1000, 11x0, 1x10}} {0000 \ {0000}, x0x0 \ {1000, 0010, x000, 10x0, 00x0}} {1x10 \ {1010, 1110}} {} {} {x1xx \ {x10x, 11x1, 11x0}, 00x0 \ {0000}} {x1xx \ {0100, 0101, 111x}, 0xxx \ {0001, 0110, 0010}} {xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx0x}, x0x0 \ {1000, 0010, x000}} {x0x1 \ {x001, 0001, 0011}} {101x \ {1010, 1011}} {1111 \ {1111}} {} {} {} {x1x0 \ {0110, 0100}} {x1x1 \ {0101, 1101, 1111}} {} {} {01xx \ {01x1, 011x, 0110}} {} {0xxx \ {0011, 0xx1, 0111}, xx11 \ {0011, x011}, x1xx \ {111x, x10x}} {000x \ {0000, 0001, 0001}, 0x10 \ {0110, 0010, 0010}} {0x0x \ {0100, 0001, 0x01, 000x, 010x, 010x}, 1010 \ {1010}} {x1x0 \ {0110, x100, 01x0}} {1x0x \ {1x01, 1001, 1x00}, x00x \ {0000, 0001, 100x}} {0000 \ {0000}} {} {x0x1 \ {10x1, 00x1, 00x1}} {} {} {x0x1 \ {0001, x011, 1011}, xxx1 \ {x011, 1xx1, 10x1}} {} {xx11 \ {1111, 1x11}} {11x1 \ {1111, 1101}} {1111 \ {1111}} {0xx1 \ {00x1, 01x1, 0x01}} {x1x0 \ {1110, 01x0, 1100}, xx0x \ {100x, 1000, 1100}} {0101 \ {0101}} {xx0x \ {110x, 000x, x001}, x11x \ {111x, x111, 0110}} {01x0 \ {0100, 0110}} {0000 \ {0000}, 1010 \ {1010}} {10xx \ {1001, 1010, 100x}} {x001 \ {1001, 0001}} {0101 \ {0101}} {0x00 \ {0100}} {xx0x \ {0000, 1x0x, xx01}} {0000} {1x0x \ {1100, 110x, 1x01}, x00x \ {1001, 0001, 0001}} {1x1x \ {1110, 101x, 1010}, xx01 \ {x001, 1101, 0x01}} {0101 \ {0101}} {} {} {} {x110 \ {0110, 1110}} {xx00 \ {0000, x100, x000}, xx00 \ {0000, x100}} {} {} {xx10 \ {0110, x110, x110}} {} {xx01 \ {0001, 1001}, 0xxx \ {0101, 0110, 0x1x}} {x01x \ {0011, 1011, x011}} {1x1x \ {1x1x}} {xxx1 \ {01x1, x011, 1011}, 1xx1 \ {1101, 1111, 1011}, 11xx \ {110x, 1110, 11x1}} {0x1x \ {011x, 0x11}} {1111 \ {1111}, 1x1x \ {1110, 1011, 1x10, 1x11, 111x}} {xxxx \ {x101, 0010, 110x}, 111x \ {1111, 1110}} {x0x0 \ {1000, 0010, 10x0}, x0x1 \ {1001, 0011}} {x0x0 \ {1000, 0010, 10x0}, x1x1 \ {1101, 0111}, 1010 \ {1010}, 1111 \ {1111}} {} {11x0 \ {1110, 1100}} {} {10xx \ {1001, 1011, 100x}} {00x1 \ {0001}, 11x1 \ {1111, 1101}} {x1x1 \ {1101, 0111, x101, x111, x101, 01x1}} {} {0xx1 \ {0011, 0111}} {} {11xx \ {1101, 11x0, 1110}} {x1xx \ {01x0, x10x, 110x}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx01, xxx0, xx10, 0xxx, 00xx}} {1xx1 \ {1101, 1111}} {} {} {x101 \ {0101, 1101}} {0xx1 \ {0x01, 0001, 0111}, xxxx \ {0111, 1xx1, 001x}, x10x \ {1100, 110x, 0101}} {0101 \ {0101}} {01xx \ {0101, 011x, 0100}, x0x0 \ {00x0, x000, x010}, 0xxx \ {010x, 00x0, 00x1}} {10x1 \ {1001, 1011}, xx10 \ {1x10, x110, 1110}} {x1x1 \ {1101, 0111, 01x1, 11x1, x101}, 1010} {010x \ {0101, 0100}} {x11x \ {1111, 0111, 111x}, 0x00 \ {0100}} {0000 \ {0000}} {x0x0 \ {x010}} {1x0x \ {100x, 110x}} {0000 \ {0000}} {xx10 \ {0x10, x110, 0010}, 01x0 \ {0100, 0110, 0110}} {1x0x \ {1101, 100x, 1001}, 0xxx \ {0100, 0x10, 0010}} {1010 \ {1010}, 0000 \ {0000}, x0x0 \ {1000, 0010, x000, x010, x010, 10x0}} {1x0x \ {1100, 110x, 1000}, 1xx0 \ {1x10, 1x00, 10x0}, 1x1x \ {101x, 1111, 1x10}} {1x10 \ {1010, 1110, 1110}} {1010 \ {1010}} {} {0x0x \ {0x01, 0001, 0x00}} {} {} {x11x \ {1110, 0110, x111}} {} {0x00 \ {0000, 0100, 0100}} {xxx1 \ {x011, 0101, 1x01}} {} {x1x1 \ {01x1, 0111, 1111}} {01xx \ {0110, 0101, 01x1}} {x1x1 \ {x1x1}} {1x1x \ {1010, 111x, 1x10}} {} {} {} {10x0 \ {1000, 1010, 1010}} {} {} {x0x1 \ {1001, x001}, x01x \ {x010, 1011}} {} {0x1x \ {011x, 001x}, x0xx \ {x00x, 0011, 1001}} {xx00 \ {1100, x100}} {0000 \ {0000}} {xx00 \ {0100, 1100, 1100}, x11x \ {x110, x111, 0111}} {0xx1 \ {00x1, 0011, 0x01}} {1111 \ {1111}} {x0x1 \ {0011, 1001, 00x1}, 0x0x \ {0000, 0101, 000x}} {x100 \ {0100}} {0000} {} {} {} {xx10 \ {0110, 0x10}} {x0xx \ {x000, 10x1, 0001}} {1010} {} {x0x1 \ {00x1, 1011, 1011}} {} {} {01xx \ {010x, 011x}} {} {} {x1xx \ {11xx, 01xx, 010x}, xxx1 \ {00x1, 1101, 0001}} {} {xxxx \ {00x1, 010x, x111}, x101 \ {0101, 1101}} {0xx0 \ {0110, 0000, 0010}, 1x01 \ {1101, 1001}, 0x0x \ {0101, 0100, 0000}} {x0x0 \ {1000, 0010, 10x0}, 0101 \ {0101}, 0x0x \ {0100, 0001, 000x}} {x01x \ {0011, 101x, 101x}} {x101 \ {1101, 0101, 0101}} {} {xx10 \ {1x10, x110, 0x10}} {1x01 \ {1001, 1101, 1101}, 1xx1 \ {11x1, 1x01, 1111}} {} {0xx0 \ {0x00, 0010, 0010}} {x0xx \ {00x1, 10x0, 00x0}} {x0x0 \ {x0x0}} {x001 \ {0001, 1001}, 1x00 \ {1000, 1100, 1100}} {10xx \ {101x, 1011, 100x}, 1xxx \ {1011, 1xx0, 1111}} {0101 \ {0101}, 0000 \ {0000}} {x0x0 \ {0000, x010, 1000}, xx0x \ {1x0x, 0001, 1101}, xxx0 \ {11x0, 0xx0, 1xx0}} {001x \ {0010, 0011}} {1010 \ {1010}} {xx1x \ {x110, 1x10, 101x}, xx01 \ {0001, 0101, 1x01}, 0xx0 \ {0x00, 0010, 0100}} {xxxx \ {1010, xxx1, 100x}, xxx1 \ {01x1, 0011, 00x1}} {1x1x \ {1110, 1011, 111x}, 1111, 0101 \ {0101}, x0x0 \ {1000, 0010, x000}} {xx1x \ {001x, 1x10, 111x}} {x101 \ {0101}, x1xx \ {11x1, 0101, x1x0}} {1x1x \ {1110, 1011, 101x}} {01xx \ {01x0, 01x1, 0110}} {} {} {xxxx \ {101x, 0xx1, xx0x}, xx0x \ {0001, 1101}} {0xx0 \ {0110, 00x0}, 1xx0 \ {11x0, 1010, 1100}} {x0x0 \ {1000, 0010, x000, 10x0}, 0000} {0xxx \ {01xx, 00x1, 00x0}, xxx1 \ {1101, 0101, 0x01}} {0xx1 \ {01x1, 0011, 0011}, x00x \ {100x, 1001, x000}, xxx0 \ {x0x0, 1100, 1110}} {0x0x \ {0100, 0001, 000x, 0x01, 0x00}, x0x0 \ {x0x0}, x1x1 \ {1101, 0111, 11x1, 11x1}, 0101} {xxxx \ {01xx, 0xx0, 1xxx}} {} {} {xxx0 \ {x010, 0100}} {11xx \ {1100, 11x1, 11x1}} {x0x0 \ {1000, 0010, 00x0}} {00x0 \ {0010, 0000}} {1x0x \ {110x, 1100, 1001}} {0000 \ {0000}} {xxx1 \ {xx11, 00x1, 1x01}} {} {} {xx10 \ {x010, x110, 0110}} {00x1 \ {0011, 0001}, xx0x \ {x101, 0x01, 0x0x}, x11x \ {0111, 111x}} {1010 \ {1010}} {} {xx0x \ {100x, 0x00, x000}} {} {} {} {} {x011 \ {1011, 0011, 0011}, x0x0 \ {00x0, 1000, 1010}} {} {} {} {0xx1 \ {0x01, 0011, 0x11}} {} {x010 \ {0010, 1010}, xxx0 \ {1010, xx00, 00x0}} {xx10 \ {0x10, x110, x010}} {1010 \ {1010}} {x01x \ {x010, 001x}} {xxx0 \ {0000, 01x0, 1x00}, xxx1 \ {0x11, 0111, 1xx1}} {1010 \ {1010}, 1111 \ {1111}} {100x \ {1001, 1000, 1000}} {0x1x \ {0111, 0010, 0011}, xxx1 \ {11x1, 1011, 0011}} {0101 \ {0101}} {1x0x \ {1101, 1x00, 1001}} {0xx0 \ {0010, 00x0, 0x00}, 1x00 \ {1100, 1000}} {0000 \ {0000}} {0xxx \ {01x0, 000x, 00x1}, xx1x \ {0111, 1011, 0x11}} {} {} {xx1x \ {1110, 1111}} {xx1x \ {111x, x010, x011}, xx1x \ {0x1x, 1010, 011x}} {1x1x \ {1110, 1011}} t1:{0111} t2:{1100, 1101} t:{1101} {x0000 \ {10000, 00000}} {0x01x \ {00010, 0x011, 0101x}} {} {00xx1 \ {00101, 000x1, 00111}, 1xx10 \ {10010, 11010}} {x0111 \ {10111}, 0101x \ {01011}} { x011100x11 \ { x011100011, x011100111, 1011100x11}, 0101100x11 \ { 0101100011, 0101100111, 0101100x11}, 010101xx10 \ { 0101010010, 0101011010}} {01x11 \ {01011, 01111}, 1x0xx \ {10011, 11011, 110x1}} {} {} {1x110 \ {10110}, 10x10 \ {10110, 10010}} {110xx \ {1101x, 110x1, 110x0}} { 110101x110 \ { 1101010110, 110101x110, 110101x110}, 1101010x10 \ { 1101010110, 1101010010, 1101010x10, 1101010x10}} {xx01x \ {01010, x101x, 0101x}, 0xx01 \ {01001, 01101}, xx110 \ {11110, 01110, 00110}} {0xx0x \ {0000x, 00x01, 0100x}} { 0xx010xx01 \ { 0xx0101001, 0xx0101101, 000010xx01, 00x010xx01, 010010xx01}} {x0100 \ {00100}, 0x11x \ {0011x, 0x110, 00111}, xx001 \ {11001, 01001}} {0x1x1 \ {001x1, 01111, 0x101}, x1xxx \ {11x1x, 01011, 11001}, 00xxx \ {000x0, 00xx0, 001x1}} { x1x00x0100 \ { x1x0000100}, 00x00x0100 \ { 00x0000100, 00000x0100, 00x00x0100}, 0x1110x111 \ { 0x11100111, 0x11100111, 001110x111, 011110x111}, x1x1x0x11x \ { x1x110x110, x1x100x111, x1x1x0011x, x1x1x0x110, x1x1x00111, 11x1x0x11x, 010110x11x}, 00x1x0x11x \ { 00x110x110, 00x100x111, 00x1x0011x, 00x1x0x110, 00x1x00111, 000100x11x, 00x100x11x, 001110x11x}, 0x101xx001 \ { 0x10111001, 0x10101001, 00101xx001, 0x101xx001}, x1x01xx001 \ { x1x0111001, x1x0101001, 11001xx001}, 00x01xx001 \ { 00x0111001, 00x0101001, 00101xx001}} {xxxx0 \ {x11x0, 0xx00, 111x0}} {xx00x \ {11001, x0000}} { xx000xxx00 \ { xx000x1100, xx0000xx00, xx00011100, x0000xxx00}} {xxx01 \ {00001, 01001, 11x01}} {xxxx1 \ {x1101, 10x01, 0x011}} { xxx01xxx01 \ { xxx0100001, xxx0101001, xxx0111x01, x1101xxx01, 10x01xxx01}} {} {xx001 \ {x1001, 0x001}} {} {xx1xx \ {xx101, 1x10x, 0111x}} {00xx1 \ {00001, 00111, 00011}} { 00xx1xx1x1 \ { 00x11xx101, 00x01xx111, 00xx1xx101, 00xx11x101, 00xx101111, 00001xx1x1, 00111xx1x1, 00011xx1x1}} {01x0x \ {01100, 01001, 01x01}, 0xxxx \ {00xx0, 0x0xx, 0xx00}} {xx00x \ {xx001, x000x, 0000x}} { xx00x01x0x \ { xx00101x00, xx00001x01, xx00x01100, xx00x01001, xx00x01x01, xx00101x0x, x000x01x0x, 0000x01x0x}, xx00x0xx0x \ { xx0010xx00, xx0000xx01, xx00x00x00, xx00x0x00x, xx00x0xx00, xx0010xx0x, x000x0xx0x, 0000x0xx0x}} {11x1x \ {11010, 11011, 11011}, 01xxx \ {01010, 010xx, 01x1x}} {} {} {1xx0x \ {1000x, 10x0x, 11101}, 1x1x1 \ {10111, 111x1, 11111}} {0xxxx \ {00111, 0x100, 01xx1}, xx01x \ {0x011, 11010, x101x}} { 0xx0x1xx0x \ { 0xx011xx00, 0xx001xx01, 0xx0x1000x, 0xx0x10x0x, 0xx0x11101, 0x1001xx0x, 01x011xx0x}, 0xxx11x1x1 \ { 0xx111x101, 0xx011x111, 0xxx110111, 0xxx1111x1, 0xxx111111, 001111x1x1, 01xx11x1x1}, xx0111x111 \ { xx01110111, xx01111111, xx01111111, 0x0111x111, x10111x111}} {110xx \ {11000, 110x1, 11010}} {x0111 \ {10111}, 11xxx \ {11110, 11x1x, 110x0}} { x011111011 \ { x011111011, 1011111011}, 11xxx110xx \ { 11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx11000, 11xxx110x1, 11xxx11010, 11110110xx, 11x1x110xx, 110x0110xx}} {x0110 \ {10110, 00110, 00110}} {xx00x \ {x0000, 1x000, 0000x}, 1x0x1 \ {10011, 1x001, 1x001}} {} {0x11x \ {00110, 01111, 0x110}} {x01x0 \ {00100, 10100, x0100}} { x01100x110 \ { x011000110, x01100x110}} {0xxxx \ {00111, 00xxx, 0x1x1}, 00x10 \ {00110, 00010}} {x10xx \ {x10x0, 11000, 010x1}, x1xx0 \ {x11x0, x10x0, 011x0}} { x10xx0xxxx \ { x10x10xxx0, x10x00xxx1, x101x0xx0x, x100x0xx1x, x10xx00111, x10xx00xxx, x10xx0x1x1, x10x00xxxx, 110000xxxx, 010x10xxxx}, x1xx00xxx0 \ { x1x100xx00, x1x000xx10, x1xx000xx0, x11x00xxx0, x10x00xxx0, 011x00xxx0}, x101000x10 \ { x101000110, x101000010, x101000x10}, x1x1000x10 \ { x1x1000110, x1x1000010, x111000x10, x101000x10, 0111000x10}} {0xxx0 \ {01010, 00110, 01100}, xxx10 \ {01110, x0010, x1110}} {00xxx \ {00010, 0010x, 00111}, x11xx \ {1111x, x110x, 11100}} { 00xx00xxx0 \ { 00x100xx00, 00x000xx10, 00xx001010, 00xx000110, 00xx001100, 000100xxx0, 001000xxx0}, x11x00xxx0 \ { x11100xx00, x11000xx10, x11x001010, x11x000110, x11x001100, 111100xxx0, x11000xxx0, 111000xxx0}, 00x10xxx10 \ { 00x1001110, 00x10x0010, 00x10x1110, 00010xxx10}, x1110xxx10 \ { x111001110, x1110x0010, x1110x1110, 11110xxx10}} {0x0x0 \ {000x0, 01010, 01000}} {xx1xx \ {x1100, xx101, 0x1x1}, 0x01x \ {00011, 0x010}} { xx1x00x0x0 \ { xx1100x000, xx1000x010, xx1x0000x0, xx1x001010, xx1x001000, x11000x0x0}, 0x0100x010 \ { 0x01000010, 0x01001010, 0x0100x010}} {xx110 \ {01110, x0110, x0110}, 10x11 \ {10111, 10011}, 0x1xx \ {01111, 011xx, 01100}} {x100x \ {0100x, x1000, 11000}, x100x \ {0100x, 01000, x1000}} { x100x0x10x \ { x10010x100, x10000x101, x100x0110x, x100x01100, 0100x0x10x, x10000x10x, 110000x10x}} {100x1 \ {10011}, xx111 \ {00111, 01111, x1111}} {xxx0x \ {0xx0x, xx001, x000x}} { xxx0110001 \ { 0xx0110001, xx00110001, x000110001}} {000xx \ {00000, 000x0, 0000x}} {1100x \ {11001, 11000}, x011x \ {0011x, x0110, 00110}, xxx00 \ {1x000, x1100, 01x00}} { 1100x0000x \ { 1100100000, 1100000001, 1100x00000, 1100x00000, 1100x0000x, 110010000x, 110000000x}, x011x0001x \ { x011100010, x011000011, x011x00010, 0011x0001x, x01100001x, 001100001x}, xxx0000000 \ { xxx0000000, xxx0000000, xxx0000000, 1x00000000, x110000000, 01x0000000}} {0xxx1 \ {00x01, 0x1x1, 01x01}, x1x01 \ {01x01, 11101}} {xx110 \ {x1110, 11110, 1x110}, 01x00 \ {01100, 01000}} {} {} {x100x \ {1100x, x1001, 01001}, 00xx1 \ {00x01, 00001}, 111x0 \ {11100, 11110}} {} {1111x \ {11111}, x11x1 \ {11111, 011x1, 011x1}, 0x1xx \ {0x10x, 0x1x0, 001x0}} {0x111 \ {01111, 00111}, 0111x \ {01110}} { 0x11111111 \ { 0x11111111, 0111111111, 0011111111}, 0111x1111x \ { 0111111110, 0111011111, 0111x11111, 011101111x}, 0x111x1111 \ { 0x11111111, 0x11101111, 0x11101111, 01111x1111, 00111x1111}, 01111x1111 \ { 0111111111, 0111101111, 0111101111}, 0x1110x111 \ { 011110x111, 001110x111}, 0111x0x11x \ { 011110x110, 011100x111, 0111x0x110, 0111x00110, 011100x11x}} {11xxx \ {11xx1, 11111, 110x1}, 00x10 \ {00110, 00010}} {x0011 \ {00011, 10011}, 0001x \ {00010, 00011}} { x001111x11 \ { x001111x11, x001111111, x001111011, 0001111x11, 1001111x11}, 0001x11x1x \ { 0001111x10, 0001011x11, 0001x11x11, 0001x11111, 0001x11011, 0001011x1x, 0001111x1x}, 0001000x10 \ { 0001000110, 0001000010, 0001000x10}} {1xx00 \ {11x00, 11100, 1x100}, 0x10x \ {00100, 01101, 01100}} {1010x \ {10101, 10100}} { 101001xx00 \ { 1010011x00, 1010011100, 101001x100, 101001xx00}, 1010x0x10x \ { 101010x100, 101000x101, 1010x00100, 1010x01101, 1010x01100, 101010x10x, 101000x10x}} {0x0xx \ {010xx, 000xx, 01011}} {0110x \ {01100, 01101}} { 0110x0x00x \ { 011010x000, 011000x001, 0110x0100x, 0110x0000x, 011000x00x, 011010x00x}} {1x00x \ {1x001, 1100x, 10000}, 111xx \ {11110, 11101, 111x0}} {01xx0 \ {01x10, 01000, 01010}, x1x10 \ {11010, 01110, 11110}, x11x0 \ {01100, x1110, 011x0}} { 01x001x000 \ { 01x0011000, 01x0010000, 010001x000}, x11001x000 \ { x110011000, x110010000, 011001x000, 011001x000}, 01xx0111x0 \ { 01x1011100, 01x0011110, 01xx011110, 01xx0111x0, 01x10111x0, 01000111x0, 01010111x0}, x1x1011110 \ { x1x1011110, x1x1011110, 1101011110, 0111011110, 1111011110}, x11x0111x0 \ { x111011100, x110011110, x11x011110, x11x0111x0, 01100111x0, x1110111x0, 011x0111x0}} {xx1x0 \ {01110, x01x0, 101x0}, xx01x \ {1001x, 11010, x1010}} {0xxx1 \ {01001, 00x11, 00001}, x00x0 \ {000x0, x0010, x0010}} { x00x0xx1x0 \ { x0010xx100, x0000xx110, x00x001110, x00x0x01x0, x00x0101x0, 000x0xx1x0, x0010xx1x0, x0010xx1x0}, 0xx11xx011 \ { 0xx1110011, 00x11xx011}, x0010xx010 \ { x001010010, x001011010, x0010x1010, 00010xx010, x0010xx010, x0010xx010}} {} {x0x1x \ {1001x, 10011, 10111}} {} {00x11 \ {00111, 00011, 00011}, 1xx0x \ {10x0x, 10001, 1x10x}} {1xx01 \ {1x001, 10101, 11x01}, x1001 \ {11001, 01001}} { 1xx011xx01 \ { 1xx0110x01, 1xx0110001, 1xx011x101, 1x0011xx01, 101011xx01, 11x011xx01}, x10011xx01 \ { x100110x01, x100110001, x10011x101, 110011xx01, 010011xx01}} {xxxxx \ {1x001, xx011, 1x10x}, 000x1 \ {00011, 00001, 00001}, xx100 \ {10100, 1x100}} {1100x \ {11001, 11000, 11000}, 0x10x \ {01100, 01101}} { 1100xxxx0x \ { 11001xxx00, 11000xxx01, 1100x1x001, 1100x1x10x, 11001xxx0x, 11000xxx0x, 11000xxx0x}, 0x10xxxx0x \ { 0x101xxx00, 0x100xxx01, 0x10x1x001, 0x10x1x10x, 01100xxx0x, 01101xxx0x}, 1100100001 \ { 1100100001, 1100100001, 1100100001}, 0x10100001 \ { 0x10100001, 0x10100001, 0110100001}, 11000xx100 \ { 1100010100, 110001x100, 11000xx100, 11000xx100}, 0x100xx100 \ { 0x10010100, 0x1001x100, 01100xx100}} {xxx01 \ {10101, 1x001, 0x101}} {1xx10 \ {11110, 10x10}} {} {xxx0x \ {x1x00, 1x001, 01000}} {01xx0 \ {01000, 01110, 010x0}, 000xx \ {000x1, 00010, 00010}, 0x11x \ {0x111, 00111, 00111}} { 01x00xxx00 \ { 01x00x1x00, 01x0001000, 01000xxx00, 01000xxx00}, 0000xxxx0x \ { 00001xxx00, 00000xxx01, 0000xx1x00, 0000x1x001, 0000x01000, 00001xxx0x}} {} {xxxx1 \ {0x111, 101x1, 01xx1}, 10xxx \ {10101, 10xx0, 100x1}} {} {x1001 \ {01001, 11001}, 0xx10 \ {00x10, 01110, 0x010}} {xxxx1 \ {1xx01, 0xx01, 110x1}, 11xx1 \ {11x11, 111x1, 111x1}, x0x1x \ {1011x, 1001x, 0011x}} { xxx01x1001 \ { xxx0101001, xxx0111001, 1xx01x1001, 0xx01x1001, 11001x1001}, 11x01x1001 \ { 11x0101001, 11x0111001, 11101x1001, 11101x1001}, x0x100xx10 \ { x0x1000x10, x0x1001110, x0x100x010, 101100xx10, 100100xx10, 001100xx10}} {x0x11 \ {10111, x0011, 10x11}} {0xx11 \ {01011, 01111, 01111}, x0xx1 \ {00111, x0101, 00011}, 0x00x \ {0x001, 01001, 0x000}} { 0xx11x0x11 \ { 0xx1110111, 0xx11x0011, 0xx1110x11, 01011x0x11, 01111x0x11, 01111x0x11}, x0x11x0x11 \ { x0x1110111, x0x11x0011, x0x1110x11, 00111x0x11, 00011x0x11}} {11x1x \ {11011, 11x11}} {x0110 \ {10110}} { x011011x10 \ { 1011011x10}} {010xx \ {0101x, 01010, 010x1}, x1x11 \ {11x11, x1111}} {} {} {0xxx1 \ {0x101, 0x011, 010x1}, 00x1x \ {00x10, 00011}} {0x11x \ {0x110, 0x111, 01110}} { 0x1110xx11 \ { 0x1110x011, 0x11101011, 0x1110xx11}, 0x11x00x1x \ { 0x11100x10, 0x11000x11, 0x11x00x10, 0x11x00011, 0x11000x1x, 0x11100x1x, 0111000x1x}} {x0101 \ {00101, 10101, 10101}, 1x1xx \ {11111, 1110x, 111x0}} {} {} {1xxxx \ {11xxx, 1xx01, 11001}, 01x01 \ {01101, 01001, 01001}} {xx1x0 \ {0x1x0, x01x0, 001x0}, x1000 \ {11000}} { xx1x01xxx0 \ { xx1101xx00, xx1001xx10, xx1x011xx0, 0x1x01xxx0, x01x01xxx0, 001x01xxx0}, x10001xx00 \ { x100011x00, 110001xx00}} {x0111 \ {00111, 10111}, 1101x \ {11010, 11011}} {0xx00 \ {01100, 01000, 00100}} {} {} {x0x1x \ {0001x, 10x10, x0x11}} {} {} {} {} {11xx1 \ {11011, 110x1, 111x1}, xx00x \ {xx001, x000x}} {0x0xx \ {00001, 0001x, 000x1}} { 0x0x111xx1 \ { 0x01111x01, 0x00111x11, 0x0x111011, 0x0x1110x1, 0x0x1111x1, 0000111xx1, 0001111xx1, 000x111xx1}, 0x00xxx00x \ { 0x001xx000, 0x000xx001, 0x00xxx001, 0x00xx000x, 00001xx00x, 00001xx00x}} {xx010 \ {00010, 11010, x0010}} {0x11x \ {0x111, 01111}} { 0x110xx010 \ { 0x11000010, 0x11011010, 0x110x0010}} {000xx \ {000x0, 0000x, 000x1}} {0x11x \ {01111, 00110, 00111}, x11x1 \ {11101, 111x1}} { 0x11x0001x \ { 0x11100010, 0x11000011, 0x11x00010, 0x11x00011, 011110001x, 001100001x, 001110001x}, x11x1000x1 \ { x111100001, x110100011, x11x100001, x11x1000x1, 11101000x1, 111x1000x1}} {xxx10 \ {00010, 11110, 10x10}, 0x110 \ {01110, 00110}, 1x1x0 \ {111x0, 101x0}} {011xx \ {01111, 0110x}, 1xx00 \ {11x00, 10x00, 1x100}, 1x0x1 \ {10011, 110x1}} { 01110xxx10 \ { 0111000010, 0111011110, 0111010x10}, 011100x110 \ { 0111001110, 0111000110}, 011x01x1x0 \ { 011101x100, 011001x110, 011x0111x0, 011x0101x0, 011001x1x0}, 1xx001x100 \ { 1xx0011100, 1xx0010100, 11x001x100, 10x001x100, 1x1001x100}} {x11x1 \ {x1101, 11101, 011x1}, xx1x0 \ {01110, 1x1x0, xx110}} {x111x \ {01111, 01110, 11111}, 001x0 \ {00110, 00100, 00100}} { x1111x1111 \ { x111101111, 01111x1111, 11111x1111}, x1110xx110 \ { x111001110, x11101x110, x1110xx110, 01110xx110}, 001x0xx1x0 \ { 00110xx100, 00100xx110, 001x001110, 001x01x1x0, 001x0xx110, 00110xx1x0, 00100xx1x0, 00100xx1x0}} {1xxxx \ {1xx00, 1100x, 1x111}, 10x10 \ {10110, 10010, 10010}} {x001x \ {00010, 0001x}, 11xxx \ {11x00, 111xx, 1110x}} { x001x1xx1x \ { x00111xx10, x00101xx11, x001x1x111, 000101xx1x, 0001x1xx1x}, 11xxx1xxxx \ { 11xx11xxx0, 11xx01xxx1, 11x1x1xx0x, 11x0x1xx1x, 11xxx1xx00, 11xxx1100x, 11xxx1x111, 11x001xxxx, 111xx1xxxx, 1110x1xxxx}, x001010x10 \ { x001010110, x001010010, x001010010, 0001010x10, 0001010x10}, 11x1010x10 \ { 11x1010110, 11x1010010, 11x1010010, 1111010x10}} {00x1x \ {00010, 00110, 00x10}} {1x1x0 \ {1x100, 11110, 101x0}, 100x0 \ {10000}, x101x \ {x1010, 11010, 11010}} { 1x11000x10 \ { 1x11000010, 1x11000110, 1x11000x10, 1111000x10, 1011000x10}, 1001000x10 \ { 1001000010, 1001000110, 1001000x10}, x101x00x1x \ { x101100x10, x101000x11, x101x00010, x101x00110, x101x00x10, x101000x1x, 1101000x1x, 1101000x1x}} {00x1x \ {00x11, 00011, 00x10}} {1x0xx \ {11000, 100x0, 100xx}, 0x11x \ {0x111, 00110, 0111x}} { 1x01x00x1x \ { 1x01100x10, 1x01000x11, 1x01x00x11, 1x01x00011, 1x01x00x10, 1001000x1x, 1001x00x1x}, 0x11x00x1x \ { 0x11100x10, 0x11000x11, 0x11x00x11, 0x11x00011, 0x11x00x10, 0x11100x1x, 0011000x1x, 0111x00x1x}} {11xx0 \ {11000, 11100, 11x00}, 1x101 \ {10101, 11101, 11101}} {0xxx1 \ {01xx1, 0x011, 01011}, xxx11 \ {xx011, 0xx11, 01011}} { 0xx011x101 \ { 0xx0110101, 0xx0111101, 0xx0111101, 01x011x101}} {} {xx1x0 \ {x1100, 11100, 111x0}, xx110 \ {01110, 10110, 11110}} {} {} {xxxx0 \ {xx100, x0110, 11100}, 000x1 \ {00011}} {} {x0xx0 \ {00100, x0x10, 00110}, 1x10x \ {10101, 1x100, 1x100}} {00x10 \ {00110}} { 00x10x0x10 \ { 00x10x0x10, 00x1000110, 00110x0x10}} {011xx \ {0111x, 0110x, 0110x}} {xx1x1 \ {01101, 0x111, 10101}} { xx1x1011x1 \ { xx11101101, xx10101111, xx1x101111, xx1x101101, xx1x101101, 01101011x1, 0x111011x1, 10101011x1}} {xx11x \ {00111, 01111, 1111x}} {} {} {0x0x1 \ {000x1, 0x011, 01001}, 10x0x \ {10001, 1010x, 10100}, 1x001 \ {11001}} {x11x1 \ {x1111, 111x1, 011x1}} { x11x10x0x1 \ { x11110x001, x11010x011, x11x1000x1, x11x10x011, x11x101001, x11110x0x1, 111x10x0x1, 011x10x0x1}, x110110x01 \ { x110110001, x110110101, 1110110x01, 0110110x01}, x11011x001 \ { x110111001, 111011x001, 011011x001}} {x1x1x \ {1101x, 11110, 0111x}, xxxxx \ {0x101, x1x1x, 011x0}, 1xx01 \ {1x001, 10x01, 10x01}} {x1x01 \ {11101, 01001, 01001}} { x1x01xxx01 \ { x1x010x101, 11101xxx01, 01001xxx01, 01001xxx01}, x1x011xx01 \ { x1x011x001, x1x0110x01, x1x0110x01, 111011xx01, 010011xx01, 010011xx01}} {11xx0 \ {11110, 110x0}} {x0x1x \ {10x10, 00x10, 00x1x}} { x0x1011x10 \ { x0x1011110, x0x1011010, 10x1011x10, 00x1011x10, 00x1011x10}} {x1xxx \ {110xx, x1111, 01x11}} {0xx11 \ {0x011, 01x11, 01x11}, 00x1x \ {00x10, 00x11, 0001x}} { 0xx11x1x11 \ { 0xx1111011, 0xx11x1111, 0xx1101x11, 0x011x1x11, 01x11x1x11, 01x11x1x11}, 00x1xx1x1x \ { 00x11x1x10, 00x10x1x11, 00x1x1101x, 00x1xx1111, 00x1x01x11, 00x10x1x1x, 00x11x1x1x, 0001xx1x1x}} {01x01 \ {01001, 01101}, xxxx0 \ {xxx10, x00x0, x0010}} {x1xx1 \ {11101, 11x11, x1001}, xx1xx \ {x01x1, xx1x1, x111x}, xxx1x \ {0101x, 11010, x0110}} { x1x0101x01 \ { x1x0101001, x1x0101101, 1110101x01, x100101x01}, xx10101x01 \ { xx10101001, xx10101101, x010101x01, xx10101x01}, xx1x0xxxx0 \ { xx110xxx00, xx100xxx10, xx1x0xxx10, xx1x0x00x0, xx1x0x0010, x1110xxxx0}, xxx10xxx10 \ { xxx10xxx10, xxx10x0010, xxx10x0010, 01010xxx10, 11010xxx10, x0110xxx10}} {01x1x \ {01011, 0111x, 0111x}, 01x01 \ {01001, 01101}} {11x1x \ {11011, 11111}, 1x1x1 \ {11111, 111x1, 11101}} { 11x1x01x1x \ { 11x1101x10, 11x1001x11, 11x1x01011, 11x1x0111x, 11x1x0111x, 1101101x1x, 1111101x1x}, 1x11101x11 \ { 1x11101011, 1x11101111, 1x11101111, 1111101x11, 1111101x11}, 1x10101x01 \ { 1x10101001, 1x10101101, 1110101x01, 1110101x01}} {0xxx0 \ {01110, 0x110}} {xxx0x \ {1110x, 0x000, x0x00}, 0xx0x \ {01x00, 01x0x}} { xxx000xx00 \ { 111000xx00, 0x0000xx00, x0x000xx00}, 0xx000xx00 \ { 01x000xx00, 01x000xx00}} {} {1101x \ {11010, 11011}} {} {x1x11 \ {11x11, x1011, 01x11}} {} {} {1xx00 \ {1x100, 1x000}} {x000x \ {00000, x0001}, 01xxx \ {01x0x, 01000, 01xx0}} { x00001xx00 \ { x00001x100, x00001x000, 000001xx00}, 01x001xx00 \ { 01x001x100, 01x001x000, 01x001xx00, 010001xx00, 01x001xx00}} {0x11x \ {01111, 00110, 00111}, 100xx \ {100x0, 100x1, 10001}} {} {} {010xx \ {01001, 01011, 01000}, 01xx0 \ {01110, 01100}, 111x0 \ {11100}} {} {} {xxx11 \ {10011, x0011, x0x11}, 1x00x \ {11000, 10001, 10001}, 0xxx0 \ {0x110, 01x00, 0xx00}} {} {} {xxx1x \ {xx111, 01011, 0001x}, 00x0x \ {0010x, 0000x, 00001}} {} {} {00x0x \ {00101, 00100}, x0100 \ {10100, 00100}} {0x00x \ {01001}} { 0x00x00x0x \ { 0x00100x00, 0x00000x01, 0x00x00101, 0x00x00100, 0100100x0x}, 0x000x0100 \ { 0x00010100, 0x00000100}} {00x1x \ {00110, 0001x}, 001xx \ {00110, 001x0, 0011x}} {xx001 \ {01001, x0001, 11001}} { xx00100101 \ { 0100100101, x000100101, 1100100101}} {x00xx \ {x00x1, 10000, 1001x}, 11x11 \ {11011, 11111}, x11xx \ {01101, 01111, x1101}} {} {} {xx0x1 \ {xx011, 00011, x0011}, xxxx0 \ {10110, 010x0, 010x0}, x10x0 \ {x1010, 110x0, 01010}} {0x10x \ {00101, 01100, 0010x}} { 0x101xx001 \ { 00101xx001, 00101xx001}, 0x100xxx00 \ { 0x10001000, 0x10001000, 01100xxx00, 00100xxx00}, 0x100x1000 \ { 0x10011000, 01100x1000, 00100x1000}} {} {0x1x1 \ {0x101, 01111, 01111}, x1x10 \ {x1110, 01110, 01110}, xx000 \ {11000, 00000}} {} {x10xx \ {x1000, 01011, 11010}, 1xx1x \ {1xx11, 10x1x, 10x11}} {xxx00 \ {01100, 01x00, 01x00}} { xxx00x1000 \ { xxx00x1000, 01100x1000, 01x00x1000, 01x00x1000}} {} {x11x1 \ {01111, 11101, 111x1}} {} {x1x1x \ {11x1x, x111x, 01011}, 1100x \ {11001, 11000}} {0x001 \ {01001, 00001}} { 0x00111001 \ { 0x00111001, 0100111001, 0000111001}} {1xx00 \ {11000, 10000}, x1x01 \ {x1001, 01x01, 01x01}} {x0x1x \ {x0011, 10x10, 00011}, x00x1 \ {x0001, 00011, 100x1}} { x0001x1x01 \ { x0001x1001, x000101x01, x000101x01, x0001x1x01, 10001x1x01}} {xxxx0 \ {01000, x1010, 11000}} {10x1x \ {10010, 1011x, 10x10}, xx0x0 \ {0x0x0, 0x000, xx010}, x0xxx \ {10101, 001xx, 00x00}} { 10x10xxx10 \ { 10x10x1010, 10010xxx10, 10110xxx10, 10x10xxx10}, xx0x0xxxx0 \ { xx010xxx00, xx000xxx10, xx0x001000, xx0x0x1010, xx0x011000, 0x0x0xxxx0, 0x000xxxx0, xx010xxxx0}, x0xx0xxxx0 \ { x0x10xxx00, x0x00xxx10, x0xx001000, x0xx0x1010, x0xx011000, 001x0xxxx0, 00x00xxxx0}} {x1100 \ {11100}} {x101x \ {x1010, 01011, x1011}, 00xx1 \ {00001, 00101}} {} {0x1x1 \ {001x1, 01111, 0x101}} {x0x0x \ {10001, 00100, x0100}, xx001 \ {x1001, 00001, 00001}} { x0x010x101 \ { x0x0100101, x0x010x101, 100010x101}, xx0010x101 \ { xx00100101, xx0010x101, x10010x101, 000010x101, 000010x101}} {1100x \ {11001, 11000}, x1x0x \ {x1001, 11101, 11001}} {x001x \ {10010, x0010}, xx001 \ {x0001, 01001, 11001}, 1110x \ {11101, 11100, 11100}} { xx00111001 \ { xx00111001, x000111001, 0100111001, 1100111001}, 1110x1100x \ { 1110111000, 1110011001, 1110x11001, 1110x11000, 111011100x, 111001100x, 111001100x}, xx001x1x01 \ { xx001x1001, xx00111101, xx00111001, x0001x1x01, 01001x1x01, 11001x1x01}, 1110xx1x0x \ { 11101x1x00, 11100x1x01, 1110xx1001, 1110x11101, 1110x11001, 11101x1x0x, 11100x1x0x, 11100x1x0x}} {xxx00 \ {x1100, 00000, 10x00}, 01xxx \ {01101, 010x0, 01x0x}} {01xxx \ {011x0, 01x0x}} { 01x00xxx00 \ { 01x00x1100, 01x0000000, 01x0010x00, 01100xxx00, 01x00xxx00}, 01xxx01xxx \ { 01xx101xx0, 01xx001xx1, 01x1x01x0x, 01x0x01x1x, 01xxx01101, 01xxx010x0, 01xxx01x0x, 011x001xxx, 01x0x01xxx}} {} {xx110 \ {11110, 01110, 00110}, 1xx00 \ {11x00, 10x00, 1x000}} {} {10xxx \ {1011x, 10x01, 101x1}, xx111 \ {01111, 0x111, x1111}} {x0xx1 \ {x01x1, 10111, 00111}, xx1x1 \ {10111, 10101, x11x1}} { x0xx110xx1 \ { x0x1110x01, x0x0110x11, x0xx110111, x0xx110x01, x0xx1101x1, x01x110xx1, 1011110xx1, 0011110xx1}, xx1x110xx1 \ { xx11110x01, xx10110x11, xx1x110111, xx1x110x01, xx1x1101x1, 1011110xx1, 1010110xx1, x11x110xx1}, x0x11xx111 \ { x0x1101111, x0x110x111, x0x11x1111, x0111xx111, 10111xx111, 00111xx111}, xx111xx111 \ { xx11101111, xx1110x111, xx111x1111, 10111xx111, x1111xx111}} {xx1xx \ {1011x, 00100, 00100}, x1x01 \ {01101}} {01x10 \ {01110}, xx011 \ {x0011, 01011}} { 01x10xx110 \ { 01x1010110, 01110xx110}, xx011xx111 \ { xx01110111, x0011xx111, 01011xx111}} {00xx0 \ {000x0, 00010, 00010}, 01xx1 \ {011x1, 01101, 01x11}} {1x01x \ {1101x, 1x010}, 0x1x0 \ {00100, 001x0, 01100}} { 1x01000x10 \ { 1x01000010, 1x01000010, 1x01000010, 1101000x10, 1x01000x10}, 0x1x000xx0 \ { 0x11000x00, 0x10000x10, 0x1x0000x0, 0x1x000010, 0x1x000010, 0010000xx0, 001x000xx0, 0110000xx0}, 1x01101x11 \ { 1x01101111, 1x01101x11, 1101101x11}} {1x01x \ {11010, 1x010, 11011}} {11xx1 \ {11111, 11101, 110x1}, 10x1x \ {1001x, 10010, 10x10}, x1x01 \ {01x01, x1101, x1001}} { 11x111x011 \ { 11x1111011, 111111x011, 110111x011}, 10x1x1x01x \ { 10x111x010, 10x101x011, 10x1x11010, 10x1x1x010, 10x1x11011, 1001x1x01x, 100101x01x, 10x101x01x}} {x0x11 \ {10011, 00x11, 10111}, xx1xx \ {x0101, x111x, 11100}, x0x0x \ {00001, x000x, 00x0x}} {1x111 \ {10111}, x1xxx \ {x1101, x1000, 01001}} { 1x111x0x11 \ { 1x11110011, 1x11100x11, 1x11110111, 10111x0x11}, x1x11x0x11 \ { x1x1110011, x1x1100x11, x1x1110111}, 1x111xx111 \ { 1x111x1111, 10111xx111}, x1xxxxx1xx \ { x1xx1xx1x0, x1xx0xx1x1, x1x1xxx10x, x1x0xxx11x, x1xxxx0101, x1xxxx111x, x1xxx11100, x1101xx1xx, x1000xx1xx, 01001xx1xx}, x1x0xx0x0x \ { x1x01x0x00, x1x00x0x01, x1x0x00001, x1x0xx000x, x1x0x00x0x, x1101x0x0x, x1000x0x0x, 01001x0x0x}} {x0xxx \ {x00xx, x0x11, 10010}} {xxx0x \ {0x10x, 11x01, 0x000}, xxx10 \ {x1x10, 1x010, xx110}} { xxx0xx0x0x \ { xxx01x0x00, xxx00x0x01, xxx0xx000x, 0x10xx0x0x, 11x01x0x0x, 0x000x0x0x}, xxx10x0x10 \ { xxx10x0010, xxx1010010, x1x10x0x10, 1x010x0x10, xx110x0x10}} {x1x10 \ {x1110, x1010}, xx100 \ {10100, 11100}} {} {} {x0111 \ {00111, 10111}, x1x00 \ {11x00, 11000, x1000}, xxxx1 \ {11101, 100x1, 1x001}} {x00x1 \ {00011, 000x1, 10001}, 1x01x \ {10011, 1x011, 11010}} { x0011x0111 \ { x001100111, x001110111, 00011x0111, 00011x0111}, 1x011x0111 \ { 1x01100111, 1x01110111, 10011x0111, 1x011x0111}, x00x1xxxx1 \ { x0011xxx01, x0001xxx11, x00x111101, x00x1100x1, x00x11x001, 00011xxxx1, 000x1xxxx1, 10001xxxx1}, 1x011xxx11 \ { 1x01110011, 10011xxx11, 1x011xxx11}} {x01xx \ {10100, 00110, 1011x}, x1111 \ {11111, 01111, 01111}} {000x0 \ {00010, 00000, 00000}, x111x \ {11110, 01111, x1110}, 1xx10 \ {11x10, 10110, 10010}} { 000x0x01x0 \ { 00010x0100, 00000x0110, 000x010100, 000x000110, 000x010110, 00010x01x0, 00000x01x0, 00000x01x0}, x111xx011x \ { x1111x0110, x1110x0111, x111x00110, x111x1011x, 11110x011x, 01111x011x, x1110x011x}, 1xx10x0110 \ { 1xx1000110, 1xx1010110, 11x10x0110, 10110x0110, 10010x0110}, x1111x1111 \ { x111111111, x111101111, x111101111, 01111x1111}} {0x0xx \ {0x01x, 000xx, 000x1}, 10x11 \ {10011, 10111}} {010xx \ {01001, 010x0, 010x1}} { 010xx0x0xx \ { 010x10x0x0, 010x00x0x1, 0101x0x00x, 0100x0x01x, 010xx0x01x, 010xx000xx, 010xx000x1, 010010x0xx, 010x00x0xx, 010x10x0xx}, 0101110x11 \ { 0101110011, 0101110111, 0101110x11}} {xx0xx \ {1x0xx, 10011, x10x0}, 10x1x \ {10011, 1001x, 10110}, 101x1 \ {10101}} {} {} {001xx \ {00100, 001x1, 00101}, 1xxx1 \ {10xx1, 1x001, 11111}} {0xx10 \ {01110, 01x10, 0x110}} { 0xx1000110 \ { 0111000110, 01x1000110, 0x11000110}} {} {1110x \ {11100}} {} {1001x \ {10010}, 0100x \ {01001, 01000, 01000}} {} {} {1x1x0 \ {10100, 10110, 11110}, 0010x \ {00100, 00101}} {x110x \ {01100, x1101, 01101}, x1x01 \ {x1101, 01001, 01x01}} { x11001x100 \ { x110010100, 011001x100}, x110x0010x \ { x110100100, x110000101, x110x00100, x110x00101, 011000010x, x11010010x, 011010010x}, x1x0100101 \ { x1x0100101, x110100101, 0100100101, 01x0100101}} {11x1x \ {11x10, 11x11, 11111}} {1xxx0 \ {1x0x0, 1x100, 100x0}} { 1xx1011x10 \ { 1xx1011x10, 1x01011x10, 1001011x10}} {01xx0 \ {01000, 01x10, 01x00}} {x011x \ {10111, x0111, x0110}} { x011001x10 \ { x011001x10, x011001x10}} {0x0x1 \ {01001, 010x1, 0x001}} {} {} {11x1x \ {11011, 1101x, 1101x}, 0001x \ {00011, 00010}, x0xx0 \ {x00x0, 10100, 00100}} {10x1x \ {10111, 10110}, 10xx1 \ {10x01, 100x1, 101x1}} { 10x1x11x1x \ { 10x1111x10, 10x1011x11, 10x1x11011, 10x1x1101x, 10x1x1101x, 1011111x1x, 1011011x1x}, 10x1111x11 \ { 10x1111011, 10x1111011, 10x1111011, 1001111x11, 1011111x11}, 10x1x0001x \ { 10x1100010, 10x1000011, 10x1x00011, 10x1x00010, 101110001x, 101100001x}, 10x1100011 \ { 10x1100011, 1001100011, 1011100011}, 10x10x0x10 \ { 10x10x0010, 10110x0x10}} {1x01x \ {10011, 11011, 11011}, x1101 \ {01101, 11101}} {x0xx0 \ {x0110, x0x00, 00100}} { x0x101x010 \ { x01101x010}} {xxxx1 \ {x1xx1, xx1x1, x1101}, 010x0 \ {01000}, x00x0 \ {10000, 000x0, 100x0}} {xx011 \ {x1011, x0011}} { xx011xxx11 \ { xx011x1x11, xx011xx111, x1011xxx11, x0011xxx11}} {xxx11 \ {xx011, 1x111, 00011}, 11x0x \ {11100, 11x01, 1100x}, xx0x0 \ {010x0, xx010, x10x0}} {x1x01 \ {x1101, 01x01, 01001}, xx010 \ {00010, x1010, 1x010}} { x1x0111x01 \ { x1x0111x01, x1x0111001, x110111x01, 01x0111x01, 0100111x01}, xx010xx010 \ { xx01001010, xx010xx010, xx010x1010, 00010xx010, x1010xx010, 1x010xx010}} {x0x00 \ {00000, 10x00}, 1110x \ {11100, 11101, 11101}, x01xx \ {001x0, 1011x, 00111}} {1x10x \ {11100, 11101, 10100}, 11xx0 \ {11000, 11x00}, x11x0 \ {111x0, 01100, x1100}} { 1x100x0x00 \ { 1x10000000, 1x10010x00, 11100x0x00, 10100x0x00}, 11x00x0x00 \ { 11x0000000, 11x0010x00, 11000x0x00, 11x00x0x00}, x1100x0x00 \ { x110000000, x110010x00, 11100x0x00, 01100x0x00, x1100x0x00}, 1x10x1110x \ { 1x10111100, 1x10011101, 1x10x11100, 1x10x11101, 1x10x11101, 111001110x, 111011110x, 101001110x}, 11x0011100 \ { 11x0011100, 1100011100, 11x0011100}, x110011100 \ { x110011100, 1110011100, 0110011100, x110011100}, 1x10xx010x \ { 1x101x0100, 1x100x0101, 1x10x00100, 11100x010x, 11101x010x, 10100x010x}, 11xx0x01x0 \ { 11x10x0100, 11x00x0110, 11xx0001x0, 11xx010110, 11000x01x0, 11x00x01x0}, x11x0x01x0 \ { x1110x0100, x1100x0110, x11x0001x0, x11x010110, 111x0x01x0, 01100x01x0, x1100x01x0}} {} {1xxxx \ {110x0, 11xx1, 111x1}, x11xx \ {11101, 1111x, 11100}} {} {} {1011x \ {10111}, x0xx1 \ {x0011, x0101, 00xx1}} {} {1001x \ {10011, 10010, 10010}} {0x0x1 \ {010x1, 01001, 000x1}} { 0x01110011 \ { 0x01110011, 0101110011, 0001110011}} {01xxx \ {0110x, 01101, 010x1}, x10xx \ {11010, 010x1, 01001}} {xx0xx \ {x00x1, 010x0, 11001}} { xx0xx01xxx \ { xx0x101xx0, xx0x001xx1, xx01x01x0x, xx00x01x1x, xx0xx0110x, xx0xx01101, xx0xx010x1, x00x101xxx, 010x001xxx, 1100101xxx}, xx0xxx10xx \ { xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx11010, xx0xx010x1, xx0xx01001, x00x1x10xx, 010x0x10xx, 11001x10xx}} {x0x0x \ {00x01, x010x, x0101}, xx0xx \ {xx0x1, 010xx, 11001}} {0x1x1 \ {011x1, 01101, 001x1}, 1x01x \ {1x010, 10010, 10010}} { 0x101x0x01 \ { 0x10100x01, 0x101x0101, 0x101x0101, 01101x0x01, 01101x0x01, 00101x0x01}, 0x1x1xx0x1 \ { 0x111xx001, 0x101xx011, 0x1x1xx0x1, 0x1x1010x1, 0x1x111001, 011x1xx0x1, 01101xx0x1, 001x1xx0x1}, 1x01xxx01x \ { 1x011xx010, 1x010xx011, 1x01xxx011, 1x01x0101x, 1x010xx01x, 10010xx01x, 10010xx01x}} {111x1 \ {11111, 11101}} {000xx \ {00000, 00010, 00010}} { 000x1111x1 \ { 0001111101, 0000111111, 000x111111, 000x111101}} {xx011 \ {0x011, x1011}, x0x0x \ {00x01, 10101, 1000x}} {xxx11 \ {x1011, 1x111, x1111}, xxx0x \ {0x001, 11x00, x0x0x}} { xxx11xx011 \ { xxx110x011, xxx11x1011, x1011xx011, 1x111xx011, x1111xx011}, xxx0xx0x0x \ { xxx01x0x00, xxx00x0x01, xxx0x00x01, xxx0x10101, xxx0x1000x, 0x001x0x0x, 11x00x0x0x, x0x0xx0x0x}} {} {0x01x \ {00010, 0101x, 0001x}} {} {x1xxx \ {01100, 11x11, x111x}, 0xx01 \ {01x01, 0x101}, 1xx1x \ {10011, 10x11, 1x011}} {x00xx \ {0000x, 10011, 000x0}, 11x1x \ {11011, 1111x, 11x10}} { x00xxx1xxx \ { x00x1x1xx0, x00x0x1xx1, x001xx1x0x, x000xx1x1x, x00xx01100, x00xx11x11, x00xxx111x, 0000xx1xxx, 10011x1xxx, 000x0x1xxx}, 11x1xx1x1x \ { 11x11x1x10, 11x10x1x11, 11x1x11x11, 11x1xx111x, 11011x1x1x, 1111xx1x1x, 11x10x1x1x}, x00010xx01 \ { x000101x01, x00010x101, 000010xx01}, x001x1xx1x \ { x00111xx10, x00101xx11, x001x10011, x001x10x11, x001x1x011, 100111xx1x, 000101xx1x}, 11x1x1xx1x \ { 11x111xx10, 11x101xx11, 11x1x10011, 11x1x10x11, 11x1x1x011, 110111xx1x, 1111x1xx1x, 11x101xx1x}} {xx11x \ {0x110, 00111, 01110}, 11x11 \ {11011, 11111, 11111}} {1x0x1 \ {11011, 10011, 1x011}, xx01x \ {0x01x, 10010, xx010}} { 1x011xx111 \ { 1x01100111, 11011xx111, 10011xx111, 1x011xx111}, xx01xxx11x \ { xx011xx110, xx010xx111, xx01x0x110, xx01x00111, xx01x01110, 0x01xxx11x, 10010xx11x, xx010xx11x}, 1x01111x11 \ { 1x01111011, 1x01111111, 1x01111111, 1101111x11, 1001111x11, 1x01111x11}, xx01111x11 \ { xx01111011, xx01111111, xx01111111, 0x01111x11}} {xx10x \ {x0101, 00101, xx101}, x01x1 \ {10101, 10111, 00111}} {xxx11 \ {1x011, 0x111, x1011}} { xxx11x0111 \ { xxx1110111, xxx1100111, 1x011x0111, 0x111x0111, x1011x0111}} {1001x \ {10011, 10010, 10010}, xx010 \ {1x010, 0x010}} {00x00 \ {00100}} {} {xxxx1 \ {00001, xx111, x1111}, 0x01x \ {0x011, 01011, 00010}} {1xx1x \ {11x11, 1x011, 10111}} { 1xx11xxx11 \ { 1xx11xx111, 1xx11x1111, 11x11xxx11, 1x011xxx11, 10111xxx11}, 1xx1x0x01x \ { 1xx110x010, 1xx100x011, 1xx1x0x011, 1xx1x01011, 1xx1x00010, 11x110x01x, 1x0110x01x, 101110x01x}} {} {1x0x1 \ {110x1, 100x1, 10001}} {} {0x001 \ {00001, 01001}} {xx0xx \ {11010, x10x1, x10xx}, 0xxxx \ {01x1x, 0x101, 010x0}} { xx0010x001 \ { xx00100001, xx00101001, x10010x001, x10010x001}, 0xx010x001 \ { 0xx0100001, 0xx0101001, 0x1010x001}} {x1xxx \ {11011, x1001, x111x}, xx001 \ {x0001, x1001, 11001}} {0111x \ {01111, 01110, 01110}, xx11x \ {x111x, 1111x, 11110}} { 0111xx1x1x \ { 01111x1x10, 01110x1x11, 0111x11011, 0111xx111x, 01111x1x1x, 01110x1x1x, 01110x1x1x}, xx11xx1x1x \ { xx111x1x10, xx110x1x11, xx11x11011, xx11xx111x, x111xx1x1x, 1111xx1x1x, 11110x1x1x}} {11x0x \ {11100, 1100x, 1110x}, x1000 \ {01000}, x1x01 \ {11001, x1101}} {xx111 \ {11111, 01111}} {} {x11xx \ {111x0, 1111x}} {x0x00 \ {x0000, 00x00, 00000}, 101x1 \ {10111}, 0x11x \ {01110, 00111}} { x0x00x1100 \ { x0x0011100, x0000x1100, 00x00x1100, 00000x1100}, 101x1x11x1 \ { 10111x1101, 10101x1111, 101x111111, 10111x11x1}, 0x11xx111x \ { 0x111x1110, 0x110x1111, 0x11x11110, 0x11x1111x, 01110x111x, 00111x111x}} {xx1x0 \ {10100, 00100, 10110}, x10x0 \ {01010, 010x0, 01000}} {xx00x \ {10000, 00001, xx001}} { xx000xx100 \ { xx00010100, xx00000100, 10000xx100}, xx000x1000 \ { xx00001000, xx00001000, 10000x1000}} {000x0 \ {00000}} {01x0x \ {01x00, 01000, 01100}, x1xx0 \ {11x00, 01x00, 11000}} { 01x0000000 \ { 01x0000000, 01x0000000, 0100000000, 0110000000}, x1xx0000x0 \ { x1x1000000, x1x0000010, x1xx000000, 11x00000x0, 01x00000x0, 11000000x0}} {xx0xx \ {10011, 11001, x001x}, 1xx10 \ {11010, 10110, 1x110}} {011x0 \ {01110}, x1xxx \ {010x1, 11010, x11x1}} { 011x0xx0x0 \ { 01110xx000, 01100xx010, 011x0x0010, 01110xx0x0}, x1xxxxx0xx \ { x1xx1xx0x0, x1xx0xx0x1, x1x1xxx00x, x1x0xxx01x, x1xxx10011, x1xxx11001, x1xxxx001x, 010x1xx0xx, 11010xx0xx, x11x1xx0xx}, 011101xx10 \ { 0111011010, 0111010110, 011101x110, 011101xx10}, x1x101xx10 \ { x1x1011010, x1x1010110, x1x101x110, 110101xx10}} {0xxxx \ {0110x, 01111, 00xx1}, 000x0 \ {00000, 00010, 00010}} {} {} {} {} {} {x0001 \ {00001}} {x11x1 \ {x1101, 01101, 01111}} { x1101x0001 \ { x110100001, x1101x0001, 01101x0001}} {x001x \ {1001x, x0010, 00011}, 001xx \ {00101, 00100}} {0x000 \ {01000, 00000}} { 0x00000100 \ { 0x00000100, 0100000100, 0000000100}} {1x010 \ {11010, 10010}, 1x0xx \ {1x000, 1x0x0, 10000}, 000xx \ {00011, 00010}} {11xxx \ {11111, 11x11, 11010}, 0x1x1 \ {0x111, 001x1, 00111}} { 11x101x010 \ { 11x1011010, 11x1010010, 110101x010}, 11xxx1x0xx \ { 11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1x000, 11xxx1x0x0, 11xxx10000, 111111x0xx, 11x111x0xx, 110101x0xx}, 0x1x11x0x1 \ { 0x1111x001, 0x1011x011, 0x1111x0x1, 001x11x0x1, 001111x0x1}, 11xxx000xx \ { 11xx1000x0, 11xx0000x1, 11x1x0000x, 11x0x0001x, 11xxx00011, 11xxx00010, 11111000xx, 11x11000xx, 11010000xx}, 0x1x1000x1 \ { 0x11100001, 0x10100011, 0x1x100011, 0x111000x1, 001x1000x1, 00111000x1}} {x11xx \ {111xx, 01111, x110x}, xx1x1 \ {x11x1, x1111, 0x111}} {x10xx \ {1101x, x10x0, 010xx}, 1010x \ {10100}} { x10xxx11xx \ { x10x1x11x0, x10x0x11x1, x101xx110x, x100xx111x, x10xx111xx, x10xx01111, x10xxx110x, 1101xx11xx, x10x0x11xx, 010xxx11xx}, 1010xx110x \ { 10101x1100, 10100x1101, 1010x1110x, 1010xx110x, 10100x110x}, x10x1xx1x1 \ { x1011xx101, x1001xx111, x10x1x11x1, x10x1x1111, x10x10x111, 11011xx1x1, 010x1xx1x1}, 10101xx101 \ { 10101x1101}} {x0101 \ {10101}} {} {} {0x1xx \ {01100, 00100, 0x1x0}, 00x11 \ {00111, 00011, 00011}} {xx010 \ {x0010}, 1xx00 \ {10x00, 1x000, 1x000}} { xx0100x110 \ { xx0100x110, x00100x110}, 1xx000x100 \ { 1xx0001100, 1xx0000100, 1xx000x100, 10x000x100, 1x0000x100, 1x0000x100}} {11xxx \ {11000, 11x10, 1111x}} {x0xx0 \ {10110, 10xx0, x0110}} { x0xx011xx0 \ { x0x1011x00, x0x0011x10, x0xx011000, x0xx011x10, x0xx011110, 1011011xx0, 10xx011xx0, x011011xx0}} {001x0 \ {00100, 00110, 00110}, x01x0 \ {10110, 10100, x0100}} {} {} {} {xxx01 \ {x0x01, 0x101, 11101}} {} {0xx0x \ {00001, 0000x, 0110x}, 1xx1x \ {11010, 10x10, 10011}} {xx0x1 \ {11011, x0011, x1011}, xx1xx \ {101xx, 1111x, x1110}} { xx0010xx01 \ { xx00100001, xx00100001, xx00101101}, xx10x0xx0x \ { xx1010xx00, xx1000xx01, xx10x00001, xx10x0000x, xx10x0110x, 1010x0xx0x}, xx0111xx11 \ { xx01110011, 110111xx11, x00111xx11, x10111xx11}, xx11x1xx1x \ { xx1111xx10, xx1101xx11, xx11x11010, xx11x10x10, xx11x10011, 1011x1xx1x, 1111x1xx1x, x11101xx1x}} {xxx01 \ {1xx01, 1x101, x1001}, x0xxx \ {1010x, x00x0, 00x11}} {00x11 \ {00011, 00111}} { 00x11x0x11 \ { 00x1100x11, 00011x0x11, 00111x0x11}} {x111x \ {1111x, 0111x}, 10xx0 \ {10010, 10000}} {11x0x \ {11001, 11x00, 11x01}} { 11x0010x00 \ { 11x0010000, 11x0010x00}} {xx0x0 \ {1x010, xx010, 0x0x0}, xx0xx \ {0001x, 0000x, 110x1}, 1x1x1 \ {10101, 111x1, 1x111}} {001xx \ {0011x, 001x0, 0010x}, 00x1x \ {0011x, 0001x, 00010}} { 001x0xx0x0 \ { 00110xx000, 00100xx010, 001x01x010, 001x0xx010, 001x00x0x0, 00110xx0x0, 001x0xx0x0, 00100xx0x0}, 00x10xx010 \ { 00x101x010, 00x10xx010, 00x100x010, 00110xx010, 00010xx010, 00010xx010}, 001xxxx0xx \ { 001x1xx0x0, 001x0xx0x1, 0011xxx00x, 0010xxx01x, 001xx0001x, 001xx0000x, 001xx110x1, 0011xxx0xx, 001x0xx0xx, 0010xxx0xx}, 00x1xxx01x \ { 00x11xx010, 00x10xx011, 00x1x0001x, 00x1x11011, 0011xxx01x, 0001xxx01x, 00010xx01x}, 001x11x1x1 \ { 001111x101, 001011x111, 001x110101, 001x1111x1, 001x11x111, 001111x1x1, 001011x1x1}, 00x111x111 \ { 00x1111111, 00x111x111, 001111x111, 000111x111}} {x01xx \ {00111, x01x1, 001x0}, 1x0xx \ {10000, 110xx, 1x001}} {1xx1x \ {10111, 1xx10, 11111}} { 1xx1xx011x \ { 1xx11x0110, 1xx10x0111, 1xx1x00111, 1xx1xx0111, 1xx1x00110, 10111x011x, 1xx10x011x, 11111x011x}, 1xx1x1x01x \ { 1xx111x010, 1xx101x011, 1xx1x1101x, 101111x01x, 1xx101x01x, 111111x01x}} {1x0xx \ {1x011, 10001, 1000x}} {} {} {10x1x \ {10011, 1011x, 10x11}} {} {} {xx0xx \ {0x00x, 11000, x0011}, 00x1x \ {00x11, 00110, 00111}} {010xx \ {010x1, 0100x, 01010}} { 010xxxx0xx \ { 010x1xx0x0, 010x0xx0x1, 0101xxx00x, 0100xxx01x, 010xx0x00x, 010xx11000, 010xxx0011, 010x1xx0xx, 0100xxx0xx, 01010xx0xx}, 0101x00x1x \ { 0101100x10, 0101000x11, 0101x00x11, 0101x00110, 0101x00111, 0101100x1x, 0101000x1x}} {10xx1 \ {10001, 10x11, 10x01}, 0xx00 \ {01100, 01x00, 01000}} {0xx01 \ {0x001, 0x101, 00x01}, 1xxx1 \ {10011, 111x1, 11x01}} { 0xx0110x01 \ { 0xx0110001, 0xx0110x01, 0x00110x01, 0x10110x01, 00x0110x01}, 1xxx110xx1 \ { 1xx1110x01, 1xx0110x11, 1xxx110001, 1xxx110x11, 1xxx110x01, 1001110xx1, 111x110xx1, 11x0110xx1}} {00xx1 \ {00x11, 001x1, 00101}} {xxxx1 \ {x1xx1, 10xx1, 11101}, 1xxxx \ {10x0x, 11xx0, 1101x}} { xxxx100xx1 \ { xxx1100x01, xxx0100x11, xxxx100x11, xxxx1001x1, xxxx100101, x1xx100xx1, 10xx100xx1, 1110100xx1}, 1xxx100xx1 \ { 1xx1100x01, 1xx0100x11, 1xxx100x11, 1xxx1001x1, 1xxx100101, 10x0100xx1, 1101100xx1}} {00x00 \ {00000, 00100, 00100}} {1x100 \ {11100, 10100}, 0x0x1 \ {00011, 010x1, 00001}, 0xxx1 \ {00001, 00011, 01x01}} { 1x10000x00 \ { 1x10000000, 1x10000100, 1x10000100, 1110000x00, 1010000x00}} {xx010 \ {10010}} {x000x \ {10001, 00001, 0000x}} {} {11x0x \ {11100, 11x01, 11001}, xx000 \ {x0000, x1000, 10000}} {xxx0x \ {0xx00, x010x, 0x001}, 001x1 \ {00111, 00101, 00101}} { xxx0x11x0x \ { xxx0111x00, xxx0011x01, xxx0x11100, xxx0x11x01, xxx0x11001, 0xx0011x0x, x010x11x0x, 0x00111x0x}, 0010111x01 \ { 0010111x01, 0010111001, 0010111x01, 0010111x01}, xxx00xx000 \ { xxx00x0000, xxx00x1000, xxx0010000, 0xx00xx000, x0100xx000}} {xxxx1 \ {0x0x1, xx011, 1x011}, 010xx \ {01000, 01010, 010x0}} {0x1x1 \ {01111, 0x111, 00111}} { 0x1x1xxxx1 \ { 0x111xxx01, 0x101xxx11, 0x1x10x0x1, 0x1x1xx011, 0x1x11x011, 01111xxxx1, 0x111xxxx1, 00111xxxx1}, 0x1x1010x1 \ { 0x11101001, 0x10101011, 01111010x1, 0x111010x1, 00111010x1}} {1x010 \ {11010, 10010, 10010}, xx0xx \ {x0011, 10011, 110x1}} {0011x \ {00110, 00111}} { 001101x010 \ { 0011011010, 0011010010, 0011010010, 001101x010}, 0011xxx01x \ { 00111xx010, 00110xx011, 0011xx0011, 0011x10011, 0011x11011, 00110xx01x, 00111xx01x}} {xx0xx \ {0x011, 0000x, 11000}, 001xx \ {0011x, 00101, 00100}, 11xx1 \ {11011, 11x01}} {01x01 \ {01101}, 1xxx0 \ {10x10, 1x1x0, 1x010}} { 01x01xx001 \ { 01x0100001, 01101xx001}, 1xxx0xx0x0 \ { 1xx10xx000, 1xx00xx010, 1xxx000000, 1xxx011000, 10x10xx0x0, 1x1x0xx0x0, 1x010xx0x0}, 01x0100101 \ { 01x0100101, 0110100101}, 1xxx0001x0 \ { 1xx1000100, 1xx0000110, 1xxx000110, 1xxx000100, 10x10001x0, 1x1x0001x0, 1x010001x0}, 01x0111x01 \ { 01x0111x01, 0110111x01}} {1x1xx \ {1x1x1, 1x111, 1011x}} {0xx1x \ {0011x, 0x01x, 00x11}} { 0xx1x1x11x \ { 0xx111x110, 0xx101x111, 0xx1x1x111, 0xx1x1x111, 0xx1x1011x, 0011x1x11x, 0x01x1x11x, 00x111x11x}} {x1xx0 \ {11xx0, x1010, 11110}} {} {} {} {x111x \ {01111, x1110, 11110}} {} {x0xx1 \ {00xx1, 00x01, 00x11}, x01x0 \ {101x0, 001x0}} {x1010 \ {11010}, x0x00 \ {10000, 10x00, 10100}} { x1010x0110 \ { x101010110, x101000110, 11010x0110}, x0x00x0100 \ { x0x0010100, x0x0000100, 10000x0100, 10x00x0100, 10100x0100}} {0x00x \ {0100x, 0x001, 00001}, xx0xx \ {01000, 0001x, xx00x}} {} {} {01x1x \ {01110, 0111x, 0101x}} {x011x \ {x0111, 10110, 0011x}} { x011x01x1x \ { x011101x10, x011001x11, x011x01110, x011x0111x, x011x0101x, x011101x1x, 1011001x1x, 0011x01x1x}} {11xxx \ {11101, 11011, 11x11}} {0x0xx \ {000x1, 0x00x}, xx1xx \ {11100, 00100, 1010x}, 0x00x \ {0000x, 00000, 00000}} { 0x0xx11xxx \ { 0x0x111xx0, 0x0x011xx1, 0x01x11x0x, 0x00x11x1x, 0x0xx11101, 0x0xx11011, 0x0xx11x11, 000x111xxx, 0x00x11xxx}, xx1xx11xxx \ { xx1x111xx0, xx1x011xx1, xx11x11x0x, xx10x11x1x, xx1xx11101, xx1xx11011, xx1xx11x11, 1110011xxx, 0010011xxx, 1010x11xxx}, 0x00x11x0x \ { 0x00111x00, 0x00011x01, 0x00x11101, 0000x11x0x, 0000011x0x, 0000011x0x}} {1xx01 \ {10001, 10x01, 1x001}} {00xxx \ {001x0, 00111, 00x00}} { 00x011xx01 \ { 00x0110001, 00x0110x01, 00x011x001}} {x0101 \ {10101, 00101}} {1x010 \ {11010, 10010, 10010}, xx1xx \ {xx110, 1110x, x01xx}, 1xx11 \ {1x111, 1x011, 1x011}} { xx101x0101 \ { xx10110101, xx10100101, 11101x0101, x0101x0101}} {x0110 \ {10110}} {1xx1x \ {11x11, 1011x, 1111x}, 1xx1x \ {1xx11, 11x10, 1111x}} { 1xx10x0110 \ { 1xx1010110, 10110x0110, 11110x0110}, 1xx10x0110 \ { 1xx1010110, 11x10x0110, 11110x0110}} {} {} {} {01x0x \ {01100, 01001, 01000}, 00x0x \ {00001, 00101}} {xx101 \ {1x101, 00101}} { xx10101x01 \ { xx10101001, 1x10101x01, 0010101x01}, xx10100x01 \ { xx10100001, xx10100101, 1x10100x01, 0010100x01}} {111x1 \ {11101, 11111}} {01x1x \ {0111x, 0101x, 01010}, x1x01 \ {01101}} { 01x1111111 \ { 01x1111111, 0111111111, 0101111111}, x1x0111101 \ { x1x0111101, 0110111101}} {xx110 \ {00110, x1110, 01110}, x10xx \ {01000, 01001, 110x0}} {1x01x \ {10011, 1001x, 1x011}, xx1x0 \ {1x100, 11100, 001x0}} { 1x010xx110 \ { 1x01000110, 1x010x1110, 1x01001110, 10010xx110}, xx110xx110 \ { xx11000110, xx110x1110, xx11001110, 00110xx110}, 1x01xx101x \ { 1x011x1010, 1x010x1011, 1x01x11010, 10011x101x, 1001xx101x, 1x011x101x}, xx1x0x10x0 \ { xx110x1000, xx100x1010, xx1x001000, xx1x0110x0, 1x100x10x0, 11100x10x0, 001x0x10x0}} {x1x11 \ {x1011, 11011, 01x11}, 1x01x \ {11010, 11011, 10011}} {xx1x0 \ {11100, 01100, 0x100}} { xx1101x010 \ { xx11011010}} {0000x \ {00000, 00001}} {1x110 \ {10110}, 000x1 \ {00001, 00011}, x1xx1 \ {11111, 01001, 01x01}} { 0000100001 \ { 0000100001, 0000100001}, x1x0100001 \ { x1x0100001, 0100100001, 01x0100001}} {1xx10 \ {10110, 11010, 10x10}, x1x01 \ {11001, x1101, 01101}} {x11x1 \ {111x1, 11111, x1101}, 1x11x \ {1x111, 10110}} { 1x1101xx10 \ { 1x11010110, 1x11011010, 1x11010x10, 101101xx10}, x1101x1x01 \ { x110111001, x1101x1101, x110101101, 11101x1x01, x1101x1x01}} {0x000 \ {00000, 01000, 01000}} {1x010 \ {11010, 10010}, xx111 \ {x1111, 0x111}} {} {0x1x1 \ {0x111, 01111, 00101}} {xx10x \ {01100, 11100, x0100}} { xx1010x101 \ { xx10100101}} {0xxx0 \ {01x10, 0xx00, 000x0}} {x1xx1 \ {01011, 11x01, 011x1}, 0x101 \ {00101, 01101}, 0xxxx \ {0xx1x, 0x0xx}} { 0xxx00xxx0 \ { 0xx100xx00, 0xx000xx10, 0xxx001x10, 0xxx00xx00, 0xxx0000x0, 0xx100xxx0, 0x0x00xxx0}} {x011x \ {10111, 10110, x0110}, 1x1xx \ {1x101, 101x1, 11100}} {0000x \ {00001, 00000}, x0x1x \ {00x11, 1001x, x011x}} { x0x1xx011x \ { x0x11x0110, x0x10x0111, x0x1x10111, x0x1x10110, x0x1xx0110, 00x11x011x, 1001xx011x, x011xx011x}, 0000x1x10x \ { 000011x100, 000001x101, 0000x1x101, 0000x10101, 0000x11100, 000011x10x, 000001x10x}, x0x1x1x11x \ { x0x111x110, x0x101x111, x0x1x10111, 00x111x11x, 1001x1x11x, x011x1x11x}} {1xx00 \ {10x00, 11x00, 10100}} {x0x10 \ {10010, 10110, 00x10}, 1xx0x \ {1x000, 11000, 1x100}, xx101 \ {11101, 1x101}} { 1xx001xx00 \ { 1xx0010x00, 1xx0011x00, 1xx0010100, 1x0001xx00, 110001xx00, 1x1001xx00}} {x00xx \ {10011, x0010, 1001x}, x10x1 \ {01001, x1001, 110x1}, 01xx1 \ {01111, 010x1, 01101}} {x0xxx \ {x0010, x01xx, 00100}, xxxx0 \ {00000, xxx00, 01x10}, 0x110 \ {01110, 00110}} { x0xxxx00xx \ { x0xx1x00x0, x0xx0x00x1, x0x1xx000x, x0x0xx001x, x0xxx10011, x0xxxx0010, x0xxx1001x, x0010x00xx, x01xxx00xx, 00100x00xx}, xxxx0x00x0 \ { xxx10x0000, xxx00x0010, xxxx0x0010, xxxx010010, 00000x00x0, xxx00x00x0, 01x10x00x0}, 0x110x0010 \ { 0x110x0010, 0x11010010, 01110x0010, 00110x0010}, x0xx1x10x1 \ { x0x11x1001, x0x01x1011, x0xx101001, x0xx1x1001, x0xx1110x1, x01x1x10x1}, x0xx101xx1 \ { x0x1101x01, x0x0101x11, x0xx101111, x0xx1010x1, x0xx101101, x01x101xx1}} {x110x \ {1110x, 01101, 01101}} {xx10x \ {1x100, xx101, x1101}} { xx10xx110x \ { xx101x1100, xx100x1101, xx10x1110x, xx10x01101, xx10x01101, 1x100x110x, xx101x110x, x1101x110x}} {xx010 \ {x0010, x1010, 00010}} {1xxx1 \ {11101, 11xx1, 101x1}, 1xx01 \ {10x01, 11x01, 11101}} {} {1x0x1 \ {1x011, 1x001, 1x001}, 1x1xx \ {1110x, 1x111, 1x101}, 001xx \ {00111, 001x0}} {x001x \ {10010, 0001x}, 1x110 \ {10110}} { x00111x011 \ { x00111x011, 000111x011}, x001x1x11x \ { x00111x110, x00101x111, x001x1x111, 100101x11x, 0001x1x11x}, 1x1101x110 \ { 101101x110}, x001x0011x \ { x001100110, x001000111, x001x00111, x001x00110, 100100011x, 0001x0011x}, 1x11000110 \ { 1x11000110, 1011000110}} {1001x \ {10010, 10011}, x0x0x \ {0000x, 00x0x}, x0000 \ {10000, 00000}} {0x100 \ {01100}} { 0x100x0x00 \ { 0x10000000, 0x10000x00, 01100x0x00}, 0x100x0000 \ { 0x10010000, 0x10000000, 01100x0000}} {xx0x1 \ {1x001, xx001, 01001}} {0x111 \ {01111, 00111, 00111}} { 0x111xx011 \ { 01111xx011, 00111xx011, 00111xx011}} {} {100xx \ {1001x, 1000x, 100x0}} {} {x0x1x \ {0001x, 00x10, 10011}, 1x0xx \ {110xx, 110x0, 1000x}} {011xx \ {01110, 0111x, 01101}, xx1x1 \ {xx111, 00101, 01101}} { 0111xx0x1x \ { 01111x0x10, 01110x0x11, 0111x0001x, 0111x00x10, 0111x10011, 01110x0x1x, 0111xx0x1x}, xx111x0x11 \ { xx11100011, xx11110011, xx111x0x11}, 011xx1x0xx \ { 011x11x0x0, 011x01x0x1, 0111x1x00x, 0110x1x01x, 011xx110xx, 011xx110x0, 011xx1000x, 011101x0xx, 0111x1x0xx, 011011x0xx}, xx1x11x0x1 \ { xx1111x001, xx1011x011, xx1x1110x1, xx1x110001, xx1111x0x1, 001011x0x1, 011011x0x1}} {x1x1x \ {x1x10, 11x10, x1010}, 0x11x \ {00111, 01110}} {} {} {01x1x \ {01x11, 01110, 01x10}, xxxx0 \ {0x0x0, 01xx0, x00x0}} {x000x \ {10000, 00000}, 1x100 \ {10100}} { x0000xxx00 \ { x00000x000, x000001x00, x0000x0000, 10000xxx00, 00000xxx00}, 1x100xxx00 \ { 1x1000x000, 1x10001x00, 1x100x0000, 10100xxx00}} {xxx0x \ {0x000, 00001, 00x00}, 0xx11 \ {00x11, 00011, 0x011}} {x1x11 \ {01x11, x1111}, 0x011 \ {00011}} { x1x110xx11 \ { x1x1100x11, x1x1100011, x1x110x011, 01x110xx11, x11110xx11}, 0x0110xx11 \ { 0x01100x11, 0x01100011, 0x0110x011, 000110xx11}} {x0x00 \ {x0000, 00000, 00100}, x10xx \ {x10x0, 010x1, 01010}} {xx101 \ {0x101, 11101, 01101}} { xx101x1001 \ { xx10101001, 0x101x1001, 11101x1001, 01101x1001}} {xxx00 \ {xx000, 10000, x0x00}, x0x01 \ {10001, x0001}, 0x1xx \ {01110, 001x1, 01111}} {1xx11 \ {10011, 11111, 11011}, 00x11 \ {00011}} { 1xx110x111 \ { 1xx1100111, 1xx1101111, 100110x111, 111110x111, 110110x111}, 00x110x111 \ { 00x1100111, 00x1101111, 000110x111}} {x1100 \ {11100, 01100}} {0x0xx \ {00011, 01000}} { 0x000x1100 \ { 0x00011100, 0x00001100, 01000x1100}} {x0x10 \ {00x10, x0110, x0010}, x1x10 \ {11110, 01010, 01x10}} {001x1 \ {00111}, 001xx \ {0010x, 00100, 0011x}, x1x0x \ {11000, 11100, 01101}} { 00110x0x10 \ { 0011000x10, 00110x0110, 00110x0010, 00110x0x10}, 00110x1x10 \ { 0011011110, 0011001010, 0011001x10, 00110x1x10}} {x1xx0 \ {01xx0, 11100, x1110}, x100x \ {01001, 1100x, x1000}} {xx010 \ {1x010, x0010}, xx1xx \ {x01x0, 011x0, x11xx}} { xx010x1x10 \ { xx01001x10, xx010x1110, 1x010x1x10, x0010x1x10}, xx1x0x1xx0 \ { xx110x1x00, xx100x1x10, xx1x001xx0, xx1x011100, xx1x0x1110, x01x0x1xx0, 011x0x1xx0, x11x0x1xx0}, xx10xx100x \ { xx101x1000, xx100x1001, xx10x01001, xx10x1100x, xx10xx1000, x0100x100x, 01100x100x, x110xx100x}} {0xxx0 \ {0x110, 00010, 01xx0}} {x110x \ {11101, 11100, x1100}, x1x01 \ {11x01, 11001, x1001}} { x11000xx00 \ { x110001x00, 111000xx00, x11000xx00}} {00x00 \ {00100, 00000, 00000}, 00xx1 \ {00x01, 00111, 00101}} {x111x \ {x1110, 11110, 01110}, x1001 \ {11001, 01001, 01001}, 1x100 \ {10100, 11100, 11100}} { 1x10000x00 \ { 1x10000100, 1x10000000, 1x10000000, 1010000x00, 1110000x00, 1110000x00}, x111100x11 \ { x111100111}, x100100x01 \ { x100100x01, x100100101, 1100100x01, 0100100x01, 0100100x01}} {} {1xx1x \ {11011, 11x1x, 10010}, x00xx \ {10001, 10010, 00011}, 0x0x0 \ {000x0, 010x0}} {} {0x1x0 \ {0x110, 001x0, 01100}, x1000 \ {11000, 01000}, x1x0x \ {11101, 01x00, x110x}} {xx0x0 \ {x1000, 1x000, 11010}, 1xx10 \ {11110, 1x110, 10x10}, x1x01 \ {11001, 01001, 01x01}} { xx0x00x1x0 \ { xx0100x100, xx0000x110, xx0x00x110, xx0x0001x0, xx0x001100, x10000x1x0, 1x0000x1x0, 110100x1x0}, 1xx100x110 \ { 1xx100x110, 1xx1000110, 111100x110, 1x1100x110, 10x100x110}, xx000x1000 \ { xx00011000, xx00001000, x1000x1000, 1x000x1000}, xx000x1x00 \ { xx00001x00, xx000x1100, x1000x1x00, 1x000x1x00}, x1x01x1x01 \ { x1x0111101, x1x01x1101, 11001x1x01, 01001x1x01, 01x01x1x01}} {x1010 \ {11010}, xx111 \ {00111, 1x111, 10111}} {x00xx \ {00000, 000x0, 0001x}, xx010 \ {00010, 0x010, x0010}} { x0010x1010 \ { x001011010, 00010x1010, 00010x1010}, xx010x1010 \ { xx01011010, 00010x1010, 0x010x1010, x0010x1010}, x0011xx111 \ { x001100111, x00111x111, x001110111, 00011xx111}} {1x1x0 \ {101x0, 10110, 1x100}} {xx0x0 \ {1x000, x00x0, 01000}} { xx0x01x1x0 \ { xx0101x100, xx0001x110, xx0x0101x0, xx0x010110, xx0x01x100, 1x0001x1x0, x00x01x1x0, 010001x1x0}} {} {xx111 \ {10111, x1111, 0x111}, xx001 \ {00001, 01001, x1001}} {} {11x1x \ {11x10, 11011, 11110}, 11xxx \ {110x1, 1110x, 11x1x}} {xx10x \ {1x100, 0010x, 1x101}, x1xx0 \ {11xx0, 11x10, x10x0}} { x1x1011x10 \ { x1x1011x10, x1x1011110, 11x1011x10, 11x1011x10, x101011x10}, xx10x11x0x \ { xx10111x00, xx10011x01, xx10x11001, xx10x1110x, 1x10011x0x, 0010x11x0x, 1x10111x0x}, x1xx011xx0 \ { x1x1011x00, x1x0011x10, x1xx011100, x1xx011x10, 11xx011xx0, 11x1011xx0, x10x011xx0}} {101xx \ {101x1, 10100, 101x0}, 0x101 \ {00101, 01101}} {x01xx \ {101x1, 1010x, 00110}, 110x1 \ {11001}} { x01xx101xx \ { x01x1101x0, x01x0101x1, x011x1010x, x010x1011x, x01xx101x1, x01xx10100, x01xx101x0, 101x1101xx, 1010x101xx, 00110101xx}, 110x1101x1 \ { 1101110101, 1100110111, 110x1101x1, 11001101x1}, x01010x101 \ { x010100101, x010101101, 101010x101, 101010x101}, 110010x101 \ { 1100100101, 1100101101, 110010x101}} {x1xxx \ {0111x, 11x01, 01x10}, 0100x \ {01001, 01000}} {x10xx \ {010x1, x1011, 01001}, 11xxx \ {11010, 1101x, 110x0}} { x10xxx1xxx \ { x10x1x1xx0, x10x0x1xx1, x101xx1x0x, x100xx1x1x, x10xx0111x, x10xx11x01, x10xx01x10, 010x1x1xxx, x1011x1xxx, 01001x1xxx}, 11xxxx1xxx \ { 11xx1x1xx0, 11xx0x1xx1, 11x1xx1x0x, 11x0xx1x1x, 11xxx0111x, 11xxx11x01, 11xxx01x10, 11010x1xxx, 1101xx1xxx, 110x0x1xxx}, x100x0100x \ { x100101000, x100001001, x100x01001, x100x01000, 010010100x, 010010100x}, 11x0x0100x \ { 11x0101000, 11x0001001, 11x0x01001, 11x0x01000, 110000100x}} {x010x \ {10100, 00100, 1010x}, x1010 \ {11010, 01010, 01010}, xxx11 \ {11011, 0x011, 01x11}} {1x11x \ {1x111, 10110}, x1101 \ {01101, 11101}, 0x1xx \ {001x0, 0x100, 00100}} { x1101x0101 \ { x110110101, 01101x0101, 11101x0101}, 0x10xx010x \ { 0x101x0100, 0x100x0101, 0x10x10100, 0x10x00100, 0x10x1010x, 00100x010x, 0x100x010x, 00100x010x}, 1x110x1010 \ { 1x11011010, 1x11001010, 1x11001010, 10110x1010}, 0x110x1010 \ { 0x11011010, 0x11001010, 0x11001010, 00110x1010}, 1x111xxx11 \ { 1x11111011, 1x1110x011, 1x11101x11, 1x111xxx11}, 0x111xxx11 \ { 0x11111011, 0x1110x011, 0x11101x11}} {xx1x1 \ {01111, 111x1, 11101}} {0001x \ {00011, 00010}, 1x1x0 \ {10100, 11110, 10110}, x0101 \ {00101}} { 00011xx111 \ { 0001101111, 0001111111, 00011xx111}, x0101xx101 \ { x010111101, x010111101, 00101xx101}} {} {xxx0x \ {11101, x0x01, 00x01}, 1x011 \ {11011, 10011}} {} {0xx01 \ {01101, 00x01}} {x001x \ {10010, x0010, 10011}, 1110x \ {11100, 11101}} { 111010xx01 \ { 1110101101, 1110100x01, 111010xx01}} {xx0x0 \ {x1000, 1x0x0, x10x0}, xxxx0 \ {11010, 0xx00, 01000}} {1xxx0 \ {1x100, 11100, 11110}, 0x00x \ {01001, 01000}, 10x10 \ {10110, 10010, 10010}} { 1xxx0xx0x0 \ { 1xx10xx000, 1xx00xx010, 1xxx0x1000, 1xxx01x0x0, 1xxx0x10x0, 1x100xx0x0, 11100xx0x0, 11110xx0x0}, 0x000xx000 \ { 0x000x1000, 0x0001x000, 0x000x1000, 01000xx000}, 10x10xx010 \ { 10x101x010, 10x10x1010, 10110xx010, 10010xx010, 10010xx010}, 1xxx0xxxx0 \ { 1xx10xxx00, 1xx00xxx10, 1xxx011010, 1xxx00xx00, 1xxx001000, 1x100xxxx0, 11100xxxx0, 11110xxxx0}, 0x000xxx00 \ { 0x0000xx00, 0x00001000, 01000xxx00}, 10x10xxx10 \ { 10x1011010, 10110xxx10, 10010xxx10, 10010xxx10}} {x101x \ {11011, x1010, 0101x}, 1xxx1 \ {10001, 10011, 11x01}} {1xx0x \ {10000, 1xx01, 10001}} { 1xx011xx01 \ { 1xx0110001, 1xx0111x01, 1xx011xx01, 100011xx01}} {xxxx1 \ {0x111, 111x1, x0001}, 0x110 \ {01110, 00110}, xx001 \ {10001, x0001, 11001}} {} {} {xx101 \ {x1101}, 1x0xx \ {10001, 1000x, 11000}} {111xx \ {11101, 1110x, 11100}} { 11101xx101 \ { 11101x1101, 11101xx101, 11101xx101}, 111xx1x0xx \ { 111x11x0x0, 111x01x0x1, 1111x1x00x, 1110x1x01x, 111xx10001, 111xx1000x, 111xx11000, 111011x0xx, 1110x1x0xx, 111001x0xx}} {x0x00 \ {10x00, x0100, 00000}, 1x0x1 \ {1x001, 11011, 100x1}, x0xxx \ {x00xx, 10x1x, 00xx0}} {} {} {xxx00 \ {x1100, 0x100, xx100}, x10xx \ {010xx, 110x1, 110xx}} {0xxxx \ {00x0x, 01x01}, 10xx1 \ {10111, 10x11, 10x01}, 01x0x \ {01100, 0100x, 01101}} { 0xx00xxx00 \ { 0xx00x1100, 0xx000x100, 0xx00xx100, 00x00xxx00}, 01x00xxx00 \ { 01x00x1100, 01x000x100, 01x00xx100, 01100xxx00, 01000xxx00}, 0xxxxx10xx \ { 0xxx1x10x0, 0xxx0x10x1, 0xx1xx100x, 0xx0xx101x, 0xxxx010xx, 0xxxx110x1, 0xxxx110xx, 00x0xx10xx, 01x01x10xx}, 10xx1x10x1 \ { 10x11x1001, 10x01x1011, 10xx1010x1, 10xx1110x1, 10xx1110x1, 10111x10x1, 10x11x10x1, 10x01x10x1}, 01x0xx100x \ { 01x01x1000, 01x00x1001, 01x0x0100x, 01x0x11001, 01x0x1100x, 01100x100x, 0100xx100x, 01101x100x}} {1x0x0 \ {100x0, 11010, 10010}} {xx11x \ {x1111, x111x, xx111}, 100xx \ {1000x, 10001, 10010}} { xx1101x010 \ { xx11010010, xx11011010, xx11010010, x11101x010}, 100x01x0x0 \ { 100101x000, 100001x010, 100x0100x0, 100x011010, 100x010010, 100001x0x0, 100101x0x0}} {x10x0 \ {x1000, 11010, 11000}, 10xx0 \ {100x0, 10x10, 10110}, 101x0 \ {10100, 10110, 10110}} {x0x00 \ {00x00, x0000, 10100}} { x0x00x1000 \ { x0x00x1000, x0x0011000, 00x00x1000, x0000x1000, 10100x1000}, x0x0010x00 \ { x0x0010000, 00x0010x00, x000010x00, 1010010x00}, x0x0010100 \ { x0x0010100, 00x0010100, x000010100, 1010010100}} {0101x \ {01010, 01011, 01011}, xxxx1 \ {01001, 00011, x1011}} {0x00x \ {00001, 00000, 00000}} { 0x001xxx01 \ { 0x00101001, 00001xxx01}} {x1011 \ {11011, 01011}, x001x \ {00010, 10011, 0001x}} {0x001 \ {00001}} {} {x0xx1 \ {10x11, 10111, x00x1}, 11x0x \ {11x00, 1110x, 11101}, xx100 \ {01100, x0100, x0100}} {} {} {0x1x0 \ {00100, 0x100, 0x100}} {x0x10 \ {10x10, 00x10, 00x10}, 0000x \ {00001, 00000}, 1xx0x \ {10x00, 1110x, 1100x}} { x0x100x110 \ { 10x100x110, 00x100x110, 00x100x110}, 000000x100 \ { 0000000100, 000000x100, 000000x100, 000000x100}, 1xx000x100 \ { 1xx0000100, 1xx000x100, 1xx000x100, 10x000x100, 111000x100, 110000x100}} {x1xxx \ {01xx1, 11x01, x101x}, x01xx \ {x0100, 101xx, 0011x}} {0x001 \ {01001, 00001}, 011xx \ {011x1, 01100}} { 0x001x1x01 \ { 0x00101x01, 0x00111x01, 01001x1x01, 00001x1x01}, 011xxx1xxx \ { 011x1x1xx0, 011x0x1xx1, 0111xx1x0x, 0110xx1x1x, 011xx01xx1, 011xx11x01, 011xxx101x, 011x1x1xxx, 01100x1xxx}, 0x001x0101 \ { 0x00110101, 01001x0101, 00001x0101}, 011xxx01xx \ { 011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xxx0100, 011xx101xx, 011xx0011x, 011x1x01xx, 01100x01xx}} {1xxxx \ {1011x, 110x0, 1010x}, xx101 \ {00101, x0101, 11101}} {1111x \ {11111, 11110}, xx000 \ {x0000, 11000, 01000}} { 1111x1xx1x \ { 111111xx10, 111101xx11, 1111x1011x, 1111x11010, 111111xx1x, 111101xx1x}, xx0001xx00 \ { xx00011000, xx00010100, x00001xx00, 110001xx00, 010001xx00}} {x1x00 \ {x1100, 11100, 01100}, xx0x0 \ {1x000, xx000, x0010}} {xx01x \ {00011, 00010, x0010}} { xx010xx010 \ { xx010x0010, 00010xx010, x0010xx010}} {11xxx \ {1100x, 11x0x, 11x01}} {} {} {xx111 \ {10111, 11111, 01111}, 1xxx0 \ {10x00, 100x0, 11000}} {x10x0 \ {x1010, 11010, 01000}, 10xx1 \ {100x1, 10001}} { 10x11xx111 \ { 10x1110111, 10x1111111, 10x1101111, 10011xx111}, x10x01xxx0 \ { x10101xx00, x10001xx10, x10x010x00, x10x0100x0, x10x011000, x10101xxx0, 110101xxx0, 010001xxx0}} {x11x0 \ {01110, 11110, 11100}, x1xx1 \ {01001, x1x11, x1001}} {10x1x \ {1011x, 10x10, 10110}, x11xx \ {x110x, 111xx, 011xx}} { 10x10x1110 \ { 10x1001110, 10x1011110, 10110x1110, 10x10x1110, 10110x1110}, x11x0x11x0 \ { x1110x1100, x1100x1110, x11x001110, x11x011110, x11x011100, x1100x11x0, 111x0x11x0, 011x0x11x0}, 10x11x1x11 \ { 10x11x1x11, 10111x1x11}, x11x1x1xx1 \ { x1111x1x01, x1101x1x11, x11x101001, x11x1x1x11, x11x1x1001, x1101x1xx1, 111x1x1xx1, 011x1x1xx1}} {xx110 \ {00110, x0110, 1x110}, 1x01x \ {1x010, 10011}} {00x0x \ {0000x, 00001, 00x01}} {} {xx1x1 \ {x1111, 10111, x0101}, 100x0 \ {10000, 10010}} {x1x1x \ {01x10, x1010, x111x}, 1x00x \ {1000x, 1x001, 10001}, 0x00x \ {0x001, 0100x, 00001}} { x1x11xx111 \ { x1x11x1111, x1x1110111, x1111xx111}, 1x001xx101 \ { 1x001x0101, 10001xx101, 1x001xx101, 10001xx101}, 0x001xx101 \ { 0x001x0101, 0x001xx101, 01001xx101, 00001xx101}, x1x1010010 \ { x1x1010010, 01x1010010, x101010010, x111010010}, 1x00010000 \ { 1x00010000, 1000010000}, 0x00010000 \ { 0x00010000, 0100010000}} {x10x1 \ {01001, x1011, 11011}, 01x11 \ {01011, 01111}} {xx100 \ {x1100, 11100}, xx00x \ {0100x, 00000, 1x000}} { xx001x1001 \ { xx00101001, 01001x1001}} {x0x11 \ {x0111, 10111, 00x11}} {xx1xx \ {011x0, 001x0, 1111x}, xxxx1 \ {0x111, 110x1, x10x1}} { xx111x0x11 \ { xx111x0111, xx11110111, xx11100x11, 11111x0x11}, xxx11x0x11 \ { xxx11x0111, xxx1110111, xxx1100x11, 0x111x0x11, 11011x0x11, x1011x0x11}} {xxxx0 \ {01100, xx010, 1x010}} {} {} {} {1x1x0 \ {11110, 111x0, 111x0}, 01xxx \ {01x1x, 01xx1, 011x0}} {} {110x0 \ {11000}, x0100 \ {00100}} {} {} {x1x0x \ {01101, 11101, x1101}} {xxxxx \ {1xx11, 011x1, 01xx0}, 01x01 \ {01001}, x011x \ {10111, x0110, 00111}} { xxx0xx1x0x \ { xxx01x1x00, xxx00x1x01, xxx0x01101, xxx0x11101, xxx0xx1101, 01101x1x0x, 01x00x1x0x}, 01x01x1x01 \ { 01x0101101, 01x0111101, 01x01x1101, 01001x1x01}} {xx0xx \ {x1010, xx00x, 1x011}} {01x0x \ {01000, 01001, 01x00}} { 01x0xxx00x \ { 01x01xx000, 01x00xx001, 01x0xxx00x, 01000xx00x, 01001xx00x, 01x00xx00x}} {1x0xx \ {1101x, 1x010, 11011}} {010xx \ {0101x, 01000, 010x0}, 101x1 \ {10111, 10101}} { 010xx1x0xx \ { 010x11x0x0, 010x01x0x1, 0101x1x00x, 0100x1x01x, 010xx1101x, 010xx1x010, 010xx11011, 0101x1x0xx, 010001x0xx, 010x01x0xx}, 101x11x0x1 \ { 101111x001, 101011x011, 101x111011, 101x111011, 101111x0x1, 101011x0x1}} {10x01 \ {10101, 10001}, xx011 \ {01011, 10011}, xx0x1 \ {1x0x1, xx001, x1001}} {0xx00 \ {01100, 01x00, 0x000}, 0x10x \ {00101, 0010x, 01100}} { 0x10110x01 \ { 0x10110101, 0x10110001, 0010110x01, 0010110x01}, 0x101xx001 \ { 0x1011x001, 0x101xx001, 0x101x1001, 00101xx001, 00101xx001}} {0xx11 \ {00011, 0x011, 0x011}, 11x1x \ {11010, 1111x, 11110}, x0x1x \ {10111, x0011, x001x}} {0xx11 \ {01x11, 00011, 00111}, 1x00x \ {1x000, 1x001, 10001}} { 0xx110xx11 \ { 0xx1100011, 0xx110x011, 0xx110x011, 01x110xx11, 000110xx11, 001110xx11}, 0xx1111x11 \ { 0xx1111111, 01x1111x11, 0001111x11, 0011111x11}, 0xx11x0x11 \ { 0xx1110111, 0xx11x0011, 0xx11x0011, 01x11x0x11, 00011x0x11, 00111x0x11}} {x001x \ {0001x, x0010, 10010}, 1xxxx \ {1x11x, 11111, 110xx}} {x1x11 \ {x1111, 11011, 11x11}, xxxx1 \ {001x1, x0001, x1x01}} { x1x11x0011 \ { x1x1100011, x1111x0011, 11011x0011, 11x11x0011}, xxx11x0011 \ { xxx1100011, 00111x0011}, x1x111xx11 \ { x1x111x111, x1x1111111, x1x1111011, x11111xx11, 110111xx11, 11x111xx11}, xxxx11xxx1 \ { xxx111xx01, xxx011xx11, xxxx11x111, xxxx111111, xxxx1110x1, 001x11xxx1, x00011xxx1, x1x011xxx1}} {xx1xx \ {111xx, 10111, 0111x}, xxxx1 \ {01001, 10x01, 00x01}} {} {} {0x01x \ {00011, 0001x, 0101x}, x011x \ {0011x, 10111}, x11x0 \ {011x0, 11110, 11100}} {110x0 \ {11010, 11000}, 10xx1 \ {101x1, 10011}} { 110100x010 \ { 1101000010, 1101001010, 110100x010}, 10x110x011 \ { 10x1100011, 10x1100011, 10x1101011, 101110x011, 100110x011}, 11010x0110 \ { 1101000110, 11010x0110}, 10x11x0111 \ { 10x1100111, 10x1110111, 10111x0111, 10011x0111}, 110x0x11x0 \ { 11010x1100, 11000x1110, 110x0011x0, 110x011110, 110x011100, 11010x11x0, 11000x11x0}} {11x10 \ {11110, 11010}, x1x1x \ {11111, 01x1x, 01111}} {000xx \ {00010, 0001x, 000x0}} { 0001011x10 \ { 0001011110, 0001011010, 0001011x10, 0001011x10, 0001011x10}, 0001xx1x1x \ { 00011x1x10, 00010x1x11, 0001x11111, 0001x01x1x, 0001x01111, 00010x1x1x, 0001xx1x1x, 00010x1x1x}} {} {x1x1x \ {01011, 1101x, 01111}, xx10x \ {11100, 1110x, x0101}} {} {x1010 \ {11010}, x110x \ {11100, x1100, 11101}} {x001x \ {10011, 0001x, 00010}, x10x1 \ {11001, 110x1, 11011}} { x0010x1010 \ { x001011010, 00010x1010, 00010x1010}, x1001x1101 \ { x100111101, 11001x1101, 11001x1101}} {xxx0x \ {1100x, 0x10x, 0xx01}} {111x0 \ {11100, 11110}} { 11100xxx00 \ { 1110011000, 111000x100, 11100xxx00}} {011xx \ {0111x, 0110x, 01110}, xxx10 \ {1x110, x1010, 01110}, 0x0x0 \ {00010, 01010}} {x1100 \ {01100}, x1xxx \ {01100, 11x1x, x1xx1}} { x110001100 \ { x110001100, 0110001100}, x1xxx011xx \ { x1xx1011x0, x1xx0011x1, x1x1x0110x, x1x0x0111x, x1xxx0111x, x1xxx0110x, x1xxx01110, 01100011xx, 11x1x011xx, x1xx1011xx}, x1x10xxx10 \ { x1x101x110, x1x10x1010, x1x1001110, 11x10xxx10}, x11000x000 \ { 011000x000}, x1xx00x0x0 \ { x1x100x000, x1x000x010, x1xx000010, x1xx001010, 011000x0x0, 11x100x0x0}} {01xxx \ {0110x, 01x0x, 01111}} {0x1x0 \ {01100, 0x100, 001x0}, 0x0x0 \ {00000, 000x0}, 1xx11 \ {10x11, 1x111, 10011}} { 0x1x001xx0 \ { 0x11001x00, 0x10001x10, 0x1x001100, 0x1x001x00, 0110001xx0, 0x10001xx0, 001x001xx0}, 0x0x001xx0 \ { 0x01001x00, 0x00001x10, 0x0x001100, 0x0x001x00, 0000001xx0, 000x001xx0}, 1xx1101x11 \ { 1xx1101111, 10x1101x11, 1x11101x11, 1001101x11}} {x101x \ {01011, 1101x, 0101x}, x0xx1 \ {00101, 000x1, 10x01}} {1xx0x \ {10100, 1x100, 1000x}} { 1xx01x0x01 \ { 1xx0100101, 1xx0100001, 1xx0110x01, 10001x0x01}} {x111x \ {0111x, 11110, 01111}, x0xx1 \ {x00x1, x0x01, 10001}, x0100 \ {00100, 10100}} {x01xx \ {x011x, x0110, 10100}, 0001x \ {00010, 00011}} { x011xx111x \ { x0111x1110, x0110x1111, x011x0111x, x011x11110, x011x01111, x011xx111x, x0110x111x}, 0001xx111x \ { 00011x1110, 00010x1111, 0001x0111x, 0001x11110, 0001x01111, 00010x111x, 00011x111x}, x01x1x0xx1 \ { x0111x0x01, x0101x0x11, x01x1x00x1, x01x1x0x01, x01x110001, x0111x0xx1}, 00011x0x11 \ { 00011x0011, 00011x0x11}, x0100x0100 \ { x010000100, x010010100, 10100x0100}} {x0xx0 \ {100x0, 00x10, 00x10}} {xxxx1 \ {x0xx1, x1001, 011x1}, x1100 \ {11100, 01100}, x0000 \ {00000}} { x1100x0x00 \ { x110010000, 11100x0x00, 01100x0x00}, x0000x0x00 \ { x000010000, 00000x0x00}} {1xx0x \ {10101, 11101, 1x10x}, x11xx \ {11111, 0110x, 111x0}, 0x10x \ {0x101, 00100, 00100}} {000xx \ {0000x, 00001, 00011}, x00x1 \ {00011, 000x1, x0001}} { 0000x1xx0x \ { 000011xx00, 000001xx01, 0000x10101, 0000x11101, 0000x1x10x, 0000x1xx0x, 000011xx0x}, x00011xx01 \ { x000110101, x000111101, x00011x101, 000011xx01, x00011xx01}, 000xxx11xx \ { 000x1x11x0, 000x0x11x1, 0001xx110x, 0000xx111x, 000xx11111, 000xx0110x, 000xx111x0, 0000xx11xx, 00001x11xx, 00011x11xx}, x00x1x11x1 \ { x0011x1101, x0001x1111, x00x111111, x00x101101, 00011x11x1, 000x1x11x1, x0001x11x1}, 0000x0x10x \ { 000010x100, 000000x101, 0000x0x101, 0000x00100, 0000x00100, 0000x0x10x, 000010x10x}, x00010x101 \ { x00010x101, 000010x101, x00010x101}} {1x1xx \ {1010x, 1x110, 10100}, x11x1 \ {01101, x1101, 011x1}} {00xx1 \ {00101, 00001, 00x11}} { 00xx11x1x1 \ { 00x111x101, 00x011x111, 00xx110101, 001011x1x1, 000011x1x1, 00x111x1x1}, 00xx1x11x1 \ { 00x11x1101, 00x01x1111, 00xx101101, 00xx1x1101, 00xx1011x1, 00101x11x1, 00001x11x1, 00x11x11x1}} {0xx0x \ {00101, 0x101, 0xx00}} {xxx1x \ {x1111, 00011}} {} {xx0x0 \ {10000, 1x010, 1x0x0}} {x0x00 \ {10x00, x0000, 10000}} { x0x00xx000 \ { x0x0010000, x0x001x000, 10x00xx000, x0000xx000, 10000xx000}} {01x0x \ {0110x, 01000, 01101}} {x011x \ {00110, 10111, 1011x}, xx1x1 \ {001x1, xx111, x01x1}} { xx10101x01 \ { xx10101101, xx10101101, 0010101x01, x010101x01}} {} {x0xx1 \ {10101, 00011, 00xx1}, 0xx1x \ {0001x, 0xx10, 0x110}} {} {01xx1 \ {01001, 01111, 01011}} {x00x1 \ {x0011, 00001, 000x1}, 0x1x1 \ {0x101, 01101}} { x00x101xx1 \ { x001101x01, x000101x11, x00x101001, x00x101111, x00x101011, x001101xx1, 0000101xx1, 000x101xx1}, 0x1x101xx1 \ { 0x11101x01, 0x10101x11, 0x1x101001, 0x1x101111, 0x1x101011, 0x10101xx1, 0110101xx1}} {x0xx1 \ {10001, 10101, 101x1}, 000xx \ {00001, 00000}} {x1x1x \ {11111, 01x1x, 01x1x}, x00xx \ {1001x, x0010, x0010}, 1xx01 \ {1x001, 10101}} { x1x11x0x11 \ { x1x1110111, 11111x0x11, 01x11x0x11, 01x11x0x11}, x00x1x0xx1 \ { x0011x0x01, x0001x0x11, x00x110001, x00x110101, x00x1101x1, 10011x0xx1}, 1xx01x0x01 \ { 1xx0110001, 1xx0110101, 1xx0110101, 1x001x0x01, 10101x0x01}, x1x1x0001x \ { x1x1100010, x1x1000011, 111110001x, 01x1x0001x, 01x1x0001x}, x00xx000xx \ { x00x1000x0, x00x0000x1, x001x0000x, x000x0001x, x00xx00001, x00xx00000, 1001x000xx, x0010000xx, x0010000xx}, 1xx0100001 \ { 1xx0100001, 1x00100001, 1010100001}} {1xxx1 \ {1x1x1, 11011}, x1xx0 \ {01x10, 11100, 111x0}} {0x101 \ {00101}} { 0x1011xx01 \ { 0x1011x101, 001011xx01}} {1010x \ {10101, 10100, 10100}, x0x01 \ {10101, 00x01}} {xxxxx \ {001x0, 11100, 1xx10}, xx0x1 \ {1x001, 01011, 00011}} { xxx0x1010x \ { xxx0110100, xxx0010101, xxx0x10101, xxx0x10100, xxx0x10100, 001001010x, 111001010x}, xx00110101 \ { xx00110101, 1x00110101}, xxx01x0x01 \ { xxx0110101, xxx0100x01}, xx001x0x01 \ { xx00110101, xx00100x01, 1x001x0x01}} {1xx00 \ {10100, 1x000, 11100}, 11xxx \ {11x11, 111x0, 11100}} {xx011 \ {00011, 01011, x0011}, xx1x1 \ {x11x1, 10111, 11101}} { xx01111x11 \ { xx01111x11, 0001111x11, 0101111x11, x001111x11}, xx1x111xx1 \ { xx11111x01, xx10111x11, xx1x111x11, x11x111xx1, 1011111xx1, 1110111xx1}} {} {0x100 \ {01100}, 10xx0 \ {101x0, 10x10}, 00xx1 \ {00111, 00x11, 00001}} {} {x00xx \ {100x0, x0000, x001x}, 11x00 \ {11000}} {x10x0 \ {01010, 010x0, x1010}} { x10x0x00x0 \ { x1010x0000, x1000x0010, x10x0100x0, x10x0x0000, x10x0x0010, 01010x00x0, 010x0x00x0, x1010x00x0}, x100011x00 \ { x100011000, 0100011x00}} {x11x0 \ {11110, 011x0}} {} {} {0xx11 \ {0x111, 00011, 00x11}, x1000 \ {01000, 11000}} {001x1 \ {00111, 00101}, xx111 \ {0x111, x1111}} { 001110xx11 \ { 001110x111, 0011100011, 0011100x11, 001110xx11}, xx1110xx11 \ { xx1110x111, xx11100011, xx11100x11, 0x1110xx11, x11110xx11}} {0x1xx \ {0x110, 01101}, x1x1x \ {11x1x, 01x11, 11011}} {x01x0 \ {10110, 00100, 101x0}, xx1x0 \ {1x1x0, 111x0, 1x110}} { x01x00x1x0 \ { x01100x100, x01000x110, x01x00x110, 101100x1x0, 001000x1x0, 101x00x1x0}, xx1x00x1x0 \ { xx1100x100, xx1000x110, xx1x00x110, 1x1x00x1x0, 111x00x1x0, 1x1100x1x0}, x0110x1x10 \ { x011011x10, 10110x1x10, 10110x1x10}, xx110x1x10 \ { xx11011x10, 1x110x1x10, 11110x1x10, 1x110x1x10}} {xxx10 \ {11x10, 00110, xx010}, 10x00 \ {10000}} {xx111 \ {x0111, 01111, 00111}} {} {x11x0 \ {011x0, 11100, x1110}, x01xx \ {001x0, 10100, x0100}, 000xx \ {000x1, 0000x, 00000}} {x100x \ {0100x, 01001}, 11x1x \ {11111, 11011, 11010}} { x1000x1100 \ { x100001100, x100011100, 01000x1100}, 11x10x1110 \ { 11x1001110, 11x10x1110, 11010x1110}, x100xx010x \ { x1001x0100, x1000x0101, x100x00100, x100x10100, x100xx0100, 0100xx010x, 01001x010x}, 11x1xx011x \ { 11x11x0110, 11x10x0111, 11x1x00110, 11111x011x, 11011x011x, 11010x011x}, x100x0000x \ { x100100000, x100000001, x100x00001, x100x0000x, x100x00000, 0100x0000x, 010010000x}, 11x1x0001x \ { 11x1100010, 11x1000011, 11x1x00011, 111110001x, 110110001x, 110100001x}} {x0xx0 \ {000x0, 00x10, x0x10}, 1xx01 \ {1x001, 11x01, 1x101}} {} {} {xx01x \ {00010, 1001x, xx011}} {} {} {xx000 \ {x1000, 1x000, 00000}, x1xxx \ {0100x, 11x11, 11101}, 0x1xx \ {001x0, 0x110, 0x1x0}} {xxx01 \ {10101, 00x01}} { xxx01x1x01 \ { xxx0101001, xxx0111101, 10101x1x01, 00x01x1x01}, xxx010x101 \ { 101010x101, 00x010x101}} {x1xx1 \ {x1x11, x1101, 01x01}, 0x0xx \ {010x0, 0x01x, 00000}} {0xxx0 \ {0x0x0, 011x0, 0xx00}} { 0xxx00x0x0 \ { 0xx100x000, 0xx000x010, 0xxx0010x0, 0xxx00x010, 0xxx000000, 0x0x00x0x0, 011x00x0x0, 0xx000x0x0}} {11x01 \ {11101, 11001}} {0x0x0 \ {00000, 0x000, 000x0}} {} {1x10x \ {1x101, 1110x, 1110x}} {0x1x0 \ {00100, 0x100, 0x110}} { 0x1001x100 \ { 0x10011100, 0x10011100, 001001x100, 0x1001x100}} {00x0x \ {00100, 00x00}} {1100x \ {11001, 11000, 11000}} { 1100x00x0x \ { 1100100x00, 1100000x01, 1100x00100, 1100x00x00, 1100100x0x, 1100000x0x, 1100000x0x}} {000x0 \ {00000, 00010, 00010}} {xx10x \ {xx101, 10101, 1x101}} { xx10000000 \ { xx10000000}} {0x0x0 \ {000x0, 0x000, 00010}} {x1x10 \ {11x10, 11110, 11110}, 01xxx \ {0101x, 010x0, 01101}} { x1x100x010 \ { x1x1000010, x1x1000010, 11x100x010, 111100x010, 111100x010}, 01xx00x0x0 \ { 01x100x000, 01x000x010, 01xx0000x0, 01xx00x000, 01xx000010, 010100x0x0, 010x00x0x0}} {00xx0 \ {00010, 000x0, 00100}, xx000 \ {00000}} {00xx0 \ {001x0, 00x10, 00x10}, 0xx1x \ {01x11, 0111x, 01011}} { 00xx000xx0 \ { 00x1000x00, 00x0000x10, 00xx000010, 00xx0000x0, 00xx000100, 001x000xx0, 00x1000xx0, 00x1000xx0}, 0xx1000x10 \ { 0xx1000010, 0xx1000010, 0111000x10}, 00x00xx000 \ { 00x0000000, 00100xx000}} {1111x \ {11111, 11110, 11110}, 0x1x1 \ {011x1, 001x1, 01111}, 110x1 \ {11001, 11011}} {001xx \ {001x1, 00111, 001x0}} { 0011x1111x \ { 0011111110, 0011011111, 0011x11111, 0011x11110, 0011x11110, 001111111x, 001111111x, 001101111x}, 001x10x1x1 \ { 001110x101, 001010x111, 001x1011x1, 001x1001x1, 001x101111, 001x10x1x1, 001110x1x1}, 001x1110x1 \ { 0011111001, 0010111011, 001x111001, 001x111011, 001x1110x1, 00111110x1}} {x1001 \ {11001, 01001}, 010x1 \ {01001}} {xx1xx \ {01110, 01101, xx1x1}} { xx101x1001 \ { xx10111001, xx10101001, 01101x1001, xx101x1001}, xx1x1010x1 \ { xx11101001, xx10101011, xx1x101001, 01101010x1, xx1x1010x1}} {1x11x \ {11111, 11110, 1111x}, 11x11 \ {11011, 11111}} {01xx1 \ {01011, 010x1}, 1xx0x \ {1xx00, 10100, 1x10x}} { 01x111x111 \ { 01x1111111, 01x1111111, 010111x111, 010111x111}, 01x1111x11 \ { 01x1111011, 01x1111111, 0101111x11, 0101111x11}} {} {x00xx \ {x0000, 1001x, 1001x}} {} {xx111 \ {10111, 00111}, xxx0x \ {0x00x, x0x00, 11x0x}, 11x11 \ {11011}} {00x0x \ {00100, 00x01, 00000}, x10x0 \ {x1010, 11000, 11010}, 010x0 \ {01000, 01010}} { 00x0xxxx0x \ { 00x01xxx00, 00x00xxx01, 00x0x0x00x, 00x0xx0x00, 00x0x11x0x, 00100xxx0x, 00x01xxx0x, 00000xxx0x}, x1000xxx00 \ { x10000x000, x1000x0x00, x100011x00, 11000xxx00}, 01000xxx00 \ { 010000x000, 01000x0x00, 0100011x00, 01000xxx00}} {xx01x \ {0001x, 1x010, xx010}} {1xxx1 \ {10x01, 11001, 110x1}, 1xx1x \ {10011, 10010, 1x011}} { 1xx11xx011 \ { 1xx1100011, 11011xx011}, 1xx1xxx01x \ { 1xx11xx010, 1xx10xx011, 1xx1x0001x, 1xx1x1x010, 1xx1xxx010, 10011xx01x, 10010xx01x, 1x011xx01x}} {10x10 \ {10110, 10010}, 00x1x \ {00010, 00011, 00110}, 10x11 \ {10011, 10111, 10111}} {} {} {x1x10 \ {11110, 01x10, x1110}, xx0xx \ {010x0, 0001x, x001x}} {x111x \ {01111, x1111, 1111x}, x1x10 \ {01010, 11010}, x0101 \ {00101}} { x1110x1x10 \ { x111011110, x111001x10, x1110x1110, 11110x1x10}, x1x10x1x10 \ { x1x1011110, x1x1001x10, x1x10x1110, 01010x1x10, 11010x1x10}, x111xxx01x \ { x1111xx010, x1110xx011, x111x01010, x111x0001x, x111xx001x, 01111xx01x, x1111xx01x, 1111xxx01x}, x1x10xx010 \ { x1x1001010, x1x1000010, x1x10x0010, 01010xx010, 11010xx010}, x0101xx001 \ { 00101xx001}} {1xx11 \ {1x111, 10011}, 000x0 \ {00000}} {xx1xx \ {0x10x, xx11x, 0111x}, 1x0x0 \ {11010, 110x0, 100x0}} { xx1111xx11 \ { xx1111x111, xx11110011, xx1111xx11, 011111xx11}, xx1x0000x0 \ { xx11000000, xx10000010, xx1x000000, 0x100000x0, xx110000x0, 01110000x0}, 1x0x0000x0 \ { 1x01000000, 1x00000010, 1x0x000000, 11010000x0, 110x0000x0, 100x0000x0}} {10xx1 \ {10001, 100x1, 10111}, x11xx \ {x11x1, 01100, 11100}} {1xx11 \ {1x011, 10x11, 11x11}, x11x1 \ {11111, 111x1, x1111}, xxx01 \ {xx001, 0x001, 0x001}} { 1xx1110x11 \ { 1xx1110011, 1xx1110111, 1x01110x11, 10x1110x11, 11x1110x11}, x11x110xx1 \ { x111110x01, x110110x11, x11x110001, x11x1100x1, x11x110111, 1111110xx1, 111x110xx1, x111110xx1}, xxx0110x01 \ { xxx0110001, xxx0110001, xx00110x01, 0x00110x01, 0x00110x01}, 1xx11x1111 \ { 1xx11x1111, 1x011x1111, 10x11x1111, 11x11x1111}, x11x1x11x1 \ { x1111x1101, x1101x1111, x11x1x11x1, 11111x11x1, 111x1x11x1, x1111x11x1}, xxx01x1101 \ { xxx01x1101, xx001x1101, 0x001x1101, 0x001x1101}} {0xxx1 \ {000x1, 0xx01, 01x11}, 0x00x \ {01000, 0100x}, x111x \ {01111, x1110, 0111x}} {} {} {x1x01 \ {11x01, 01001, 01x01}, 0x0x0 \ {000x0, 0x010, 01000}} {00xxx \ {00100, 0010x, 000x0}, 011xx \ {0110x, 01110, 01100}, x10xx \ {01010, 11011, 110xx}} { 00x01x1x01 \ { 00x0111x01, 00x0101001, 00x0101x01, 00101x1x01}, 01101x1x01 \ { 0110111x01, 0110101001, 0110101x01, 01101x1x01}, x1001x1x01 \ { x100111x01, x100101001, x100101x01, 11001x1x01}, 00xx00x0x0 \ { 00x100x000, 00x000x010, 00xx0000x0, 00xx00x010, 00xx001000, 001000x0x0, 001000x0x0, 000x00x0x0}, 011x00x0x0 \ { 011100x000, 011000x010, 011x0000x0, 011x00x010, 011x001000, 011000x0x0, 011100x0x0, 011000x0x0}, x10x00x0x0 \ { x10100x000, x10000x010, x10x0000x0, x10x00x010, x10x001000, 010100x0x0, 110x00x0x0}} {010xx \ {01010, 01000, 01011}} {xx011 \ {x0011, 01011, 10011}, 0xx11 \ {0x111, 01011, 00111}, 11xxx \ {11x1x, 1101x, 11101}} { xx01101011 \ { xx01101011, x001101011, 0101101011, 1001101011}, 0xx1101011 \ { 0xx1101011, 0x11101011, 0101101011, 0011101011}, 11xxx010xx \ { 11xx1010x0, 11xx0010x1, 11x1x0100x, 11x0x0101x, 11xxx01010, 11xxx01000, 11xxx01011, 11x1x010xx, 1101x010xx, 11101010xx}} {010x0 \ {01000, 01010}, x10xx \ {01011, 010xx, 1100x}, xx11x \ {xx110, 1x11x, 0x110}} {1x10x \ {11101, 1010x}} { 1x10001000 \ { 1x10001000, 1010001000}, 1x10xx100x \ { 1x101x1000, 1x100x1001, 1x10x0100x, 1x10x1100x, 11101x100x, 1010xx100x}} {11xx1 \ {110x1, 111x1, 11101}, 0xxxx \ {01x0x, 001xx, 0101x}} {10xx1 \ {10x11, 101x1, 10111}} { 10xx111xx1 \ { 10x1111x01, 10x0111x11, 10xx1110x1, 10xx1111x1, 10xx111101, 10x1111xx1, 101x111xx1, 1011111xx1}, 10xx10xxx1 \ { 10x110xx01, 10x010xx11, 10xx101x01, 10xx1001x1, 10xx101011, 10x110xxx1, 101x10xxx1, 101110xxx1}} {1xxxx \ {10x11, 1x011, 1011x}, 1x1x0 \ {11110, 11100}} {0x1xx \ {0x100, 01100, 0111x}} { 0x1xx1xxxx \ { 0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx10x11, 0x1xx1x011, 0x1xx1011x, 0x1001xxxx, 011001xxxx, 0111x1xxxx}, 0x1x01x1x0 \ { 0x1101x100, 0x1001x110, 0x1x011110, 0x1x011100, 0x1001x1x0, 011001x1x0, 011101x1x0}} {1x11x \ {1x111, 1x110, 1x110}} {} {} {xx0x1 \ {1x011, 01001, xx001}, 01x10 \ {01010}} {1111x \ {11111, 11110}} { 11111xx011 \ { 111111x011, 11111xx011}, 1111001x10 \ { 1111001010, 1111001x10}} {x110x \ {1110x, 0110x}, x1xxx \ {x10x0, 01x1x, 11011}, 0x010 \ {01010, 00010}} {x10x1 \ {11001, x1011, x1011}} { x1001x1101 \ { x100111101, x100101101, 11001x1101}, x10x1x1xx1 \ { x1011x1x01, x1001x1x11, x10x101x11, x10x111011, 11001x1xx1, x1011x1xx1, x1011x1xx1}} {x01xx \ {x0100, x0101, 00101}} {11x1x \ {1111x, 11x10}} { 11x1xx011x \ { 11x11x0110, 11x10x0111, 1111xx011x, 11x10x011x}} {x1xx1 \ {011x1, x1x11, 01101}} {0x110 \ {00110, 01110}, xx100 \ {01100, 10100}, 10xx1 \ {10001, 10011, 10111}} { 10xx1x1xx1 \ { 10x11x1x01, 10x01x1x11, 10xx1011x1, 10xx1x1x11, 10xx101101, 10001x1xx1, 10011x1xx1, 10111x1xx1}} {} {001xx \ {00110, 0010x, 00101}} {} {1x00x \ {1x000, 11001, 10001}, 1x111 \ {11111, 10111}} {xxxx1 \ {0x111, 11x01, x1x01}, 101x1 \ {10111, 10101}, x00xx \ {000x0, x0001, 0001x}} { xxx011x001 \ { xxx0111001, xxx0110001, 11x011x001, x1x011x001}, 101011x001 \ { 1010111001, 1010110001, 101011x001}, x000x1x00x \ { x00011x000, x00001x001, x000x1x000, x000x11001, x000x10001, 000001x00x, x00011x00x}, xxx111x111 \ { xxx1111111, xxx1110111, 0x1111x111}, 101111x111 \ { 1011111111, 1011110111, 101111x111}, x00111x111 \ { x001111111, x001110111, 000111x111}} {} {1x11x \ {1111x, 1x111, 1011x}, xx10x \ {0x10x, 11101, 11100}} {} {x0xx1 \ {x0x01, 100x1, 00x01}, x11xx \ {x1101, 0111x, 11100}} {01x10 \ {01110, 01010}, 1xxxx \ {10100, 10x10, 10000}} { 1xxx1x0xx1 \ { 1xx11x0x01, 1xx01x0x11, 1xxx1x0x01, 1xxx1100x1, 1xxx100x01}, 01x10x1110 \ { 01x1001110, 01110x1110, 01010x1110}, 1xxxxx11xx \ { 1xxx1x11x0, 1xxx0x11x1, 1xx1xx110x, 1xx0xx111x, 1xxxxx1101, 1xxxx0111x, 1xxxx11100, 10100x11xx, 10x10x11xx, 10000x11xx}} {00xx0 \ {00100, 001x0, 000x0}} {x10xx \ {110xx, 11011, x1011}, 000x0 \ {00000, 00010, 00010}} { x10x000xx0 \ { x101000x00, x100000x10, x10x000100, x10x0001x0, x10x0000x0, 110x000xx0}, 000x000xx0 \ { 0001000x00, 0000000x10, 000x000100, 000x0001x0, 000x0000x0, 0000000xx0, 0001000xx0, 0001000xx0}} {0xxx1 \ {0xx11, 0x0x1, 0x1x1}} {x101x \ {x1010, 1101x, 0101x}, x1xx1 \ {x11x1, 11001, 11x01}} { x10110xx11 \ { x10110xx11, x10110x011, x10110x111, 110110xx11, 010110xx11}, x1xx10xxx1 \ { x1x110xx01, x1x010xx11, x1xx10xx11, x1xx10x0x1, x1xx10x1x1, x11x10xxx1, 110010xxx1, 11x010xxx1}} {x0100 \ {00100, 10100, 10100}} {} {} {0x10x \ {0x100, 00100, 00100}, xx010 \ {11010, 00010, x1010}, x0x10 \ {x0010, 00110, x0110}} {xxx01 \ {01x01, 10101, 11101}, 0xx10 \ {0x110, 00010, 01110}} { xxx010x101 \ { 01x010x101, 101010x101, 111010x101}, 0xx10xx010 \ { 0xx1011010, 0xx1000010, 0xx10x1010, 0x110xx010, 00010xx010, 01110xx010}, 0xx10x0x10 \ { 0xx10x0010, 0xx1000110, 0xx10x0110, 0x110x0x10, 00010x0x10, 01110x0x10}} {x0100 \ {00100, 10100}, x1001 \ {01001}} {} {} {x10x0 \ {x1010, 11010, 01010}} {00xx1 \ {00101, 001x1}} {} {00x1x \ {00x11, 00010, 00111}, x1xx1 \ {x1001, x1111, 01xx1}, 101xx \ {101x1, 101x0, 10100}} {} {} {xxxxx \ {10110, xxx0x, x11x1}, x0x01 \ {10101, 10001, 00001}} {0x0xx \ {01011, 00011, 010xx}, 01x0x \ {01001, 0100x, 01101}, xx0x1 \ {11011, 0x0x1, 1x011}} { 0x0xxxxxxx \ { 0x0x1xxxx0, 0x0x0xxxx1, 0x01xxxx0x, 0x00xxxx1x, 0x0xx10110, 0x0xxxxx0x, 0x0xxx11x1, 01011xxxxx, 00011xxxxx, 010xxxxxxx}, 01x0xxxx0x \ { 01x01xxx00, 01x00xxx01, 01x0xxxx0x, 01x0xx1101, 01001xxx0x, 0100xxxx0x, 01101xxx0x}, xx0x1xxxx1 \ { xx011xxx01, xx001xxx11, xx0x1xxx01, xx0x1x11x1, 11011xxxx1, 0x0x1xxxx1, 1x011xxxx1}, 0x001x0x01 \ { 0x00110101, 0x00110001, 0x00100001, 01001x0x01}, 01x01x0x01 \ { 01x0110101, 01x0110001, 01x0100001, 01001x0x01, 01001x0x01, 01101x0x01}, xx001x0x01 \ { xx00110101, xx00110001, xx00100001, 0x001x0x01}} {xxxx0 \ {x0010, 0xxx0, 000x0}, xx1xx \ {00101, 0111x, 10101}} {x0101 \ {00101, 10101}} { x0101xx101 \ { x010100101, x010110101, 00101xx101, 10101xx101}} {10xx1 \ {100x1, 10001, 10001}} {} {} {0x111 \ {01111, 00111}, 00x1x \ {00111, 00x11, 00110}, xx1x1 \ {01111, xx111, 0x111}} {1011x \ {10111, 10110}, xx1x1 \ {011x1, 11101, 10111}, x0x1x \ {10x1x, x0111, x011x}} { 101110x111 \ { 1011101111, 1011100111, 101110x111}, xx1110x111 \ { xx11101111, xx11100111, 011110x111, 101110x111}, x0x110x111 \ { x0x1101111, x0x1100111, 10x110x111, x01110x111, x01110x111}, 1011x00x1x \ { 1011100x10, 1011000x11, 1011x00111, 1011x00x11, 1011x00110, 1011100x1x, 1011000x1x}, xx11100x11 \ { xx11100111, xx11100x11, 0111100x11, 1011100x11}, x0x1x00x1x \ { x0x1100x10, x0x1000x11, x0x1x00111, x0x1x00x11, x0x1x00110, 10x1x00x1x, x011100x1x, x011x00x1x}, 10111xx111 \ { 1011101111, 10111xx111, 101110x111, 10111xx111}, xx1x1xx1x1 \ { xx111xx101, xx101xx111, xx1x101111, xx1x1xx111, xx1x10x111, 011x1xx1x1, 11101xx1x1, 10111xx1x1}, x0x11xx111 \ { x0x1101111, x0x11xx111, x0x110x111, 10x11xx111, x0111xx111, x0111xx111}} {0110x \ {01101, 01100}} {xx0x1 \ {00011, 100x1, 110x1}, 01xx1 \ {011x1, 01001, 010x1}} { xx00101101 \ { xx00101101, 1000101101, 1100101101}, 01x0101101 \ { 01x0101101, 0110101101, 0100101101, 0100101101}} {111x0 \ {11100, 11110}, xx101 \ {0x101, 00101, 11101}} {xxx01 \ {10101, 10x01, 0x101}} { xxx01xx101 \ { xxx010x101, xxx0100101, xxx0111101, 10101xx101, 10x01xx101, 0x101xx101}} {} {0xx0x \ {0xx01, 00001}} {} {1xx1x \ {11110, 1xx11, 1111x}, 00x10 \ {00010}, 0x1x0 \ {011x0, 00100, 00100}} {x0011 \ {00011, 10011}, xxx0x \ {00x01, 0110x, 0100x}} { x00111xx11 \ { x00111xx11, x001111111, 000111xx11, 100111xx11}, xxx000x100 \ { xxx0001100, xxx0000100, xxx0000100, 011000x100, 010000x100}} {01x11 \ {01111}} {0x0xx \ {00001, 000x1, 010x1}} { 0x01101x11 \ { 0x01101111, 0001101x11, 0101101x11}} {10x00 \ {10000, 10100, 10100}, 00x00 \ {00100, 00000}, x10xx \ {0101x, 11001, 010x0}} {01x1x \ {01x11, 0111x, 01111}, 100x0 \ {10000, 10010}} { 1000010x00 \ { 1000010000, 1000010100, 1000010100, 1000010x00}, 1000000x00 \ { 1000000100, 1000000000, 1000000x00}, 01x1xx101x \ { 01x11x1010, 01x10x1011, 01x1x0101x, 01x1x01010, 01x11x101x, 0111xx101x, 01111x101x}, 100x0x10x0 \ { 10010x1000, 10000x1010, 100x001010, 100x0010x0, 10000x10x0, 10010x10x0}} {01x00 \ {01100, 01000}, x1x0x \ {11101, 11x00, 01000}} {01xx0 \ {010x0, 01110, 01x00}} { 01x0001x00 \ { 01x0001100, 01x0001000, 0100001x00, 01x0001x00}, 01x00x1x00 \ { 01x0011x00, 01x0001000, 01000x1x00, 01x00x1x00}} {x11xx \ {011x1, x111x, x110x}, 01x11 \ {01111, 01011, 01011}} {000x1 \ {00011, 00001, 00001}} { 000x1x11x1 \ { 00011x1101, 00001x1111, 000x1011x1, 000x1x1111, 000x1x1101, 00011x11x1, 00001x11x1, 00001x11x1}, 0001101x11 \ { 0001101111, 0001101011, 0001101011, 0001101x11}} {1xx01 \ {11x01, 10x01, 10101}, 1x1x0 \ {1x100, 11100, 1x110}} {} {} {xxx11 \ {10111, xx111}, 1x101 \ {11101, 10101, 10101}} {x1x0x \ {x1x01, x110x, 11x00}} { x1x011x101 \ { x1x0111101, x1x0110101, x1x0110101, x1x011x101, x11011x101}} {010xx \ {010x1, 0101x, 01000}} {0xx1x \ {01111, 01x10, 01x11}} { 0xx1x0101x \ { 0xx1101010, 0xx1001011, 0xx1x01011, 0xx1x0101x, 011110101x, 01x100101x, 01x110101x}} {} {1xx1x \ {10x11, 1x010, 10011}, x1xx0 \ {01100, x1x00, 11xx0}} {} {00x1x \ {00x10, 00111, 00011}} {x010x \ {00101, 0010x, 10101}} {} {1x1x0 \ {1x100, 101x0, 111x0}, 1xx11 \ {11x11, 1x011, 10111}} {0xx00 \ {0x000, 01000, 01000}, 1x101 \ {11101}} { 0xx001x100 \ { 0xx001x100, 0xx0010100, 0xx0011100, 0x0001x100, 010001x100, 010001x100}} {1x11x \ {1x111, 10111, 1011x}, 0xxxx \ {00x0x, 0xx00, 00x10}} {x1x11 \ {01x11, 11011, 11011}, xx0xx \ {010xx, xx001, x101x}} { x1x111x111 \ { x1x111x111, x1x1110111, x1x1110111, 01x111x111, 110111x111, 110111x111}, xx01x1x11x \ { xx0111x110, xx0101x111, xx01x1x111, xx01x10111, xx01x1011x, 0101x1x11x, x101x1x11x}, x1x110xx11 \ { 01x110xx11, 110110xx11, 110110xx11}, xx0xx0xxxx \ { xx0x10xxx0, xx0x00xxx1, xx01x0xx0x, xx00x0xx1x, xx0xx00x0x, xx0xx0xx00, xx0xx00x10, 010xx0xxxx, xx0010xxxx, x101x0xxxx}} {xx110 \ {0x110, 1x110}, 10x10 \ {10010, 10110, 10110}} {} {} {1xx11 \ {11011, 11111, 10x11}, x0111 \ {10111, 00111, 00111}} {0xxxx \ {0x01x, 01101, 00x00}, 0x0x1 \ {010x1, 00011, 01011}, x1xxx \ {01110, 110x1, 11110}} { 0xx111xx11 \ { 0xx1111011, 0xx1111111, 0xx1110x11, 0x0111xx11}, 0x0111xx11 \ { 0x01111011, 0x01111111, 0x01110x11, 010111xx11, 000111xx11, 010111xx11}, x1x111xx11 \ { x1x1111011, x1x1111111, x1x1110x11, 110111xx11}, 0xx11x0111 \ { 0xx1110111, 0xx1100111, 0xx1100111, 0x011x0111}, 0x011x0111 \ { 0x01110111, 0x01100111, 0x01100111, 01011x0111, 00011x0111, 01011x0111}, x1x11x0111 \ { x1x1110111, x1x1100111, x1x1100111, 11011x0111}} {1x1x1 \ {111x1, 11101, 11111}, 1100x \ {11001}, 0001x \ {00011, 00010, 00010}} {10xx0 \ {10010, 100x0, 10x10}, xx01x \ {00010, xx011, xx011}} { xx0111x111 \ { xx01111111, xx01111111, xx0111x111, xx0111x111}, 10x0011000 \ { 1000011000}, 10x1000010 \ { 10x1000010, 10x1000010, 1001000010, 1001000010, 10x1000010}, xx01x0001x \ { xx01100010, xx01000011, xx01x00011, xx01x00010, xx01x00010, 000100001x, xx0110001x, xx0110001x}} {x01x1 \ {x0111, 10101, x0101}} {0xx00 \ {01100, 01000, 01x00}, x100x \ {01001, x1001, 01000}, 0xxx0 \ {001x0, 0x0x0, 00110}} { x1001x0101 \ { x100110101, x1001x0101, 01001x0101, x1001x0101}} {xx001 \ {00001, 1x001}, x0x1x \ {00011, 10x1x, 10x10}, xx100 \ {1x100, 11100, 0x100}} {x1001 \ {01001}, x00xx \ {10011, 00010, 0000x}} { x1001xx001 \ { x100100001, x10011x001, 01001xx001}, x0001xx001 \ { x000100001, x00011x001, 00001xx001}, x001xx0x1x \ { x0011x0x10, x0010x0x11, x001x00011, x001x10x1x, x001x10x10, 10011x0x1x, 00010x0x1x}, x0000xx100 \ { x00001x100, x000011100, x00000x100, 00000xx100}} {01xx1 \ {01011, 01111, 01x11}} {1xx0x \ {11x0x, 1xx01}, x101x \ {x1011, 1101x, 1101x}} { 1xx0101x01 \ { 11x0101x01, 1xx0101x01}, x101101x11 \ { x101101011, x101101111, x101101x11, x101101x11, 1101101x11, 1101101x11}} {xxx0x \ {00101, 1x100, xx001}} {} {} {00xx0 \ {00100, 00110, 00010}, xxx1x \ {1xx1x, 11010, 00110}} {1x01x \ {1x011, 1x010, 10010}, xx0x0 \ {01000, x0010, 1x000}} { 1x01000x10 \ { 1x01000110, 1x01000010, 1x01000x10, 1001000x10}, xx0x000xx0 \ { xx01000x00, xx00000x10, xx0x000100, xx0x000110, xx0x000010, 0100000xx0, x001000xx0, 1x00000xx0}, 1x01xxxx1x \ { 1x011xxx10, 1x010xxx11, 1x01x1xx1x, 1x01x11010, 1x01x00110, 1x011xxx1x, 1x010xxx1x, 10010xxx1x}, xx010xxx10 \ { xx0101xx10, xx01011010, xx01000110, x0010xxx10}} {xxx10 \ {0x110, 1x010, x1010}, 0x01x \ {00010, 01011, 0001x}} {00xxx \ {000x0, 0001x, 001xx}} { 00x10xxx10 \ { 00x100x110, 00x101x010, 00x10x1010, 00010xxx10, 00010xxx10, 00110xxx10}, 00x1x0x01x \ { 00x110x010, 00x100x011, 00x1x00010, 00x1x01011, 00x1x0001x, 000100x01x, 0001x0x01x, 0011x0x01x}} {10x10 \ {10010, 10110, 10110}} {1xx1x \ {1xx10, 10x11, 1x01x}, 1xx0x \ {11000, 1x00x, 11001}, x1011 \ {01011}} { 1xx1010x10 \ { 1xx1010010, 1xx1010110, 1xx1010110, 1xx1010x10, 1x01010x10}} {0111x \ {01110, 01111}, xx1x0 \ {00100, 1x100, 1x110}} {} {} {0x011 \ {01011}} {xx100 \ {00100, 0x100, x0100}} {} {1xx01 \ {11x01, 10101, 10101}, xx00x \ {01001, x1000, 0100x}, xxx1x \ {x0011, 1011x, 10111}} {1xx0x \ {1x101, 10000, 1x001}} { 1xx011xx01 \ { 1xx0111x01, 1xx0110101, 1xx0110101, 1x1011xx01, 1x0011xx01}, 1xx0xxx00x \ { 1xx01xx000, 1xx00xx001, 1xx0x01001, 1xx0xx1000, 1xx0x0100x, 1x101xx00x, 10000xx00x, 1x001xx00x}} {0xxx1 \ {01111, 00x11, 010x1}} {} {} {x0100 \ {10100, 00100}} {x11x1 \ {111x1, x1101}, x1x00 \ {x1000, 11000, 01x00}} { x1x00x0100 \ { x1x0010100, x1x0000100, x1000x0100, 11000x0100, 01x00x0100}} {x1100 \ {11100, 01100, 01100}, x0x0x \ {10x00, x0100, 10x01}, 1xxx0 \ {110x0, 111x0, 1x110}} {01xx1 \ {01011, 01101}, 0xx01 \ {01x01, 00x01, 00x01}} { 01x01x0x01 \ { 01x0110x01, 01101x0x01}, 0xx01x0x01 \ { 0xx0110x01, 01x01x0x01, 00x01x0x01, 00x01x0x01}} {x001x \ {x0010, 00010, 1001x}, x0001 \ {10001, 00001}} {011xx \ {011x0, 01111}, 11xxx \ {11x01, 110xx, 11xx1}} { 0111xx001x \ { 01111x0010, 01110x0011, 0111xx0010, 0111x00010, 0111x1001x, 01110x001x, 01111x001x}, 11x1xx001x \ { 11x11x0010, 11x10x0011, 11x1xx0010, 11x1x00010, 11x1x1001x, 1101xx001x, 11x11x001x}, 01101x0001 \ { 0110110001, 0110100001}, 11x01x0001 \ { 11x0110001, 11x0100001, 11x01x0001, 11001x0001, 11x01x0001}} {11x01 \ {11101, 11001, 11001}} {x1xxx \ {01xx0, 11x10, 01010}} { x1x0111x01 \ { x1x0111101, x1x0111001, x1x0111001}} {x1x10 \ {11110, x1110, 01x10}} {0x11x \ {0x111, 00111, 0111x}} { 0x110x1x10 \ { 0x11011110, 0x110x1110, 0x11001x10, 01110x1x10}} {10x1x \ {10011, 10111, 1001x}} {x10x0 \ {01010, 01000, 110x0}, xx1x1 \ {01101, x0101, 11111}} { x101010x10 \ { x101010010, 0101010x10, 1101010x10}, xx11110x11 \ { xx11110011, xx11110111, xx11110011, 1111110x11}} {0110x \ {01100, 01101, 01101}, 11x01 \ {11001, 11101}} {xx01x \ {x101x, 10010, 01010}, 1x01x \ {11010, 1x010, 10011}, x1xxx \ {110x0, 11011, x11xx}} { x1x0x0110x \ { x1x0101100, x1x0001101, x1x0x01100, x1x0x01101, x1x0x01101, 110000110x, x110x0110x}, x1x0111x01 \ { x1x0111001, x1x0111101, x110111x01}} {x00xx \ {10001, x001x, 00011}, x1000 \ {11000, 01000, 01000}, 0x1x0 \ {01110, 0x110, 0x110}} {0xx1x \ {0x110, 0x010, 0001x}, 0101x \ {01010, 01011}} { 0xx1xx001x \ { 0xx11x0010, 0xx10x0011, 0xx1xx001x, 0xx1x00011, 0x110x001x, 0x010x001x, 0001xx001x}, 0101xx001x \ { 01011x0010, 01010x0011, 0101xx001x, 0101x00011, 01010x001x, 01011x001x}, 0xx100x110 \ { 0xx1001110, 0xx100x110, 0xx100x110, 0x1100x110, 0x0100x110, 000100x110}, 010100x110 \ { 0101001110, 010100x110, 010100x110, 010100x110}} {} {} {} {x1x11 \ {01x11, 11011, 11111}} {} {} {} {10xxx \ {10x00, 101x0, 1010x}, xx100 \ {00100, 10100, 01100}} {} {00xx1 \ {00x11, 00111, 00111}, 11x00 \ {11100}} {11xxx \ {110x0, 11110, 11x11}, x0x1x \ {x0111, 00011}} { 11xx100xx1 \ { 11x1100x01, 11x0100x11, 11xx100x11, 11xx100111, 11xx100111, 11x1100xx1}, x0x1100x11 \ { x0x1100x11, x0x1100111, x0x1100111, x011100x11, 0001100x11}, 11x0011x00 \ { 11x0011100, 1100011x00}} {1xx0x \ {11001, 11000, 10x00}, x00x0 \ {00000, x0010, 10000}} {1x1x1 \ {11111, 1x101, 10111}} { 1x1011xx01 \ { 1x10111001, 1x1011xx01}} {xxx0x \ {x0x01, 01101, 1000x}, xxx11 \ {x1111, x0x11, xx111}, 11xx0 \ {11x00, 111x0, 11x10}} {xxx0x \ {1x101, 10001, 0x001}, 0x01x \ {01010, 01011}, 1110x \ {11101, 11100}} { xxx0xxxx0x \ { xxx01xxx00, xxx00xxx01, xxx0xx0x01, xxx0x01101, xxx0x1000x, 1x101xxx0x, 10001xxx0x, 0x001xxx0x}, 1110xxxx0x \ { 11101xxx00, 11100xxx01, 1110xx0x01, 1110x01101, 1110x1000x, 11101xxx0x, 11100xxx0x}, 0x011xxx11 \ { 0x011x1111, 0x011x0x11, 0x011xx111, 01011xxx11}, xxx0011x00 \ { xxx0011x00, xxx0011100}, 0x01011x10 \ { 0x01011110, 0x01011x10, 0101011x10}, 1110011x00 \ { 1110011x00, 1110011100, 1110011x00}} {xx001 \ {x1001, 00001, 01001}, 11xx1 \ {11x01, 11x11}} {0000x \ {00001, 00000}} { 00001xx001 \ { 00001x1001, 0000100001, 0000101001, 00001xx001}, 0000111x01 \ { 0000111x01, 0000111x01}} {x000x \ {x0000, 00001, 00000}, xx110 \ {01110, 0x110, x1110}} {x10x0 \ {11010, 01010, 11000}} { x1000x0000 \ { x1000x0000, x100000000, 11000x0000}, x1010xx110 \ { x101001110, x10100x110, x1010x1110, 11010xx110, 01010xx110}} {xx110 \ {1x110, 00110}} {xx0xx \ {11000, xx01x, 00010}} { xx010xx110 \ { xx0101x110, xx01000110, xx010xx110, 00010xx110}} {x0x10 \ {x0110, 00110, 00x10}, x0xxx \ {00x1x, 00101, 100x1}} {x0xxx \ {00110, 10101, x00xx}, x1110 \ {01110}} { x0x10x0x10 \ { x0x10x0110, x0x1000110, x0x1000x10, 00110x0x10, x0010x0x10}, x0xxxx0xxx \ { x0xx1x0xx0, x0xx0x0xx1, x0x1xx0x0x, x0x0xx0x1x, x0xxx00x1x, x0xxx00101, x0xxx100x1, 00110x0xxx, 10101x0xxx, x00xxx0xxx}, x1110x0x10 \ { x111000x10, 01110x0x10}} {x1110 \ {11110, 01110}} {x11x0 \ {011x0, 11110, 11100}} { x1110x1110 \ { x111011110, x111001110, 01110x1110, 11110x1110}} {100x1 \ {10001}, 0xxxx \ {01x01, 00x10, 0xxx1}} {0x0x0 \ {00010, 0x010, 0x000}, 1xx0x \ {10001, 10101, 10000}} { 1xx0110001 \ { 1xx0110001, 1000110001, 1010110001}, 0x0x00xxx0 \ { 0x0100xx00, 0x0000xx10, 0x0x000x10, 000100xxx0, 0x0100xxx0, 0x0000xxx0}, 1xx0x0xx0x \ { 1xx010xx00, 1xx000xx01, 1xx0x01x01, 1xx0x0xx01, 100010xx0x, 101010xx0x, 100000xx0x}} {00x00 \ {00000, 00100}, 00x00 \ {00000, 00100}, 1xxx0 \ {10x10, 10000, 11x10}} {01x1x \ {01010, 01x11, 01x11}} { 01x101xx10 \ { 01x1010x10, 01x1011x10, 010101xx10}} {00x0x \ {0000x, 00000, 00101}, x1101 \ {11101, 01101}} {0x110 \ {01110, 00110, 00110}, 1x100 \ {11100, 10100}} { 1x10000x00 \ { 1x10000000, 1x10000000, 1110000x00, 1010000x00}} {1x0xx \ {1x001, 1100x, 11011}, x0x10 \ {10x10, 00110, x0110}} {1101x \ {11010, 11011, 11011}, 00xxx \ {0000x, 00101, 00100}, x11x0 \ {01100, x1100, 111x0}} { 1101x1x01x \ { 110111x010, 110101x011, 1101x11011, 110101x01x, 110111x01x, 110111x01x}, 00xxx1x0xx \ { 00xx11x0x0, 00xx01x0x1, 00x1x1x00x, 00x0x1x01x, 00xxx1x001, 00xxx1100x, 00xxx11011, 0000x1x0xx, 001011x0xx, 001001x0xx}, x11x01x0x0 \ { x11101x000, x11001x010, x11x011000, 011001x0x0, x11001x0x0, 111x01x0x0}, 11010x0x10 \ { 1101010x10, 1101000110, 11010x0110, 11010x0x10}, 00x10x0x10 \ { 00x1010x10, 00x1000110, 00x10x0110}, x1110x0x10 \ { x111010x10, x111000110, x1110x0110, 11110x0x10}} {xx111 \ {x1111, x0111, 01111}, 1xxxx \ {10111, 100x0, 11x00}} {xx001 \ {00001, x1001, 01001}, 0x10x \ {00100, 0x100, 00101}} { xx0011xx01 \ { 000011xx01, x10011xx01, 010011xx01}, 0x10x1xx0x \ { 0x1011xx00, 0x1001xx01, 0x10x10000, 0x10x11x00, 001001xx0x, 0x1001xx0x, 001011xx0x}} {0xx11 \ {01011, 01111, 01x11}} {x111x \ {x1111, 11111, 11110}} { x11110xx11 \ { x111101011, x111101111, x111101x11, x11110xx11, 111110xx11}} {x11x0 \ {011x0, 01110, x1110}, 01xx1 \ {01x01, 01011}} {0xxxx \ {00001, 011x1, 0x011}, 1x0x0 \ {10010, 1x000, 110x0}} { 0xxx0x11x0 \ { 0xx10x1100, 0xx00x1110, 0xxx0011x0, 0xxx001110, 0xxx0x1110}, 1x0x0x11x0 \ { 1x010x1100, 1x000x1110, 1x0x0011x0, 1x0x001110, 1x0x0x1110, 10010x11x0, 1x000x11x0, 110x0x11x0}, 0xxx101xx1 \ { 0xx1101x01, 0xx0101x11, 0xxx101x01, 0xxx101011, 0000101xx1, 011x101xx1, 0x01101xx1}} {1x0xx \ {1x010, 11001, 10010}, 0x1x0 \ {0x110, 01110}} {} {} {10x1x \ {10x11, 10010, 10010}} {110x0 \ {11010, 11000}} { 1101010x10 \ { 1101010010, 1101010010, 1101010x10}} {01x1x \ {01x11, 01x10, 0101x}, 10xx1 \ {10001, 101x1}} {xxx00 \ {10x00, 00000, 01000}, 110xx \ {1100x, 11001}} { 1101x01x1x \ { 1101101x10, 1101001x11, 1101x01x11, 1101x01x10, 1101x0101x}, 110x110xx1 \ { 1101110x01, 1100110x11, 110x110001, 110x1101x1, 1100110xx1, 1100110xx1}} {} {xx01x \ {11011, 1x010, 1x010}, 01x0x \ {01x00, 01000, 01x01}} {} {01x0x \ {01000, 01x01, 0100x}} {01x10 \ {01010, 01110, 01110}, 1x1x1 \ {111x1, 1x101}} { 1x10101x01 \ { 1x10101x01, 1x10101001, 1110101x01, 1x10101x01}} {000xx \ {0000x, 00001, 000x0}} {xx111 \ {0x111, 01111, 10111}, x1x1x \ {01011, 01x11, 11011}} { xx11100011 \ { 0x11100011, 0111100011, 1011100011}, x1x1x0001x \ { x1x1100010, x1x1000011, x1x1x00010, 010110001x, 01x110001x, 110110001x}} {xx11x \ {00111, x1111, x0111}, x10xx \ {x10x0, 01001, 0101x}} {x111x \ {11110, x1111, 01111}} { x111xxx11x \ { x1111xx110, x1110xx111, x111x00111, x111xx1111, x111xx0111, 11110xx11x, x1111xx11x, 01111xx11x}, x111xx101x \ { x1111x1010, x1110x1011, x111xx1010, x111x0101x, 11110x101x, x1111x101x, 01111x101x}} {} {x1110 \ {01110, 11110, 11110}, x000x \ {10001, 1000x, 0000x}} {} {x0xx0 \ {100x0, x0x10, x0110}, 0x0xx \ {0101x, 00010, 0x011}} {x00x1 \ {000x1, x0001, x0001}, 0x1xx \ {0x1x1, 0x11x, 0x1x0}, 10xxx \ {101x1, 10000, 10x01}} { 0x1x0x0xx0 \ { 0x110x0x00, 0x100x0x10, 0x1x0100x0, 0x1x0x0x10, 0x1x0x0110, 0x110x0xx0, 0x1x0x0xx0}, 10xx0x0xx0 \ { 10x10x0x00, 10x00x0x10, 10xx0100x0, 10xx0x0x10, 10xx0x0110, 10000x0xx0}, x00x10x0x1 \ { x00110x001, x00010x011, x00x101011, x00x10x011, 000x10x0x1, x00010x0x1, x00010x0x1}, 0x1xx0x0xx \ { 0x1x10x0x0, 0x1x00x0x1, 0x11x0x00x, 0x10x0x01x, 0x1xx0101x, 0x1xx00010, 0x1xx0x011, 0x1x10x0xx, 0x11x0x0xx, 0x1x00x0xx}, 10xxx0x0xx \ { 10xx10x0x0, 10xx00x0x1, 10x1x0x00x, 10x0x0x01x, 10xxx0101x, 10xxx00010, 10xxx0x011, 101x10x0xx, 100000x0xx, 10x010x0xx}} {x000x \ {10001, 00000, 1000x}} {} {} {0xxx0 \ {00x00, 00xx0, 0x0x0}} {x1x0x \ {11x0x, 11101, x100x}, xxxxx \ {1xxx0, 0x101, 11000}, xxx10 \ {01010, 1xx10, 11x10}} { x1x000xx00 \ { x1x0000x00, x1x0000x00, x1x000x000, 11x000xx00, x10000xx00}, xxxx00xxx0 \ { xxx100xx00, xxx000xx10, xxxx000x00, xxxx000xx0, xxxx00x0x0, 1xxx00xxx0, 110000xxx0}, xxx100xx10 \ { xxx1000x10, xxx100x010, 010100xx10, 1xx100xx10, 11x100xx10}} {x0xx0 \ {00110, 101x0, x0010}, 1xx10 \ {11010, 10x10, 10010}} {0x10x \ {01100, 0110x, 00100}, 0x11x \ {00111, 00110, 0x111}} { 0x100x0x00 \ { 0x10010100, 01100x0x00, 01100x0x00, 00100x0x00}, 0x110x0x10 \ { 0x11000110, 0x11010110, 0x110x0010, 00110x0x10}, 0x1101xx10 \ { 0x11011010, 0x11010x10, 0x11010010, 001101xx10}} {x1x10 \ {11x10, 11110, x1010}, x10xx \ {010xx, x100x, 01001}} {} {} {0x1xx \ {001xx, 01100}, x110x \ {x1100, 1110x, 0110x}} {10x00 \ {10100}} { 10x000x100 \ { 10x0000100, 10x0001100, 101000x100}, 10x00x1100 \ { 10x00x1100, 10x0011100, 10x0001100, 10100x1100}} {x00xx \ {100x0, 00001, 10000}} {xx00x \ {11001, 00000, xx000}} { xx00xx000x \ { xx001x0000, xx000x0001, xx00x10000, xx00x00001, xx00x10000, 11001x000x, 00000x000x, xx000x000x}} {x00xx \ {x00x0, x001x}, 0010x \ {00101, 00100}, 011xx \ {011x0, 01100, 01100}} {01xxx \ {0111x, 0110x, 011x0}, x001x \ {10011, 00010}, xxx0x \ {00100, 01x01, 11x0x}} { 01xxxx00xx \ { 01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxxx00x0, 01xxxx001x, 0111xx00xx, 0110xx00xx, 011x0x00xx}, x001xx001x \ { x0011x0010, x0010x0011, x001xx0010, x001xx001x, 10011x001x, 00010x001x}, xxx0xx000x \ { xxx01x0000, xxx00x0001, xxx0xx0000, 00100x000x, 01x01x000x, 11x0xx000x}, 01x0x0010x \ { 01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 0110x0010x, 011000010x}, xxx0x0010x \ { xxx0100100, xxx0000101, xxx0x00101, xxx0x00100, 001000010x, 01x010010x, 11x0x0010x}, 01xxx011xx \ { 01xx1011x0, 01xx0011x1, 01x1x0110x, 01x0x0111x, 01xxx011x0, 01xxx01100, 01xxx01100, 0111x011xx, 0110x011xx, 011x0011xx}, x001x0111x \ { x001101110, x001001111, x001x01110, 100110111x, 000100111x}, xxx0x0110x \ { xxx0101100, xxx0001101, xxx0x01100, xxx0x01100, xxx0x01100, 001000110x, 01x010110x, 11x0x0110x}} {10xx1 \ {10111, 10001, 101x1}, 0111x \ {01110, 01111, 01111}, 010xx \ {010x1, 01000, 01011}} {1xx1x \ {11x10, 1x110}} { 1xx1110x11 \ { 1xx1110111, 1xx1110111}, 1xx1x0111x \ { 1xx1101110, 1xx1001111, 1xx1x01110, 1xx1x01111, 1xx1x01111, 11x100111x, 1x1100111x}, 1xx1x0101x \ { 1xx1101010, 1xx1001011, 1xx1x01011, 1xx1x01011, 11x100101x, 1x1100101x}} {x1xxx \ {x111x, 11000, 0111x}} {0xx1x \ {0x111, 00111, 00010}} { 0xx1xx1x1x \ { 0xx11x1x10, 0xx10x1x11, 0xx1xx111x, 0xx1x0111x, 0x111x1x1x, 00111x1x1x, 00010x1x1x}} {00xxx \ {001x0, 0010x, 00x11}} {} {} {1x11x \ {1x111, 1x110, 1111x}} {0x0xx \ {0x00x, 0x0x1, 0100x}, x1000 \ {01000, 11000}} { 0x01x1x11x \ { 0x0111x110, 0x0101x111, 0x01x1x111, 0x01x1x110, 0x01x1111x, 0x0111x11x}} {111xx \ {11101, 11110, 11111}, xxx10 \ {01x10, 11010, 01110}} {x1x10 \ {01x10, x1110, 01110}} { x1x1011110 \ { x1x1011110, 01x1011110, x111011110, 0111011110}, x1x10xxx10 \ { x1x1001x10, x1x1011010, x1x1001110, 01x10xxx10, x1110xxx10, 01110xxx10}} {x0xx1 \ {x01x1, 10011}, x00x1 \ {10001, x0001}} {100xx \ {1000x, 10010, 10011}} { 100x1x0xx1 \ { 10011x0x01, 10001x0x11, 100x1x01x1, 100x110011, 10001x0xx1, 10011x0xx1}, 100x1x00x1 \ { 10011x0001, 10001x0011, 100x110001, 100x1x0001, 10001x00x1, 10011x00x1}} {} {} {} {11xxx \ {11101, 11x11, 11x10}} {xxx1x \ {0011x, 11x10, x0x1x}} { xxx1x11x1x \ { xxx1111x10, xxx1011x11, xxx1x11x11, xxx1x11x10, 0011x11x1x, 11x1011x1x, x0x1x11x1x}} {xxx1x \ {xxx11, 01x1x, 11x10}} {xxxx0 \ {10x10, 01x10, x11x0}, xx011 \ {x0011, 01011, x1011}} { xxx10xxx10 \ { xxx1001x10, xxx1011x10, 10x10xxx10, 01x10xxx10, x1110xxx10}, xx011xxx11 \ { xx011xxx11, xx01101x11, x0011xxx11, 01011xxx11, x1011xxx11}} {x101x \ {01011, 1101x, 0101x}, 0x11x \ {0x111, 0011x, 01111}} {011x1 \ {01101, 01111}} { 01111x1011 \ { 0111101011, 0111111011, 0111101011, 01111x1011}, 011110x111 \ { 011110x111, 0111100111, 0111101111, 011110x111}} {} {1xxxx \ {110x0, 11011, 1001x}, x0001 \ {00001, 10001, 10001}} {} {11xxx \ {1111x, 11x1x, 110xx}, 1x11x \ {10111, 1111x}, 1xx10 \ {11x10, 1x010}} {} {} {010xx \ {01000, 010x1}} {0x01x \ {0x010, 0101x}} { 0x01x0101x \ { 0x01101010, 0x01001011, 0x01x01011, 0x0100101x, 0101x0101x}} {x1x0x \ {x100x, 01x0x, 01101}} {0xxx0 \ {0x010, 001x0, 00000}, 101x0 \ {10110}} { 0xx00x1x00 \ { 0xx00x1000, 0xx0001x00, 00100x1x00, 00000x1x00}, 10100x1x00 \ { 10100x1000, 1010001x00}} {0x1x0 \ {001x0, 0x110, 01100}} {0x0x1 \ {01011, 000x1, 010x1}} {} {xx010 \ {0x010, 11010, 01010}, x1101 \ {11101, 01101}} {x1x1x \ {x1010, 0111x, 01x1x}} { x1x10xx010 \ { x1x100x010, x1x1011010, x1x1001010, x1010xx010, 01110xx010, 01x10xx010}} {x10xx \ {11001, 0101x, 010xx}, x100x \ {0100x, 11000, 11000}} {1x01x \ {1x011, 11011, 10011}, 111x1 \ {11111}} { 1x01xx101x \ { 1x011x1010, 1x010x1011, 1x01x0101x, 1x01x0101x, 1x011x101x, 11011x101x, 10011x101x}, 111x1x10x1 \ { 11111x1001, 11101x1011, 111x111001, 111x101011, 111x1010x1, 11111x10x1}, 11101x1001 \ { 1110101001}} {xx100 \ {x1100, x0100, x0100}} {x11x1 \ {111x1, 011x1}, 1111x \ {11110, 11111}, 01x1x \ {0101x, 01111}} {} {00xx0 \ {00x10, 00x00, 00110}, xxx11 \ {x0011, x1011, xx011}} {0xx00 \ {00x00, 0x000, 0x100}, 1x10x \ {10101, 11101, 11101}} { 0xx0000x00 \ { 0xx0000x00, 00x0000x00, 0x00000x00, 0x10000x00}, 1x10000x00 \ { 1x10000x00}} {1xx10 \ {10x10, 10110, 10110}, 1xx00 \ {11100, 1x000, 1x100}} {xx01x \ {00010, 11011, x001x}} { xx0101xx10 \ { xx01010x10, xx01010110, xx01010110, 000101xx10, x00101xx10}} {} {1x00x \ {1x001, 11000, 11001}} {} {x0x0x \ {10101, 1000x, x0001}} {1xxx1 \ {11111, 11001, 101x1}} { 1xx01x0x01 \ { 1xx0110101, 1xx0110001, 1xx01x0001, 11001x0x01, 10101x0x01}} {11x0x \ {11x00, 1100x, 11100}} {xx110 \ {11110, 01110, 01110}} {} {x010x \ {10101, 0010x, x0101}, x1x0x \ {x1001, 01100, x1x01}} {1010x \ {10100}, 000x1 \ {00011, 00001}} { 1010xx010x \ { 10101x0100, 10100x0101, 1010x10101, 1010x0010x, 1010xx0101, 10100x010x}, 00001x0101 \ { 0000110101, 0000100101, 00001x0101, 00001x0101}, 1010xx1x0x \ { 10101x1x00, 10100x1x01, 1010xx1001, 1010x01100, 1010xx1x01, 10100x1x0x}, 00001x1x01 \ { 00001x1001, 00001x1x01, 00001x1x01}} {xx011 \ {0x011, 00011, 1x011}} {0011x \ {00111}, 00xxx \ {00110, 00x0x, 00011}, x0x0x \ {00101, 10000, 10101}} { 00111xx011 \ { 001110x011, 0011100011, 001111x011, 00111xx011}, 00x11xx011 \ { 00x110x011, 00x1100011, 00x111x011, 00011xx011}} {1x11x \ {1x111, 11110}, xx01x \ {1x010, 0001x, 11010}, x0x10 \ {00x10, 10110}} {xx1x1 \ {x0111, 0x1x1, 10111}, xx0x1 \ {11011, 1x001, 01011}} { xx1111x111 \ { xx1111x111, x01111x111, 0x1111x111, 101111x111}, xx0111x111 \ { xx0111x111, 110111x111, 010111x111}, xx111xx011 \ { xx11100011, x0111xx011, 0x111xx011, 10111xx011}, xx011xx011 \ { xx01100011, 11011xx011, 01011xx011}} {xx0x0 \ {100x0, 11010, 0x010}} {1x00x \ {1x000, 1000x, 11000}, 110x1 \ {11001}, 01xx1 \ {01001, 011x1, 01101}} { 1x000xx000 \ { 1x00010000, 1x000xx000, 10000xx000, 11000xx000}} {1x1x1 \ {101x1, 11101, 11101}} {x0x11 \ {10011, 00x11, 10111}, 10xxx \ {10xx0, 10110, 10010}} { x0x111x111 \ { x0x1110111, 100111x111, 00x111x111, 101111x111}, 10xx11x1x1 \ { 10x111x101, 10x011x111, 10xx1101x1, 10xx111101, 10xx111101}} {0xx00 \ {0x000, 00100, 01x00}, 0x00x \ {0x001, 01000, 01000}} {10xxx \ {10001, 10x01, 10x00}} { 10x000xx00 \ { 10x000x000, 10x0000100, 10x0001x00, 10x000xx00}, 10x0x0x00x \ { 10x010x000, 10x000x001, 10x0x0x001, 10x0x01000, 10x0x01000, 100010x00x, 10x010x00x, 10x000x00x}} {011xx \ {0111x, 011x1, 011x0}, 11xx0 \ {11010, 110x0, 11x10}} {111xx \ {11100, 111x1}, 01xx0 \ {01x10, 011x0}, 0x1x0 \ {0x100, 00100, 01110}} { 111xx011xx \ { 111x1011x0, 111x0011x1, 1111x0110x, 1110x0111x, 111xx0111x, 111xx011x1, 111xx011x0, 11100011xx, 111x1011xx}, 01xx0011x0 \ { 01x1001100, 01x0001110, 01xx001110, 01xx0011x0, 01x10011x0, 011x0011x0}, 0x1x0011x0 \ { 0x11001100, 0x10001110, 0x1x001110, 0x1x0011x0, 0x100011x0, 00100011x0, 01110011x0}, 111x011xx0 \ { 1111011x00, 1110011x10, 111x011010, 111x0110x0, 111x011x10, 1110011xx0}, 01xx011xx0 \ { 01x1011x00, 01x0011x10, 01xx011010, 01xx0110x0, 01xx011x10, 01x1011xx0, 011x011xx0}, 0x1x011xx0 \ { 0x11011x00, 0x10011x10, 0x1x011010, 0x1x0110x0, 0x1x011x10, 0x10011xx0, 0010011xx0, 0111011xx0}} {xx100 \ {x1100, 1x100, 11100}} {x0x0x \ {00001, 00x01, 00x0x}} { x0x00xx100 \ { x0x00x1100, x0x001x100, x0x0011100, 00x00xx100}} {} {x11xx \ {x111x, x110x, 1111x}} {} {xx0xx \ {xx01x, 10010, xx00x}, xx0xx \ {1x0x1, 01001, x00x0}} {01xxx \ {01111, 010x1, 011x0}} { 01xxxxx0xx \ { 01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxxx01x, 01xxx10010, 01xxxxx00x, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}, 01xxxxx0xx \ { 01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxx1x0x1, 01xxx01001, 01xxxx00x0, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}} {1xxxx \ {1x00x, 1001x, 1000x}, 01xx1 \ {01001, 01011, 01x11}, 0xx0x \ {00x01, 0x00x, 01100}} {0xx00 \ {01x00, 01100, 00000}, x0xx0 \ {10100, 00x10, x0010}, x1100 \ {01100, 11100, 11100}} { 0xx001xx00 \ { 0xx001x000, 0xx0010000, 01x001xx00, 011001xx00, 000001xx00}, x0xx01xxx0 \ { x0x101xx00, x0x001xx10, x0xx01x000, x0xx010010, x0xx010000, 101001xxx0, 00x101xxx0, x00101xxx0}, x11001xx00 \ { x11001x000, x110010000, 011001xx00, 111001xx00, 111001xx00}, 0xx000xx00 \ { 0xx000x000, 0xx0001100, 01x000xx00, 011000xx00, 000000xx00}, x0x000xx00 \ { x0x000x000, x0x0001100, 101000xx00}, x11000xx00 \ { x11000x000, x110001100, 011000xx00, 111000xx00, 111000xx00}} {xx01x \ {1101x, 0x01x, x0010}, 1001x \ {10010, 10011}} {10xxx \ {10010, 100x0, 10011}} { 10x1xxx01x \ { 10x11xx010, 10x10xx011, 10x1x1101x, 10x1x0x01x, 10x1xx0010, 10010xx01x, 10010xx01x, 10011xx01x}, 10x1x1001x \ { 10x1110010, 10x1010011, 10x1x10010, 10x1x10011, 100101001x, 100101001x, 100111001x}} {10x01 \ {10101}} {1xx1x \ {11011, 10111, 11x10}} {} {x0100 \ {10100}} {x10xx \ {x10x0, 010x0, x1011}} { x1000x0100 \ { x100010100, x1000x0100, 01000x0100}} {x0xx0 \ {10x10, x0x10, 10xx0}} {0x1x1 \ {01101, 0x111}, x01x0 \ {10100, 00110, 00110}} { x01x0x0xx0 \ { x0110x0x00, x0100x0x10, x01x010x10, x01x0x0x10, x01x010xx0, 10100x0xx0, 00110x0xx0, 00110x0xx0}} {1x1x0 \ {10100, 11110, 11100}, 111xx \ {11100, 11101, 1110x}} {x01xx \ {00110, 001xx, 10100}} { x01x01x1x0 \ { x01101x100, x01001x110, x01x010100, x01x011110, x01x011100, 001101x1x0, 001x01x1x0, 101001x1x0}, x01xx111xx \ { x01x1111x0, x01x0111x1, x011x1110x, x010x1111x, x01xx11100, x01xx11101, x01xx1110x, 00110111xx, 001xx111xx, 10100111xx}} {0xx11 \ {0x011, 01111, 00x11}, x11xx \ {x1100, 111x1, 01101}} {1100x \ {11000}, xx0x1 \ {xx001, 1x001, x0011}} { xx0110xx11 \ { xx0110x011, xx01101111, xx01100x11, x00110xx11}, 1100xx110x \ { 11001x1100, 11000x1101, 1100xx1100, 1100x11101, 1100x01101, 11000x110x}, xx0x1x11x1 \ { xx011x1101, xx001x1111, xx0x1111x1, xx0x101101, xx001x11x1, 1x001x11x1, x0011x11x1}} {001xx \ {001x0, 00100, 00111}, 1xxxx \ {111x1, 10xx1, 11111}, 0x010 \ {01010, 00010, 00010}} {1xx00 \ {1x000, 11100, 10x00}} { 1xx0000100 \ { 1xx0000100, 1xx0000100, 1x00000100, 1110000100, 10x0000100}, 1xx001xx00 \ { 1x0001xx00, 111001xx00, 10x001xx00}} {} {} {} {xx0x0 \ {x1010, 0x010, 00010}} {1x0xx \ {10010, 11011, 1x011}} { 1x0x0xx0x0 \ { 1x010xx000, 1x000xx010, 1x0x0x1010, 1x0x00x010, 1x0x000010, 10010xx0x0}} {11xxx \ {1100x, 11001, 11001}, 1x011 \ {11011, 10011}, 00x0x \ {0010x, 00000, 00101}} {1x0xx \ {10000, 11010}} { 1x0xx11xxx \ { 1x0x111xx0, 1x0x011xx1, 1x01x11x0x, 1x00x11x1x, 1x0xx1100x, 1x0xx11001, 1x0xx11001, 1000011xxx, 1101011xxx}, 1x0111x011 \ { 1x01111011, 1x01110011}, 1x00x00x0x \ { 1x00100x00, 1x00000x01, 1x00x0010x, 1x00x00000, 1x00x00101, 1000000x0x}} {x1111 \ {11111, 01111, 01111}, 11xx1 \ {11101, 11001}} {x1xxx \ {11100, x100x, 11xx1}} { x1x11x1111 \ { x1x1111111, x1x1101111, x1x1101111, 11x11x1111}, x1xx111xx1 \ { x1x1111x01, x1x0111x11, x1xx111101, x1xx111001, x100111xx1, 11xx111xx1}} {x0xx1 \ {x0011, 00x01, 00x01}} {} {} {000x1 \ {00011}, 01x0x \ {0100x, 01001, 0110x}} {01x11 \ {01011, 01111, 01111}, xx111 \ {11111, x0111, 01111}} { 01x1100011 \ { 01x1100011, 0101100011, 0111100011, 0111100011}, xx11100011 \ { xx11100011, 1111100011, x011100011, 0111100011}} {11xx0 \ {11x10, 11x00, 110x0}} {x1x1x \ {x1110, 0111x, x111x}, 10x0x \ {1000x, 10000, 10000}} { x1x1011x10 \ { x1x1011x10, x1x1011010, x111011x10, 0111011x10, x111011x10}, 10x0011x00 \ { 10x0011x00, 10x0011000, 1000011x00, 1000011x00, 1000011x00}} {xx0x1 \ {01001, x0011, xx001}} {0011x \ {00111, 00110, 00110}, 1xxx0 \ {10xx0, 10100, 10x00}} { 00111xx011 \ { 00111x0011, 00111xx011}} {xx0x0 \ {100x0, 1x000, x00x0}, x1000 \ {01000, 11000, 11000}} {} {} {xx001 \ {0x001, x1001, 11001}} {1x11x \ {1x111, 10110}} {} {010xx \ {01011, 01001, 01010}, 1xx01 \ {10001, 11x01, 11x01}} {x10xx \ {x1011, x101x}} { x10xx010xx \ { x10x1010x0, x10x0010x1, x101x0100x, x100x0101x, x10xx01011, x10xx01001, x10xx01010, x1011010xx, x101x010xx}, x10011xx01 \ { x100110001, x100111x01, x100111x01}} {} {1x0x0 \ {11010, 11000, 110x0}} {} {} {0xx0x \ {01x0x, 00x0x, 01000}, x1000 \ {11000, 01000}} {} {} {10x00 \ {10100, 10000}} {} {} {x11xx \ {1111x, 111xx, 111xx}} {} {xxxxx \ {0xx0x, x0101, 0xxx0}, 01xxx \ {01111, 011x0, 01x01}} {x110x \ {01100, 1110x}, 10x1x \ {10111, 10x10}} { x110xxxx0x \ { x1101xxx00, x1100xxx01, x110x0xx0x, x110xx0101, x110x0xx00, 01100xxx0x, 1110xxxx0x}, 10x1xxxx1x \ { 10x11xxx10, 10x10xxx11, 10x1x0xx10, 10111xxx1x, 10x10xxx1x}, x110x01x0x \ { x110101x00, x110001x01, x110x01100, x110x01x01, 0110001x0x, 1110x01x0x}, 10x1x01x1x \ { 10x1101x10, 10x1001x11, 10x1x01111, 10x1x01110, 1011101x1x, 10x1001x1x}} {} {1x1x0 \ {111x0, 10100, 1x100}, 000x1 \ {00001, 00011, 00011}} {} {xx11x \ {xx111, 1x111, 11110}} {x1x10 \ {01110, x1110}, 0001x \ {00010, 00011}} { x1x10xx110 \ { x1x1011110, 01110xx110, x1110xx110}, 0001xxx11x \ { 00011xx110, 00010xx111, 0001xxx111, 0001x1x111, 0001x11110, 00010xx11x, 00011xx11x}} {} {xx1x0 \ {101x0, 0x1x0, 111x0}} {} {0x010 \ {01010, 00010}, x110x \ {0110x, 01101}} {0x1xx \ {00101, 0x111, 0x100}, x0x1x \ {x0x10, x0010, 10111}} { 0x1100x010 \ { 0x11001010, 0x11000010}, x0x100x010 \ { x0x1001010, x0x1000010, x0x100x010, x00100x010}, 0x10xx110x \ { 0x101x1100, 0x100x1101, 0x10x0110x, 0x10x01101, 00101x110x, 0x100x110x}} {0101x \ {01010, 01011, 01011}} {xx01x \ {01011, 0001x, 1001x}, xxxx1 \ {x10x1, 1x0x1, xx001}, 00xxx \ {000x0, 00011, 000x1}} { xx01x0101x \ { xx01101010, xx01001011, xx01x01010, xx01x01011, xx01x01011, 010110101x, 0001x0101x, 1001x0101x}, xxx1101011 \ { xxx1101011, xxx1101011, x101101011, 1x01101011}, 00x1x0101x \ { 00x1101010, 00x1001011, 00x1x01010, 00x1x01011, 00x1x01011, 000100101x, 000110101x, 000110101x}} {x0x01 \ {00001, 10001, 10101}, x1010 \ {11010, 01010}} {x0x1x \ {10x1x, 10010}, 010x0 \ {01010, 01000}, xxx00 \ {x0000, x0x00, 00100}} { x0x10x1010 \ { x0x1011010, x0x1001010, 10x10x1010, 10010x1010}, 01010x1010 \ { 0101011010, 0101001010, 01010x1010}} {x0x0x \ {0010x, x000x, x0000}, 0xxxx \ {0xxx0, 0x0x0, 0011x}} {101xx \ {101x0, 10110, 10100}} { 1010xx0x0x \ { 10101x0x00, 10100x0x01, 1010x0010x, 1010xx000x, 1010xx0000, 10100x0x0x, 10100x0x0x}, 101xx0xxxx \ { 101x10xxx0, 101x00xxx1, 1011x0xx0x, 1010x0xx1x, 101xx0xxx0, 101xx0x0x0, 101xx0011x, 101x00xxxx, 101100xxxx, 101000xxxx}} {1xx00 \ {11x00, 1x000, 10000}, 0xx1x \ {0x011, 0x110, 00111}} {xx010 \ {1x010, 00010, 0x010}, 1xxx0 \ {10010, 10110, 110x0}} { 1xx001xx00 \ { 1xx0011x00, 1xx001x000, 1xx0010000, 110001xx00}, xx0100xx10 \ { xx0100x110, 1x0100xx10, 000100xx10, 0x0100xx10}, 1xx100xx10 \ { 1xx100x110, 100100xx10, 101100xx10, 110100xx10}} {x00xx \ {1000x, 10001, 00000}, x0x1x \ {1001x, 10110}, 1xx10 \ {11010, 11x10}} {1xx10 \ {10x10, 10010}} { 1xx10x0010 \ { 10x10x0010, 10010x0010}, 1xx10x0x10 \ { 1xx1010010, 1xx1010110, 10x10x0x10, 10010x0x10}, 1xx101xx10 \ { 1xx1011010, 1xx1011x10, 10x101xx10, 100101xx10}} {0x010 \ {00010, 01010}} {x100x \ {01000, 11000, 11000}, x100x \ {11000, 01001}} {} {} {1x1x1 \ {10111, 11111}} {} {10x11 \ {10111, 10011}} {1000x \ {10001, 10000}} {} {x00xx \ {10011, x00x0, 100x1}, xxxx1 \ {0x0x1, x1001, xx111}} {xx010 \ {x0010, 1x010, 1x010}, xxx01 \ {11101, 11x01, 10001}} { xx010x0010 \ { xx010x0010, x0010x0010, 1x010x0010, 1x010x0010}, xxx01x0001 \ { xxx0110001, 11101x0001, 11x01x0001, 10001x0001}, xxx01xxx01 \ { xxx010x001, xxx01x1001, 11101xxx01, 11x01xxx01, 10001xxx01}} {1x0xx \ {1000x, 10011, 110x1}, xx011 \ {x0011, 00011, 1x011}} {0x1xx \ {001x1, 00110, 0x1x0}} { 0x1xx1x0xx \ { 0x1x11x0x0, 0x1x01x0x1, 0x11x1x00x, 0x10x1x01x, 0x1xx1000x, 0x1xx10011, 0x1xx110x1, 001x11x0xx, 001101x0xx, 0x1x01x0xx}, 0x111xx011 \ { 0x111x0011, 0x11100011, 0x1111x011, 00111xx011}} {xx101 \ {11101, 0x101, x0101}} {x1xxx \ {11x0x, 0110x, 11xx0}, 10xxx \ {10xx1, 100x1, 10xx0}} { x1x01xx101 \ { x1x0111101, x1x010x101, x1x01x0101, 11x01xx101, 01101xx101}, 10x01xx101 \ { 10x0111101, 10x010x101, 10x01x0101, 10x01xx101, 10001xx101}} {01x0x \ {0100x, 01001}} {} {} {0x11x \ {0x111, 00111, 00111}} {x01x0 \ {x0100, 00100, 001x0}} { x01100x110 \ { 001100x110}} {10xx0 \ {10x10, 100x0, 10000}, xx0x1 \ {x0001, xx011, 1x011}} {x1x0x \ {x1x01, 1100x, 11x01}, x1xxx \ {01x01, 01xx0, 01x10}, x1101 \ {01101, 11101}} { x1x0010x00 \ { x1x0010000, x1x0010000, 1100010x00}, x1xx010xx0 \ { x1x1010x00, x1x0010x10, x1xx010x10, x1xx0100x0, x1xx010000, 01xx010xx0, 01x1010xx0}, x1x01xx001 \ { x1x01x0001, x1x01xx001, 11001xx001, 11x01xx001}, x1xx1xx0x1 \ { x1x11xx001, x1x01xx011, x1xx1x0001, x1xx1xx011, x1xx11x011, 01x01xx0x1}, x1101xx001 \ { x1101x0001, 01101xx001, 11101xx001}} {x0001 \ {10001, 00001, 00001}} {x10xx \ {110x1, 0100x, 110xx}, x1xx0 \ {110x0, 11x10, x10x0}, 0x010 \ {00010, 01010}} { x1001x0001 \ { x100110001, x100100001, x100100001, 11001x0001, 01001x0001, 11001x0001}} {00xxx \ {00001, 00x0x, 00x0x}, 00xx0 \ {00x00, 00010}, x0x10 \ {10010, 00110, 00110}} {0x0xx \ {0100x, 0x01x, 0x00x}, 0x00x \ {0100x, 00000}} { 0x0xx00xxx \ { 0x0x100xx0, 0x0x000xx1, 0x01x00x0x, 0x00x00x1x, 0x0xx00001, 0x0xx00x0x, 0x0xx00x0x, 0100x00xxx, 0x01x00xxx, 0x00x00xxx}, 0x00x00x0x \ { 0x00100x00, 0x00000x01, 0x00x00001, 0x00x00x0x, 0x00x00x0x, 0100x00x0x, 0000000x0x}, 0x0x000xx0 \ { 0x01000x00, 0x00000x10, 0x0x000x00, 0x0x000010, 0100000xx0, 0x01000xx0, 0x00000xx0}, 0x00000x00 \ { 0x00000x00, 0100000x00, 0000000x00}, 0x010x0x10 \ { 0x01010010, 0x01000110, 0x01000110, 0x010x0x10}} {x10xx \ {x1011, 110x0, 01010}} {xxx0x \ {11001, 0x101, 1110x}, x0010 \ {00010}, 0xxx0 \ {0x100, 011x0, 0x0x0}} { xxx0xx100x \ { xxx01x1000, xxx00x1001, xxx0x11000, 11001x100x, 0x101x100x, 1110xx100x}, x0010x1010 \ { x001011010, x001001010, 00010x1010}, 0xxx0x10x0 \ { 0xx10x1000, 0xx00x1010, 0xxx0110x0, 0xxx001010, 0x100x10x0, 011x0x10x0, 0x0x0x10x0}} {00x10 \ {00010}} {0xx11 \ {01x11, 01111, 01111}, 0xx1x \ {01x11, 0111x, 00110}, 011x0 \ {01100}} { 0xx1000x10 \ { 0xx1000010, 0111000x10, 0011000x10}, 0111000x10 \ { 0111000010}} {x0x1x \ {0011x, x0110, 10x1x}} {x01xx \ {x0100, 00101, 10100}} { x011xx0x1x \ { x0111x0x10, x0110x0x11, x011x0011x, x011xx0110, x011x10x1x}} {x0x00 \ {10000, x0100, 10x00}, 001xx \ {001x1, 00100}} {00x0x \ {0010x}, xx111 \ {x1111}} { 00x00x0x00 \ { 00x0010000, 00x00x0100, 00x0010x00, 00100x0x00}, 00x0x0010x \ { 00x0100100, 00x0000101, 00x0x00101, 00x0x00100, 0010x0010x}, xx11100111 \ { xx11100111, x111100111}} {xx01x \ {0x011, 0x010, 11010}} {0xx1x \ {0001x, 0011x, 00111}} { 0xx1xxx01x \ { 0xx11xx010, 0xx10xx011, 0xx1x0x011, 0xx1x0x010, 0xx1x11010, 0001xxx01x, 0011xxx01x, 00111xx01x}} {0x01x \ {01011, 00010}, xx100 \ {1x100, x1100}} {x1x00 \ {01100, x1100, 11x00}} { x1x00xx100 \ { x1x001x100, x1x00x1100, 01100xx100, x1100xx100, 11x00xx100}} {1x0xx \ {110x0, 1001x, 1x011}} {1xx00 \ {10000, 11x00, 1x100}, 0x10x \ {00101, 0110x, 0x101}, 1xxx1 \ {1x111, 10011, 1xx01}} { 1xx001x000 \ { 1xx0011000, 100001x000, 11x001x000, 1x1001x000}, 0x10x1x00x \ { 0x1011x000, 0x1001x001, 0x10x11000, 001011x00x, 0110x1x00x, 0x1011x00x}, 1xxx11x0x1 \ { 1xx111x001, 1xx011x011, 1xxx110011, 1xxx11x011, 1x1111x0x1, 100111x0x1, 1xx011x0x1}} {x01x1 \ {001x1, 10101, 101x1}} {xxxx1 \ {xx111, 1x0x1, x01x1}} { xxxx1x01x1 \ { xxx11x0101, xxx01x0111, xxxx1001x1, xxxx110101, xxxx1101x1, xx111x01x1, 1x0x1x01x1, x01x1x01x1}} {x1xx1 \ {11111, x1111, 11011}} {0101x \ {01010, 01011}, xx010 \ {11010, 01010, 00010}} { 01011x1x11 \ { 0101111111, 01011x1111, 0101111011, 01011x1x11}} {x110x \ {x1101, 0110x, x1100}, 0x0x0 \ {01000, 010x0, 0x010}} {1x0x0 \ {100x0, 110x0, 10010}} { 1x000x1100 \ { 1x00001100, 1x000x1100, 10000x1100, 11000x1100}, 1x0x00x0x0 \ { 1x0100x000, 1x0000x010, 1x0x001000, 1x0x0010x0, 1x0x00x010, 100x00x0x0, 110x00x0x0, 100100x0x0}} {01x1x \ {01x11, 0101x, 01x10}} {11x1x \ {11x10, 11x11}, 110x1 \ {11001}} { 11x1x01x1x \ { 11x1101x10, 11x1001x11, 11x1x01x11, 11x1x0101x, 11x1x01x10, 11x1001x1x, 11x1101x1x}, 1101101x11 \ { 1101101x11, 1101101011}} {x10x0 \ {x1000, 11010, x1010}, x010x \ {x0100, 00100, x0101}} {xx011 \ {01011, 0x011}} {} {x0x10 \ {00x10, 10x10, 10010}} {xxx1x \ {x0111, 11111, x001x}, xx0x1 \ {11001, 110x1, xx001}, x001x \ {10011, 00010}} { xxx10x0x10 \ { xxx1000x10, xxx1010x10, xxx1010010, x0010x0x10}, x0010x0x10 \ { x001000x10, x001010x10, x001010010, 00010x0x10}} {0x110 \ {00110, 01110}, x11x0 \ {01110, 01100, x1100}} {00xx1 \ {000x1, 00x11, 001x1}, 100x0 \ {10010, 10000}} { 100100x110 \ { 1001000110, 1001001110, 100100x110}, 100x0x11x0 \ { 10010x1100, 10000x1110, 100x001110, 100x001100, 100x0x1100, 10010x11x0, 10000x11x0}} {1x10x \ {11100, 11101}, 0x1x0 \ {001x0, 0x100, 0x100}} {} {} {xx0x1 \ {xx011, xx001, 110x1}, x1010 \ {01010, 11010}} {x11xx \ {1111x, 11101, 11100}} { x11x1xx0x1 \ { x1111xx001, x1101xx011, x11x1xx011, x11x1xx001, x11x1110x1, 11111xx0x1, 11101xx0x1}, x1110x1010 \ { x111001010, x111011010, 11110x1010}} {x000x \ {00001, 10001}, 10xx1 \ {10x01, 10001, 10x11}} {x10x0 \ {01000, 01010, 11000}, 0x110 \ {01110, 00110}} { x1000x0000 \ { 01000x0000, 11000x0000}} {110xx \ {110x1, 11010}} {0x110 \ {01110, 00110, 00110}, x1100 \ {11100, 01100}} { 0x11011010 \ { 0x11011010, 0111011010, 0011011010, 0011011010}, x110011000 \ { 1110011000, 0110011000}} {1xx1x \ {11111, 1101x, 1x011}} {} {} {1011x \ {10111}} {0x1xx \ {011xx, 0011x}} { 0x11x1011x \ { 0x11110110, 0x11010111, 0x11x10111, 0111x1011x, 0011x1011x}} {110x1 \ {11011, 11001, 11001}} {1xxx0 \ {10x00, 10000, 1xx00}} {} {x0x1x \ {00110, x0x10, x001x}} {110xx \ {11010, 110x1, 1100x}, 1x11x \ {1x110, 1011x, 1011x}} { 1101xx0x1x \ { 11011x0x10, 11010x0x11, 1101x00110, 1101xx0x10, 1101xx001x, 11010x0x1x, 11011x0x1x}, 1x11xx0x1x \ { 1x111x0x10, 1x110x0x11, 1x11x00110, 1x11xx0x10, 1x11xx001x, 1x110x0x1x, 1011xx0x1x, 1011xx0x1x}} {xx1x0 \ {0x1x0, 111x0, x0110}, 0x1x0 \ {001x0, 011x0, 01110}} {x1111 \ {11111, 01111, 01111}} {} {} {100x0 \ {10010, 10000, 10000}, x110x \ {01100, 01101, x1100}} {} {10xx1 \ {10101, 10011, 100x1}, 1x01x \ {10011, 1x010, 10010}} {x0x10 \ {00x10, 10110, x0010}} { x0x101x010 \ { x0x101x010, x0x1010010, 00x101x010, 101101x010, x00101x010}} {x0xx1 \ {x0x01, 00011, 001x1}} {x0x00 \ {10100, 00000, 00x00}} {} {0xxx1 \ {01x01, 010x1, 01011}} {1x10x \ {1010x, 1x101, 11100}} { 1x1010xx01 \ { 1x10101x01, 1x10101001, 101010xx01, 1x1010xx01}} {x0xx0 \ {00100, 00xx0, 00000}} {00x1x \ {00010, 0001x, 00x11}} { 00x10x0x10 \ { 00x1000x10, 00010x0x10, 00010x0x10}} {10xx0 \ {10110, 10x10, 10000}, x01x1 \ {001x1, 00111, 00111}} {} {} {0x11x \ {00111}, 11xx0 \ {11000, 110x0, 11110}, xx100 \ {10100, 00100, 1x100}} {} {} {x111x \ {0111x, x1110}, 00xx1 \ {00x11, 00111}, 1x001 \ {10001}} {x00xx \ {000xx, x00x1, x0001}} { x001xx111x \ { x0011x1110, x0010x1111, x001x0111x, x001xx1110, 0001xx111x, x0011x111x}, x00x100xx1 \ { x001100x01, x000100x11, x00x100x11, x00x100111, 000x100xx1, x00x100xx1, x000100xx1}, x00011x001 \ { x000110001, 000011x001, x00011x001, x00011x001}} {xx0xx \ {xx000, 1x0x1, x0011}} {xx000 \ {01000, 1x000, x0000}, x000x \ {1000x, 00001}} { xx000xx000 \ { xx000xx000, 01000xx000, 1x000xx000, x0000xx000}, x000xxx00x \ { x0001xx000, x0000xx001, x000xxx000, x000x1x001, 1000xxx00x, 00001xx00x}} {x10x0 \ {01000, 010x0}} {x1101 \ {11101, 01101}} {} {} {xx100 \ {01100, 00100, x0100}} {} {1x011 \ {10011, 11011, 11011}} {1x1x1 \ {1x101, 11101}, 10xx1 \ {10011, 10001}} { 1x1111x011 \ { 1x11110011, 1x11111011, 1x11111011}, 10x111x011 \ { 10x1110011, 10x1111011, 10x1111011, 100111x011}} {x1xxx \ {x1111, 11x10, 111x0}, 101x1 \ {10111, 10101}} {x111x \ {1111x, x1111, x1110}} { x111xx1x1x \ { x1111x1x10, x1110x1x11, x111xx1111, x111x11x10, x111x11110, 1111xx1x1x, x1111x1x1x, x1110x1x1x}, x111110111 \ { x111110111, 1111110111, x111110111}} {0xxx1 \ {0x111, 01001, 01011}} {xx001 \ {0x001, x0001}, x011x \ {0011x, x0110, 00110}} { xx0010xx01 \ { xx00101001, 0x0010xx01, x00010xx01}, x01110xx11 \ { x01110x111, x011101011, 001110xx11}} {1x10x \ {1110x, 1010x, 1010x}} {x1xxx \ {01x01, 11x0x, x110x}, 110xx \ {1101x, 11000, 110x0}} { x1x0x1x10x \ { x1x011x100, x1x001x101, x1x0x1110x, x1x0x1010x, x1x0x1010x, 01x011x10x, 11x0x1x10x, x110x1x10x}, 1100x1x10x \ { 110011x100, 110001x101, 1100x1110x, 1100x1010x, 1100x1010x, 110001x10x, 110001x10x}} {x1110 \ {01110, 11110, 11110}} {11x10 \ {11010, 11110, 11110}} { 11x10x1110 \ { 11x1001110, 11x1011110, 11x1011110, 11010x1110, 11110x1110, 11110x1110}} {1011x \ {10111}, x1xx0 \ {01010, x1110, x11x0}, 1xx01 \ {10101, 11001, 10x01}} {} {} {010xx \ {010x1, 01011, 010x0}, x1x01 \ {x1101, 11101}} {x10x0 \ {x1010, 11000, 11010}} { x10x0010x0 \ { x101001000, x100001010, x10x0010x0, x1010010x0, 11000010x0, 11010010x0}} {x1111 \ {11111, 01111, 01111}} {00x10 \ {00010, 00110, 00110}, xx010 \ {00010, x0010, 11010}} {} {x1x10 \ {01110, 11110}} {xx1xx \ {111xx, x010x, 1x100}, 0x1x1 \ {00111, 001x1, 001x1}, 1xx1x \ {1x010, 10010, 1001x}} { xx110x1x10 \ { xx11001110, xx11011110, 11110x1x10}, 1xx10x1x10 \ { 1xx1001110, 1xx1011110, 1x010x1x10, 10010x1x10, 10010x1x10}} {xx111 \ {1x111, 01111, x0111}} {x0xx0 \ {00xx0, 10110, x0x00}, 0x0xx \ {00001, 0100x, 01001}} { 0x011xx111 \ { 0x0111x111, 0x01101111, 0x011x0111}} {1xx00 \ {11x00, 10x00}, 11xx0 \ {11x00, 11100}} {1x111 \ {10111, 11111}, 10xx0 \ {10000, 10100, 10010}} { 10x001xx00 \ { 10x0011x00, 10x0010x00, 100001xx00, 101001xx00}, 10xx011xx0 \ { 10x1011x00, 10x0011x10, 10xx011x00, 10xx011100, 1000011xx0, 1010011xx0, 1001011xx0}} {01xx1 \ {01001, 01101, 01x11}, 1xxx0 \ {11x00, 1xx00, 10x10}} {0100x \ {01000, 01001}} { 0100101x01 \ { 0100101001, 0100101101, 0100101x01}, 010001xx00 \ { 0100011x00, 010001xx00, 010001xx00}} {0x01x \ {0x011, 01011}} {01xx1 \ {010x1, 01x01, 01x11}} { 01x110x011 \ { 01x110x011, 01x1101011, 010110x011, 01x110x011}} {1x1x1 \ {10101, 1x101}, 010xx \ {010x0, 01000, 01000}} {x01x1 \ {x0101, 00111}, 11x0x \ {11100, 11x01, 1100x}, 1x10x \ {1110x, 1x101, 11101}} { x01x11x1x1 \ { x01111x101, x01011x111, x01x110101, x01x11x101, x01011x1x1, 001111x1x1}, 11x011x101 \ { 11x0110101, 11x011x101, 11x011x101, 110011x101}, 1x1011x101 \ { 1x10110101, 1x1011x101, 111011x101, 1x1011x101, 111011x101}, x01x1010x1 \ { x011101001, x010101011, x0101010x1, 00111010x1}, 11x0x0100x \ { 11x0101000, 11x0001001, 11x0x01000, 11x0x01000, 11x0x01000, 111000100x, 11x010100x, 1100x0100x}, 1x10x0100x \ { 1x10101000, 1x10001001, 1x10x01000, 1x10x01000, 1x10x01000, 1110x0100x, 1x1010100x, 111010100x}} {} {x0111 \ {00111}} {} {xx011 \ {11011, 01011, 0x011}, 001x1 \ {00111}} {x1x01 \ {11001, 01x01, 11101}, 10xx1 \ {10001, 10111, 10x01}} { 10x11xx011 \ { 10x1111011, 10x1101011, 10x110x011, 10111xx011}, x1x0100101 \ { 1100100101, 01x0100101, 1110100101}, 10xx1001x1 \ { 10x1100101, 10x0100111, 10xx100111, 10001001x1, 10111001x1, 10x01001x1}} {} {xxxxx \ {011x1, x0x0x, 00x00}, x11x1 \ {01111}, 000x0 \ {00000}} {} {xx011 \ {00011, 11011, 01011}, x01xx \ {x01x1, x01x0, 101x0}} {} {} {x0xx0 \ {x0100, 00xx0}, x11x0 \ {01110, 011x0, 011x0}} {x0x10 \ {00010, 00110, x0110}, x1011 \ {11011, 01011, 01011}, 1111x \ {11110, 11111, 11111}} { x0x10x0x10 \ { x0x1000x10, 00010x0x10, 00110x0x10, x0110x0x10}, 11110x0x10 \ { 1111000x10, 11110x0x10}, x0x10x1110 \ { x0x1001110, x0x1001110, x0x1001110, 00010x1110, 00110x1110, x0110x1110}, 11110x1110 \ { 1111001110, 1111001110, 1111001110, 11110x1110}} {1xx1x \ {10x1x, 10x11, 1111x}, 0xx01 \ {01x01, 00101, 00001}} {xxxx1 \ {10xx1, 1x0x1, x1x01}, x10xx \ {x100x, x10x1, 01011}, x0101 \ {10101, 00101}} { xxx111xx11 \ { xxx1110x11, xxx1110x11, xxx1111111, 10x111xx11, 1x0111xx11}, x101x1xx1x \ { x10111xx10, x10101xx11, x101x10x1x, x101x10x11, x101x1111x, x10111xx1x, 010111xx1x}, xxx010xx01 \ { xxx0101x01, xxx0100101, xxx0100001, 10x010xx01, 1x0010xx01, x1x010xx01}, x10010xx01 \ { x100101x01, x100100101, x100100001, x10010xx01, x10010xx01}, x01010xx01 \ { x010101x01, x010100101, x010100001, 101010xx01, 001010xx01}} {000xx \ {00011, 0000x, 00001}} {1xxxx \ {1x110, 10x0x, 1xx01}, x11xx \ {111xx, 0110x, 11100}, 10xxx \ {1000x, 10000, 101xx}} { 1xxxx000xx \ { 1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx00011, 1xxxx0000x, 1xxxx00001, 1x110000xx, 10x0x000xx, 1xx01000xx}, x11xx000xx \ { x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx00011, x11xx0000x, x11xx00001, 111xx000xx, 0110x000xx, 11100000xx}, 10xxx000xx \ { 10xx1000x0, 10xx0000x1, 10x1x0000x, 10x0x0001x, 10xxx00011, 10xxx0000x, 10xxx00001, 1000x000xx, 10000000xx, 101xx000xx}} {} {x010x \ {10100, 00101, 0010x}} {} {xxxx0 \ {100x0, 011x0, 11000}} {xx0x0 \ {xx000, 1x010}, 0xxx1 \ {0xx01, 00xx1, 001x1}, 0x01x \ {0101x, 01010}} { xx0x0xxxx0 \ { xx010xxx00, xx000xxx10, xx0x0100x0, xx0x0011x0, xx0x011000, xx000xxxx0, 1x010xxxx0}, 0x010xxx10 \ { 0x01010010, 0x01001110, 01010xxx10, 01010xxx10}} {1x111 \ {11111, 10111}} {0x01x \ {01010, 01011}, 100xx \ {10010, 100x0, 1001x}, x11x0 \ {11110, 01110}} { 0x0111x111 \ { 0x01111111, 0x01110111, 010111x111}, 100111x111 \ { 1001111111, 1001110111, 100111x111}} {x11x1 \ {111x1, 11101, 01101}} {} {} {0x1x0 \ {011x0, 0x100, 0x100}, 1xxx0 \ {1x100, 1x0x0}} {xx101 \ {1x101, 11101}, 1xx00 \ {10x00, 1x000, 11x00}, x110x \ {0110x, 01101, 11100}} { 1xx000x100 \ { 1xx0001100, 1xx000x100, 1xx000x100, 10x000x100, 1x0000x100, 11x000x100}, x11000x100 \ { x110001100, x11000x100, x11000x100, 011000x100, 111000x100}, 1xx001xx00 \ { 1xx001x100, 1xx001x000, 10x001xx00, 1x0001xx00, 11x001xx00}, x11001xx00 \ { x11001x100, x11001x000, 011001xx00, 111001xx00}} {x0xx1 \ {x01x1, 00001, 00xx1}, 101xx \ {1010x, 101x0, 10111}} {11x1x \ {1101x, 11111, 11011}, x11x1 \ {x1101, x1111}} { 11x11x0x11 \ { 11x11x0111, 11x1100x11, 11011x0x11, 11111x0x11, 11011x0x11}, x11x1x0xx1 \ { x1111x0x01, x1101x0x11, x11x1x01x1, x11x100001, x11x100xx1, x1101x0xx1, x1111x0xx1}, 11x1x1011x \ { 11x1110110, 11x1010111, 11x1x10110, 11x1x10111, 1101x1011x, 111111011x, 110111011x}, x11x1101x1 \ { x111110101, x110110111, x11x110101, x11x110111, x1101101x1, x1111101x1}} {x0xx0 \ {000x0, 001x0, 00010}, x011x \ {00110, 1011x, 1011x}} {} {} {x1100 \ {11100}, xx110 \ {x1110, 1x110}} {x1xx0 \ {01010, 11010, x1110}, x111x \ {11110, x1111}} { x1x00x1100 \ { x1x0011100}, x1x10xx110 \ { x1x10x1110, x1x101x110, 01010xx110, 11010xx110, x1110xx110}, x1110xx110 \ { x1110x1110, x11101x110, 11110xx110}} {1x1x1 \ {10101, 11101, 101x1}} {xx111 \ {0x111, 10111}, 0xxx1 \ {0x111, 001x1, 01101}, xxx01 \ {01x01, 0xx01, 11001}} { xx1111x111 \ { xx11110111, 0x1111x111, 101111x111}, 0xxx11x1x1 \ { 0xx111x101, 0xx011x111, 0xxx110101, 0xxx111101, 0xxx1101x1, 0x1111x1x1, 001x11x1x1, 011011x1x1}, xxx011x101 \ { xxx0110101, xxx0111101, xxx0110101, 01x011x101, 0xx011x101, 110011x101}} {xxx10 \ {xx010, x1110, 11010}} {xx1x0 \ {00110, x0110, x1110}} { xx110xxx10 \ { xx110xx010, xx110x1110, xx11011010, 00110xxx10, x0110xxx10, x1110xxx10}} {xxx01 \ {11001, 00x01, 10001}} {00xxx \ {00x01, 0000x, 001x0}} { 00x01xxx01 \ { 00x0111001, 00x0100x01, 00x0110001, 00x01xxx01, 00001xxx01}} {x00x0 \ {00000, x0010, 00010}, xx110 \ {10110, 1x110, 00110}, 10xx0 \ {10100, 10x00, 10010}} {} {} {10xx1 \ {10001, 10101, 10101}, 10x1x \ {10011, 10111, 10x10}, 10x1x \ {10010, 1011x}} {01xx0 \ {011x0, 01x10}, 0x000 \ {00000, 01000, 01000}} { 01x1010x10 \ { 01x1010x10, 0111010x10, 01x1010x10}} {11xx0 \ {11x10, 11100, 11010}} {} {} {} {x0x01 \ {x0101, 00101, 10x01}, 11x1x \ {11011, 1101x, 11110}, 01xx1 \ {01011, 01111, 010x1}} {} {xx10x \ {1010x, 10100, 11100}, 101x0 \ {10110, 10100}, xx100 \ {10100, x1100, 00100}} {xxxx1 \ {110x1, x1111, x1011}, xx100 \ {00100, x1100, x0100}} { xxx01xx101 \ { xxx0110101, 11001xx101}, xx100xx100 \ { xx10010100, xx10010100, xx10011100, 00100xx100, x1100xx100, x0100xx100}, xx10010100 \ { xx10010100, 0010010100, x110010100, x010010100}} {0xxx1 \ {010x1, 00xx1, 01x11}} {x111x \ {11110, x1111, 01110}} { x11110xx11 \ { x111101011, x111100x11, x111101x11, x11110xx11}} {x001x \ {00011, 10011, x0011}} {} {} {1001x \ {10011, 10010}, 01xxx \ {0101x, 011xx, 01x00}} {x11x0 \ {01100, x1100, 01110}, x11x1 \ {011x1, 111x1, 111x1}} { x111010010 \ { x111010010, 0111010010}, x111110011 \ { x111110011, 0111110011, 1111110011, 1111110011}, x11x001xx0 \ { x111001x00, x110001x10, x11x001010, x11x0011x0, x11x001x00, 0110001xx0, x110001xx0, 0111001xx0}, x11x101xx1 \ { x111101x01, x110101x11, x11x101011, x11x1011x1, 011x101xx1, 111x101xx1, 111x101xx1}} {01x1x \ {01011, 01x11}, 1x00x \ {1x001, 1x000, 10001}} {000x1 \ {00011}} { 0001101x11 \ { 0001101011, 0001101x11, 0001101x11}, 000011x001 \ { 000011x001, 0000110001}} {00x1x \ {00011, 00110}, 0xx01 \ {0x001, 01101, 01101}} {x011x \ {00110, x0110}} { x011x00x1x \ { x011100x10, x011000x11, x011x00011, x011x00110, 0011000x1x, x011000x1x}} {110xx \ {11010, 110x1, 110x0}, 10xx0 \ {10000, 10110, 101x0}} {0x1x0 \ {01110, 011x0}} { 0x1x0110x0 \ { 0x11011000, 0x10011010, 0x1x011010, 0x1x0110x0, 01110110x0, 011x0110x0}, 0x1x010xx0 \ { 0x11010x00, 0x10010x10, 0x1x010000, 0x1x010110, 0x1x0101x0, 0111010xx0, 011x010xx0}} {11x0x \ {11100, 1110x, 11001}, 10xx0 \ {101x0, 10110, 10100}, 000xx \ {000x0, 00010, 00000}} {x0xx0 \ {00110, x00x0, x0x00}} { x0x0011x00 \ { x0x0011100, x0x0011100, x000011x00, x0x0011x00}, x0xx010xx0 \ { x0x1010x00, x0x0010x10, x0xx0101x0, x0xx010110, x0xx010100, 0011010xx0, x00x010xx0, x0x0010xx0}, x0xx0000x0 \ { x0x1000000, x0x0000010, x0xx0000x0, x0xx000010, x0xx000000, 00110000x0, x00x0000x0, x0x00000x0}} {x00x0 \ {100x0, 10000}, 0x0x1 \ {00001}} {xx0xx \ {000xx, xx010, 1x010}, x00xx \ {x0000, x00x0, 00011}} { xx0x0x00x0 \ { xx010x0000, xx000x0010, xx0x0100x0, xx0x010000, 000x0x00x0, xx010x00x0, 1x010x00x0}, x00x0x00x0 \ { x0010x0000, x0000x0010, x00x0100x0, x00x010000, x0000x00x0, x00x0x00x0}, xx0x10x0x1 \ { xx0110x001, xx0010x011, xx0x100001, 000x10x0x1}, x00x10x0x1 \ { x00110x001, x00010x011, x00x100001, 000110x0x1}} {xxx01 \ {01001, 00001, 10001}} {x01xx \ {10100, 0010x, 001x0}, x101x \ {x1010, 01010, 11011}} { x0101xxx01 \ { x010101001, x010100001, x010110001, 00101xxx01}} {100x1 \ {10001}} {0x1x0 \ {001x0, 01100, 0x100}, x10x1 \ {11001, x1001, x1011}} { x10x1100x1 \ { x101110001, x100110011, x10x110001, 11001100x1, x1001100x1, x1011100x1}} {xx101 \ {1x101, 01101, x1101}, 0xx11 \ {00011, 01111}} {00xx1 \ {00111, 00x11}, 011x1 \ {01111}} { 00x01xx101 \ { 00x011x101, 00x0101101, 00x01x1101}, 01101xx101 \ { 011011x101, 0110101101, 01101x1101}, 00x110xx11 \ { 00x1100011, 00x1101111, 001110xx11, 00x110xx11}, 011110xx11 \ { 0111100011, 0111101111, 011110xx11}} {} {1x100 \ {10100, 11100}, xx01x \ {11011, 10010, xx011}} {} {0001x \ {00011, 00010}} {00xxx \ {00010, 0011x, 0011x}, xx1x1 \ {1x111, xx111, 1x1x1}} { 00x1x0001x \ { 00x1100010, 00x1000011, 00x1x00011, 00x1x00010, 000100001x, 0011x0001x, 0011x0001x}, xx11100011 \ { xx11100011, 1x11100011, xx11100011, 1x11100011}} {xx100 \ {11100, x0100, 0x100}, 00xxx \ {00100, 00000}} {xxx11 \ {x1x11, x1111, 0xx11}, x110x \ {01101, x1101, 0110x}} { x1100xx100 \ { x110011100, x1100x0100, x11000x100, 01100xx100}, xxx1100x11 \ { x1x1100x11, x111100x11, 0xx1100x11}, x110x00x0x \ { x110100x00, x110000x01, x110x00100, x110x00000, 0110100x0x, x110100x0x, 0110x00x0x}} {x11x0 \ {01100, 111x0}, x1111 \ {11111, 01111}, xxx00 \ {1xx00, 01100}} {1xx01 \ {10001, 11101, 1x101}} {} {x0100 \ {10100, 00100, 00100}} {000x0 \ {00000, 00010}} { 00000x0100 \ { 0000010100, 0000000100, 0000000100, 00000x0100}} {0x0x1 \ {000x1, 0x011, 010x1}} {1x0x1 \ {100x1, 11011, 1x011}, xx10x \ {x0101, x1100, 11101}} { 1x0x10x0x1 \ { 1x0110x001, 1x0010x011, 1x0x1000x1, 1x0x10x011, 1x0x1010x1, 100x10x0x1, 110110x0x1, 1x0110x0x1}, xx1010x001 \ { xx10100001, xx10101001, x01010x001, 111010x001}} {} {0x11x \ {0011x, 00110, 00111}, 001x0 \ {00110, 00100, 00100}} {} {} {xxx10 \ {01010, 1xx10}, 0x11x \ {0011x, 00111, 0111x}} {} {} {1101x \ {11011}, 1xx10 \ {1x010, 1x110, 11010}} {} {} {xxx11 \ {1xx11, 0x011, xx011}, 10x0x \ {1000x, 10100, 10001}, 00x1x \ {00x11, 00011, 00010}} {} {1x01x \ {11010, 1x011}, 1x0xx \ {1x001, 1x010, 1x0x1}} {} {} {xx00x \ {0x000, 0x00x, 00000}} {xx010 \ {00010, 0x010, 0x010}, 011xx \ {0110x, 01111, 0111x}} { 0110xxx00x \ { 01101xx000, 01100xx001, 0110x0x000, 0110x0x00x, 0110x00000, 0110xxx00x}} {xx1x1 \ {x1101, 1x111, 0x101}, xxx00 \ {x1000, x1100, 01x00}} {1xx01 \ {11x01, 1x101, 11001}, 0x010 \ {01010, 00010}, 10x0x \ {10100, 10x01}} { 1xx01xx101 \ { 1xx01x1101, 1xx010x101, 11x01xx101, 1x101xx101, 11001xx101}, 10x01xx101 \ { 10x01x1101, 10x010x101, 10x01xx101}, 10x00xxx00 \ { 10x00x1000, 10x00x1100, 10x0001x00, 10100xxx00}} {0xx00 \ {01000, 00100, 0x100}} {x1x01 \ {x1101, 01x01}} {} {1xx00 \ {10100, 11100, 10x00}, xx01x \ {1001x, x0011, 00010}} {01xx0 \ {01100, 01010, 01x00}, 11x1x \ {1111x, 11011, 11010}} { 01x001xx00 \ { 01x0010100, 01x0011100, 01x0010x00, 011001xx00, 01x001xx00}, 01x10xx010 \ { 01x1010010, 01x1000010, 01010xx010}, 11x1xxx01x \ { 11x11xx010, 11x10xx011, 11x1x1001x, 11x1xx0011, 11x1x00010, 1111xxx01x, 11011xx01x, 11010xx01x}} {010x0 \ {01000, 01010, 01010}, xx10x \ {1010x, 0x10x, x110x}, x11xx \ {x110x, x11x0, x1110}} {x1xx0 \ {011x0, 01010, 01010}} { x1xx0010x0 \ { x1x1001000, x1x0001010, x1xx001000, x1xx001010, x1xx001010, 011x0010x0, 01010010x0, 01010010x0}, x1x00xx100 \ { x1x0010100, x1x000x100, x1x00x1100, 01100xx100}, x1xx0x11x0 \ { x1x10x1100, x1x00x1110, x1xx0x1100, x1xx0x11x0, x1xx0x1110, 011x0x11x0, 01010x11x0, 01010x11x0}} {x10x0 \ {010x0, 110x0, 11000}, x0x1x \ {00x10, x001x, 00011}} {xx0x0 \ {x10x0, xx000, 1x010}} { xx0x0x10x0 \ { xx010x1000, xx000x1010, xx0x0010x0, xx0x0110x0, xx0x011000, x10x0x10x0, xx000x10x0, 1x010x10x0}, xx010x0x10 \ { xx01000x10, xx010x0010, x1010x0x10, 1x010x0x10}} {xxx11 \ {01011, 10x11, 1x111}, 10xx1 \ {10x11, 101x1}, x00x1 \ {10011, 00011}} {1x11x \ {10111, 1x111, 10110}, 1xx11 \ {10111, 11111, 1x111}} { 1x111xxx11 \ { 1x11101011, 1x11110x11, 1x1111x111, 10111xxx11, 1x111xxx11}, 1xx11xxx11 \ { 1xx1101011, 1xx1110x11, 1xx111x111, 10111xxx11, 11111xxx11, 1x111xxx11}, 1x11110x11 \ { 1x11110x11, 1x11110111, 1011110x11, 1x11110x11}, 1xx1110x11 \ { 1xx1110x11, 1xx1110111, 1011110x11, 1111110x11, 1x11110x11}, 1x111x0011 \ { 1x11110011, 1x11100011, 10111x0011, 1x111x0011}, 1xx11x0011 \ { 1xx1110011, 1xx1100011, 10111x0011, 11111x0011, 1x111x0011}} {xx1x0 \ {1x110, x0100, xx100}} {xx0x0 \ {x00x0, x1010, 110x0}} { xx0x0xx1x0 \ { xx010xx100, xx000xx110, xx0x01x110, xx0x0x0100, xx0x0xx100, x00x0xx1x0, x1010xx1x0, 110x0xx1x0}} {1xxx1 \ {10x11, 10111, 10x01}, 1110x \ {11101, 11100, 11100}} {xx010 \ {x1010, 01010}} {} {} {11x01 \ {11101, 11001, 11001}} {} {1xx0x \ {1x00x, 1110x, 11000}} {} {} {xx10x \ {x110x, 00100, 0010x}, 11x0x \ {11000, 11100, 1100x}} {01xxx \ {010xx, 01010, 0111x}} { 01x0xxx10x \ { 01x01xx100, 01x00xx101, 01x0xx110x, 01x0x00100, 01x0x0010x, 0100xxx10x}, 01x0x11x0x \ { 01x0111x00, 01x0011x01, 01x0x11000, 01x0x11100, 01x0x1100x, 0100x11x0x}} {} {0x0x0 \ {0x000, 00000, 010x0}, x0x00 \ {00x00, 10x00, 10x00}, xxxx0 \ {x0x10, 01110, 100x0}} {} {01x00 \ {01100}} {xxx1x \ {x1x1x, xxx11, 00x10}} {} {0x1xx \ {0x11x, 0x110, 0x111}, 1xxx1 \ {11x11, 11x01, 10101}} {10xxx \ {10111, 10x00, 10x01}, x10xx \ {1100x, x1011, 010xx}, 011x1 \ {01101}} { 10xxx0x1xx \ { 10xx10x1x0, 10xx00x1x1, 10x1x0x10x, 10x0x0x11x, 10xxx0x11x, 10xxx0x110, 10xxx0x111, 101110x1xx, 10x000x1xx, 10x010x1xx}, x10xx0x1xx \ { x10x10x1x0, x10x00x1x1, x101x0x10x, x100x0x11x, x10xx0x11x, x10xx0x110, x10xx0x111, 1100x0x1xx, x10110x1xx, 010xx0x1xx}, 011x10x1x1 \ { 011110x101, 011010x111, 011x10x111, 011x10x111, 011010x1x1}, 10xx11xxx1 \ { 10x111xx01, 10x011xx11, 10xx111x11, 10xx111x01, 10xx110101, 101111xxx1, 10x011xxx1}, x10x11xxx1 \ { x10111xx01, x10011xx11, x10x111x11, x10x111x01, x10x110101, 110011xxx1, x10111xxx1, 010x11xxx1}, 011x11xxx1 \ { 011111xx01, 011011xx11, 011x111x11, 011x111x01, 011x110101, 011011xxx1}} {x1111 \ {11111, 01111}, 1x101 \ {10101}} {1xx11 \ {10x11, 10011, 1x011}, x11x1 \ {01111, 111x1, 11101}, 10x0x \ {1010x, 10000, 10x01}} { 1xx11x1111 \ { 1xx1111111, 1xx1101111, 10x11x1111, 10011x1111, 1x011x1111}, x1111x1111 \ { x111111111, x111101111, 01111x1111, 11111x1111}, x11011x101 \ { x110110101, 111011x101, 111011x101}, 10x011x101 \ { 10x0110101, 101011x101, 10x011x101}} {0xx0x \ {01101, 01x0x, 01x00}} {x00x1 \ {00001, 000x1, x0011}, x01x0 \ {00100, x0110}} { x00010xx01 \ { x000101101, x000101x01, 000010xx01, 000010xx01}, x01000xx00 \ { x010001x00, x010001x00, 001000xx00}} {1x1xx \ {111x0, 10101, 11111}} {x1xx1 \ {011x1, 01x11, x1x01}, x1x1x \ {01110, 11111, 0101x}, 1xxxx \ {1001x, 10010, 11x01}} { x1xx11x1x1 \ { x1x111x101, x1x011x111, x1xx110101, x1xx111111, 011x11x1x1, 01x111x1x1, x1x011x1x1}, x1x1x1x11x \ { x1x111x110, x1x101x111, x1x1x11110, x1x1x11111, 011101x11x, 111111x11x, 0101x1x11x}, 1xxxx1x1xx \ { 1xxx11x1x0, 1xxx01x1x1, 1xx1x1x10x, 1xx0x1x11x, 1xxxx111x0, 1xxxx10101, 1xxxx11111, 1001x1x1xx, 100101x1xx, 11x011x1xx}} {1xxx1 \ {10111, 1x101, 1xx01}} {110x1 \ {11011}, x0x01 \ {10101, 00001, 00001}} { 110x11xxx1 \ { 110111xx01, 110011xx11, 110x110111, 110x11x101, 110x11xx01, 110111xxx1}, x0x011xx01 \ { x0x011x101, x0x011xx01, 101011xx01, 000011xx01, 000011xx01}} {} {0x100 \ {01100}, xx11x \ {11110, 0x110, xx111}} {} {x110x \ {01100, x1101, 1110x}} {xxx0x \ {0010x, 0x001, 01100}} { xxx0xx110x \ { xxx01x1100, xxx00x1101, xxx0x01100, xxx0xx1101, xxx0x1110x, 0010xx110x, 0x001x110x, 01100x110x}} {xxx0x \ {0x101, 11x01, x0x0x}, 1xx00 \ {11000, 10000, 1x100}, x1010 \ {11010}} {} {} {} {10x0x \ {10100, 1000x, 10x01}} {} {10x0x \ {10100, 1010x}} {x1xx1 \ {x1x11, 01111, x1111}, 00x11 \ {00011}} { x1x0110x01 \ { x1x0110101}} {0xxx1 \ {01x01, 000x1, 01x11}, xx11x \ {x1110, 10111, 1x11x}} {1x11x \ {1x111, 11110, 1111x}, 110x0 \ {11010}} { 1x1110xx11 \ { 1x11100011, 1x11101x11, 1x1110xx11, 111110xx11}, 1x11xxx11x \ { 1x111xx110, 1x110xx111, 1x11xx1110, 1x11x10111, 1x11x1x11x, 1x111xx11x, 11110xx11x, 1111xxx11x}, 11010xx110 \ { 11010x1110, 110101x110, 11010xx110}} {xx0x0 \ {01010, 110x0, 000x0}, x1x0x \ {01x01, 01x00, x1000}, 10xx1 \ {10001, 10101, 10101}} {001x0 \ {00110, 00100}} { 001x0xx0x0 \ { 00110xx000, 00100xx010, 001x001010, 001x0110x0, 001x0000x0, 00110xx0x0, 00100xx0x0}, 00100x1x00 \ { 0010001x00, 00100x1000, 00100x1x00}} {} {00xx1 \ {00001, 00x01, 00101}, x0xx1 \ {00xx1, x0x01}} {} {x11x1 \ {01101, 11111}} {10xx1 \ {10101, 10x01, 10001}, 101x1 \ {10111, 10101}, x0x11 \ {x0111, x0011, x0011}} { 10xx1x11x1 \ { 10x11x1101, 10x01x1111, 10xx101101, 10xx111111, 10101x11x1, 10x01x11x1, 10001x11x1}, 101x1x11x1 \ { 10111x1101, 10101x1111, 101x101101, 101x111111, 10111x11x1, 10101x11x1}, x0x11x1111 \ { x0x1111111, x0111x1111, x0011x1111, x0011x1111}} {1x1xx \ {111xx, 101x0, 1x11x}, x101x \ {0101x, x1010, 11010}, 0xxx0 \ {0xx10, 00000, 00x00}} {10x11 \ {10011}, x010x \ {10100, 0010x}, 00xxx \ {00x01, 00xx1, 00101}} { 10x111x111 \ { 10x1111111, 10x111x111, 100111x111}, x010x1x10x \ { x01011x100, x01001x101, x010x1110x, x010x10100, 101001x10x, 0010x1x10x}, 00xxx1x1xx \ { 00xx11x1x0, 00xx01x1x1, 00x1x1x10x, 00x0x1x11x, 00xxx111xx, 00xxx101x0, 00xxx1x11x, 00x011x1xx, 00xx11x1xx, 001011x1xx}, 10x11x1011 \ { 10x1101011, 10011x1011}, 00x1xx101x \ { 00x11x1010, 00x10x1011, 00x1x0101x, 00x1xx1010, 00x1x11010, 00x11x101x}, x01000xx00 \ { x010000000, x010000x00, 101000xx00, 001000xx00}, 00xx00xxx0 \ { 00x100xx00, 00x000xx10, 00xx00xx10, 00xx000000, 00xx000x00}} {xxx1x \ {01x11, 00010, x0x1x}} {x1110 \ {01110, 11110}} { x1110xxx10 \ { x111000010, x1110x0x10, 01110xxx10, 11110xxx10}} {x0x10 \ {10110, 00010, 10010}, x001x \ {x0010, 00011, 10010}, 0xx1x \ {0011x, 0xx10, 00010}} {11x0x \ {11x00, 11100}, 01x1x \ {01011, 01010, 0111x}} { 01x10x0x10 \ { 01x1010110, 01x1000010, 01x1010010, 01010x0x10, 01110x0x10}, 01x1xx001x \ { 01x11x0010, 01x10x0011, 01x1xx0010, 01x1x00011, 01x1x10010, 01011x001x, 01010x001x, 0111xx001x}, 01x1x0xx1x \ { 01x110xx10, 01x100xx11, 01x1x0011x, 01x1x0xx10, 01x1x00010, 010110xx1x, 010100xx1x, 0111x0xx1x}} {} {x0x01 \ {10x01, 00x01, x0101}, 01xx0 \ {01000, 010x0, 01110}} {} {0x1x0 \ {01100, 00100, 01110}, xxx11 \ {01111, x1x11, 0x011}} {} {} {} {} {} {0xx1x \ {01010, 0xx11, 01110}, 0x1xx \ {01110, 001x0, 0x110}} {010x0 \ {01010}} { 010100xx10 \ { 0101001010, 0101001110, 010100xx10}, 010x00x1x0 \ { 010100x100, 010000x110, 010x001110, 010x0001x0, 010x00x110, 010100x1x0}} {11xxx \ {111x1, 11101}} {} {} {xx000 \ {01000, x0000, 10000}} {x000x \ {00001, x0001, x0001}} { x0000xx000 \ { x000001000, x0000x0000, x000010000}} {00x1x \ {0001x, 00x11, 0011x}, xxx10 \ {0xx10, 0x010, 1xx10}} {0xxx1 \ {010x1, 01111, 00xx1}, 1xx01 \ {11x01, 10101, 10001}, 00x1x \ {00111, 0001x, 00x10}} { 0xx1100x11 \ { 0xx1100011, 0xx1100x11, 0xx1100111, 0101100x11, 0111100x11, 00x1100x11}, 00x1x00x1x \ { 00x1100x10, 00x1000x11, 00x1x0001x, 00x1x00x11, 00x1x0011x, 0011100x1x, 0001x00x1x, 00x1000x1x}, 00x10xxx10 \ { 00x100xx10, 00x100x010, 00x101xx10, 00010xxx10, 00x10xxx10}} {1x1xx \ {10101, 1011x, 1x1x0}, 001xx \ {0010x, 0011x, 001x0}} {01xxx \ {010x1, 011x1}, 10x11 \ {10011, 10111, 10111}} { 01xxx1x1xx \ { 01xx11x1x0, 01xx01x1x1, 01x1x1x10x, 01x0x1x11x, 01xxx10101, 01xxx1011x, 01xxx1x1x0, 010x11x1xx, 011x11x1xx}, 10x111x111 \ { 10x1110111, 100111x111, 101111x111, 101111x111}, 01xxx001xx \ { 01xx1001x0, 01xx0001x1, 01x1x0010x, 01x0x0011x, 01xxx0010x, 01xxx0011x, 01xxx001x0, 010x1001xx, 011x1001xx}, 10x1100111 \ { 10x1100111, 1001100111, 1011100111, 1011100111}} {010xx \ {01011, 01010, 0100x}, x1xx0 \ {11010, 01010, x1000}, 1x110 \ {11110, 10110}} {} {} {0x100 \ {01100}, 0x100 \ {01100, 00100}, 00x11 \ {00111, 00011}} {101xx \ {10110, 10100, 10111}, xxx0x \ {1x101, x1001, x010x}, x10x0 \ {01000, 110x0, 010x0}} { 101000x100 \ { 1010001100, 101000x100}, xxx000x100 \ { xxx0001100, x01000x100}, x10000x100 \ { x100001100, 010000x100, 110000x100, 010000x100}, 1011100x11 \ { 1011100111, 1011100011, 1011100x11}} {} {0xx00 \ {00x00, 00100}, x01x1 \ {101x1, 10101, 001x1}} {} {1xx11 \ {11011, 10x11, 11111}} {10x01 \ {10101, 10001}, xxx1x \ {10110, 00x11, 1x111}} { xxx111xx11 \ { xxx1111011, xxx1110x11, xxx1111111, 00x111xx11, 1x1111xx11}} {0x000 \ {01000, 00000}, 0x1x0 \ {0x110, 0x100, 01100}} {} {} {xx0x1 \ {00011, 11011, 000x1}} {xxx10 \ {11010, 0xx10, 0xx10}, 1x0x1 \ {11011, 110x1, 10001}, 0011x \ {00110, 00111}} { 1x0x1xx0x1 \ { 1x011xx001, 1x001xx011, 1x0x100011, 1x0x111011, 1x0x1000x1, 11011xx0x1, 110x1xx0x1, 10001xx0x1}, 00111xx011 \ { 0011100011, 0011111011, 0011100011, 00111xx011}} {x0xxx \ {10011, x001x, x00x0}} {1x010 \ {11010, 10010, 10010}, x1x1x \ {11010, x1110, x1110}} { 1x010x0x10 \ { 1x010x0010, 1x010x0010, 11010x0x10, 10010x0x10, 10010x0x10}, x1x1xx0x1x \ { x1x11x0x10, x1x10x0x11, x1x1x10011, x1x1xx001x, x1x1xx0010, 11010x0x1x, x1110x0x1x, x1110x0x1x}} {10xx1 \ {100x1, 10101, 10001}, 11x0x \ {11001, 11000, 1110x}, x111x \ {x1111, 11110}} {0x1x0 \ {01100, 0x110, 011x0}, x10x1 \ {11011, 010x1, x1001}} { x10x110xx1 \ { x101110x01, x100110x11, x10x1100x1, x10x110101, x10x110001, 1101110xx1, 010x110xx1, x100110xx1}, 0x10011x00 \ { 0x10011000, 0x10011100, 0110011x00, 0110011x00}, x100111x01 \ { x100111001, x100111101, 0100111x01, x100111x01}, 0x110x1110 \ { 0x11011110, 0x110x1110, 01110x1110}, x1011x1111 \ { x1011x1111, 11011x1111, 01011x1111}} {1x1xx \ {111xx, 1x1x1, 10111}} {xxxxx \ {x0x10, 001x0, x01x0}} { xxxxx1x1xx \ { xxxx11x1x0, xxxx01x1x1, xxx1x1x10x, xxx0x1x11x, xxxxx111xx, xxxxx1x1x1, xxxxx10111, x0x101x1xx, 001x01x1xx, x01x01x1xx}} {0xx10 \ {01010, 0x110}} {xxxxx \ {01x0x, 111x0, 11000}} { xxx100xx10 \ { xxx1001010, xxx100x110, 111100xx10}} {100xx \ {10011, 1001x, 100x1}, x01x0 \ {x0100, 001x0, 00100}} {1x10x \ {11100, 10100, 1010x}, x111x \ {x1111, 1111x, 01110}, x1x11 \ {01011, x1011, 11011}} { 1x10x1000x \ { 1x10110000, 1x10010001, 1x10x10001, 111001000x, 101001000x, 1010x1000x}, x111x1001x \ { x111110010, x111010011, x111x10011, x111x1001x, x111x10011, x11111001x, 1111x1001x, 011101001x}, x1x1110011 \ { x1x1110011, x1x1110011, x1x1110011, 0101110011, x101110011, 1101110011}, 1x100x0100 \ { 1x100x0100, 1x10000100, 1x10000100, 11100x0100, 10100x0100, 10100x0100}, x1110x0110 \ { x111000110, 11110x0110, 01110x0110}} {xxx1x \ {11x1x, 00x11, 0x110}, 100xx \ {10010, 10001, 10000}} {xxxx0 \ {11100, 11x00, 01xx0}, xxx0x \ {01x00, 1010x, x1000}} { xxx10xxx10 \ { xxx1011x10, xxx100x110, 01x10xxx10}, xxxx0100x0 \ { xxx1010000, xxx0010010, xxxx010010, xxxx010000, 11100100x0, 11x00100x0, 01xx0100x0}, xxx0x1000x \ { xxx0110000, xxx0010001, xxx0x10001, xxx0x10000, 01x001000x, 1010x1000x, x10001000x}} {} {1x10x \ {11100, 1010x, 1010x}, 10x11 \ {10111}} {} {x01x1 \ {x0111, 101x1, 10101}, 1xxx0 \ {1x000, 1xx00, 11xx0}} {0xxx0 \ {011x0, 0x0x0, 00000}} { 0xxx01xxx0 \ { 0xx101xx00, 0xx001xx10, 0xxx01x000, 0xxx01xx00, 0xxx011xx0, 011x01xxx0, 0x0x01xxx0, 000001xxx0}} {0011x \ {00111, 00110}, 11x0x \ {1100x, 11x00, 11x00}} {1110x \ {11100, 11101, 11101}, 1x0xx \ {110x1, 1x000, 1x000}} { 1x01x0011x \ { 1x01100110, 1x01000111, 1x01x00111, 1x01x00110, 110110011x}, 1110x11x0x \ { 1110111x00, 1110011x01, 1110x1100x, 1110x11x00, 1110x11x00, 1110011x0x, 1110111x0x, 1110111x0x}, 1x00x11x0x \ { 1x00111x00, 1x00011x01, 1x00x1100x, 1x00x11x00, 1x00x11x00, 1100111x0x, 1x00011x0x, 1x00011x0x}} {1xx0x \ {11101, 10000, 10000}, 00x01 \ {00001, 00101}} {0x11x \ {0x110, 0111x, 00110}} {} {} {x111x \ {01111, 11111}, 0x0x0 \ {000x0, 010x0, 01000}, xx110 \ {0x110, 11110, 00110}} {} {01x0x \ {0100x, 01101, 01101}} {101x0 \ {10110, 10100}} { 1010001x00 \ { 1010001000, 1010001x00}} {xx0xx \ {x100x, x1010, 0x000}} {1xx1x \ {10x10, 11010, 1xx10}, 11x00 \ {11100, 11000, 11000}, 0x01x \ {01011, 00010, 01010}} { 1xx1xxx01x \ { 1xx11xx010, 1xx10xx011, 1xx1xx1010, 10x10xx01x, 11010xx01x, 1xx10xx01x}, 11x00xx000 \ { 11x00x1000, 11x000x000, 11100xx000, 11000xx000, 11000xx000}, 0x01xxx01x \ { 0x011xx010, 0x010xx011, 0x01xx1010, 01011xx01x, 00010xx01x, 01010xx01x}} {x100x \ {01000, x1000, 01001}, x0x11 \ {00011, x0111}} {0111x \ {01111, 01110, 01110}, 0x01x \ {01010, 0001x, 0101x}} { 01111x0x11 \ { 0111100011, 01111x0111, 01111x0x11}, 0x011x0x11 \ { 0x01100011, 0x011x0111, 00011x0x11, 01011x0x11}} {x1x1x \ {01x1x, 0111x, 1101x}} {} {} {0xxx0 \ {0x0x0, 01010, 0x010}} {xxx01 \ {10x01, 1x101, 0xx01}, 00x1x \ {00110, 00011, 0011x}} { 00x100xx10 \ { 00x100x010, 00x1001010, 00x100x010, 001100xx10, 001100xx10}} {0xxx0 \ {0x000, 000x0, 00xx0}, xx1xx \ {1x10x, 01111, 01111}} {x1xx0 \ {110x0, x10x0, x1000}, x0xx0 \ {00100, 00000, 00110}} { x1xx00xxx0 \ { x1x100xx00, x1x000xx10, x1xx00x000, x1xx0000x0, x1xx000xx0, 110x00xxx0, x10x00xxx0, x10000xxx0}, x0xx00xxx0 \ { x0x100xx00, x0x000xx10, x0xx00x000, x0xx0000x0, x0xx000xx0, 001000xxx0, 000000xxx0, 001100xxx0}, x1xx0xx1x0 \ { x1x10xx100, x1x00xx110, x1xx01x100, 110x0xx1x0, x10x0xx1x0, x1000xx1x0}, x0xx0xx1x0 \ { x0x10xx100, x0x00xx110, x0xx01x100, 00100xx1x0, 00000xx1x0, 00110xx1x0}} {x0x0x \ {10101, 10x00, 00x00}, x1011 \ {11011, 01011}} {11x00 \ {11000}, x11x0 \ {x1100, 01100, 01110}, 1x100 \ {10100}} { 11x00x0x00 \ { 11x0010x00, 11x0000x00, 11000x0x00}, x1100x0x00 \ { x110010x00, x110000x00, x1100x0x00, 01100x0x00}, 1x100x0x00 \ { 1x10010x00, 1x10000x00, 10100x0x00}} {001xx \ {00101, 001x0, 00111}} {01x0x \ {01000, 0110x, 01x01}, 100x0 \ {10000}} { 01x0x0010x \ { 01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 010000010x, 0110x0010x, 01x010010x}, 100x0001x0 \ { 1001000100, 1000000110, 100x0001x0, 10000001x0}} {110xx \ {110x1, 1101x}, 00xx1 \ {00001, 00x11}} {11xxx \ {11101, 11110, 111x0}, x01x1 \ {10101, 001x1, 101x1}} { 11xxx110xx \ { 11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx110x1, 11xxx1101x, 11101110xx, 11110110xx, 111x0110xx}, x01x1110x1 \ { x011111001, x010111011, x01x1110x1, x01x111011, 10101110x1, 001x1110x1, 101x1110x1}, 11xx100xx1 \ { 11x1100x01, 11x0100x11, 11xx100001, 11xx100x11, 1110100xx1}, x01x100xx1 \ { x011100x01, x010100x11, x01x100001, x01x100x11, 1010100xx1, 001x100xx1, 101x100xx1}} {x01x0 \ {00100, 00110, 10110}} {x11x0 \ {x1110, 01110}} { x11x0x01x0 \ { x1110x0100, x1100x0110, x11x000100, x11x000110, x11x010110, x1110x01x0, 01110x01x0}} {xx10x \ {11100, 10100, 1110x}, 1110x \ {11100, 11101}, 1110x \ {11101, 11100, 11100}} {x1x10 \ {11x10, 11010, x1110}} {} {0x010 \ {00010}, 1x0x1 \ {10001, 110x1, 11011}} {x101x \ {x1011, 01011, 11011}, x110x \ {1110x, 01101}} { x10100x010 \ { x101000010}, x10111x011 \ { x101111011, x101111011, x10111x011, 010111x011, 110111x011}, x11011x001 \ { x110110001, x110111001, 111011x001, 011011x001}} {01x1x \ {0111x, 01010, 01110}} {} {} {00xxx \ {00x1x, 0000x}} {x00x1 \ {00011, 00001}, x00x1 \ {000x1, 10011, 00001}} { x00x100xx1 \ { x001100x01, x000100x11, x00x100x11, x00x100001, 0001100xx1, 0000100xx1}} {1x101 \ {10101, 11101}} {10xx1 \ {10111, 10001, 101x1}} { 10x011x101 \ { 10x0110101, 10x0111101, 100011x101, 101011x101}} {1x1xx \ {11100, 111xx, 10111}} {xx0x1 \ {x0001, 110x1, x10x1}, 1x110 \ {11110}} { xx0x11x1x1 \ { xx0111x101, xx0011x111, xx0x1111x1, xx0x110111, x00011x1x1, 110x11x1x1, x10x11x1x1}, 1x1101x110 \ { 1x11011110, 111101x110}} {xx0xx \ {110xx, x000x, 01010}} {1x10x \ {1x101, 1010x, 1x100}} { 1x10xxx00x \ { 1x101xx000, 1x100xx001, 1x10x1100x, 1x10xx000x, 1x101xx00x, 1010xxx00x, 1x100xx00x}} {x111x \ {0111x, x1111, 01111}} {xx1x0 \ {10100, 11100, 111x0}, xx0xx \ {010x1, 1001x, 10010}} { xx110x1110 \ { xx11001110, 11110x1110}, xx01xx111x \ { xx011x1110, xx010x1111, xx01x0111x, xx01xx1111, xx01x01111, 01011x111x, 1001xx111x, 10010x111x}} {1x10x \ {1110x, 1x100, 1010x}, xx0xx \ {01000, x10x0, x0011}} {} {} {110x1 \ {11001, 11011, 11011}, 0xx10 \ {00110, 01110, 00x10}, 0x1x0 \ {011x0, 001x0, 00100}} {1xx00 \ {10100, 11100, 11000}, xx10x \ {0x10x}} { xx10111001 \ { xx10111001, 0x10111001}, 1xx000x100 \ { 1xx0001100, 1xx0000100, 1xx0000100, 101000x100, 111000x100, 110000x100}, xx1000x100 \ { xx10001100, xx10000100, xx10000100, 0x1000x100}} {xx011 \ {01011, x0011, 10011}} {1xx11 \ {10x11, 11011, 11011}} { 1xx11xx011 \ { 1xx1101011, 1xx11x0011, 1xx1110011, 10x11xx011, 11011xx011, 11011xx011}} {xx110 \ {x0110, 01110, 11110}} {00x01 \ {00101, 00001}} {} {x0xxx \ {10011, 001xx, 00xx0}} {1xx0x \ {1000x, 1x000, 11x0x}} { 1xx0xx0x0x \ { 1xx01x0x00, 1xx00x0x01, 1xx0x0010x, 1xx0x00x00, 1000xx0x0x, 1x000x0x0x, 11x0xx0x0x}} {10xx1 \ {10101, 101x1}, 1010x \ {10100, 10101, 10101}} {10xx0 \ {10x00, 10010, 10110}} { 10x0010100 \ { 10x0010100, 10x0010100}} {xxx1x \ {0xx1x, 10x1x, x0x1x}, 1xxx1 \ {1x111, 11x11, 11xx1}} {01x1x \ {01110, 0111x, 01010}} { 01x1xxxx1x \ { 01x11xxx10, 01x10xxx11, 01x1x0xx1x, 01x1x10x1x, 01x1xx0x1x, 01110xxx1x, 0111xxxx1x, 01010xxx1x}, 01x111xx11 \ { 01x111x111, 01x1111x11, 01x1111x11, 011111xx11}} {xx110 \ {x1110, 1x110, 00110}, 10xx0 \ {100x0, 10100, 10110}} {x01xx \ {10111, 00101, x0110}} { x0110xx110 \ { x0110x1110, x01101x110, x011000110, x0110xx110}, x01x010xx0 \ { x011010x00, x010010x10, x01x0100x0, x01x010100, x01x010110, x011010xx0}} {0x10x \ {00101, 01101, 00100}, x011x \ {00111, x0110, 1011x}} {0xxx0 \ {01000, 01xx0, 0x000}} { 0xx000x100 \ { 0xx0000100, 010000x100, 01x000x100, 0x0000x100}, 0xx10x0110 \ { 0xx10x0110, 0xx1010110, 01x10x0110}} {xxx11 \ {00011, x0111, 1xx11}} {x1x00 \ {01000}, x1xx1 \ {x10x1, 01111}} { x1x11xxx11 \ { x1x1100011, x1x11x0111, x1x111xx11, x1011xxx11, 01111xxx11}} {} {111xx \ {111x1, 11111, 11110}} {} {xx0x1 \ {010x1, 11001, 000x1}, x11x0 \ {111x0, 11100, 01110}} {00x1x \ {00x10, 00110, 00011}, 0xxx1 \ {01xx1, 0x111, 00001}} { 00x11xx011 \ { 00x1101011, 00x1100011, 00011xx011}, 0xxx1xx0x1 \ { 0xx11xx001, 0xx01xx011, 0xxx1010x1, 0xxx111001, 0xxx1000x1, 01xx1xx0x1, 0x111xx0x1, 00001xx0x1}, 00x10x1110 \ { 00x1011110, 00x1001110, 00x10x1110, 00110x1110}} {x1x01 \ {11101, 11001, x1001}, 1xxx0 \ {10100, 11xx0}} {00xxx \ {000xx, 00xx1}, x100x \ {01000, x1001}} { 00x01x1x01 \ { 00x0111101, 00x0111001, 00x01x1001, 00001x1x01, 00x01x1x01}, x1001x1x01 \ { x100111101, x100111001, x1001x1001, x1001x1x01}, 00xx01xxx0 \ { 00x101xx00, 00x001xx10, 00xx010100, 00xx011xx0, 000x01xxx0}, x10001xx00 \ { x100010100, x100011x00, 010001xx00}} {xx01x \ {00010, x001x, 11011}} {10xx1 \ {101x1, 10101, 10111}, 1x11x \ {11111, 10111}} { 10x11xx011 \ { 10x11x0011, 10x1111011, 10111xx011, 10111xx011}, 1x11xxx01x \ { 1x111xx010, 1x110xx011, 1x11x00010, 1x11xx001x, 1x11x11011, 11111xx01x, 10111xx01x}} {01x1x \ {0101x, 01010, 01111}, 10x0x \ {10000, 10101, 10001}} {} {} {} {xx01x \ {00010, 11010, 1x011}} {} {x1001 \ {11001, 01001}, xx100 \ {11100, 0x100, 01100}} {x010x \ {10100, x0100, 10101}} { x0101x1001 \ { x010111001, x010101001, 10101x1001}, x0100xx100 \ { x010011100, x01000x100, x010001100, 10100xx100, x0100xx100}} {} {x110x \ {01101, 0110x, 01100}, 11x0x \ {11101, 1100x}, xx10x \ {x010x, 1x100, x0100}} {} {0011x \ {00111}, x1x0x \ {01x0x, 01001, 01000}} {110x0 \ {11010, 11000, 11000}, x1xx1 \ {11xx1, 01x01, 11001}, x1x01 \ {01001, x1101}} { 1101000110 \ { 1101000110}, x1x1100111 \ { x1x1100111, 11x1100111}, 11000x1x00 \ { 1100001x00, 1100001000, 11000x1x00, 11000x1x00}, x1x01x1x01 \ { x1x0101x01, x1x0101001, 11x01x1x01, 01x01x1x01, 11001x1x01}, x1x01x1x01 \ { x1x0101x01, x1x0101001, 01001x1x01, x1101x1x01}} {x0xx1 \ {00x11, 00xx1, 10101}, 1xx11 \ {11011, 11x11, 11x11}} {} {} {110xx \ {11000, 1101x}} {xx1xx \ {001x1, 0x11x, 1x100}, 0x1xx \ {0x111, 0x10x, 01100}, 00xx1 \ {00x11, 00111, 00011}} { xx1xx110xx \ { xx1x1110x0, xx1x0110x1, xx11x1100x, xx10x1101x, xx1xx11000, xx1xx1101x, 001x1110xx, 0x11x110xx, 1x100110xx}, 0x1xx110xx \ { 0x1x1110x0, 0x1x0110x1, 0x11x1100x, 0x10x1101x, 0x1xx11000, 0x1xx1101x, 0x111110xx, 0x10x110xx, 01100110xx}, 00xx1110x1 \ { 00x1111001, 00x0111011, 00xx111011, 00x11110x1, 00111110x1, 00011110x1}} {x1x0x \ {11x01, x1000, x110x}, x010x \ {10100, x0100, 00101}, 01xxx \ {01011, 01x11, 0111x}} {101xx \ {101x1, 1010x, 10110}, 11x1x \ {1101x, 11011}} { 1010xx1x0x \ { 10101x1x00, 10100x1x01, 1010x11x01, 1010xx1000, 1010xx110x, 10101x1x0x, 1010xx1x0x}, 1010xx010x \ { 10101x0100, 10100x0101, 1010x10100, 1010xx0100, 1010x00101, 10101x010x, 1010xx010x}, 101xx01xxx \ { 101x101xx0, 101x001xx1, 1011x01x0x, 1010x01x1x, 101xx01011, 101xx01x11, 101xx0111x, 101x101xxx, 1010x01xxx, 1011001xxx}, 11x1x01x1x \ { 11x1101x10, 11x1001x11, 11x1x01011, 11x1x01x11, 11x1x0111x, 1101x01x1x, 1101101x1x}} {10x00 \ {10100, 10000}} {x01xx \ {10101, 00111, 0011x}} { x010010x00 \ { x010010100, x010010000}} {10xxx \ {10111, 10001, 10x10}} {x1111 \ {01111, 11111}} { x111110x11 \ { x111110111, 0111110x11, 1111110x11}} {1x000 \ {11000, 10000, 10000}} {00x0x \ {0010x, 0000x, 0000x}} { 00x001x000 \ { 00x0011000, 00x0010000, 00x0010000, 001001x000, 000001x000, 000001x000}} {} {xxx1x \ {01011, x0x11, 1x01x}, 0x10x \ {0110x, 0x100, 0010x}, 1x01x \ {1101x, 11010}} {} {x0x00 \ {00100, 10x00, x0000}, x01x1 \ {00101, 10101, 00111}} {00x0x \ {0000x, 0010x}, 1x0x1 \ {10001, 1x001}} { 00x00x0x00 \ { 00x0000100, 00x0010x00, 00x00x0000, 00000x0x00, 00100x0x00}, 00x01x0101 \ { 00x0100101, 00x0110101, 00001x0101, 00101x0101}, 1x0x1x01x1 \ { 1x011x0101, 1x001x0111, 1x0x100101, 1x0x110101, 1x0x100111, 10001x01x1, 1x001x01x1}} {00xx1 \ {000x1, 00001}} {x1100 \ {11100}} {} {1x10x \ {1x100, 10100, 1x101}, x1xx0 \ {01x10, x10x0, x1000}} {xx00x \ {0100x, xx001, x100x}} { xx00x1x10x \ { xx0011x100, xx0001x101, xx00x1x100, xx00x10100, xx00x1x101, 0100x1x10x, xx0011x10x, x100x1x10x}, xx000x1x00 \ { xx000x1000, xx000x1000, 01000x1x00, x1000x1x00}} {} {00x0x \ {00100, 00x00, 00x00}, x0x11 \ {x0011, 00111, 10011}} {} {x001x \ {00010, 10010, 00011}} {xxxxx \ {x0010, 11x11, 1xx00}, xxx10 \ {1x010, x1110, 00110}} { xxx1xx001x \ { xxx11x0010, xxx10x0011, xxx1x00010, xxx1x10010, xxx1x00011, x0010x001x, 11x11x001x}, xxx10x0010 \ { xxx1000010, xxx1010010, 1x010x0010, x1110x0010, 00110x0010}} {xxx00 \ {x0x00, x1100, x1000}} {xx1x1 \ {11101, 00111, 101x1}, x1x11 \ {11x11, 01x11}} {} {0110x \ {01100, 01101}} {} {} {0x101 \ {01101}, 10x01 \ {10001, 10101}} {01x1x \ {0111x, 01x11, 01111}} {} {xx0x1 \ {000x1, 10011}, 111xx \ {11101, 11111, 1111x}, x0x00 \ {00100, 10x00, 00000}} {00x1x \ {00111, 0011x}} { 00x11xx011 \ { 00x1100011, 00x1110011, 00111xx011, 00111xx011}, 00x1x1111x \ { 00x1111110, 00x1011111, 00x1x11111, 00x1x1111x, 001111111x, 0011x1111x}} {x1x10 \ {x1110, 11110, x1010}, x11x0 \ {01100, 01110}} {0xx10 \ {0x110, 00x10, 00x10}} { 0xx10x1x10 \ { 0xx10x1110, 0xx1011110, 0xx10x1010, 0x110x1x10, 00x10x1x10, 00x10x1x10}, 0xx10x1110 \ { 0xx1001110, 0x110x1110, 00x10x1110, 00x10x1110}} {x110x \ {11100, x1100, x1101}} {1xx1x \ {10010, 1x011, 1x01x}} {} {0100x \ {01000, 01001, 01001}, 1x0xx \ {1000x, 1101x, 110x1}} {x110x \ {11101, 0110x}, 11xxx \ {11x10, 11x11, 11011}} { x110x0100x \ { x110101000, x110001001, x110x01000, x110x01001, x110x01001, 111010100x, 0110x0100x}, 11x0x0100x \ { 11x0101000, 11x0001001, 11x0x01000, 11x0x01001, 11x0x01001}, x110x1x00x \ { x11011x000, x11001x001, x110x1000x, x110x11001, 111011x00x, 0110x1x00x}, 11xxx1x0xx \ { 11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1000x, 11xxx1101x, 11xxx110x1, 11x101x0xx, 11x111x0xx, 110111x0xx}} {01xxx \ {01010, 01x0x, 01111}} {x00x1 \ {00011, 100x1, 00001}} { x00x101xx1 \ { x001101x01, x000101x11, x00x101x01, x00x101111, 0001101xx1, 100x101xx1, 0000101xx1}} {1x0x1 \ {10001, 1x011, 100x1}, x0110 \ {10110, 00110, 00110}} {1xxxx \ {11100, 101xx, 101xx}, x1xx1 \ {111x1, 11001, 010x1}} { 1xxx11x0x1 \ { 1xx111x001, 1xx011x011, 1xxx110001, 1xxx11x011, 1xxx1100x1, 101x11x0x1, 101x11x0x1}, x1xx11x0x1 \ { x1x111x001, x1x011x011, x1xx110001, x1xx11x011, x1xx1100x1, 111x11x0x1, 110011x0x1, 010x11x0x1}, 1xx10x0110 \ { 1xx1010110, 1xx1000110, 1xx1000110, 10110x0110, 10110x0110}} {xx111 \ {01111, 10111, 10111}, 0xx10 \ {00x10, 00010, 01110}, x0x0x \ {1010x, 10001, x000x}} {101xx \ {1011x, 101x0, 10110}, x111x \ {11111, 01111, 01111}, x11x1 \ {x1111, x1101, x1101}} { 10111xx111 \ { 1011101111, 1011110111, 1011110111, 10111xx111}, x1111xx111 \ { x111101111, x111110111, x111110111, 11111xx111, 01111xx111, 01111xx111}, 101100xx10 \ { 1011000x10, 1011000010, 1011001110, 101100xx10, 101100xx10, 101100xx10}, x11100xx10 \ { x111000x10, x111000010, x111001110}, 1010xx0x0x \ { 10101x0x00, 10100x0x01, 1010x1010x, 1010x10001, 1010xx000x, 10100x0x0x}, x1101x0x01 \ { x110110101, x110110001, x1101x0001, x1101x0x01, x1101x0x01}} {} {x0xx1 \ {100x1, 000x1, 00x01}, 100xx \ {100x0, 10001, 100x1}} {} {x11xx \ {x111x, 011x0, x11x1}, 1xxxx \ {11xxx, 1111x, 11111}, 00xx0 \ {00010, 00100, 00110}} {01xxx \ {011x0, 01101, 010x1}, 11xx0 \ {11000, 11010}} { 01xxxx11xx \ { 01xx1x11x0, 01xx0x11x1, 01x1xx110x, 01x0xx111x, 01xxxx111x, 01xxx011x0, 01xxxx11x1, 011x0x11xx, 01101x11xx, 010x1x11xx}, 11xx0x11x0 \ { 11x10x1100, 11x00x1110, 11xx0x1110, 11xx0011x0, 11000x11x0, 11010x11x0}, 01xxx1xxxx \ { 01xx11xxx0, 01xx01xxx1, 01x1x1xx0x, 01x0x1xx1x, 01xxx11xxx, 01xxx1111x, 01xxx11111, 011x01xxxx, 011011xxxx, 010x11xxxx}, 11xx01xxx0 \ { 11x101xx00, 11x001xx10, 11xx011xx0, 11xx011110, 110001xxx0, 110101xxx0}, 01xx000xx0 \ { 01x1000x00, 01x0000x10, 01xx000010, 01xx000100, 01xx000110, 011x000xx0}, 11xx000xx0 \ { 11x1000x00, 11x0000x10, 11xx000010, 11xx000100, 11xx000110, 1100000xx0, 1101000xx0}} {xxx01 \ {0x101, x0x01, 00001}, x01x0 \ {00100, 101x0}} {xxx1x \ {x1x10, 01111, x0x10}} { xxx10x0110 \ { xxx1010110, x1x10x0110, x0x10x0110}} {x1xx0 \ {01x10, 11x10, x1x00}, x11x1 \ {011x1, 11101, 11101}} {x010x \ {00101, x0101}, 01xxx \ {01011, 01x10, 0101x}, x00x1 \ {00001, 10011, 000x1}} { x0100x1x00 \ { x0100x1x00}, 01xx0x1xx0 \ { 01x10x1x00, 01x00x1x10, 01xx001x10, 01xx011x10, 01xx0x1x00, 01x10x1xx0, 01010x1xx0}, x0101x1101 \ { x010101101, x010111101, x010111101, 00101x1101, x0101x1101}, 01xx1x11x1 \ { 01x11x1101, 01x01x1111, 01xx1011x1, 01xx111101, 01xx111101, 01011x11x1, 01011x11x1}, x00x1x11x1 \ { x0011x1101, x0001x1111, x00x1011x1, x00x111101, x00x111101, 00001x11x1, 10011x11x1, 000x1x11x1}} {} {x1x1x \ {x1110, 01010, 1101x}} {} {xx0x0 \ {x10x0, 10000, 01010}, 1x1x1 \ {11101, 11111, 10101}} {x0xx0 \ {x0x00, 00x10}} { x0xx0xx0x0 \ { x0x10xx000, x0x00xx010, x0xx0x10x0, x0xx010000, x0xx001010, x0x00xx0x0, 00x10xx0x0}} {} {xx0xx \ {x00x1, 11010, x1000}} {} {001xx \ {00100, 0010x, 0011x}, 01x0x \ {01100, 01x00, 01x00}} {xx0xx \ {00001, 11011, 00010}} { xx0xx001xx \ { xx0x1001x0, xx0x0001x1, xx01x0010x, xx00x0011x, xx0xx00100, xx0xx0010x, xx0xx0011x, 00001001xx, 11011001xx, 00010001xx}, xx00x01x0x \ { xx00101x00, xx00001x01, xx00x01100, xx00x01x00, xx00x01x00, 0000101x0x}} {110x0 \ {11010, 11000}, x100x \ {01001, 1100x, 0100x}} {1x001 \ {10001, 11001, 11001}, 1011x \ {10111, 10110, 10110}} { 1011011010 \ { 1011011010, 1011011010, 1011011010}, 1x001x1001 \ { 1x00101001, 1x00111001, 1x00101001, 10001x1001, 11001x1001, 11001x1001}} {xx0x0 \ {x1000, 11010, 01010}} {1x0xx \ {1x0x1, 1001x, 10000}, 011x1 \ {01101}, xx10x \ {xx101, 0110x, x010x}} { 1x0x0xx0x0 \ { 1x010xx000, 1x000xx010, 1x0x0x1000, 1x0x011010, 1x0x001010, 10010xx0x0, 10000xx0x0}, xx100xx000 \ { xx100x1000, 01100xx000, x0100xx000}} {x01x0 \ {x0110, 00100}} {0x0xx \ {00000, 010x0, 01001}, 01x11 \ {01111, 01011}, 01xx0 \ {01100, 01010, 01010}} { 0x0x0x01x0 \ { 0x010x0100, 0x000x0110, 0x0x0x0110, 0x0x000100, 00000x01x0, 010x0x01x0}, 01xx0x01x0 \ { 01x10x0100, 01x00x0110, 01xx0x0110, 01xx000100, 01100x01x0, 01010x01x0, 01010x01x0}} {1xx10 \ {10x10, 10110, 10110}, xxx1x \ {1001x, 0011x, x1010}, 1xx10 \ {10110, 1x110, 11010}} {0x10x \ {01101, 00100, 01100}} {} {0x1x0 \ {01110, 011x0, 0x110}, x100x \ {11000, 0100x, 01001}, x11xx \ {011x0, 11111, x11x1}} {011x0 \ {01110}, x1xxx \ {11x10, 01100, 110x0}} { 011x00x1x0 \ { 011100x100, 011000x110, 011x001110, 011x0011x0, 011x00x110, 011100x1x0}, x1xx00x1x0 \ { x1x100x100, x1x000x110, x1xx001110, x1xx0011x0, x1xx00x110, 11x100x1x0, 011000x1x0, 110x00x1x0}, 01100x1000 \ { 0110011000, 0110001000}, x1x0xx100x \ { x1x01x1000, x1x00x1001, x1x0x11000, x1x0x0100x, x1x0x01001, 01100x100x, 11000x100x}, 011x0x11x0 \ { 01110x1100, 01100x1110, 011x0011x0, 01110x11x0}, x1xxxx11xx \ { x1xx1x11x0, x1xx0x11x1, x1x1xx110x, x1x0xx111x, x1xxx011x0, x1xxx11111, x1xxxx11x1, 11x10x11xx, 01100x11xx, 110x0x11xx}} {0x10x \ {0010x, 01101, 00101}, x1000 \ {11000, 01000}} {11xxx \ {11000, 11010, 11x00}, xx001 \ {00001, 1x001}} { 11x0x0x10x \ { 11x010x100, 11x000x101, 11x0x0010x, 11x0x01101, 11x0x00101, 110000x10x, 11x000x10x}, xx0010x101 \ { xx00100101, xx00101101, xx00100101, 000010x101, 1x0010x101}, 11x00x1000 \ { 11x0011000, 11x0001000, 11000x1000, 11x00x1000}} {10x0x \ {10101, 10000}, 0xx0x \ {00x01, 01x00, 01100}} {xx011 \ {01011, x1011}, x011x \ {x0110, 1011x, 10110}} {} {x0xx1 \ {10011, x01x1, 10101}, x1xxx \ {x10x1, 11011, 110x0}} {xx0x0 \ {01010, 1x000, x1010}, 0xxx0 \ {01110, 00000, 001x0}, 10xx1 \ {10111, 101x1, 10101}} { 10xx1x0xx1 \ { 10x11x0x01, 10x01x0x11, 10xx110011, 10xx1x01x1, 10xx110101, 10111x0xx1, 101x1x0xx1, 10101x0xx1}, xx0x0x1xx0 \ { xx010x1x00, xx000x1x10, xx0x0110x0, 01010x1xx0, 1x000x1xx0, x1010x1xx0}, 0xxx0x1xx0 \ { 0xx10x1x00, 0xx00x1x10, 0xxx0110x0, 01110x1xx0, 00000x1xx0, 001x0x1xx0}, 10xx1x1xx1 \ { 10x11x1x01, 10x01x1x11, 10xx1x10x1, 10xx111011, 10111x1xx1, 101x1x1xx1, 10101x1xx1}} {x0x00 \ {10x00, 00x00, x0000}, 0xx00 \ {00000, 01000, 00100}} {1000x \ {10001, 10000}} { 10000x0x00 \ { 1000010x00, 1000000x00, 10000x0000, 10000x0x00}, 100000xx00 \ { 1000000000, 1000001000, 1000000100, 100000xx00}} {x101x \ {01010, 11011, 11011}, 10xxx \ {1001x, 100xx, 10000}} {111xx \ {11110, 11111, 1111x}, 011xx \ {01110, 01101, 011x1}} { 1111xx101x \ { 11111x1010, 11110x1011, 1111x01010, 1111x11011, 1111x11011, 11110x101x, 11111x101x, 1111xx101x}, 0111xx101x \ { 01111x1010, 01110x1011, 0111x01010, 0111x11011, 0111x11011, 01110x101x, 01111x101x}, 111xx10xxx \ { 111x110xx0, 111x010xx1, 1111x10x0x, 1110x10x1x, 111xx1001x, 111xx100xx, 111xx10000, 1111010xxx, 1111110xxx, 1111x10xxx}, 011xx10xxx \ { 011x110xx0, 011x010xx1, 0111x10x0x, 0110x10x1x, 011xx1001x, 011xx100xx, 011xx10000, 0111010xxx, 0110110xxx, 011x110xxx}} {x1x11 \ {01011, 01x11}, xxx01 \ {01x01, 00101, x0x01}} {xx111 \ {10111, x1111, x1111}, x1xx1 \ {01x11, 11x11, x1x11}} { xx111x1x11 \ { xx11101011, xx11101x11, 10111x1x11, x1111x1x11, x1111x1x11}, x1x11x1x11 \ { x1x1101011, x1x1101x11, 01x11x1x11, 11x11x1x11, x1x11x1x11}, x1x01xxx01 \ { x1x0101x01, x1x0100101, x1x01x0x01}} {} {x11xx \ {1110x, x11x0, 111x1}, 00x0x \ {00x01, 0010x, 00100}} {} {1xxx1 \ {1x001, 1xx01, 11x11}, x1xxx \ {01001, x100x, 11001}} {xxx10 \ {x0010, x0x10, xx010}, 1xx10 \ {10110, 11110, 11110}} { xxx10x1x10 \ { x0010x1x10, x0x10x1x10, xx010x1x10}, 1xx10x1x10 \ { 10110x1x10, 11110x1x10, 11110x1x10}} {x11x0 \ {01100, 011x0, 11110}, 0100x \ {01000, 01001}} {010x0 \ {01000, 01010, 01010}, 0xx01 \ {0x001, 00101}} { 010x0x11x0 \ { 01010x1100, 01000x1110, 010x001100, 010x0011x0, 010x011110, 01000x11x0, 01010x11x0, 01010x11x0}, 0100001000 \ { 0100001000, 0100001000}, 0xx0101001 \ { 0xx0101001, 0x00101001, 0010101001}} {1x000 \ {10000, 11000}, x0x10 \ {00110, 10110}, 01xx0 \ {01000, 01010}} {} {} {0xx1x \ {0001x, 00x10, 0x01x}, 1x1x1 \ {10111, 101x1, 10101}} {x0xxx \ {10xx1, x0001, 101x1}, 00x1x \ {00x11, 00011, 00011}} { x0x1x0xx1x \ { x0x110xx10, x0x100xx11, x0x1x0001x, x0x1x00x10, x0x1x0x01x, 10x110xx1x, 101110xx1x}, 00x1x0xx1x \ { 00x110xx10, 00x100xx11, 00x1x0001x, 00x1x00x10, 00x1x0x01x, 00x110xx1x, 000110xx1x, 000110xx1x}, x0xx11x1x1 \ { x0x111x101, x0x011x111, x0xx110111, x0xx1101x1, x0xx110101, 10xx11x1x1, x00011x1x1, 101x11x1x1}, 00x111x111 \ { 00x1110111, 00x1110111, 00x111x111, 000111x111, 000111x111}} {x10x0 \ {11000, 010x0, 01000}, x11x0 \ {x1110, 01110, 11100}, x001x \ {x0011, 00011, 10010}} {0x011 \ {01011}} { 0x011x0011 \ { 0x011x0011, 0x01100011, 01011x0011}} {111x1 \ {11111}} {x111x \ {0111x, x1110, 11111}, 1xx10 \ {11010, 10x10, 1x110}} { x111111111 \ { x111111111, 0111111111, 1111111111}} {110x0 \ {11010, 11000}} {x10xx \ {110x1, 010x0, x1000}} { x10x0110x0 \ { x101011000, x100011010, x10x011010, x10x011000, 010x0110x0, x1000110x0}} {x11xx \ {x1100, x1101}, x0xx1 \ {10001, 101x1, x0x11}, 11x0x \ {1110x, 11100, 11100}} {x0xxx \ {00xx0, 000x0, 101x1}} { x0xxxx11xx \ { x0xx1x11x0, x0xx0x11x1, x0x1xx110x, x0x0xx111x, x0xxxx1100, x0xxxx1101, 00xx0x11xx, 000x0x11xx, 101x1x11xx}, x0xx1x0xx1 \ { x0x11x0x01, x0x01x0x11, x0xx110001, x0xx1101x1, x0xx1x0x11, 101x1x0xx1}, x0x0x11x0x \ { x0x0111x00, x0x0011x01, x0x0x1110x, x0x0x11100, x0x0x11100, 00x0011x0x, 0000011x0x, 1010111x0x}} {1000x \ {10001, 10000}} {} {} {xx001 \ {x1001, 01001, 00001}, x1x11 \ {11x11, 01111}, 0xx00 \ {00000, 0x000, 00100}} {x01xx \ {x0111, 00101, 10111}, 110xx \ {11001, 11011, 1101x}} { x0101xx001 \ { x0101x1001, x010101001, x010100001, 00101xx001}, 11001xx001 \ { 11001x1001, 1100101001, 1100100001, 11001xx001}, x0111x1x11 \ { x011111x11, x011101111, x0111x1x11, 10111x1x11}, 11011x1x11 \ { 1101111x11, 1101101111, 11011x1x11, 11011x1x11}, x01000xx00 \ { x010000000, x01000x000, x010000100}, 110000xx00 \ { 1100000000, 110000x000, 1100000100}} {0xxx1 \ {010x1, 00x01, 000x1}, x0xxx \ {x0x00, 00101, 10x11}} {00x00 \ {00100, 00000}, x11xx \ {11101, 011x1, 011xx}} { x11x10xxx1 \ { x11110xx01, x11010xx11, x11x1010x1, x11x100x01, x11x1000x1, 111010xxx1, 011x10xxx1, 011x10xxx1}, 00x00x0x00 \ { 00x00x0x00, 00100x0x00, 00000x0x00}, x11xxx0xxx \ { x11x1x0xx0, x11x0x0xx1, x111xx0x0x, x110xx0x1x, x11xxx0x00, x11xx00101, x11xx10x11, 11101x0xxx, 011x1x0xxx, 011xxx0xxx}} {0xx01 \ {00001, 01001, 01001}, 10xx0 \ {10110, 10100}} {11x01 \ {11001, 11101, 11101}} { 11x010xx01 \ { 11x0100001, 11x0101001, 11x0101001, 110010xx01, 111010xx01, 111010xx01}} {xxx1x \ {00x11, 1111x, 0001x}, xx0xx \ {x1001, 010x0, xx011}} {} {} {xx1xx \ {00100, 011xx, x1101}, x1xxx \ {01xx0, 010x1, x11x1}, xxx10 \ {10010, 10110, 01010}} {x01x1 \ {x0111, 101x1, 10111}} { x01x1xx1x1 \ { x0111xx101, x0101xx111, x01x1011x1, x01x1x1101, x0111xx1x1, 101x1xx1x1, 10111xx1x1}, x01x1x1xx1 \ { x0111x1x01, x0101x1x11, x01x1010x1, x01x1x11x1, x0111x1xx1, 101x1x1xx1, 10111x1xx1}} {11xx0 \ {110x0, 11000, 11x00}} {x01xx \ {101x1, 0010x, 00101}} { x01x011xx0 \ { x011011x00, x010011x10, x01x0110x0, x01x011000, x01x011x00, 0010011xx0}} {0xx11 \ {01x11, 00x11, 00x11}, 011xx \ {01100, 011x0, 011x1}, 10xx1 \ {101x1, 10x01, 10101}} {xx1x1 \ {111x1, 0x1x1, 0x1x1}, 0x1x0 \ {01100, 0x110}} { xx1110xx11 \ { xx11101x11, xx11100x11, xx11100x11, 111110xx11, 0x1110xx11, 0x1110xx11}, xx1x1011x1 \ { xx11101101, xx10101111, xx1x1011x1, 111x1011x1, 0x1x1011x1, 0x1x1011x1}, 0x1x0011x0 \ { 0x11001100, 0x10001110, 0x1x001100, 0x1x0011x0, 01100011x0, 0x110011x0}, xx1x110xx1 \ { xx11110x01, xx10110x11, xx1x1101x1, xx1x110x01, xx1x110101, 111x110xx1, 0x1x110xx1, 0x1x110xx1}} {x1x00 \ {x1000, 11x00, x1100}} {xx011 \ {0x011, x1011}, x11xx \ {01110, 01111, 111xx}} { x1100x1x00 \ { x1100x1000, x110011x00, x1100x1100, 11100x1x00}} {11xx0 \ {11x10, 11110, 11010}, 1x1x0 \ {10110, 1x100, 1x100}} {x0x0x \ {00001, x000x, 00101}, xx1x1 \ {11111, xx111, 011x1}} { x0x0011x00 \ { x000011x00}, x0x001x100 \ { x0x001x100, x0x001x100, x00001x100}} {0xxx0 \ {0x010, 01010, 00110}} {x101x \ {11010, 01011, 01010}} { x10100xx10 \ { x10100x010, x101001010, x101000110, 110100xx10, 010100xx10}} {1x00x \ {1100x, 10000, 11000}, 00x10 \ {00010, 00110}} {xx1xx \ {x0101, 011xx, 101x1}, 101xx \ {10111, 10101, 101x1}, xx100 \ {01100, 1x100, 1x100}} { xx10x1x00x \ { xx1011x000, xx1001x001, xx10x1100x, xx10x10000, xx10x11000, x01011x00x, 0110x1x00x, 101011x00x}, 1010x1x00x \ { 101011x000, 101001x001, 1010x1100x, 1010x10000, 1010x11000, 101011x00x, 101011x00x}, xx1001x000 \ { xx10011000, xx10010000, xx10011000, 011001x000, 1x1001x000, 1x1001x000}, xx11000x10 \ { xx11000010, xx11000110, 0111000x10}, 1011000x10 \ { 1011000010, 1011000110}} {10xx1 \ {10011, 10111, 10001}} {010x1 \ {01001, 01011}, 111x0 \ {11100, 11110}} { 010x110xx1 \ { 0101110x01, 0100110x11, 010x110011, 010x110111, 010x110001, 0100110xx1, 0101110xx1}} {1x1x1 \ {11111, 10111, 101x1}} {1x11x \ {1011x, 10110, 1111x}} { 1x1111x111 \ { 1x11111111, 1x11110111, 1x11110111, 101111x111, 111111x111}} {x00x0 \ {00010, 10010, 100x0}} {x00x1 \ {00011, 10011}, 00x0x \ {00000, 00x01, 00001}} { 00x00x0000 \ { 00x0010000, 00000x0000}} {x10x0 \ {11000, 11010, 01000}} {1xxx1 \ {11111, 10101, 11x01}} {} {} {0xx0x \ {00101, 0xx01, 00000}, 0x0x0 \ {0x010, 000x0, 00000}} {} {0xx01 \ {00101, 00001, 00x01}, 01x11 \ {01111, 01011}} {} {} {x1xx1 \ {x1x01, 01011, x11x1}} {0x1x0 \ {0x100, 01110, 01110}, x00x0 \ {10010, 100x0, 100x0}} {} {0xx10 \ {0x010, 00110, 01010}, 10x11 \ {10011, 10111}} {} {} {xx011 \ {1x011, x0011}, 010x1 \ {01001, 01011}} {xx0xx \ {100xx, 1x011, xx0x0}} { xx011xx011 \ { xx0111x011, xx011x0011, 10011xx011, 1x011xx011}, xx0x1010x1 \ { xx01101001, xx00101011, xx0x101001, xx0x101011, 100x1010x1, 1x011010x1}} {} {xxxx0 \ {xx100, xx010, 10x10}} {} {xxxx0 \ {1x100, x1x10, x1110}} {x010x \ {x0101, 10100}, x0011 \ {10011, 00011}, x11x0 \ {01100, 11100, x1100}} { x0100xxx00 \ { x01001x100, 10100xxx00}, x11x0xxxx0 \ { x1110xxx00, x1100xxx10, x11x01x100, x11x0x1x10, x11x0x1110, 01100xxxx0, 11100xxxx0, x1100xxxx0}} {x0x00 \ {x0000, 00x00, 00000}, 0x1xx \ {0x100, 0111x, 011x0}} {1x1x1 \ {11101, 11111}, x1x10 \ {11010, 01x10, 01010}, x0x01 \ {00101, x0101}} { 1x1x10x1x1 \ { 1x1110x101, 1x1010x111, 1x1x101111, 111010x1x1, 111110x1x1}, x1x100x110 \ { x1x1001110, x1x1001110, 110100x110, 01x100x110, 010100x110}, x0x010x101 \ { 001010x101, x01010x101}} {0x01x \ {00010, 0001x, 0001x}} {0x0x1 \ {0x001, 010x1, 0x011}} { 0x0110x011 \ { 0x01100011, 0x01100011, 010110x011, 0x0110x011}} {} {} {} {00xxx \ {000x1, 00101}, 01x0x \ {0110x, 01100}} {01x10 \ {01010, 01110}, 1x00x \ {11001, 1100x, 10000}} { 01x1000x10 \ { 0101000x10, 0111000x10}, 1x00x00x0x \ { 1x00100x00, 1x00000x01, 1x00x00001, 1x00x00101, 1100100x0x, 1100x00x0x, 1000000x0x}, 1x00x01x0x \ { 1x00101x00, 1x00001x01, 1x00x0110x, 1x00x01100, 1100101x0x, 1100x01x0x, 1000001x0x}} {0x11x \ {0x111, 00111, 0x110}, 1xxx0 \ {10x10, 10x00, 1x0x0}, 0xxx1 \ {01001, 00x11, 0xx11}} {1xx10 \ {10010, 1x110, 10x10}, 111xx \ {111x0, 11110, 111x1}} { 1xx100x110 \ { 1xx100x110, 100100x110, 1x1100x110, 10x100x110}, 1111x0x11x \ { 111110x110, 111100x111, 1111x0x111, 1111x00111, 1111x0x110, 111100x11x, 111100x11x, 111110x11x}, 1xx101xx10 \ { 1xx1010x10, 1xx101x010, 100101xx10, 1x1101xx10, 10x101xx10}, 111x01xxx0 \ { 111101xx00, 111001xx10, 111x010x10, 111x010x00, 111x01x0x0, 111x01xxx0, 111101xxx0}, 111x10xxx1 \ { 111110xx01, 111010xx11, 111x101001, 111x100x11, 111x10xx11, 111x10xxx1}} {x1x00 \ {01x00, 11x00, x1000}} {01xxx \ {0111x, 011x1, 01x0x}} { 01x00x1x00 \ { 01x0001x00, 01x0011x00, 01x00x1000, 01x00x1x00}} {010xx \ {01000, 0101x, 01011}} {1x110 \ {11110, 10110}, 0011x \ {00111, 00110}} { 1x11001010 \ { 1x11001010, 1111001010, 1011001010}, 0011x0101x \ { 0011101010, 0011001011, 0011x0101x, 0011x01011, 001110101x, 001100101x}} {x01x0 \ {x0110, x0100}, 1x101 \ {10101}} {x0x1x \ {x001x, 10x11, 00111}} { x0x10x0110 \ { x0x10x0110, x0010x0110}} {101x1 \ {10101, 10111, 10111}, 0010x \ {00101, 00100, 00100}} {0x1x1 \ {01101, 00111}, xxx00 \ {xx100, 11000, 10000}} { 0x1x1101x1 \ { 0x11110101, 0x10110111, 0x1x110101, 0x1x110111, 0x1x110111, 01101101x1, 00111101x1}, 0x10100101 \ { 0x10100101, 0110100101}, xxx0000100 \ { xxx0000100, xxx0000100, xx10000100, 1100000100, 1000000100}} {} {01x10 \ {01110, 01010}} {} {11xxx \ {11x1x, 11001, 11x01}, 011x0 \ {01110, 01100}} {0xx10 \ {00010, 01x10, 00110}} { 0xx1011x10 \ { 0xx1011x10, 0001011x10, 01x1011x10, 0011011x10}, 0xx1001110 \ { 0xx1001110, 0001001110, 01x1001110, 0011001110}} {1x10x \ {11100, 1010x, 1x101}, 1xx1x \ {10011, 1xx10, 1101x}} {10x10 \ {10110}, 01xxx \ {010xx, 01010, 01xx1}, xx1xx \ {0x1xx, x01xx, xx11x}} { 01x0x1x10x \ { 01x011x100, 01x001x101, 01x0x11100, 01x0x1010x, 01x0x1x101, 0100x1x10x, 01x011x10x}, xx10x1x10x \ { xx1011x100, xx1001x101, xx10x11100, xx10x1010x, xx10x1x101, 0x10x1x10x, x010x1x10x}, 10x101xx10 \ { 10x101xx10, 10x1011010, 101101xx10}, 01x1x1xx1x \ { 01x111xx10, 01x101xx11, 01x1x10011, 01x1x1xx10, 01x1x1101x, 0101x1xx1x, 010101xx1x, 01x111xx1x}, xx11x1xx1x \ { xx1111xx10, xx1101xx11, xx11x10011, xx11x1xx10, xx11x1101x, 0x11x1xx1x, x011x1xx1x, xx11x1xx1x}} {01x0x \ {01101, 0110x, 01x01}, 00x10 \ {00010, 00110, 00110}} {001x1 \ {00101, 00111}, x0xx1 \ {00x01, x0011, 10x01}} { 0010101x01 \ { 0010101101, 0010101101, 0010101x01, 0010101x01}, x0x0101x01 \ { x0x0101101, x0x0101101, x0x0101x01, 00x0101x01, 10x0101x01}} {xx101 \ {01101, x1101, x0101}, 101x0 \ {10110, 10100}, 11x00 \ {11000}} {} {} {10x11 \ {10111, 10011, 10011}, xx001 \ {x0001, 01001, 01001}} {} {} {0xx0x \ {01x01, 0x10x}} {} {} {10xx0 \ {10100, 10110, 10010}, xx0xx \ {000x1, 10001, x00xx}} {} {} {0xxx0 \ {01x10, 00100, 0xx10}, 0110x \ {01100, 01101}} {01x1x \ {0101x, 01110, 01x11}, 1x01x \ {1x011, 1001x, 1001x}} { 01x100xx10 \ { 01x1001x10, 01x100xx10, 010100xx10, 011100xx10}, 1x0100xx10 \ { 1x01001x10, 1x0100xx10, 100100xx10, 100100xx10}} {0x0xx \ {010x0, 010x1, 01001}, 0x0xx \ {0x0x1, 01000, 0100x}, 11x10 \ {11110, 11010}} {011x0 \ {01100}, 110x0 \ {11000}} { 011x00x0x0 \ { 011100x000, 011000x010, 011x001000, 011x001000, 011000x0x0}, 110x00x0x0 \ { 110100x000, 110000x010, 110x001000, 110x001000, 110000x0x0}, 0111011x10 \ { 0111011110, 0111011010}, 1101011x10 \ { 1101011110, 1101011010}} {x11x0 \ {011x0, x1110, 111x0}, 0xx01 \ {00001, 01101, 00101}} {x000x \ {10000, 10001, 00001}} { x0000x1100 \ { x000001100, x000011100, 10000x1100}, x00010xx01 \ { x000100001, x000101101, x000100101, 100010xx01, 000010xx01}} {10xxx \ {10001, 10x0x, 10100}, xx0x1 \ {0x0x1, xx001, x0011}} {0xx1x \ {0x11x, 0x010, 0111x}, 000xx \ {0000x, 00001, 0001x}} { 0xx1x10x1x \ { 0xx1110x10, 0xx1010x11, 0x11x10x1x, 0x01010x1x, 0111x10x1x}, 000xx10xxx \ { 000x110xx0, 000x010xx1, 0001x10x0x, 0000x10x1x, 000xx10001, 000xx10x0x, 000xx10100, 0000x10xxx, 0000110xxx, 0001x10xxx}, 0xx11xx011 \ { 0xx110x011, 0xx11x0011, 0x111xx011, 01111xx011}, 000x1xx0x1 \ { 00011xx001, 00001xx011, 000x10x0x1, 000x1xx001, 000x1x0011, 00001xx0x1, 00001xx0x1, 00011xx0x1}} {x00xx \ {1000x, x001x, 100xx}, xxx10 \ {01x10, 10x10, 00x10}} {01xxx \ {01010, 01101, 01110}, x100x \ {01001, 01000, 11001}} { 01xxxx00xx \ { 01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxx1000x, 01xxxx001x, 01xxx100xx, 01010x00xx, 01101x00xx, 01110x00xx}, x100xx000x \ { x1001x0000, x1000x0001, x100x1000x, x100x1000x, 01001x000x, 01000x000x, 11001x000x}, 01x10xxx10 \ { 01x1001x10, 01x1010x10, 01x1000x10, 01010xxx10, 01110xxx10}} {00x10 \ {00110, 00010}} {00xxx \ {00101, 0010x, 001x0}} { 00x1000x10 \ { 00x1000110, 00x1000010, 0011000x10}} {111xx \ {111x0, 11100}} {x101x \ {x1011, 01011}, x11xx \ {x11x0, 11100, x110x}} { x101x1111x \ { x101111110, x101011111, x101x11110, x10111111x, 010111111x}, x11xx111xx \ { x11x1111x0, x11x0111x1, x111x1110x, x110x1111x, x11xx111x0, x11xx11100, x11x0111xx, 11100111xx, x110x111xx}} {x00xx \ {10000, x0011, x00x0}, xx1x0 \ {0x1x0, xx110, xx100}} {10x1x \ {10110, 10x11}, x110x \ {x1101, 0110x, 1110x}} { 10x1xx001x \ { 10x11x0010, 10x10x0011, 10x1xx0011, 10x1xx0010, 10110x001x, 10x11x001x}, x110xx000x \ { x1101x0000, x1100x0001, x110x10000, x110xx0000, x1101x000x, 0110xx000x, 1110xx000x}, 10x10xx110 \ { 10x100x110, 10x10xx110, 10110xx110}, x1100xx100 \ { x11000x100, x1100xx100, 01100xx100, 11100xx100}} {x011x \ {10110, 00111, x0111}} {0x1x1 \ {001x1, 00101, 011x1}, 000x1 \ {00001}} { 0x111x0111 \ { 0x11100111, 0x111x0111, 00111x0111, 01111x0111}, 00011x0111 \ { 0001100111, 00011x0111}} {xxxxx \ {10101, x1xx1, xx1xx}, 0xx10 \ {0x110, 01110, 01010}} {10x01 \ {10101}, x1x0x \ {x1100, 1110x, x110x}} { 10x01xxx01 \ { 10x0110101, 10x01x1x01, 10x01xx101, 10101xxx01}, x1x0xxxx0x \ { x1x01xxx00, x1x00xxx01, x1x0x10101, x1x0xx1x01, x1x0xxx10x, x1100xxx0x, 1110xxxx0x, x110xxxx0x}} {1x1x1 \ {11111, 11101, 10111}} {x110x \ {0110x, 11101}} { x11011x101 \ { x110111101, 011011x101, 111011x101}} {} {xx001 \ {1x001, 11001, 11001}} {} {00x0x \ {00x00, 00x01, 0010x}, 0110x \ {01101}, x01x0 \ {x0110, 10110, 10110}} {} {} {1x0xx \ {100x1, 1x000}} {xxx01 \ {11001, 10x01, 01101}, x0x0x \ {10000, 00101, x0101}, 0x10x \ {00100, 0010x, 0010x}} { xxx011x001 \ { xxx0110001, 110011x001, 10x011x001, 011011x001}, x0x0x1x00x \ { x0x011x000, x0x001x001, x0x0x10001, x0x0x1x000, 100001x00x, 001011x00x, x01011x00x}, 0x10x1x00x \ { 0x1011x000, 0x1001x001, 0x10x10001, 0x10x1x000, 001001x00x, 0010x1x00x, 0010x1x00x}} {xx10x \ {x110x, 10101, 11100}} {1011x \ {10111, 10110, 10110}, x0xxx \ {x0100, 00100, 00001}} { x0x0xxx10x \ { x0x01xx100, x0x00xx101, x0x0xx110x, x0x0x10101, x0x0x11100, x0100xx10x, 00100xx10x, 00001xx10x}} {x1x11 \ {x1011, 11011, 11x11}, xx10x \ {1110x, 1x100, 0x100}} {xxx1x \ {x1110, 00111, 01x1x}} { xxx11x1x11 \ { xxx11x1011, xxx1111011, xxx1111x11, 00111x1x11, 01x11x1x11}} {x0x11 \ {10011, x0111, 00x11}} {xxxx1 \ {0x101, 000x1, 00101}} { xxx11x0x11 \ { xxx1110011, xxx11x0111, xxx1100x11, 00011x0x11}} {01xxx \ {011x0, 01x00, 01x01}, x1xxx \ {11101, 11011, x1x11}} {xx111 \ {x1111, 1x111, x0111}, x0xx1 \ {10001, 10111, 001x1}} { xx11101x11 \ { x111101x11, 1x11101x11, x011101x11}, x0xx101xx1 \ { x0x1101x01, x0x0101x11, x0xx101x01, 1000101xx1, 1011101xx1, 001x101xx1}, xx111x1x11 \ { xx11111011, xx111x1x11, x1111x1x11, 1x111x1x11, x0111x1x11}, x0xx1x1xx1 \ { x0x11x1x01, x0x01x1x11, x0xx111101, x0xx111011, x0xx1x1x11, 10001x1xx1, 10111x1xx1, 001x1x1xx1}} {xx001 \ {1x001, 0x001, 10001}, 011xx \ {0110x, 01101, 0111x}} {100xx \ {10001, 100x1}} { 10001xx001 \ { 100011x001, 100010x001, 1000110001, 10001xx001, 10001xx001}, 100xx011xx \ { 100x1011x0, 100x0011x1, 1001x0110x, 1000x0111x, 100xx0110x, 100xx01101, 100xx0111x, 10001011xx, 100x1011xx}} {01xx1 \ {01111, 01001}} {x0xx1 \ {00001, x00x1, x0001}} { x0xx101xx1 \ { x0x1101x01, x0x0101x11, x0xx101111, x0xx101001, 0000101xx1, x00x101xx1, x000101xx1}} {x110x \ {1110x, 01101, x1101}, x11x0 \ {11100, 011x0}} {x011x \ {00110, 0011x, 1011x}, 01xxx \ {010x1, 01100}} { 01x0xx110x \ { 01x01x1100, 01x00x1101, 01x0x1110x, 01x0x01101, 01x0xx1101, 01001x110x, 01100x110x}, x0110x1110 \ { x011001110, 00110x1110, 00110x1110, 10110x1110}, 01xx0x11x0 \ { 01x10x1100, 01x00x1110, 01xx011100, 01xx0011x0, 01100x11x0}} {11xx1 \ {11101, 11111, 111x1}} {1x001 \ {11001, 10001}, xxxx0 \ {101x0, 0xx10, 1x100}, 1xxx1 \ {10xx1, 10101, 1xx01}} { 1x00111x01 \ { 1x00111101, 1x00111101, 1100111x01, 1000111x01}, 1xxx111xx1 \ { 1xx1111x01, 1xx0111x11, 1xxx111101, 1xxx111111, 1xxx1111x1, 10xx111xx1, 1010111xx1, 1xx0111xx1}} {x011x \ {x0111, 1011x, 00110}} {x0010 \ {10010, 00010, 00010}, 00x1x \ {00010, 00011, 00110}} { x0010x0110 \ { x001010110, x001000110, 10010x0110, 00010x0110, 00010x0110}, 00x1xx011x \ { 00x11x0110, 00x10x0111, 00x1xx0111, 00x1x1011x, 00x1x00110, 00010x011x, 00011x011x, 00110x011x}} {x010x \ {00100, x0100, 10100}, 01x10 \ {01110, 01010}} {0xx0x \ {0xx01, 0000x, 0x100}} { 0xx0xx010x \ { 0xx01x0100, 0xx00x0101, 0xx0x00100, 0xx0xx0100, 0xx0x10100, 0xx01x010x, 0000xx010x, 0x100x010x}} {011xx \ {011x0, 01101, 0111x}, xx1xx \ {x110x, x01x0, 0111x}} {00x01 \ {00101, 00001}, 0xxx1 \ {00111, 00001, 00011}} { 00x0101101 \ { 00x0101101, 0010101101, 0000101101}, 0xxx1011x1 \ { 0xx1101101, 0xx0101111, 0xxx101101, 0xxx101111, 00111011x1, 00001011x1, 00011011x1}, 00x01xx101 \ { 00x01x1101, 00101xx101, 00001xx101}, 0xxx1xx1x1 \ { 0xx11xx101, 0xx01xx111, 0xxx1x1101, 0xxx101111, 00111xx1x1, 00001xx1x1, 00011xx1x1}} {111xx \ {111x1, 1111x, 1111x}, x011x \ {x0111, 00110}} {xx11x \ {xx110, x1111, 01111}, x10xx \ {01001, 1101x, 11010}} { xx11x1111x \ { xx11111110, xx11011111, xx11x11111, xx11x1111x, xx11x1111x, xx1101111x, x11111111x, 011111111x}, x10xx111xx \ { x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx111x1, x10xx1111x, x10xx1111x, 01001111xx, 1101x111xx, 11010111xx}, xx11xx011x \ { xx111x0110, xx110x0111, xx11xx0111, xx11x00110, xx110x011x, x1111x011x, 01111x011x}, x101xx011x \ { x1011x0110, x1010x0111, x101xx0111, x101x00110, 1101xx011x, 11010x011x}} {x1xx1 \ {010x1, 11x01, x1111}} {0x10x \ {0x101, 00101, 00100}} { 0x101x1x01 \ { 0x10101001, 0x10111x01, 0x101x1x01, 00101x1x01}} {} {11x1x \ {11010, 11x10, 1111x}} {} {1001x \ {10011, 10010}} {x000x \ {10000, x0000, 1000x}, 1x001 \ {10001, 11001}, 0xxxx \ {0000x, 0x10x, 0x0xx}} { 0xx1x1001x \ { 0xx1110010, 0xx1010011, 0xx1x10011, 0xx1x10010, 0x01x1001x}} {xx0xx \ {x0001, 0x01x, x000x}, xx00x \ {x1000, x100x, 1x001}, xx1x0 \ {11110, 01100, 11100}} {xx101 \ {1x101, 01101, 0x101}, 01xxx \ {011x1, 01001, 0101x}} { xx101xx001 \ { xx101x0001, xx101x0001, 1x101xx001, 01101xx001, 0x101xx001}, 01xxxxx0xx \ { 01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxx0001, 01xxx0x01x, 01xxxx000x, 011x1xx0xx, 01001xx0xx, 0101xxx0xx}, xx101xx001 \ { xx101x1001, xx1011x001, 1x101xx001, 01101xx001, 0x101xx001}, 01x0xxx00x \ { 01x01xx000, 01x00xx001, 01x0xx1000, 01x0xx100x, 01x0x1x001, 01101xx00x, 01001xx00x}, 01xx0xx1x0 \ { 01x10xx100, 01x00xx110, 01xx011110, 01xx001100, 01xx011100, 01010xx1x0}} {1xxx0 \ {10010, 10000, 110x0}, 0x001 \ {01001, 00001}} {x1x11 \ {01011, 11x11, 11x11}} {} {111xx \ {11110, 11100, 11111}, x110x \ {01100, 1110x, x1100}} {} {} {1x0x1 \ {10001, 110x1, 110x1}} {10xx0 \ {100x0, 10x10}, xx11x \ {1x110, 0111x, 11110}, 01x00 \ {01100, 01000, 01000}} { xx1111x011 \ { xx11111011, xx11111011, 011111x011}} {1001x \ {10010, 10011}} {} {} {101x0 \ {10100, 10110}, 1x1x1 \ {11111, 10101, 10111}} {1x0xx \ {1x000, 1001x, 1000x}} { 1x0x0101x0 \ { 1x01010100, 1x00010110, 1x0x010100, 1x0x010110, 1x000101x0, 10010101x0, 10000101x0}, 1x0x11x1x1 \ { 1x0111x101, 1x0011x111, 1x0x111111, 1x0x110101, 1x0x110111, 100111x1x1, 100011x1x1}} {x11x0 \ {11110, 111x0, x1100}, xx0xx \ {1000x, 0x00x, 00001}, 1xxxx \ {1x11x, 101xx, 10000}} {1xx01 \ {10x01, 11x01, 10101}, 0x1xx \ {0110x, 001xx, 0x101}, x101x \ {11010, x1011, 01011}} { 0x1x0x11x0 \ { 0x110x1100, 0x100x1110, 0x1x011110, 0x1x0111x0, 0x1x0x1100, 01100x11x0, 001x0x11x0}, x1010x1110 \ { x101011110, x101011110, 11010x1110}, 1xx01xx001 \ { 1xx0110001, 1xx010x001, 1xx0100001, 10x01xx001, 11x01xx001, 10101xx001}, 0x1xxxx0xx \ { 0x1x1xx0x0, 0x1x0xx0x1, 0x11xxx00x, 0x10xxx01x, 0x1xx1000x, 0x1xx0x00x, 0x1xx00001, 0110xxx0xx, 001xxxx0xx, 0x101xx0xx}, x101xxx01x \ { x1011xx010, x1010xx011, 11010xx01x, x1011xx01x, 01011xx01x}, 1xx011xx01 \ { 1xx0110101, 10x011xx01, 11x011xx01, 101011xx01}, 0x1xx1xxxx \ { 0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx1x11x, 0x1xx101xx, 0x1xx10000, 0110x1xxxx, 001xx1xxxx, 0x1011xxxx}, x101x1xx1x \ { x10111xx10, x10101xx11, x101x1x11x, x101x1011x, 110101xx1x, x10111xx1x, 010111xx1x}} {0111x \ {01111, 01110}} {0x00x \ {00000, 0x001, 0100x}, x1x0x \ {01101, 01001, x100x}, x0xxx \ {00100, 001x1, 00x01}} { x0x1x0111x \ { x0x1101110, x0x1001111, x0x1x01111, x0x1x01110, 001110111x}} {x11x0 \ {011x0, 11100}, xxx0x \ {xx001, x000x, xxx00}, x1x1x \ {x1111, 1101x, x1110}} {01x0x \ {0100x, 01001, 01101}} { 01x00x1100 \ { 01x0001100, 01x0011100, 01000x1100}, 01x0xxxx0x \ { 01x01xxx00, 01x00xxx01, 01x0xxx001, 01x0xx000x, 01x0xxxx00, 0100xxxx0x, 01001xxx0x, 01101xxx0x}} {} {xx1xx \ {0x101, 101xx, 0x110}, 0xx00 \ {0x100, 01000, 01000}} {} {} {00x1x \ {00010, 0011x, 00110}, x0x1x \ {x0110, 10111, 10x10}} {} {} {10xxx \ {10001, 10011, 10xx0}, x1xxx \ {1101x, x1001, 11xx0}, x1xx1 \ {01111, 11101, 11x11}} {} {x1x11 \ {11x11, 11011, 11111}, xxx10 \ {x0110, 00x10, 11x10}} {xx100 \ {11100, x1100, 1x100}, 1x01x \ {11011, 10010, 1001x}} { 1x011x1x11 \ { 1x01111x11, 1x01111011, 1x01111111, 11011x1x11, 10011x1x11}, 1x010xxx10 \ { 1x010x0110, 1x01000x10, 1x01011x10, 10010xxx10, 10010xxx10}} {10xx1 \ {10011, 10001, 10x01}} {01x1x \ {0101x, 01110}} { 01x1110x11 \ { 01x1110011, 0101110x11}} {xx010 \ {1x010, 10010, 11010}, xx10x \ {11101, 0x100, 11100}} {x0x10 \ {x0010, x0110, 00110}, 00xx1 \ {00101, 001x1, 000x1}} { x0x10xx010 \ { x0x101x010, x0x1010010, x0x1011010, x0010xx010, x0110xx010, 00110xx010}, 00x01xx101 \ { 00x0111101, 00101xx101, 00101xx101, 00001xx101}} {x1xxx \ {01000, x1xx1, 01x00}, 00x01 \ {00001, 00101}} {x110x \ {11100, 11101, x1100}, 1xx1x \ {11x11, 1x010, 1x011}} { x110xx1x0x \ { x1101x1x00, x1100x1x01, x110x01000, x110xx1x01, x110x01x00, 11100x1x0x, 11101x1x0x, x1100x1x0x}, 1xx1xx1x1x \ { 1xx11x1x10, 1xx10x1x11, 1xx1xx1x11, 11x11x1x1x, 1x010x1x1x, 1x011x1x1x}, x110100x01 \ { x110100001, x110100101, 1110100x01}} {1x00x \ {11000, 10001, 11001}, 10xx1 \ {101x1, 10111}, 10x1x \ {10x10, 10x11, 10111}} {00xx0 \ {001x0, 00000, 00110}} { 00x001x000 \ { 00x0011000, 001001x000, 000001x000}, 00x1010x10 \ { 00x1010x10, 0011010x10, 0011010x10}} {x0x1x \ {00x10, 00x1x}, 11x1x \ {1111x}} {01xx0 \ {01x00, 010x0}, xx111 \ {11111, 0x111, 1x111}} { 01x10x0x10 \ { 01x1000x10, 01x1000x10, 01010x0x10}, xx111x0x11 \ { xx11100x11, 11111x0x11, 0x111x0x11, 1x111x0x11}, 01x1011x10 \ { 01x1011110, 0101011x10}, xx11111x11 \ { xx11111111, 1111111x11, 0x11111x11, 1x11111x11}} {x1xx1 \ {010x1, 01011, x1x01}} {0x0x0 \ {0x010, 01000, 0x000}, 011xx \ {01100, 01110, 01110}} { 011x1x1xx1 \ { 01111x1x01, 01101x1x11, 011x1010x1, 011x101011, 011x1x1x01}} {0xx10 \ {00110, 01110, 0x010}, 01x0x \ {0100x, 01000, 01000}} {xx1xx \ {x010x, 0110x, 101xx}, 00xx1 \ {00x01, 00011}} { xx1100xx10 \ { xx11000110, xx11001110, xx1100x010, 101100xx10}, xx10x01x0x \ { xx10101x00, xx10001x01, xx10x0100x, xx10x01000, xx10x01000, x010x01x0x, 0110x01x0x, 1010x01x0x}, 00x0101x01 \ { 00x0101001, 00x0101x01}} {x0x1x \ {00x11, 10011, 00x10}, x1xxx \ {x1100, 11011, x1x01}} {010xx \ {010x0, 01010, 01011}, xx100 \ {00100, 1x100, 11100}} { 0101xx0x1x \ { 01011x0x10, 01010x0x11, 0101x00x11, 0101x10011, 0101x00x10, 01010x0x1x, 01010x0x1x, 01011x0x1x}, 010xxx1xxx \ { 010x1x1xx0, 010x0x1xx1, 0101xx1x0x, 0100xx1x1x, 010xxx1100, 010xx11011, 010xxx1x01, 010x0x1xxx, 01010x1xxx, 01011x1xxx}, xx100x1x00 \ { xx100x1100, 00100x1x00, 1x100x1x00, 11100x1x00}} {1x0x0 \ {100x0, 11010, 11000}, 00x0x \ {00101, 00x00, 0010x}, x1x11 \ {01111, 01011, 01011}} {0111x \ {01110, 01111}} { 011101x010 \ { 0111010010, 0111011010, 011101x010}, 01111x1x11 \ { 0111101111, 0111101011, 0111101011, 01111x1x11}} {xx1x1 \ {x1101, x01x1, 00101}} {0011x \ {00110, 00111}} { 00111xx111 \ { 00111x0111, 00111xx111}} {} {x1x0x \ {x1101, x100x, 11x01}} {} {xx011 \ {x0011, 10011, 0x011}, xx00x \ {1x000, 01000, 01000}} {} {} {1x001 \ {11001, 10001}, 10xx0 \ {10x00, 10100, 100x0}} {1x011 \ {11011, 10011, 10011}} {} {xxx1x \ {x1x11, xx11x, 1011x}, x1x11 \ {11111, 11011, 01111}} {x01x0 \ {x0100, x0110, 10110}} { x0110xxx10 \ { x0110xx110, x011010110, x0110xxx10, 10110xxx10}} {x0xx0 \ {10000, 00100, x0x00}} {00xx1 \ {00001, 001x1, 00011}, 1101x \ {11010}, 01x0x \ {01001, 01x01, 0100x}} { 11010x0x10 \ { 11010x0x10}, 01x00x0x00 \ { 01x0010000, 01x0000100, 01x00x0x00, 01000x0x00}} {x1x10 \ {11x10, x1110, 01x10}, 110xx \ {1101x, 11000, 11010}} {1011x \ {10110}} { 10110x1x10 \ { 1011011x10, 10110x1110, 1011001x10, 10110x1x10}, 1011x1101x \ { 1011111010, 1011011011, 1011x1101x, 1011x11010, 101101101x}} {1xxx1 \ {11111, 1x011, 10xx1}, 110xx \ {11000, 1101x, 110x1}} {1xx0x \ {11x00, 10x0x, 10x01}} { 1xx011xx01 \ { 1xx0110x01, 10x011xx01, 10x011xx01}, 1xx0x1100x \ { 1xx0111000, 1xx0011001, 1xx0x11000, 1xx0x11001, 11x001100x, 10x0x1100x, 10x011100x}} {x1xxx \ {11x10, 11100, 010xx}} {} {} {01x00 \ {01100, 01000}} {1xx1x \ {11x10, 11010, 1x111}, 10x10 \ {10110}} {} {} {0x010 \ {01010}, xx101 \ {11101, 00101, 01101}} {} {000xx \ {000x0, 0001x, 00011}} {x11xx \ {x1110, 111xx, x11x0}, x101x \ {x1011, 11011}} { x11xx000xx \ { x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx000x0, x11xx0001x, x11xx00011, x1110000xx, 111xx000xx, x11x0000xx}, x101x0001x \ { x101100010, x101000011, x101x00010, x101x0001x, x101x00011, x10110001x, 110110001x}} {01x1x \ {0111x, 01011}} {0xxx0 \ {00100, 01110, 0x010}, xx000 \ {0x000, 10000, 10000}} { 0xx1001x10 \ { 0xx1001110, 0111001x10, 0x01001x10}} {x100x \ {01000, 0100x, 11001}} {11xx1 \ {11111, 111x1}, x1xx0 \ {11x00, 11100, x1110}} { 11x01x1001 \ { 11x0101001, 11x0111001, 11101x1001}, x1x00x1000 \ { x1x0001000, x1x0001000, 11x00x1000, 11100x1000}} {x1xxx \ {11xxx, 1101x, 0111x}, 1xxx1 \ {1x0x1, 10001, 11x01}} {x00x1 \ {000x1, 00001, x0001}, xx11x \ {x111x, 0x11x, 0x111}} { x00x1x1xx1 \ { x0011x1x01, x0001x1x11, x00x111xx1, x00x111011, x00x101111, 000x1x1xx1, 00001x1xx1, x0001x1xx1}, xx11xx1x1x \ { xx111x1x10, xx110x1x11, xx11x11x1x, xx11x1101x, xx11x0111x, x111xx1x1x, 0x11xx1x1x, 0x111x1x1x}, x00x11xxx1 \ { x00111xx01, x00011xx11, x00x11x0x1, x00x110001, x00x111x01, 000x11xxx1, 000011xxx1, x00011xxx1}, xx1111xx11 \ { xx1111x011, x11111xx11, 0x1111xx11, 0x1111xx11}} {11xx0 \ {11x10, 11110}, x0010 \ {00010, 10010}} {x0xx0 \ {x0000, x0100, 10110}, x0xx0 \ {10000, x0100, 10x00}} { x0xx011xx0 \ { x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, x000011xx0, x010011xx0, 1011011xx0}, x0xx011xx0 \ { x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, 1000011xx0, x010011xx0, 10x0011xx0}, x0x10x0010 \ { x0x1000010, x0x1010010}} {x110x \ {x1100, 11100, 0110x}, xxx01 \ {xx101, 00001, 1xx01}} {xx101 \ {x0101, x1101, 11101}, x101x \ {11010, x1010}} { xx101x1101 \ { xx10101101, x0101x1101, x1101x1101, 11101x1101}, xx101xxx01 \ { xx101xx101, xx10100001, xx1011xx01, x0101xxx01, x1101xxx01, 11101xxx01}} {x000x \ {x0001, 1000x, 0000x}, x0xxx \ {00101, 00x0x, x000x}} {10xx0 \ {10010, 101x0, 101x0}} { 10x00x0000 \ { 10x0010000, 10x0000000, 10100x0000, 10100x0000}, 10xx0x0xx0 \ { 10x10x0x00, 10x00x0x10, 10xx000x00, 10xx0x0000, 10010x0xx0, 101x0x0xx0, 101x0x0xx0}} {01xxx \ {01x00, 01x0x, 01000}, x11xx \ {01101, 0111x, 1110x}} {1xxx1 \ {10x01, 100x1, 1x101}} { 1xxx101xx1 \ { 1xx1101x01, 1xx0101x11, 1xxx101x01, 10x0101xx1, 100x101xx1, 1x10101xx1}, 1xxx1x11x1 \ { 1xx11x1101, 1xx01x1111, 1xxx101101, 1xxx101111, 1xxx111101, 10x01x11x1, 100x1x11x1, 1x101x11x1}} {} {x001x \ {00010, 10011, 0001x}, 0x0x1 \ {0x011, 0x001, 01001}} {} {01xx1 \ {011x1, 010x1}, 0xxx0 \ {01110, 00100, 01000}} {} {} {1xxx0 \ {100x0, 10010, 110x0}} {x0110 \ {00110}} { x01101xx10 \ { x011010010, x011010010, x011011010, 001101xx10}} {10x1x \ {10x11, 10011, 10111}, 0xx0x \ {0xx01, 0x001, 0x000}} {x0x11 \ {10x11, 10011, x0011}} { x0x1110x11 \ { x0x1110x11, x0x1110011, x0x1110111, 10x1110x11, 1001110x11, x001110x11}} {10x00 \ {10000, 10100}, 11xxx \ {11001, 11111, 111xx}} {1x1x1 \ {11111, 11101, 10101}} { 1x1x111xx1 \ { 1x11111x01, 1x10111x11, 1x1x111001, 1x1x111111, 1x1x1111x1, 1111111xx1, 1110111xx1, 1010111xx1}} {0x01x \ {00011, 0101x, 0101x}, 0xx01 \ {01001, 0x001}} {10xxx \ {10111, 100xx, 10x01}} { 10x1x0x01x \ { 10x110x010, 10x100x011, 10x1x00011, 10x1x0101x, 10x1x0101x, 101110x01x, 1001x0x01x}, 10x010xx01 \ { 10x0101001, 10x010x001, 100010xx01, 10x010xx01}} {} {11xxx \ {11110, 1110x, 11x1x}, x101x \ {x1011, 0101x, 11011}, 01x1x \ {01x10, 0101x, 0111x}} {} {01x0x \ {0100x, 01101, 01101}} {11xx0 \ {11100, 11010, 11110}, xx1x0 \ {00100, 00110, 00110}, 110xx \ {11010, 110x1, 1101x}} { 11x0001x00 \ { 11x0001000, 1110001x00}, xx10001x00 \ { xx10001000, 0010001x00}, 1100x01x0x \ { 1100101x00, 1100001x01, 1100x0100x, 1100x01101, 1100x01101, 1100101x0x}} {1001x \ {10010, 10011}, x110x \ {01100, x1101}, xx1xx \ {0x10x, 1x11x, 0x101}} {} {} {xx10x \ {00100, 10101, xx101}} {1x01x \ {1x011, 1001x}} {} {xx0x0 \ {01010, 010x0, xx010}} {1x1x0 \ {1x100, 111x0}} { 1x1x0xx0x0 \ { 1x110xx000, 1x100xx010, 1x1x001010, 1x1x0010x0, 1x1x0xx010, 1x100xx0x0, 111x0xx0x0}} {00xx0 \ {000x0}} {} {} {} {xxx11 \ {01111, 10111, 11x11}, x00x1 \ {000x1, 10001, 00011}, x0xx0 \ {00000, x0x10, 10x00}} {} {} {xxx01 \ {0x001, x1x01, 11x01}, 11x0x \ {11000, 11101, 11x00}} {} {1x001 \ {10001, 11001}, 011x1 \ {01111}} {} {} {01x0x \ {01x01, 01000}} {xxx10 \ {xx110, 01010, 01010}} {} {0x000 \ {01000, 00000}} {0x1x0 \ {00100, 01110, 00110}, xx11x \ {x1111, 10110, 0x111}} { 0x1000x000 \ { 0x10001000, 0x10000000, 001000x000}} {11x0x \ {1110x, 11101, 11000}, 0xx11 \ {01x11, 0x111}} {10x00 \ {10100}, x0xx0 \ {00x00, x0110, 00000}} { 10x0011x00 \ { 10x0011100, 10x0011000, 1010011x00}, x0x0011x00 \ { x0x0011100, x0x0011000, 00x0011x00, 0000011x00}} {} {x1x10 \ {11x10, x1110}, 0xx01 \ {00101, 0x101, 01001}, x001x \ {10010, 1001x, x0010}} {} {0xx1x \ {00010, 01x10, 0xx10}, 00xx1 \ {00101, 001x1, 00x01}} {x1x01 \ {11101, 11001, x1001}, xx1xx \ {111x0, 01111, 0x100}} { xx11x0xx1x \ { xx1110xx10, xx1100xx11, xx11x00010, xx11x01x10, xx11x0xx10, 111100xx1x, 011110xx1x}, x1x0100x01 \ { x1x0100101, x1x0100101, x1x0100x01, 1110100x01, 1100100x01, x100100x01}, xx1x100xx1 \ { xx11100x01, xx10100x11, xx1x100101, xx1x1001x1, xx1x100x01, 0111100xx1}} {xxxxx \ {x1xxx, 1x111, 010x1}, xx0xx \ {11010, 1x01x, 0x0xx}, 01xx1 \ {01101, 01011, 01x01}} {10x0x \ {10001, 1010x}, 01x0x \ {01100, 01101}} { 10x0xxxx0x \ { 10x01xxx00, 10x00xxx01, 10x0xx1x0x, 10x0x01001, 10001xxx0x, 1010xxxx0x}, 01x0xxxx0x \ { 01x01xxx00, 01x00xxx01, 01x0xx1x0x, 01x0x01001, 01100xxx0x, 01101xxx0x}, 10x0xxx00x \ { 10x01xx000, 10x00xx001, 10x0x0x00x, 10001xx00x, 1010xxx00x}, 01x0xxx00x \ { 01x01xx000, 01x00xx001, 01x0x0x00x, 01100xx00x, 01101xx00x}, 10x0101x01 \ { 10x0101101, 10x0101x01, 1000101x01, 1010101x01}, 01x0101x01 \ { 01x0101101, 01x0101x01, 0110101x01}} {} {} {} {} {10x10 \ {10110, 10010, 10010}, x10xx \ {110xx, x1000, 11011}} {} {00x1x \ {00x10, 0011x, 00011}, 01x01 \ {01001, 01101}, xxxx0 \ {11010, 01x00, 1xx00}} {xx11x \ {1x110, 0x11x, x0110}, x1x10 \ {11010, x1010, x1010}} { xx11x00x1x \ { xx11100x10, xx11000x11, xx11x00x10, xx11x0011x, xx11x00011, 1x11000x1x, 0x11x00x1x, x011000x1x}, x1x1000x10 \ { x1x1000x10, x1x1000110, 1101000x10, x101000x10, x101000x10}, xx110xxx10 \ { xx11011010, 1x110xxx10, 0x110xxx10, x0110xxx10}, x1x10xxx10 \ { x1x1011010, 11010xxx10, x1010xxx10, x1010xxx10}} {x10x1 \ {01011, 01001, 010x1}, xx110 \ {00110, x1110, 11110}} {x0x0x \ {00001, 00x0x, 0010x}, xxx11 \ {1xx11, x1111}} { x0x01x1001 \ { x0x0101001, x0x0101001, 00001x1001, 00x01x1001, 00101x1001}, xxx11x1011 \ { xxx1101011, xxx1101011, 1xx11x1011, x1111x1011}} {x001x \ {1001x, 00011}, 1x0x0 \ {11010, 10010, 10010}} {x1xxx \ {01110, 010x0, 01x0x}, 00x01 \ {00101, 00001}, 0xx01 \ {00001}} { x1x1xx001x \ { x1x11x0010, x1x10x0011, x1x1x1001x, x1x1x00011, 01110x001x, 01010x001x}, x1xx01x0x0 \ { x1x101x000, x1x001x010, x1xx011010, x1xx010010, x1xx010010, 011101x0x0, 010x01x0x0, 01x001x0x0}} {xx110 \ {11110, x0110}, x101x \ {0101x, x1011, 1101x}} {xx00x \ {1x000, 11001, 10001}} {} {110xx \ {11000, 110x0}, 1xxx0 \ {1x110, 1x100, 1x0x0}} {0x0x0 \ {0x000, 01010, 010x0}, xx010 \ {1x010, 11010}} { 0x0x0110x0 \ { 0x01011000, 0x00011010, 0x0x011000, 0x0x0110x0, 0x000110x0, 01010110x0, 010x0110x0}, xx01011010 \ { xx01011010, 1x01011010, 1101011010}, 0x0x01xxx0 \ { 0x0101xx00, 0x0001xx10, 0x0x01x110, 0x0x01x100, 0x0x01x0x0, 0x0001xxx0, 010101xxx0, 010x01xxx0}, xx0101xx10 \ { xx0101x110, xx0101x010, 1x0101xx10, 110101xx10}} {x0010 \ {10010}, 011xx \ {01110, 011x1, 011x1}} {} {} {xx100 \ {11100, x0100, 10100}} {1xx01 \ {11x01, 11001, 1x101}, x0000 \ {10000}} { x0000xx100 \ { x000011100, x0000x0100, x000010100, 10000xx100}} {01xx1 \ {01101, 01111, 01111}, 0x0xx \ {00010, 010x0, 00001}, 10x0x \ {10x01, 1000x, 1000x}} {xxx00 \ {01x00, 11100, 01000}, 1xxxx \ {1xx01, 1xxx0, 1x101}} { 1xxx101xx1 \ { 1xx1101x01, 1xx0101x11, 1xxx101101, 1xxx101111, 1xxx101111, 1xx0101xx1, 1x10101xx1}, xxx000x000 \ { xxx0001000, 01x000x000, 111000x000, 010000x000}, 1xxxx0x0xx \ { 1xxx10x0x0, 1xxx00x0x1, 1xx1x0x00x, 1xx0x0x01x, 1xxxx00010, 1xxxx010x0, 1xxxx00001, 1xx010x0xx, 1xxx00x0xx, 1x1010x0xx}, xxx0010x00 \ { xxx0010000, xxx0010000, 01x0010x00, 1110010x00, 0100010x00}, 1xx0x10x0x \ { 1xx0110x00, 1xx0010x01, 1xx0x10x01, 1xx0x1000x, 1xx0x1000x, 1xx0110x0x, 1xx0010x0x, 1x10110x0x}} {1xxxx \ {10001, 11001, 1x101}} {0x100 \ {01100}} { 0x1001xx00 \ { 011001xx00}} {00xx1 \ {000x1, 00001, 00111}} {} {} {x1x00 \ {01000, 11100, 11000}} {0x1x0 \ {01110, 011x0}} { 0x100x1x00 \ { 0x10001000, 0x10011100, 0x10011000, 01100x1x00}} {0xx10 \ {01010, 00010, 00x10}, 1x00x \ {1100x, 10000, 1000x}} {xxxx1 \ {00011, 010x1, 1x1x1}} { xxx011x001 \ { xxx0111001, xxx0110001, 010011x001, 1x1011x001}} {xxxxx \ {x1xx0, 11x01, xx1x0}} {111xx \ {1110x, 111x0, 111x0}} { 111xxxxxxx \ { 111x1xxxx0, 111x0xxxx1, 1111xxxx0x, 1110xxxx1x, 111xxx1xx0, 111xx11x01, 111xxxx1x0, 1110xxxxxx, 111x0xxxxx, 111x0xxxxx}} {xx00x \ {1x000, 0x000, 1000x}} {xx10x \ {0110x, x110x, 00101}, xxxxx \ {x11x0, 0x111, xx1xx}} { xx10xxx00x \ { xx101xx000, xx100xx001, xx10x1x000, xx10x0x000, xx10x1000x, 0110xxx00x, x110xxx00x, 00101xx00x}, xxx0xxx00x \ { xxx01xx000, xxx00xx001, xxx0x1x000, xxx0x0x000, xxx0x1000x, x1100xx00x, xx10xxx00x}} {1x011 \ {11011, 10011}, 1x0xx \ {110x1, 1x00x, 1x011}} {x1xxx \ {x1111, x1xx0, 01110}} { x1x111x011 \ { x1x1111011, x1x1110011, x11111x011}, x1xxx1x0xx \ { x1xx11x0x0, x1xx01x0x1, x1x1x1x00x, x1x0x1x01x, x1xxx110x1, x1xxx1x00x, x1xxx1x011, x11111x0xx, x1xx01x0xx, 011101x0xx}} {x00x0 \ {00000, x0010}, 0xxx1 \ {00x11, 00011, 01011}} {x100x \ {1100x, 0100x, x1000}} { x1000x0000 \ { x100000000, 11000x0000, 01000x0000, x1000x0000}, x10010xx01 \ { 110010xx01, 010010xx01}} {x011x \ {10111, 0011x, 10110}, xx100 \ {1x100, x1100, 11100}} {x0100 \ {10100, 00100, 00100}} { x0100xx100 \ { x01001x100, x0100x1100, x010011100, 10100xx100, 00100xx100, 00100xx100}} {1x010 \ {11010, 10010, 10010}, xxxxx \ {0x0xx, x1xx1, x0001}} {xxx01 \ {00x01, x0x01, x1x01}} { xxx01xxx01 \ { xxx010x001, xxx01x1x01, xxx01x0001, 00x01xxx01, x0x01xxx01, x1x01xxx01}} {} {1xx0x \ {1x10x, 11000, 1xx00}, x0x00 \ {10x00, x0000}} {} {xxx01 \ {0xx01, 00101, 01101}} {xx0x0 \ {x1010, 10000, 1x000}, 0x11x \ {0x110, 01111, 01111}} {} {11x10 \ {11010, 11110}, 0010x \ {00101, 00100, 00100}, 11x11 \ {11011}} {xxx10 \ {10x10, 0xx10, 11010}, x11xx \ {01110, x11x1, 1111x}, xx1xx \ {1x11x, 1x101, x0100}} { xxx1011x10 \ { xxx1011010, xxx1011110, 10x1011x10, 0xx1011x10, 1101011x10}, x111011x10 \ { x111011010, x111011110, 0111011x10, 1111011x10}, xx11011x10 \ { xx11011010, xx11011110, 1x11011x10}, x110x0010x \ { x110100100, x110000101, x110x00101, x110x00100, x110x00100, x11010010x}, xx10x0010x \ { xx10100100, xx10000101, xx10x00101, xx10x00100, xx10x00100, 1x1010010x, x01000010x}, x111111x11 \ { x111111011, x111111x11, 1111111x11}, xx11111x11 \ { xx11111011, 1x11111x11}} {1xx10 \ {1x110, 11110, 11x10}, xx10x \ {x0101, 01101, 0010x}} {01xxx \ {01x0x, 01100, 0101x}} { 01x101xx10 \ { 01x101x110, 01x1011110, 01x1011x10, 010101xx10}, 01x0xxx10x \ { 01x01xx100, 01x00xx101, 01x0xx0101, 01x0x01101, 01x0x0010x, 01x0xxx10x, 01100xx10x}} {} {10xxx \ {10001, 100x1}} {} {11x1x \ {11111, 11011, 11010}, xx000 \ {00000, 10000}} {xx101 \ {00101, 11101}, 0x100 \ {00100}, x0x1x \ {0011x, x001x, x0010}} { x0x1x11x1x \ { x0x1111x10, x0x1011x11, x0x1x11111, x0x1x11011, x0x1x11010, 0011x11x1x, x001x11x1x, x001011x1x}, 0x100xx000 \ { 0x10000000, 0x10010000, 00100xx000}} {xxx00 \ {01100, 00x00, 00000}} {x10x1 \ {11001, x1001, 11011}} {} {000xx \ {0000x, 000x1, 000x0}, 11xxx \ {1100x, 11001, 11x00}} {1xxxx \ {10xxx, 110x0, 111x0}} { 1xxxx000xx \ { 1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx0000x, 1xxxx000x1, 1xxxx000x0, 10xxx000xx, 110x0000xx, 111x0000xx}, 1xxxx11xxx \ { 1xxx111xx0, 1xxx011xx1, 1xx1x11x0x, 1xx0x11x1x, 1xxxx1100x, 1xxxx11001, 1xxxx11x00, 10xxx11xxx, 110x011xxx, 111x011xxx}} {0x10x \ {01100, 00101, 0x101}, 1xx10 \ {11110, 1x010, 1x010}} {1x11x \ {1111x, 10111, 10110}} { 1x1101xx10 \ { 1x11011110, 1x1101x010, 1x1101x010, 111101xx10, 101101xx10}} {0xx0x \ {01100, 00x01, 00x00}, x01xx \ {10101, 10110, 1010x}} {011xx \ {0111x, 0110x, 011x1}} { 0110x0xx0x \ { 011010xx00, 011000xx01, 0110x01100, 0110x00x01, 0110x00x00, 0110x0xx0x, 011010xx0x}, 011xxx01xx \ { 011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xx10101, 011xx10110, 011xx1010x, 0111xx01xx, 0110xx01xx, 011x1x01xx}} {001x0 \ {00100, 00110}, 1x0xx \ {10011, 11000, 1000x}} {x011x \ {0011x, 00111}} { x011000110 \ { x011000110, 0011000110}, x011x1x01x \ { x01111x010, x01101x011, x011x10011, 0011x1x01x, 001111x01x}} {01xxx \ {01xx1, 01110, 01110}, 0xxx1 \ {01x01, 000x1, 001x1}} {00xx1 \ {001x1, 00001}} { 00xx101xx1 \ { 00x1101x01, 00x0101x11, 00xx101xx1, 001x101xx1, 0000101xx1}, 00xx10xxx1 \ { 00x110xx01, 00x010xx11, 00xx101x01, 00xx1000x1, 00xx1001x1, 001x10xxx1, 000010xxx1}} {0x10x \ {0110x, 00100, 00101}} {1x00x \ {10000, 11000, 10001}, x1x0x \ {01101, 11000, 01x0x}} { 1x00x0x10x \ { 1x0010x100, 1x0000x101, 1x00x0110x, 1x00x00100, 1x00x00101, 100000x10x, 110000x10x, 100010x10x}, x1x0x0x10x \ { x1x010x100, x1x000x101, x1x0x0110x, x1x0x00100, x1x0x00101, 011010x10x, 110000x10x, 01x0x0x10x}} {xxxx0 \ {0xx10, 01x00, x0xx0}, x1x0x \ {01101, 11001, 01000}} {0xx10 \ {01010, 01110, 00110}, xx110 \ {01110, 11110, 10110}} { 0xx10xxx10 \ { 0xx100xx10, 0xx10x0x10, 01010xxx10, 01110xxx10, 00110xxx10}, xx110xxx10 \ { xx1100xx10, xx110x0x10, 01110xxx10, 11110xxx10, 10110xxx10}} {xxxxx \ {1xxxx, x0111, 0x0x1}, 0x01x \ {0001x, 01010, 01010}} {x0x11 \ {10x11, 00111, 10011}} { x0x11xxx11 \ { x0x111xx11, x0x11x0111, x0x110x011, 10x11xxx11, 00111xxx11, 10011xxx11}, x0x110x011 \ { x0x1100011, 10x110x011, 001110x011, 100110x011}} {11xx1 \ {11x11, 110x1}} {00x1x \ {00x10, 0011x, 00111}} { 00x1111x11 \ { 00x1111x11, 00x1111011, 0011111x11, 0011111x11}} {110x1 \ {11011}, 001x0 \ {00110, 00100, 00100}} {xx01x \ {x1010, x101x, xx010}, 1x01x \ {1x011, 1x010, 10010}, xxx0x \ {11001, 01000, 01x00}} { xx01111011 \ { xx01111011, x101111011}, 1x01111011 \ { 1x01111011, 1x01111011}, xxx0111001 \ { 1100111001}, xx01000110 \ { xx01000110, x101000110, x101000110, xx01000110}, 1x01000110 \ { 1x01000110, 1x01000110, 1001000110}, xxx0000100 \ { xxx0000100, xxx0000100, 0100000100, 01x0000100}} {x1xx0 \ {11x00, 01x00}, xx101 \ {0x101, 10101, 00101}} {001x0 \ {00100, 00110, 00110}, x1x10 \ {01010, 11110}} { 001x0x1xx0 \ { 00110x1x00, 00100x1x10, 001x011x00, 001x001x00, 00100x1xx0, 00110x1xx0, 00110x1xx0}, x1x10x1x10 \ { 01010x1x10, 11110x1x10}} {x1x01 \ {11x01, 11001, 11001}, 11xx0 \ {11x00, 11000, 110x0}, xx10x \ {11101, 01100, 00100}} {xxxx1 \ {1x1x1, 011x1, xxx11}, x11x1 \ {11101, 01101, 11111}} { xxx01x1x01 \ { xxx0111x01, xxx0111001, xxx0111001, 1x101x1x01, 01101x1x01}, x1101x1x01 \ { x110111x01, x110111001, x110111001, 11101x1x01, 01101x1x01}, xxx01xx101 \ { xxx0111101, 1x101xx101, 01101xx101}, x1101xx101 \ { x110111101, 11101xx101, 01101xx101}} {xx1x0 \ {111x0, 1x100, 0x1x0}, 1x0xx \ {1100x, 1x0x0, 11011}, xxxx1 \ {01011, 10111, 01xx1}} {1xxxx \ {1x1xx, 1111x, 10x00}} { 1xxx0xx1x0 \ { 1xx10xx100, 1xx00xx110, 1xxx0111x0, 1xxx01x100, 1xxx00x1x0, 1x1x0xx1x0, 11110xx1x0, 10x00xx1x0}, 1xxxx1x0xx \ { 1xxx11x0x0, 1xxx01x0x1, 1xx1x1x00x, 1xx0x1x01x, 1xxxx1100x, 1xxxx1x0x0, 1xxxx11011, 1x1xx1x0xx, 1111x1x0xx, 10x001x0xx}, 1xxx1xxxx1 \ { 1xx11xxx01, 1xx01xxx11, 1xxx101011, 1xxx110111, 1xxx101xx1, 1x1x1xxxx1, 11111xxxx1}} {xx011 \ {01011, x1011, 00011}, x01xx \ {001xx, 0011x, 1010x}} {x11xx \ {x11x1, 111xx, 011x0}, x0x1x \ {10x11, 10010}} { x1111xx011 \ { x111101011, x1111x1011, x111100011, x1111xx011, 11111xx011}, x0x11xx011 \ { x0x1101011, x0x11x1011, x0x1100011, 10x11xx011}, x11xxx01xx \ { x11x1x01x0, x11x0x01x1, x111xx010x, x110xx011x, x11xx001xx, x11xx0011x, x11xx1010x, x11x1x01xx, 111xxx01xx, 011x0x01xx}, x0x1xx011x \ { x0x11x0110, x0x10x0111, x0x1x0011x, x0x1x0011x, 10x11x011x, 10010x011x}} {x000x \ {0000x, 00001, x0000}, 0000x \ {00000}} {00x1x \ {00011, 00111}} {} {x111x \ {11111}} {011xx \ {011x0, 0111x, 0111x}, x1xx1 \ {x1x11, x1111, 11111}} { 0111xx111x \ { 01111x1110, 01110x1111, 0111x11111, 01110x111x, 0111xx111x, 0111xx111x}, x1x11x1111 \ { x1x1111111, x1x11x1111, x1111x1111, 11111x1111}} {1xx1x \ {11x1x, 10111}, x011x \ {0011x, 1011x, 10111}, x110x \ {x1100, x1101, 01100}} {0xx11 \ {01x11, 01111, 00111}, x1001 \ {11001, 01001}} { 0xx111xx11 \ { 0xx1111x11, 0xx1110111, 01x111xx11, 011111xx11, 001111xx11}, 0xx11x0111 \ { 0xx1100111, 0xx1110111, 0xx1110111, 01x11x0111, 01111x0111, 00111x0111}, x1001x1101 \ { x1001x1101, 11001x1101, 01001x1101}} {1x10x \ {10101, 10100, 11100}, 00xx0 \ {00100, 00x00, 00x00}} {xx110 \ {11110, 1x110, 00110}, 0x0xx \ {01000, 010xx, 010x1}, x01x0 \ {001x0, 101x0}} { 0x00x1x10x \ { 0x0011x100, 0x0001x101, 0x00x10101, 0x00x10100, 0x00x11100, 010001x10x, 0100x1x10x, 010011x10x}, x01001x100 \ { x010010100, x010011100, 001001x100, 101001x100}, xx11000x10 \ { 1111000x10, 1x11000x10, 0011000x10}, 0x0x000xx0 \ { 0x01000x00, 0x00000x10, 0x0x000100, 0x0x000x00, 0x0x000x00, 0100000xx0, 010x000xx0}, x01x000xx0 \ { x011000x00, x010000x10, x01x000100, x01x000x00, x01x000x00, 001x000xx0, 101x000xx0}} {xxx10 \ {11x10, 10110, x0010}} {01x00 \ {01000}} {} {} {xx111 \ {x1111, 1x111, 11111}} {} {x0101 \ {00101, 10101}, x1x01 \ {01101, x1101, x1101}} {xxx1x \ {1xx1x, xxx10, x0x1x}, 0xx10 \ {01110, 00110, 00110}} {} {0x11x \ {0111x, 0x111, 0011x}, 0xx0x \ {0010x, 00000, 01100}} {} {} {1xxx1 \ {10x11, 1xx11, 100x1}, x0011 \ {10011, 00011}} {} {} {} {01x11 \ {01111, 01011}, 0x11x \ {0111x}} {} {1xx10 \ {1x010, 1x110, 10010}, xx00x \ {0x00x, 10000, 0x000}} {x1x0x \ {01000, x1001, x100x}} { x1x0xxx00x \ { x1x01xx000, x1x00xx001, x1x0x0x00x, x1x0x10000, x1x0x0x000, 01000xx00x, x1001xx00x, x100xxx00x}} {0xx11 \ {00111, 01011, 01x11}, 0x1xx \ {00110, 00100, 001x1}} {01xx1 \ {01111, 01011, 01x11}, xxx10 \ {11x10, 0x110, x1110}} { 01x110xx11 \ { 01x1100111, 01x1101011, 01x1101x11, 011110xx11, 010110xx11, 01x110xx11}, 01xx10x1x1 \ { 01x110x101, 01x010x111, 01xx1001x1, 011110x1x1, 010110x1x1, 01x110x1x1}, xxx100x110 \ { xxx1000110, 11x100x110, 0x1100x110, x11100x110}} {1x000 \ {11000, 10000, 10000}, 00xxx \ {00100, 0000x}} {xxx1x \ {x0011, 10x11, x001x}, x1xx1 \ {x1111, x11x1, 01101}} { xxx1x00x1x \ { xxx1100x10, xxx1000x11, x001100x1x, 10x1100x1x, x001x00x1x}, x1xx100xx1 \ { x1x1100x01, x1x0100x11, x1xx100001, x111100xx1, x11x100xx1, 0110100xx1}} {1100x \ {11001, 11000}, 0x1x1 \ {01111, 001x1, 00111}} {xx01x \ {x101x, 11011, x0010}, xx1x0 \ {1x110, 0x110}} { xx10011000 \ { xx10011000}, xx0110x111 \ { xx01101111, xx01100111, xx01100111, x10110x111, 110110x111}} {1110x \ {11101, 11100, 11100}} {010x1 \ {01011, 01001}, 1xx1x \ {11110, 11011, 1x110}} { 0100111101 \ { 0100111101, 0100111101}} {10x01 \ {10001}} {x00xx \ {x0010, 000xx, 10011}, x1x00 \ {11100, 01x00}} { x000110x01 \ { x000110001, 0000110x01}} {001x0 \ {00100, 00110}} {11xxx \ {11100, 1101x}, xx101 \ {x1101, 1x101, 10101}, 10x10 \ {10110}} { 11xx0001x0 \ { 11x1000100, 11x0000110, 11xx000100, 11xx000110, 11100001x0, 11010001x0}, 10x1000110 \ { 10x1000110, 1011000110}} {} {01x01 \ {01001}} {} {x0xx1 \ {x01x1, x0001, 00xx1}, xx1x1 \ {00111, 10111, 1x1x1}} {x11xx \ {x1111, 0111x, 0110x}, 11x0x \ {1100x, 11101}} { x11x1x0xx1 \ { x1111x0x01, x1101x0x11, x11x1x01x1, x11x1x0001, x11x100xx1, x1111x0xx1, 01111x0xx1, 01101x0xx1}, 11x01x0x01 \ { 11x01x0101, 11x01x0001, 11x0100x01, 11001x0x01, 11101x0x01}, x11x1xx1x1 \ { x1111xx101, x1101xx111, x11x100111, x11x110111, x11x11x1x1, x1111xx1x1, 01111xx1x1, 01101xx1x1}, 11x01xx101 \ { 11x011x101, 11001xx101, 11101xx101}} {00xx1 \ {00001, 00x01, 00111}} {100xx \ {10010, 1000x, 10000}, 0xx00 \ {00000, 00100, 01000}, xxxx1 \ {x1x01, 00101, 11xx1}} { 100x100xx1 \ { 1001100x01, 1000100x11, 100x100001, 100x100x01, 100x100111, 1000100xx1}, xxxx100xx1 \ { xxx1100x01, xxx0100x11, xxxx100001, xxxx100x01, xxxx100111, x1x0100xx1, 0010100xx1, 11xx100xx1}} {x00xx \ {x0010, 1001x, x0000}, 010x1 \ {01011, 01001}} {x0x1x \ {10x1x, x0010, x001x}, 0111x \ {01110, 01111}} { x0x1xx001x \ { x0x11x0010, x0x10x0011, x0x1xx0010, x0x1x1001x, 10x1xx001x, x0010x001x, x001xx001x}, 0111xx001x \ { 01111x0010, 01110x0011, 0111xx0010, 0111x1001x, 01110x001x, 01111x001x}, x0x1101011 \ { x0x1101011, 10x1101011, x001101011}, 0111101011 \ { 0111101011, 0111101011}} {1xxx1 \ {10101, 100x1, 11xx1}, x0101 \ {10101, 00101}} {0x00x \ {01000, 0x001, 0100x}} { 0x0011xx01 \ { 0x00110101, 0x00110001, 0x00111x01, 0x0011xx01, 010011xx01}, 0x001x0101 \ { 0x00110101, 0x00100101, 0x001x0101, 01001x0101}} {10x0x \ {10x01, 10001}} {0x1x1 \ {01101, 0x101, 0x101}} { 0x10110x01 \ { 0x10110x01, 0x10110001, 0110110x01, 0x10110x01, 0x10110x01}} {11xx1 \ {11001, 11011}, xx0x0 \ {1x0x0, x0010, x00x0}} {1xx01 \ {11x01, 10x01, 10101}, x0xxx \ {10101, x000x, 10xx1}, xx10x \ {01100, 01101, 0110x}} { 1xx0111x01 \ { 1xx0111001, 11x0111x01, 10x0111x01, 1010111x01}, x0xx111xx1 \ { x0x1111x01, x0x0111x11, x0xx111001, x0xx111011, 1010111xx1, x000111xx1, 10xx111xx1}, xx10111x01 \ { xx10111001, 0110111x01, 0110111x01}, x0xx0xx0x0 \ { x0x10xx000, x0x00xx010, x0xx01x0x0, x0xx0x0010, x0xx0x00x0, x0000xx0x0}, xx100xx000 \ { xx1001x000, xx100x0000, 01100xx000, 01100xx000}} {xxx1x \ {00110, xx111, x001x}} {00x11 \ {00111, 00011}, 0xxx0 \ {01x10, 00100}, x010x \ {10101, x0100, 00100}} { 00x11xxx11 \ { 00x11xx111, 00x11x0011, 00111xxx11, 00011xxx11}, 0xx10xxx10 \ { 0xx1000110, 0xx10x0010, 01x10xxx10}} {0xxx0 \ {00000, 0x110, 00110}} {x11x0 \ {x1110, 01110, x1100}, x00x1 \ {00001, 10001}} { x11x00xxx0 \ { x11100xx00, x11000xx10, x11x000000, x11x00x110, x11x000110, x11100xxx0, 011100xxx0, x11000xxx0}} {} {0x1x0 \ {011x0, 01110, 00100}} {} {1x0x1 \ {110x1, 100x1, 10001}} {00x10 \ {00010, 00110}, x10xx \ {x1011, 11001, 01010}} { x10x11x0x1 \ { x10111x001, x10011x011, x10x1110x1, x10x1100x1, x10x110001, x10111x0x1, 110011x0x1}} {111x0 \ {11100}, 0x1xx \ {0010x, 01101, 011x0}} {xx0x0 \ {x0000, 0x010, x1000}} { xx0x0111x0 \ { xx01011100, xx00011110, xx0x011100, x0000111x0, 0x010111x0, x1000111x0}, xx0x00x1x0 \ { xx0100x100, xx0000x110, xx0x000100, xx0x0011x0, x00000x1x0, 0x0100x1x0, x10000x1x0}} {x0x1x \ {x0111, 0001x, 1011x}, 111x0 \ {11110, 11100, 11100}} {} {} {x0x00 \ {00x00, x0000, x0100}, 0x101 \ {01101}} {1xxxx \ {10x11, 1x101, 10x1x}, 0x1x0 \ {011x0, 0x110}} { 1xx00x0x00 \ { 1xx0000x00, 1xx00x0000, 1xx00x0100}, 0x100x0x00 \ { 0x10000x00, 0x100x0000, 0x100x0100, 01100x0x00}, 1xx010x101 \ { 1xx0101101, 1x1010x101}} {xx110 \ {10110, 01110, 0x110}} {1111x \ {11110, 11111}} { 11110xx110 \ { 1111010110, 1111001110, 111100x110, 11110xx110}} {x10xx \ {110xx, 1100x, 110x0}, xx0xx \ {x00x1, xx010, x10x1}} {0011x \ {00111}, xx0x0 \ {100x0, 01000, 1x010}, 0xx0x \ {0x101, 01100, 00001}} { 0011xx101x \ { 00111x1010, 00110x1011, 0011x1101x, 0011x11010, 00111x101x}, xx0x0x10x0 \ { xx010x1000, xx000x1010, xx0x0110x0, xx0x011000, xx0x0110x0, 100x0x10x0, 01000x10x0, 1x010x10x0}, 0xx0xx100x \ { 0xx01x1000, 0xx00x1001, 0xx0x1100x, 0xx0x1100x, 0xx0x11000, 0x101x100x, 01100x100x, 00001x100x}, 0011xxx01x \ { 00111xx010, 00110xx011, 0011xx0011, 0011xxx010, 0011xx1011, 00111xx01x}, xx0x0xx0x0 \ { xx010xx000, xx000xx010, xx0x0xx010, 100x0xx0x0, 01000xx0x0, 1x010xx0x0}, 0xx0xxx00x \ { 0xx01xx000, 0xx00xx001, 0xx0xx0001, 0xx0xx1001, 0x101xx00x, 01100xx00x, 00001xx00x}} {x1x10 \ {01110, 11110, x1010}, x1xxx \ {1111x, x1xx0, x1011}} {x1011 \ {11011, 01011}, 10x0x \ {1000x, 10001, 10x00}, 10x1x \ {10x11, 10x10, 10111}} { 10x10x1x10 \ { 10x1001110, 10x1011110, 10x10x1010, 10x10x1x10}, x1011x1x11 \ { x101111111, x1011x1011, 11011x1x11, 01011x1x11}, 10x0xx1x0x \ { 10x01x1x00, 10x00x1x01, 10x0xx1x00, 1000xx1x0x, 10001x1x0x, 10x00x1x0x}, 10x1xx1x1x \ { 10x11x1x10, 10x10x1x11, 10x1x1111x, 10x1xx1x10, 10x1xx1011, 10x11x1x1x, 10x10x1x1x, 10111x1x1x}} {0110x \ {01100, 01101}, x1x00 \ {x1100, 01000}} {00xx0 \ {001x0, 00010, 00x00}, 00xx1 \ {00x11, 00111, 00001}} { 00x0001100 \ { 00x0001100, 0010001100, 00x0001100}, 00x0101101 \ { 00x0101101, 0000101101}, 00x00x1x00 \ { 00x00x1100, 00x0001000, 00100x1x00, 00x00x1x00}} {x11xx \ {1110x, 111xx, x11x0}, 1x1x1 \ {11101, 11111, 10111}} {x011x \ {00110, 0011x, x0111}, 011x1 \ {01101}} { x011xx111x \ { x0111x1110, x0110x1111, x011x1111x, x011xx1110, 00110x111x, 0011xx111x, x0111x111x}, 011x1x11x1 \ { 01111x1101, 01101x1111, 011x111101, 011x1111x1, 01101x11x1}, x01111x111 \ { x011111111, x011110111, 001111x111, x01111x111}, 011x11x1x1 \ { 011111x101, 011011x111, 011x111101, 011x111111, 011x110111, 011011x1x1}} {1x0x1 \ {11001, 1x011, 1x011}, x001x \ {10010, 0001x}} {0001x \ {00011, 00010}, 00x10 \ {00010, 00110}} { 000111x011 \ { 000111x011, 000111x011, 000111x011}, 0001xx001x \ { 00011x0010, 00010x0011, 0001x10010, 0001x0001x, 00011x001x, 00010x001x}, 00x10x0010 \ { 00x1010010, 00x1000010, 00010x0010, 00110x0010}} {01x01 \ {01001, 01101}} {01x0x \ {01101, 0100x}} { 01x0101x01 \ { 01x0101001, 01x0101101, 0110101x01, 0100101x01}} {xx11x \ {x1111, 1x11x, x0111}, x00x1 \ {x0001, 10011, 00001}, x10xx \ {0100x, x100x, x1010}} {xx0xx \ {10010, 0x00x, x100x}, 0x00x \ {0x000, 0x001, 01000}, 11xx0 \ {11010, 111x0, 11110}} { xx01xxx11x \ { xx011xx110, xx010xx111, xx01xx1111, xx01x1x11x, xx01xx0111, 10010xx11x}, 11x10xx110 \ { 11x101x110, 11010xx110, 11110xx110, 11110xx110}, xx0x1x00x1 \ { xx011x0001, xx001x0011, xx0x1x0001, xx0x110011, xx0x100001, 0x001x00x1, x1001x00x1}, 0x001x0001 \ { 0x001x0001, 0x00100001, 0x001x0001}, xx0xxx10xx \ { xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx0100x, xx0xxx100x, xx0xxx1010, 10010x10xx, 0x00xx10xx, x100xx10xx}, 0x00xx100x \ { 0x001x1000, 0x000x1001, 0x00x0100x, 0x00xx100x, 0x000x100x, 0x001x100x, 01000x100x}, 11xx0x10x0 \ { 11x10x1000, 11x00x1010, 11xx001000, 11xx0x1000, 11xx0x1010, 11010x10x0, 111x0x10x0, 11110x10x0}} {} {100xx \ {10011, 10001, 1001x}} {} {10x1x \ {10010, 10x11, 10011}, 010x1 \ {01011, 01001}} {10x10 \ {10110, 10010}} { 10x1010x10 \ { 10x1010010, 1011010x10, 1001010x10}} {} {0x0x0 \ {00010, 01000, 010x0}} {} {x1001 \ {01001, 11001, 11001}, xx001 \ {01001, x0001, 1x001}} {0x01x \ {0x011, 01010}} {} {x1x1x \ {1111x, 11110, 01011}} {0x1x0 \ {01100, 01110, 011x0}, x0xxx \ {x00x1, 10010, 000xx}} { 0x110x1x10 \ { 0x11011110, 0x11011110, 01110x1x10, 01110x1x10}, x0x1xx1x1x \ { x0x11x1x10, x0x10x1x11, x0x1x1111x, x0x1x11110, x0x1x01011, x0011x1x1x, 10010x1x1x, 0001xx1x1x}} {xx0x0 \ {0x0x0, 01000, xx010}} {1x001 \ {11001, 10001, 10001}} {} {x000x \ {x0000, x0001, x0001}, 1x0x1 \ {10001, 11001, 1x001}} {0xx01 \ {01x01, 00001, 01101}, x1xx0 \ {11x10, 01100, x11x0}, xx10x \ {0x101, 1x10x, 11101}} { 0xx01x0001 \ { 0xx01x0001, 0xx01x0001, 01x01x0001, 00001x0001, 01101x0001}, x1x00x0000 \ { x1x00x0000, 01100x0000, x1100x0000}, xx10xx000x \ { xx101x0000, xx100x0001, xx10xx0000, xx10xx0001, xx10xx0001, 0x101x000x, 1x10xx000x, 11101x000x}, 0xx011x001 \ { 0xx0110001, 0xx0111001, 0xx011x001, 01x011x001, 000011x001, 011011x001}, xx1011x001 \ { xx10110001, xx10111001, xx1011x001, 0x1011x001, 1x1011x001, 111011x001}} {00xx0 \ {00110, 00x00}} {00xx0 \ {001x0, 00100, 000x0}, 1010x \ {10100, 10101}, x10xx \ {x1000, x10x0, 110x0}} { 00xx000xx0 \ { 00x1000x00, 00x0000x10, 00xx000110, 00xx000x00, 001x000xx0, 0010000xx0, 000x000xx0}, 1010000x00 \ { 1010000x00, 1010000x00}, x10x000xx0 \ { x101000x00, x100000x10, x10x000110, x10x000x00, x100000xx0, x10x000xx0, 110x000xx0}} {x00xx \ {1000x, 100x0, 0001x}, x1xx1 \ {111x1, x1011, 11xx1}, 00xx1 \ {00101, 000x1, 001x1}} {0x10x \ {0110x, 0010x, 00100}, x0101 \ {10101, 00101}, x10xx \ {11011, 11010, x10x0}} { 0x10xx000x \ { 0x101x0000, 0x100x0001, 0x10x1000x, 0x10x10000, 0110xx000x, 0010xx000x, 00100x000x}, x0101x0001 \ { x010110001, 10101x0001, 00101x0001}, x10xxx00xx \ { x10x1x00x0, x10x0x00x1, x101xx000x, x100xx001x, x10xx1000x, x10xx100x0, x10xx0001x, 11011x00xx, 11010x00xx, x10x0x00xx}, 0x101x1x01 \ { 0x10111101, 0x10111x01, 01101x1x01, 00101x1x01}, x0101x1x01 \ { x010111101, x010111x01, 10101x1x01, 00101x1x01}, x10x1x1xx1 \ { x1011x1x01, x1001x1x11, x10x1111x1, x10x1x1011, x10x111xx1, 11011x1xx1}, 0x10100x01 \ { 0x10100101, 0x10100001, 0x10100101, 0110100x01, 0010100x01}, x010100x01 \ { x010100101, x010100001, x010100101, 1010100x01, 0010100x01}, x10x100xx1 \ { x101100x01, x100100x11, x10x100101, x10x1000x1, x10x1001x1, 1101100xx1}} {} {x0x10 \ {00110, x0110}, 0xx11 \ {00011, 01x11}} {} {} {x10x1 \ {01001, x1011, 01011}, 0xx01 \ {0x001, 00101, 01101}} {} {1x110 \ {10110, 11110, 11110}} {x11x1 \ {11101, x1101, x1101}} {} {1x11x \ {11110, 10111, 11111}} {1xxx0 \ {1x000, 10x00, 110x0}} { 1xx101x110 \ { 1xx1011110, 110101x110}} {} {x0xx1 \ {10101, 100x1, x0101}, 1x0xx \ {1001x, 11010}} {} {xxxx1 \ {01101, 01001, xx0x1}, 00x10 \ {00110, 00010, 00010}} {0xx10 \ {00010, 01x10, 01010}, 1x010 \ {11010, 10010}} { 0xx1000x10 \ { 0xx1000110, 0xx1000010, 0xx1000010, 0001000x10, 01x1000x10, 0101000x10}, 1x01000x10 \ { 1x01000110, 1x01000010, 1x01000010, 1101000x10, 1001000x10}} {01x1x \ {01x11, 01011}} {00xx1 \ {001x1, 00101, 00111}, x101x \ {11010, 11011}} { 00x1101x11 \ { 00x1101x11, 00x1101011, 0011101x11, 0011101x11}, x101x01x1x \ { x101101x10, x101001x11, x101x01x11, x101x01011, 1101001x1x, 1101101x1x}} {} {} {} {} {x000x \ {10001, 1000x, 10000}} {} {00xxx \ {00111, 00011, 00x1x}, 010x1 \ {01001, 01011}} {xxx11 \ {x1111, x0x11, 0x011}, 1x0x1 \ {100x1, 110x1, 10001}} { xxx1100x11 \ { xxx1100111, xxx1100011, xxx1100x11, x111100x11, x0x1100x11, 0x01100x11}, 1x0x100xx1 \ { 1x01100x01, 1x00100x11, 1x0x100111, 1x0x100011, 1x0x100x11, 100x100xx1, 110x100xx1, 1000100xx1}, xxx1101011 \ { xxx1101011, x111101011, x0x1101011, 0x01101011}, 1x0x1010x1 \ { 1x01101001, 1x00101011, 1x0x101001, 1x0x101011, 100x1010x1, 110x1010x1, 10001010x1}} {x0x1x \ {00110, 1011x, x0011}} {} {} {01x1x \ {01x10, 01111, 01111}, x0x01 \ {10001, 10101, x0101}} {x110x \ {11101, 01100}, xxx01 \ {11001, 0x101, 01101}} { x1101x0x01 \ { x110110001, x110110101, x1101x0101, 11101x0x01}, xxx01x0x01 \ { xxx0110001, xxx0110101, xxx01x0101, 11001x0x01, 0x101x0x01, 01101x0x01}} {1xx0x \ {1x000, 11100, 10000}, 1x01x \ {10011, 1001x}} {x11xx \ {111xx, x110x, x11x0}} { x110x1xx0x \ { x11011xx00, x11001xx01, x110x1x000, x110x11100, x110x10000, 1110x1xx0x, x110x1xx0x, x11001xx0x}, x111x1x01x \ { x11111x010, x11101x011, x111x10011, x111x1001x, 1111x1x01x, x11101x01x}} {} {} {} {xx010 \ {11010, 0x010}} {xxx10 \ {10110, 10x10, x1010}, 1x011 \ {11011, 10011}} { xxx10xx010 \ { xxx1011010, xxx100x010, 10110xx010, 10x10xx010, x1010xx010}} {0x0xx \ {0101x, 01011, 010x0}, 1x001 \ {10001, 11001, 11001}} {xx0x1 \ {x10x1, 010x1, 01001}} { xx0x10x0x1 \ { xx0110x001, xx0010x011, xx0x101011, xx0x101011, x10x10x0x1, 010x10x0x1, 010010x0x1}, xx0011x001 \ { xx00110001, xx00111001, xx00111001, x10011x001, 010011x001, 010011x001}} {x0010 \ {10010, 00010}, 10x00 \ {10100, 10000}} {x1x1x \ {0111x, 01011}, x1xx0 \ {x11x0, 01000, 01110}} { x1x10x0010 \ { x1x1010010, x1x1000010, 01110x0010}, x1x0010x00 \ { x1x0010100, x1x0010000, x110010x00, 0100010x00}} {x11x1 \ {111x1, 011x1, 11101}, x0x01 \ {10101, 10x01, x0001}} {xx10x \ {x010x, x1101, 1x10x}, x11x0 \ {011x0, 11100}} { xx101x1101 \ { xx10111101, xx10101101, xx10111101, x0101x1101, x1101x1101, 1x101x1101}, xx101x0x01 \ { xx10110101, xx10110x01, xx101x0001, x0101x0x01, x1101x0x01, 1x101x0x01}} {x1x11 \ {11111, x1111, 11x11}, x1x01 \ {01101, x1101, 01x01}} {10xx1 \ {10011, 10001, 101x1}} { 10x11x1x11 \ { 10x1111111, 10x11x1111, 10x1111x11, 10011x1x11, 10111x1x11}, 10x01x1x01 \ { 10x0101101, 10x01x1101, 10x0101x01, 10001x1x01, 10101x1x01}} {xxxx1 \ {0x1x1, 0xxx1, xx0x1}, 1xxxx \ {11xxx, 1x101, 110xx}, 10xx1 \ {10x11, 101x1, 101x1}} {1101x \ {11011, 11010, 11010}} { 11011xxx11 \ { 110110x111, 110110xx11, 11011xx011, 11011xxx11}, 1101x1xx1x \ { 110111xx10, 110101xx11, 1101x11x1x, 1101x1101x, 110111xx1x, 110101xx1x, 110101xx1x}, 1101110x11 \ { 1101110x11, 1101110111, 1101110111, 1101110x11}} {xxxx0 \ {xxx00, 00010, 01110}, 0x0x0 \ {01000, 00010, 010x0}} {x1xx0 \ {x1100, 01100, 11x00}, x1010 \ {11010}} { x1xx0xxxx0 \ { x1x10xxx00, x1x00xxx10, x1xx0xxx00, x1xx000010, x1xx001110, x1100xxxx0, 01100xxxx0, 11x00xxxx0}, x1010xxx10 \ { x101000010, x101001110, 11010xxx10}, x1xx00x0x0 \ { x1x100x000, x1x000x010, x1xx001000, x1xx000010, x1xx0010x0, x11000x0x0, 011000x0x0, 11x000x0x0}, x10100x010 \ { x101000010, x101001010, 110100x010}} {} {x0100 \ {00100}, 00xxx \ {00011, 0011x, 000x1}} {} {x10xx \ {010xx, 11010, x1010}, xx100 \ {x0100, 01100}} {x000x \ {00001, 1000x}, x10x0 \ {11010, x1010, 01010}, xx11x \ {1x11x, 0x110, 1x110}} { x000xx100x \ { x0001x1000, x0000x1001, x000x0100x, 00001x100x, 1000xx100x}, x10x0x10x0 \ { x1010x1000, x1000x1010, x10x0010x0, x10x011010, x10x0x1010, 11010x10x0, x1010x10x0, 01010x10x0}, xx11xx101x \ { xx111x1010, xx110x1011, xx11x0101x, xx11x11010, xx11xx1010, 1x11xx101x, 0x110x101x, 1x110x101x}, x0000xx100 \ { x0000x0100, x000001100, 10000xx100}, x1000xx100 \ { x1000x0100, x100001100}} {10xx1 \ {10101, 10x01, 10001}} {x0xx0 \ {x0110, x0000, 10100}} {} {11xxx \ {1110x, 11111, 11100}, 1011x \ {10111, 10110}} {0x101 \ {00101, 01101}, 10x1x \ {10110, 10010, 10x10}} { 0x10111x01 \ { 0x10111101, 0010111x01, 0110111x01}, 10x1x11x1x \ { 10x1111x10, 10x1011x11, 10x1x11111, 1011011x1x, 1001011x1x, 10x1011x1x}, 10x1x1011x \ { 10x1110110, 10x1010111, 10x1x10111, 10x1x10110, 101101011x, 100101011x, 10x101011x}} {x0xx0 \ {00010, 10000, 00100}, xx0x0 \ {00000, xx000, 010x0}} {} {} {xx1xx \ {10111, x0110, 111x0}} {00xxx \ {00xx0, 00010}, xxx01 \ {1x001, 01001, 1xx01}} { 00xxxxx1xx \ { 00xx1xx1x0, 00xx0xx1x1, 00x1xxx10x, 00x0xxx11x, 00xxx10111, 00xxxx0110, 00xxx111x0, 00xx0xx1xx, 00010xx1xx}, xxx01xx101 \ { 1x001xx101, 01001xx101, 1xx01xx101}} {x1x11 \ {x1011, 01111, 11011}, xx01x \ {10010, 0001x, 0x01x}} {0x1x1 \ {0x111, 01111, 011x1}, 0xxxx \ {01x0x, 0x10x, 01x00}} { 0x111x1x11 \ { 0x111x1011, 0x11101111, 0x11111011, 0x111x1x11, 01111x1x11, 01111x1x11}, 0xx11x1x11 \ { 0xx11x1011, 0xx1101111, 0xx1111011}, 0x111xx011 \ { 0x11100011, 0x1110x011, 0x111xx011, 01111xx011, 01111xx011}, 0xx1xxx01x \ { 0xx11xx010, 0xx10xx011, 0xx1x10010, 0xx1x0001x, 0xx1x0x01x}} {xxx00 \ {0xx00, 00000, 10x00}} {0010x \ {00101, 00100}} { 00100xxx00 \ { 001000xx00, 0010000000, 0010010x00, 00100xxx00}} {} {0xx1x \ {0xx10, 00111, 00x1x}, 10x1x \ {1001x}} {} {xx100 \ {00100, 0x100, 01100}, 1x011 \ {10011, 11011}} {11x1x \ {11011, 1111x}} { 11x111x011 \ { 11x1110011, 11x1111011, 110111x011, 111111x011}} {1x01x \ {10011, 1101x, 1101x}, 0100x \ {01001, 01000}} {x0xx1 \ {10001, x0011, x0111}, 0xx00 \ {01x00, 00000, 0x000}} { x0x111x011 \ { x0x1110011, x0x1111011, x0x1111011, x00111x011, x01111x011}, x0x0101001 \ { x0x0101001, 1000101001}, 0xx0001000 \ { 0xx0001000, 01x0001000, 0000001000, 0x00001000}} {xxx11 \ {0x011, 00011, xx011}, 1xxx1 \ {1xx11, 10xx1, 11111}} {x1000 \ {11000, 01000}} {} {00xxx \ {0001x, 00110, 001x1}, 1x010 \ {11010, 10010}} {0110x \ {01100, 01101, 01101}, x1x00 \ {01x00, 01100, 11000}} { 0110x00x0x \ { 0110100x00, 0110000x01, 0110x00101, 0110000x0x, 0110100x0x, 0110100x0x}, x1x0000x00 \ { 01x0000x00, 0110000x00, 1100000x00}} {10x1x \ {10x10, 10010, 1011x}, xx00x \ {0x00x, 11001, 01001}, 010x1 \ {01001, 01011, 01011}} {x010x \ {x0101, 00101}, 110xx \ {11000, 11011}} { 1101x10x1x \ { 1101110x10, 1101010x11, 1101x10x10, 1101x10010, 1101x1011x, 1101110x1x}, x010xxx00x \ { x0101xx000, x0100xx001, x010x0x00x, x010x11001, x010x01001, x0101xx00x, 00101xx00x}, 1100xxx00x \ { 11001xx000, 11000xx001, 1100x0x00x, 1100x11001, 1100x01001, 11000xx00x}, x010101001 \ { x010101001, x010101001, 0010101001}, 110x1010x1 \ { 1101101001, 1100101011, 110x101001, 110x101011, 110x101011, 11011010x1}} {0x0x0 \ {01010, 00010, 0x010}, 000xx \ {00011, 00000, 0001x}, 1x100 \ {10100, 11100}} {x1x11 \ {01x11, x1011, 11011}, x111x \ {11110, x1111, 01111}} { x11100x010 \ { x111001010, x111000010, x11100x010, 111100x010}, x1x1100011 \ { x1x1100011, x1x1100011, 01x1100011, x101100011, 1101100011}, x111x0001x \ { x111100010, x111000011, x111x00011, x111x0001x, 111100001x, x11110001x, 011110001x}} {x1x1x \ {01110, x1110, x1011}} {x01x0 \ {10110, x0100, 10100}} { x0110x1x10 \ { x011001110, x0110x1110, 10110x1x10}} {} {} {} {1xxx0 \ {1x000, 10110, 10000}} {1xx10 \ {10x10, 10010, 10010}, x10x0 \ {01000, 110x0, 01010}, x1xx0 \ {111x0, 01000, x1000}} { 1xx101xx10 \ { 1xx1010110, 10x101xx10, 100101xx10, 100101xx10}, x10x01xxx0 \ { x10101xx00, x10001xx10, x10x01x000, x10x010110, x10x010000, 010001xxx0, 110x01xxx0, 010101xxx0}, x1xx01xxx0 \ { x1x101xx00, x1x001xx10, x1xx01x000, x1xx010110, x1xx010000, 111x01xxx0, 010001xxx0, x10001xxx0}} {x10xx \ {0101x, 11000, x1000}, 00xxx \ {000x0, 001x1, 001x1}} {0x1xx \ {00111, 0110x, 0x101}} { 0x1xxx10xx \ { 0x1x1x10x0, 0x1x0x10x1, 0x11xx100x, 0x10xx101x, 0x1xx0101x, 0x1xx11000, 0x1xxx1000, 00111x10xx, 0110xx10xx, 0x101x10xx}, 0x1xx00xxx \ { 0x1x100xx0, 0x1x000xx1, 0x11x00x0x, 0x10x00x1x, 0x1xx000x0, 0x1xx001x1, 0x1xx001x1, 0011100xxx, 0110x00xxx, 0x10100xxx}} {x0000 \ {10000, 00000, 00000}, 0x10x \ {01101, 0110x, 0110x}} {x1xxx \ {01111, 11x1x, 1110x}} { x1x00x0000 \ { x1x0010000, x1x0000000, x1x0000000, 11100x0000}, x1x0x0x10x \ { x1x010x100, x1x000x101, x1x0x01101, x1x0x0110x, x1x0x0110x, 1110x0x10x}} {01x1x \ {01x10, 01110, 01110}} {0100x \ {01000, 01001, 01001}, 1x000 \ {11000, 10000}, 0x110 \ {00110}} { 0x11001x10 \ { 0x11001x10, 0x11001110, 0x11001110, 0011001x10}} {x00x0 \ {100x0, 00000, x0010}, 1x110 \ {11110}} {001xx \ {00110, 001x0}, xxx01 \ {0xx01, 11x01, 11001}} { 001x0x00x0 \ { 00110x0000, 00100x0010, 001x0100x0, 001x000000, 001x0x0010, 00110x00x0, 001x0x00x0}, 001101x110 \ { 0011011110, 001101x110, 001101x110}} {xxx1x \ {1x11x, 1xx1x, 01010}, 0x0xx \ {00010, 0x00x, 00011}} {x1xx0 \ {01xx0, x1000, 111x0}} { x1x10xxx10 \ { x1x101x110, x1x101xx10, x1x1001010, 01x10xxx10, 11110xxx10}, x1xx00x0x0 \ { x1x100x000, x1x000x010, x1xx000010, x1xx00x000, 01xx00x0x0, x10000x0x0, 111x00x0x0}} {xxx01 \ {x0001, 0xx01, 1x101}, 00x10 \ {00110, 00010}} {1x1x1 \ {10101, 101x1, 10111}} { 1x101xxx01 \ { 1x101x0001, 1x1010xx01, 1x1011x101, 10101xxx01, 10101xxx01}} {1x1x1 \ {10111, 10101, 11111}} {0xx01 \ {01001, 0x001, 01x01}} { 0xx011x101 \ { 0xx0110101, 010011x101, 0x0011x101, 01x011x101}} {1x1x1 \ {10101, 10111, 10111}, x0xx1 \ {00101, 00x11, 10111}} {x11x1 \ {x1111, 01111, 01101}} { x11x11x1x1 \ { x11111x101, x11011x111, x11x110101, x11x110111, x11x110111, x11111x1x1, 011111x1x1, 011011x1x1}, x11x1x0xx1 \ { x1111x0x01, x1101x0x11, x11x100101, x11x100x11, x11x110111, x1111x0xx1, 01111x0xx1, 01101x0xx1}} {10x1x \ {10010, 10x11, 10x10}, xxxx1 \ {0xxx1, 10xx1, 1x011}} {110xx \ {11010, 11001}} { 1101x10x1x \ { 1101110x10, 1101010x11, 1101x10010, 1101x10x11, 1101x10x10, 1101010x1x}, 110x1xxxx1 \ { 11011xxx01, 11001xxx11, 110x10xxx1, 110x110xx1, 110x11x011, 11001xxxx1}} {} {10xx0 \ {10000, 10110}, xxx11 \ {01x11, 01011, x0011}, 0xxx0 \ {01xx0, 0xx10, 0x1x0}} {} {00xx1 \ {001x1, 00x01, 000x1}, 0x00x \ {0000x, 01000, 0100x}} {00x0x \ {00001, 00100}, 01xx1 \ {01101, 01x11, 01x11}} { 00x0100x01 \ { 00x0100101, 00x0100x01, 00x0100001, 0000100x01}, 01xx100xx1 \ { 01x1100x01, 01x0100x11, 01xx1001x1, 01xx100x01, 01xx1000x1, 0110100xx1, 01x1100xx1, 01x1100xx1}, 00x0x0x00x \ { 00x010x000, 00x000x001, 00x0x0000x, 00x0x01000, 00x0x0100x, 000010x00x, 001000x00x}, 01x010x001 \ { 01x0100001, 01x0101001, 011010x001}} {x1x0x \ {01x01, 11x0x, 11x0x}, x1001 \ {01001}} {00xx1 \ {00111, 00001, 00011}} { 00x01x1x01 \ { 00x0101x01, 00x0111x01, 00x0111x01, 00001x1x01}, 00x01x1001 \ { 00x0101001, 00001x1001}} {x1101 \ {01101, 11101}, 101xx \ {101x0, 10110, 10100}} {001x0 \ {00100}} { 001x0101x0 \ { 0011010100, 0010010110, 001x0101x0, 001x010110, 001x010100, 00100101x0}} {xx101 \ {11101, x0101, 00101}} {1011x \ {10111}, x0x10 \ {x0110, x0010, 10x10}} {} {0xx10 \ {01110, 00x10, 01010}} {100xx \ {1000x, 1001x, 10000}, 0x0x1 \ {00001, 010x1, 00011}, 00xxx \ {0010x, 00xx0, 00001}} { 100100xx10 \ { 1001001110, 1001000x10, 1001001010, 100100xx10}, 00x100xx10 \ { 00x1001110, 00x1000x10, 00x1001010, 00x100xx10}} {x01x1 \ {101x1, 001x1, 001x1}} {xx01x \ {x101x, 1x011, 10011}, 0001x \ {00010, 00011, 00011}} { xx011x0111 \ { xx01110111, xx01100111, xx01100111, x1011x0111, 1x011x0111, 10011x0111}, 00011x0111 \ { 0001110111, 0001100111, 0001100111, 00011x0111, 00011x0111}} {xx011 \ {11011, 0x011, 01011}} {x10xx \ {110x1, 01010}} { x1011xx011 \ { x101111011, x10110x011, x101101011, 11011xx011}} {x0x01 \ {00001, 00101, 10101}, 1x011 \ {11011, 10011, 10011}, 11xxx \ {11x1x, 11100, 11011}} {} {} {11x0x \ {1110x, 11x00, 11x01}} {11x00 \ {11100}} { 11x0011x00 \ { 11x0011100, 11x0011x00, 1110011x00}} {x0xx0 \ {x00x0, x0010, 00000}} {xx111 \ {01111, 10111, 00111}} {} {xxx10 \ {11110, 1x110, 01010}} {} {} {010xx \ {01010, 0101x}, xxxx0 \ {x1010, 10x10, 01x10}} {} {} {1x1x0 \ {11110, 111x0, 10110}, 000xx \ {000x0, 00001}, x0xx0 \ {10110, 10x10, 101x0}} {1xxx0 \ {11000, 100x0, 11110}} { 1xxx01x1x0 \ { 1xx101x100, 1xx001x110, 1xxx011110, 1xxx0111x0, 1xxx010110, 110001x1x0, 100x01x1x0, 111101x1x0}, 1xxx0000x0 \ { 1xx1000000, 1xx0000010, 1xxx0000x0, 11000000x0, 100x0000x0, 11110000x0}, 1xxx0x0xx0 \ { 1xx10x0x00, 1xx00x0x10, 1xxx010110, 1xxx010x10, 1xxx0101x0, 11000x0xx0, 100x0x0xx0, 11110x0xx0}} {} {x10xx \ {x10x1, 110x0, 010x1}, x001x \ {x0011, 10010, 10010}} {} {xxx1x \ {x111x, 10111, 1x11x}, 01x11 \ {01011}} {xxx10 \ {0x010, xx110, xx010}, 010x0 \ {01000, 01010}} { xxx10xxx10 \ { xxx10x1110, xxx101x110, 0x010xxx10, xx110xxx10, xx010xxx10}, 01010xxx10 \ { 01010x1110, 010101x110, 01010xxx10}} {1xx01 \ {10x01, 10101}} {1011x \ {10110, 10111, 10111}, x1x1x \ {1101x, x111x, 01x10}} {} {} {0x1x0 \ {001x0, 01110, 0x100}, 0xx11 \ {00x11, 00111, 0x011}} {} {xxx1x \ {1011x, 1xx1x, 0x110}, x0x11 \ {x0111, 10x11, 00111}} {0x10x \ {0010x, 01100, 00101}} {} {1xx00 \ {10100, 1x100, 11100}} {1x0xx \ {10010, 100xx, 110xx}, x00x1 \ {x0011, 00001, 00011}} { 1x0001xx00 \ { 1x00010100, 1x0001x100, 1x00011100, 100001xx00, 110001xx00}} {001x0 \ {00110, 00100, 00100}} {0xx11 \ {00x11, 01111, 00111}, xx01x \ {x101x, 10011, 1001x}} { xx01000110 \ { xx01000110, x101000110, 1001000110}} {xxx00 \ {1xx00, 00x00, 00100}} {111xx \ {111x0, 11101, 11101}, 01x0x \ {01000, 0110x, 0100x}} { 11100xxx00 \ { 111001xx00, 1110000x00, 1110000100, 11100xxx00}, 01x00xxx00 \ { 01x001xx00, 01x0000x00, 01x0000100, 01000xxx00, 01100xxx00, 01000xxx00}} {xx10x \ {x010x, x0101, 0010x}} {1x0xx \ {1101x, 10001, 10010}, x1xx1 \ {01x11, 01xx1, 11101}} { 1x00xxx10x \ { 1x001xx100, 1x000xx101, 1x00xx010x, 1x00xx0101, 1x00x0010x, 10001xx10x}, x1x01xx101 \ { x1x01x0101, x1x01x0101, x1x0100101, 01x01xx101, 11101xx101}} {1x11x \ {10111, 11111, 1x110}} {1x011 \ {10011, 11011}, 1xxxx \ {10xx0, 101x0, 10011}} { 1x0111x111 \ { 1x01110111, 1x01111111, 100111x111, 110111x111}, 1xx1x1x11x \ { 1xx111x110, 1xx101x111, 1xx1x10111, 1xx1x11111, 1xx1x1x110, 10x101x11x, 101101x11x, 100111x11x}} {01xx0 \ {011x0, 01x00, 01100}, x00x1 \ {00001, 10011}} {0x10x \ {0010x, 0x100, 00100}, 1000x \ {10000, 10001, 10001}} { 0x10001x00 \ { 0x10001100, 0x10001x00, 0x10001100, 0010001x00, 0x10001x00, 0010001x00}, 1000001x00 \ { 1000001100, 1000001x00, 1000001100, 1000001x00}, 0x101x0001 \ { 0x10100001, 00101x0001}, 10001x0001 \ { 1000100001, 10001x0001, 10001x0001}} {00x0x \ {00101, 00x00, 0000x}, 10x01 \ {10101, 10001}} {1xx01 \ {11101, 1x001}} { 1xx0100x01 \ { 1xx0100101, 1xx0100001, 1110100x01, 1x00100x01}, 1xx0110x01 \ { 1xx0110101, 1xx0110001, 1110110x01, 1x00110x01}} {} {xx00x \ {xx001, x000x, 1000x}} {} {111x1 \ {11111}, 1x010 \ {11010, 10010}} {x1x00 \ {01000, 11100, x1000}, 100xx \ {1001x, 10001, 10001}} { 100x1111x1 \ { 1001111101, 1000111111, 100x111111, 10011111x1, 10001111x1, 10001111x1}, 100101x010 \ { 1001011010, 1001010010, 100101x010}} {111xx \ {1110x, 11110, 111x1}, 0xx11 \ {00111, 01011, 00011}, xx00x \ {0x001, x0001, 0100x}} {x10xx \ {0101x, 1100x}} { x10xx111xx \ { x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx1110x, x10xx11110, x10xx111x1, 0101x111xx, 1100x111xx}, x10110xx11 \ { x101100111, x101101011, x101100011, 010110xx11}, x100xxx00x \ { x1001xx000, x1000xx001, x100x0x001, x100xx0001, x100x0100x, 1100xxx00x}} {xxx10 \ {10x10, 0xx10, 00010}} {x1101 \ {01101, 11101}} {} { 11000110000000000001} { 00000000000100011011} { 00000000000100011011} { 11000110000000000001} { 00000000000100011011} { 11000000000001000110} empty { } false full { xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} true { xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx \ { xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxx, xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx, xxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxx, xxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxx, xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx, xxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx, xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxx, xxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxx, xxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxx, xxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxx, xxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxx, xxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxx}} { } { } project { xxxxxxxxxxxxxxxxxx} { } { 000000111000000110000000000001, 000000100000010000000000001000, 000000000100010000000000100000} { 000000111000000110, 000000100000010000, 000000000100010000} t1 before:{ 000000000100010000000000100000} t1 after:{ 000000000100010000000000100000, 000000111000000110000000000001, 000000100000010000000000001000} delta:{ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} { 001001001000001001, 010001001000001001} { 001001001000001001} filter: (= (:var 0) (:var 1)) {xxx \ {x01, x10}} filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}} filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}} filter interpreted filter: true { xxxxxxxxxxxxxxxxxx} filter: false { } filter: (= (:var 0) (:var 2)) { xxxxxxxxxxxxxxxxxx \ { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx}} filter: (not (= (:var 0) (:var 2))) { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx} filter: (= (:var 0) #b010) { xxxxxxxxxxxxxxx010} filter: (= ((_ extract 2 1) (:var 0)) #b11) { xxxxxxxxxxxxxxx11x} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xxxxxxxxxxxx, xx1xx0xxxxxxxxxxxx, x0xx1xxxxxxxxxxxxx, x1xx0xxxxxxxxxxxxx, 0xx1xxxxxxxxxxxxxx, 1xx0xxxxxxxxxxxxxx}, 1xx0xxxxxxxxxxx11x \ { 1x00x1xxxxxxxxx11x, 1x10x0xxxxxxxxx11x, 10x01xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 0xx1xxxxxxxxxxx11x \ { 0x01x1xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 01x10xxxxxxxxxx11x}, x1xx0xxxxxxxxxx11x \ { x10x01xxxxxxxxx11x, x11x00xxxxxxxxx11x, 01x10xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 11x00xxxxxxxxxx11x \ { 110001xxxxxxxxx11x, 111000xxxxxxxxx11x}, 01x10xxxxxxxxxx11x \ { 010101xxxxxxxxx11x, 011100xxxxxxxxx11x}, x0xx1xxxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x01x10xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 10x01xxxxxxxxxx11x}, 10x01xxxxxxxxxx11x \ { 100011xxxxxxxxx11x, 101010xxxxxxxxx11x}, 00x11xxxxxxxxxx11x \ { 000111xxxxxxxxx11x, 001110xxxxxxxxx11x}, xx1xx0xxxxxxxxx11x \ { x01x10xxxxxxxxx11x, x11x00xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 1x10x0xxxxxxxxx11x}, 1x10x0xxxxxxxxx11x \ { 101010xxxxxxxxx11x, 111000xxxxxxxxx11x}, 0x11x0xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 011100xxxxxxxxx11x}, x11x00xxxxxxxxx11x \ { 011100xxxxxxxxx11x, 111000xxxxxxxxx11x}, 111000xxxxxxxxx11x, 011100xxxxxxxxx11x, x01x10xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 101010xxxxxxxxx11x}, 101010xxxxxxxxx11x, 001110xxxxxxxxx11x, xx0xx1xxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x10x01xxxxxxxxx11x, 0x01x1xxxxxxxxx11x, 1x00x1xxxxxxxxx11x}, 1x00x1xxxxxxxxx11x \ { 100011xxxxxxxxx11x, 110001xxxxxxxxx11x}, 0x01x1xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 010101xxxxxxxxx11x}, x10x01xxxxxxxxx11x \ { 010101xxxxxxxxx11x, 110001xxxxxxxxx11x}, 110001xxxxxxxxx11x, 010101xxxxxxxxx11x, x00x11xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 100011xxxxxxxxx11x}, 100011xxxxxxxxx11x, 000111xxxxxxxxx11x} filter: (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0x1xxxxxxxxxxxxx, xx1x0xxxxxxxxxxxxx, x0x1xxxxxxxxxxxxxx, x1x0xxxxxxxxxxxxxx}} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4)))) { xxxxxxxxxxxxxxxxxx \ { xx0x1xxxxxxxxxxxxx, xx1x0xxxxxxxxxxxxx, x0x1xxxxxxxxxxxxxx, x1x0xxxxxxxxxxxxxx}, x1x0xxxxxxxxxxx11x \ { x1001xxxxxxxxxx11x, x1100xxxxxxxxxx11x}, x0x1xxxxxxxxxxx11x \ { x0011xxxxxxxxxx11x, x0110xxxxxxxxxx11x}, xx1x0xxxxxxxxxx11x \ { x0110xxxxxxxxxx11x, x1100xxxxxxxxxx11x}, x1100xxxxxxxxxx11x, x0110xxxxxxxxxx11x, xx0x1xxxxxxxxxx11x \ { x0011xxxxxxxxxx11x, x1001xxxxxxxxxx11x}, x1001xxxxxxxxxx11x, x0011xxxxxxxxxx11x} filter: (or (= (:var 0) (:var 2)) (= (:var 0) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xxxxx0xxxxxxxx1, x0xxxxxx0xxxxxxx11, x1xxxxxx0xxxxxxx01, 0xxxxxxx0xxxxxx1x1, 1xxxxxxx0xxxxxx0x1, xx1xxxxx1xxxxxxxx0, x0xxxxxx1xxxxxxx10, x1xxxxxx1xxxxxxx00, 0xxxxxxx1xxxxxx1x0, 1xxxxxxx1xxxxxx0x0, xx0xxxx0xxxxxxxx11, xx1xxxx0xxxxxxxx10, x0xxxxx0xxxxxxxx1x, 0xxxxxx0xxxxxxx11x, 1xxxxxx0xxxxxxx01x, xx0xxxx1xxxxxxxx01, xx1xxxx1xxxxxxxx00, x1xxxxx1xxxxxxxx0x, 0xxxxxx1xxxxxxx10x, 1xxxxxx1xxxxxxx00x, xx0xxx0xxxxxxxx1x1, xx1xxx0xxxxxxxx1x0, x0xxxx0xxxxxxxx11x, x1xxxx0xxxxxxxx10x, 0xxxxx0xxxxxxxx1xx, xx0xxx1xxxxxxxx0x1, xx1xxx1xxxxxxxx0x0, x0xxxx1xxxxxxxx01x, x1xxxx1xxxxxxxx00x, 1xxxxx1xxxxxxxx0xx}} filter: (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xx0xxxxxxxx1, xx1xx0xx0xxxxxxxx1, x0xx1xxx0xxxxxxxx1, x1xx0xxx0xxxxxxxx1, 0xx1xxxx0xxxxxxxx1, 1xx0xxxx0xxxxxxxx1, xx0xx1xx1xxxxxxxx0, xx1xx0xx1xxxxxxxx0, x0xx1xxx1xxxxxxxx0, x1xx0xxx1xxxxxxxx0, 0xx1xxxx1xxxxxxxx0, 1xx0xxxx1xxxxxxxx0, xx0xx1x0xxxxxxxx1x, xx1xx0x0xxxxxxxx1x, x0xx1xx0xxxxxxxx1x, x1xx0xx0xxxxxxxx1x, 0xx1xxx0xxxxxxxx1x, 1xx0xxx0xxxxxxxx1x, xx0xx1x1xxxxxxxx0x, xx1xx0x1xxxxxxxx0x, x0xx1xx1xxxxxxxx0x, x1xx0xx1xxxxxxxx0x, 0xx1xxx1xxxxxxxx0x, 1xx0xxx1xxxxxxxx0x, xx0xx10xxxxxxxx1xx, xx1xx00xxxxxxxx1xx, x0xx1x0xxxxxxxx1xx, x1xx0x0xxxxxxxx1xx, 0xx1xx0xxxxxxxx1xx, 1xx0xx0xxxxxxxx1xx, xx0xx11xxxxxxxx0xx, xx1xx01xxxxxxxx0xx, x0xx1x1xxxxxxxx0xx, x1xx0x1xxxxxxxx0xx, 0xx1xx1xxxxxxxx0xx, 1xx0xx1xxxxxxxx0xx}} filter: (or (= ((_ extract 2 1) (:var 0)) ((_ extract 1 0) (:var 2))) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xx0xxxxxxx1x, xx1xx0xx0xxxxxxx1x, x0xx1xxx0xxxxxxx1x, x1xx0xxx0xxxxxxx1x, 0xx1xxxx0xxxxxxx1x, 1xx0xxxx0xxxxxxx1x, xx0xx1xx1xxxxxxx0x, xx1xx0xx1xxxxxxx0x, x0xx1xxx1xxxxxxx0x, x1xx0xxx1xxxxxxx0x, 0xx1xxxx1xxxxxxx0x, 1xx0xxxx1xxxxxxx0x, xx0xx1x0xxxxxxx1xx, xx1xx0x0xxxxxxx1xx, x0xx1xx0xxxxxxx1xx, x1xx0xx0xxxxxxx1xx, 0xx1xxx0xxxxxxx1xx, 1xx0xxx0xxxxxxx1xx, xx0xx1x1xxxxxxx0xx, xx1xx0x1xxxxxxx0xx, x0xx1xx1xxxxxxx0xx, x1xx0xx1xxxxxxx0xx, 0xx1xxx1xxxxxxx0xx, 1xx0xxx1xxxxxxx0xx}} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xxxxxxxxxxxx, xx1xx0xxxxxxxxxxxx, x0xx1xxxxxxxxxxxxx, x1xx0xxxxxxxxxxxxx, 0xx1xxxxxxxxxxxxxx, 1xx0xxxxxxxxxxxxxx}, 1xx0xxxxxxxxxxx11x \ { 1x00x1xxxxxxxxx11x, 1x10x0xxxxxxxxx11x, 10x01xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 0xx1xxxxxxxxxxx11x \ { 0x01x1xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 01x10xxxxxxxxxx11x}, x1xx0xxxxxxxxxx11x \ { x10x01xxxxxxxxx11x, x11x00xxxxxxxxx11x, 01x10xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 11x00xxxxxxxxxx11x \ { 110001xxxxxxxxx11x, 111000xxxxxxxxx11x}, 01x10xxxxxxxxxx11x \ { 010101xxxxxxxxx11x, 011100xxxxxxxxx11x}, x0xx1xxxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x01x10xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 10x01xxxxxxxxxx11x}, 10x01xxxxxxxxxx11x \ { 100011xxxxxxxxx11x, 101010xxxxxxxxx11x}, 00x11xxxxxxxxxx11x \ { 000111xxxxxxxxx11x, 001110xxxxxxxxx11x}, xx1xx0xxxxxxxxx11x \ { x01x10xxxxxxxxx11x, x11x00xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 1x10x0xxxxxxxxx11x}, 1x10x0xxxxxxxxx11x \ { 101010xxxxxxxxx11x, 111000xxxxxxxxx11x}, 0x11x0xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 011100xxxxxxxxx11x}, x11x00xxxxxxxxx11x \ { 011100xxxxxxxxx11x, 111000xxxxxxxxx11x}, 111000xxxxxxxxx11x, 011100xxxxxxxxx11x, x01x10xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 101010xxxxxxxxx11x}, 101010xxxxxxxxx11x, 001110xxxxxxxxx11x, xx0xx1xxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x10x01xxxxxxxxx11x, 0x01x1xxxxxxxxx11x, 1x00x1xxxxxxxxx11x}, 1x00x1xxxxxxxxx11x \ { 100011xxxxxxxxx11x, 110001xxxxxxxxx11x}, 0x01x1xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 010101xxxxxxxxx11x}, x10x01xxxxxxxxx11x \ { 010101xxxxxxxxx11x, 110001xxxxxxxxx11x}, 110001xxxxxxxxx11x, 010101xxxxxxxxx11x, x00x11xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 100011xxxxxxxxx11x}, 100011xxxxxxxxx11x, 000111xxxxxxxxx11x} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) #b011)) { xxxxxxxxxxxxxxx11x, xxx011xxxxxxxxxxxx} filter: (or (= (:var 0) #b101) (= (:var 3) #b101)) { xxxxxxxxxxxxxxx101, xxx101xxxxxxxxxxxx} filter: (or (= (:var 0) #b111) (= (:var 3) #b111)) { xxxxxxxxxxxxxxx111, xxx111xxxxxxxxxxxx} filter: (not (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4)))) { xx0xx1xx0xxxxxxxx1, xx0xx1xx1xxxxxxxx0, xx0xx1x0xxxxxxxx1x, xx0xx1x1xxxxxxxx0x, xx0xx10xxxxxxxx1xx, xx0xx11xxxxxxxx0xx, xx1xx0xx0xxxxxxxx1, xx1xx0xx1xxxxxxxx0, xx1xx0x0xxxxxxxx1x, xx1xx0x1xxxxxxxx0x, xx1xx00xxxxxxxx1xx, xx1xx01xxxxxxxx0xx, x0xx1xxx0xxxxxxxx1, x0xx1xxx1xxxxxxxx0, x0xx1xx0xxxxxxxx1x, x0xx1xx1xxxxxxxx0x, x0xx1x0xxxxxxxx1xx, x0xx1x1xxxxxxxx0xx, x1xx0xxx0xxxxxxxx1, x1xx0xxx1xxxxxxxx0, x1xx0xx0xxxxxxxx1x, x1xx0xx1xxxxxxxx0x, x1xx0x0xxxxxxxx1xx, x1xx0x1xxxxxxxx0xx, 0xx1xxxx0xxxxxxxx1, 0xx1xxxx1xxxxxxxx0, 0xx1xxx0xxxxxxxx1x, 0xx1xxx1xxxxxxxx0x, 0xx1xx0xxxxxxxx1xx, 0xx1xx1xxxxxxxx0xx, 1xx0xxxx0xxxxxxxx1, 1xx0xxxx1xxxxxxxx0, 1xx0xxx0xxxxxxxx1x, 1xx0xxx1xxxxxxxx0x, 1xx0xx0xxxxxxxx1xx, 1xx0xx1xxxxxxxx0xx} filter: (= (:var 0) (:var 2)) { xxxxxxxxxxxxxxxxxx \ { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx}} filter: (not (= (:var 0) (:var 2))) { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx} PASS (test udoc_relation :time 2.11 :before-memory 1.08 :after-memory 1.08) {xxx \ {0x1}} {xxx \ {0x0, 1x1}} {0xxx \ {00xx, 0101, 0111}} {} {} {0x01 \ {0001, 0101, 0101}} {} {} {x1xx \ {01xx, 0101, x100}, x1x1 \ {x111, 1101}} {} {} {} {} {} {} {x1xx \ {x10x, 11x1, 0100}} {} {1xx1 \ {1001, 1x11, 1011}} {1xx0 \ {1000, 1x00, 1100}, 1xxx \ {11x1, 1x11, 1111}} {x1x1 \ {1101, 0111, x111, 11x1}} {xxx0 \ {x110, 0010, x000}} {} {} {xx00 \ {0000, x000}, 0x00 \ {0000, 0100, 0100}} {10xx \ {1001, 1000, 1010}} {0000 \ {0000}} {1x1x \ {1x10, 1x11}} {x11x \ {0111, x111}} {1x1x \ {1110, 1011, 1x10, 1x11, 111x}} {} {1x0x \ {1x01, 1000, 1000}} {} {0xx0 \ {0000, 00x0, 0100}} {} {} {x1x1 \ {0101, 11x1, 1111}, 0x11 \ {0011}} {10x0 \ {1000, 1010}} {} {xxxx \ {011x, 1x01}, 0xx1 \ {0x01, 00x1, 0011}, 1xxx \ {11xx, 11x0, 100x}} {x10x \ {110x, 0101, 0100}, 1x01 \ {1101}} {0x0x \ {0100, 0001, 010x, 000x}, 0101} {0xx0 \ {0000, 0110, 0x00}} {} {} {10xx \ {10x1, 10x0, 1000}} {1xx0 \ {1x10, 11x0, 1010}, xxx1 \ {x1x1, 0011, x101}} {x0x0 \ {x0x0}, x1x1 \ {x1x1}} {x1x1 \ {1101, x101}, 0x0x \ {0001, 0101, 010x}} {} {} {01xx \ {011x, 010x, 0110}, x000 \ {1000, 0000}} {xx1x \ {xx10, 101x, 101x}, 0x10 \ {0010, 0110, 0110}} {1x1x \ {1x1x}, 1010 \ {1010}} {x0x0 \ {x010, x000, 10x0}} {0xx1 \ {0101, 0111, 0011}, 0x00 \ {0000}} {0000 \ {0000}} {x1x0 \ {1100, 1110, 0110}} {100x \ {1001, 1000}} {0000 \ {0000}} {1xx1 \ {1111, 11x1, 1101}, x0xx \ {x001, x000, x0x0}} {0x00 \ {0000}, xx1x \ {001x, 1x11, 1x11}} {1111, 0000 \ {0000}, 1x1x \ {1110, 1011, 1x10}} {1x1x \ {1111, 101x, 1010}} {xx1x \ {111x, 001x, xx10}} {1x1x \ {1110, 1011, 101x, 1x11}} {} {0xx0 \ {0x00, 0110, 0100}} {} {0x1x \ {0111, 001x, 0x11}} {00x0 \ {0010, 0000}} {1010 \ {1010}} {100x \ {1000}, xx10 \ {0110, x010, 0x10}, xx0x \ {1101, 1100, 100x}} {0x0x \ {000x, 0001, 0100}} {0x0x \ {0100, 0001, 000x}} {x0xx \ {x001, 10x1, x01x}} {x0xx \ {1011, 0000}, 110x \ {1101, 1100, 1100}} {xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx01, xx1x}, 0x0x \ {0100, 0001, 0x01, 010x, 000x, 000x}} {x001 \ {1001, 0001}} {xx0x \ {1100, 0x0x, x10x}, 000x \ {0001}} {0101 \ {0101}} {x001 \ {1001, 0001, 0001}} {10xx \ {1011, 1001, 10x0}} {0101 \ {0101}} {} {0x00 \ {0000, 0100}} {} {x1xx \ {01x1, 010x, x1x0}} {011x \ {0111, 0110}, x00x \ {x001, 1000}, xxxx \ {0000, 00xx, 0111}} {1x1x \ {1110, 1011, 1x10, 111x, 101x}, 0x0x \ {0100, 0001, 0x00, 010x}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xxx0}} {01xx \ {01x1, 0110}} {} {} {x111 \ {0111, 1111}, 101x \ {1010, 1011}} {} {} {x101 \ {1101}} {x1xx \ {1101, 01xx, x101}, 1x0x \ {1x01, 1x00}} {0101 \ {0101}} {001x \ {0010}, 1x1x \ {1111, 1010, 1x10}} {0x0x \ {0000, 0x01, 000x}, 10xx \ {100x, 10x0, 1011}} {1x1x \ {1110, 1011, 1x10, 101x, 111x}} {} {1x00 \ {1000}} {} {xx11 \ {0011, 1111, 1111}} {xxx1 \ {1101, 1111, 0111}} {1111} {00xx \ {00x0, 00x1, 0001}} {10x0 \ {1000}, x10x \ {0100, x101, x100}} {x0x0 \ {x0x0}, 0x0x \ { 0100, 0001, 0x00, 0x01, 0x01, 010x, 000x}} {xx01 \ {1001, 0x01, 0101}} {011x \ {0111, 0110}} {} {} {x1xx \ {x10x, 1101, 0111}, xx11 \ {0111, 1111, 1x11}} {} {xx00 \ {0000, 0x00, 0100}} {x11x \ {0111, 111x, x111}, x01x \ {x011, x010, x010}} {} {11x1 \ {1101}} {1x1x \ {1011, 1110, 1x10}} {1111} {0x00 \ {0000, 0100}} {0xxx \ {0x00, 0101, 0001}} {0000 \ {0000}} {x0x0 \ {10x0, 1000}, 0x0x \ {0x00, 0000, 010x}} {xxx1 \ {xx11, xx01, x0x1}, 0xx0 \ {0100, 01x0}} {x0x0 \ {1000, 0010}, 0101 \ {0101}, 0000 \ {0000}} {x1x0 \ {01x0, 0110}} {x010 \ {1010, 0010}} {1010 \ {1010}} {x1x0 \ {1110, 1100, x100}} {1xx1 \ {1011, 1111}} {} {0xx0 \ {0000, 0x00, 01x0}} {x0x1 \ {x001, 1001, 0011}, 01xx \ {0111, 0110, 010x}, 0xx1 \ {0101, 0111, 0111}} {x0x0 \ {1000, 0010, x000, 10x0, 00x0, x000}} {1x0x \ {1x00, 1100}, x0xx \ {x00x, 1000, x001}, 100x \ {1001, 1000}} {xx0x \ {xx01, 1100, 010x}} {0x0x \ {0100, 0001, 0x00, 010x}} {1x1x \ {111x, 1010}, x001 \ {1001, 0001}} {xx0x \ {0000, x000, 1101}} {0101 \ {0101}} {xx11 \ {0111, 0011, 0011}, 00x0 \ {0010, 0000}} {0xxx \ {0x1x, 011x, 011x}} {1111 \ {1111}, x0x0 \ {1000, 0010, x010, x000, 10x0}} {} {11x1 \ {1101, 1111}, xxx1 \ {0x11, xx11, 1x01}} {} {0xx1 \ {0x01, 00x1, 0111}, xx01 \ {1001, x001, x101}, 1xx0 \ {1x10, 1000, 1100}} {01xx \ {011x, 01x0, 01x1}} {x1x1 \ {x1x1}, 0101 \ {0101}, x0x0 \ {x0x0}} {x0xx \ {0000, 10x1, 10x1}} {x010 \ {1010, 0010}} {1010 \ {1010}} {xx00 \ {1000, 0x00, x000}, 00x0 \ {0000, 0010}} {x100 \ {0100, 1100, 1100}, xx00 \ {x100, x000, 1000}} {0000 \ {0000}} {x010 \ {1010, 0010, 0010}, 000x \ {0001}} {10xx \ {10x1, 101x}} {1010 \ {1010}, 0x0x \ {0100, 0001, 0x01, 010x}} {x1xx \ {11x1, x10x, 1100}, 0x11 \ {0111, 0011}} {} {} {0x10 \ {0110}} {} {} {} {xx11 \ {1x11, x011}, 111x \ {1110}} {} {xx1x \ {0x10, x011, 111x}} {0xx0 \ {0100, 01x0, 00x0}, 10xx \ {10x1, 1010}} {1010 \ {1010}, 1x1x \ {1110, 1011, 111x, 101x}} {} {011x \ {0111, 0110}, 01x1 \ {0111, 0101}} {} {x1x0 \ {1100, 01x0, 1110}, 1x0x \ {1000, 110x}} {10xx \ {1000, 100x, 1011}, 0xx0 \ {0100, 0x10, 0x00}, 00xx \ {001x, 00x1, 0011}} {x0x0 \ {1000, 0010, 00x0, 00x0, x000, x010}, x0x0 \ {1000, 0010, 10x0, x000, x010}, 0000 \ {0000}, 0x0x \ {0100, 0001, 010x, 0x00}} {11x0 \ {1110, 1100, 1100}} {1x1x \ {111x, 1x11, 1111}, x110 \ {0110, 1110, 1110}, 00xx \ {00x0, 000x, 0011}} {1010 \ {1010}, x0x0 \ {x0x0}} {0x11 \ {0111, 0011, 0011}, x1xx \ {110x, 111x, 0100}} {xxxx \ {110x, xx10, 11x0}} {1111 \ {1111}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, 10xx, xx00}} {} {xx0x \ {xx00, 0000, x001}, 0x01 \ {0101}, xx0x \ {xx01, 1001, x100}} {} {0xxx \ {0010, 0x00, 0xx0}} {xx00 \ {x100, 1x00, 1000}} {0000 \ {0000}} {xxx0 \ {1100, 0010, 1x10}, xx01 \ {1001, 0101}} {x010 \ {0010, 1010}} {1010 \ {1010}} {x111 \ {1111, 0111}, x00x \ {1001, 0001, 0001}} {010x \ {0100}} {0x0x \ {0100, 0001, 000x, 0x01, 0x01}} {xx11 \ {0011, x111, 0x11}, 1x00 \ {1000, 1100}} {1xx1 \ {1x01, 1101, 1101}, 010x \ {0101, 0100}} {1111, 0000 \ {0000}} {00xx \ {00x1, 001x, 0001}} {x11x \ {0111, 0110, 011x}} {1x1x \ {1x1x}} {0xxx \ {010x, 0x01}} {1x11 \ {1111, 1011, 1011}} {1111 \ {1111}} {x1x0 \ {0110, 0100}, x01x \ {x010, 001x, 0010}} {} {} {1xxx \ {1101, 10x0, 1x11}, x1x1 \ {01x1, 1111}} {00x1 \ {0001, 0011}} {x1x1 \ {1101, 0111, x111, 01x1, 11x1}} {0x01 \ {0001}, xxx1 \ {1x01, 0001, 10x1}} {1x1x \ {1x11, 1011, 1011}, 00xx \ {000x, 001x, 00x1}} {0101 \ {0101}, 1111 \ {1111}, x1x1 \ {x1x1}} {1xxx \ {1xx0, 111x, 1x1x}, x0x1 \ {0011, 10x1}, x01x \ {101x, 001x}} {10x0 \ {1010, 1000}, 11x1 \ {1111, 1101, 1101}} {x0x0 \ {x0x0}, x1x1 \ {1101, 0111, x111, 11x1, 01x1, 01x1}, 1010 \ {1010}, 1111 \ {1111}} {x01x \ {1010, x010, 0011}} {1x11 \ {1111, 1011}} {1111 \ {1111}} {} {010x \ {0100, 0101}, xx00 \ {x000, 0100}} {} {xxx0 \ {x100, x010, 1x00}, xxx1 \ {0001, 1011, 1x01}} {x010 \ {1010, 0010}, xx0x \ {x101, x10x, 1000}} {1010 \ {1010}, 0000, 0101} {x0xx \ {1000, 1010, 00x0}, xx00 \ {0100, 1x00, 0x00}} {01xx \ {0101, 01x0, 0100}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, 01xx, x0xx, 00xx, xx00, xx10}, 0000 \ {0000}} {x0x1 \ {0001, 1011}, 010x \ {0101}} {x110 \ {1110, 0110, 0110}, 0x00 \ {0000}, 10xx \ {1001, 101x, 1010}} {x1x1 \ {1101, 0111, 01x1, 11x1}, 0000, 0x0x \ {0100, 0001, 0x01, 010x}} {00xx \ {00x0, 000x, 0001}} {101x \ {1011, 1010, 1010}} {1x1x \ {1110, 1011, 1x10, 111x, 101x, 101x}} {01xx \ {0100, 0101}, 10xx \ {10x1, 1001, 1011}} {xx01 \ {1001, x001, 0001}, 0xx1 \ {0111, 0001, 0101}} {0101 \ {0101}, x1x1 \ {1101, 0111, x101, 01x1}} {11x1 \ {1111, 1101, 1101}, x0x1 \ {10x1, 00x1}} {xxxx \ {0x11, 0x1x, 00x0}, x111 \ {0111, 1111}, x10x \ {0101, 110x, 1101}} {x1x1 \ {1101, 0111, x111, x101, x101}, 1111 \ {1111}, 0101 \ {0101}} {000x \ {0001, 0000, 0000}, xx10 \ {0110, x010, 1x10}} {01xx \ {01x1, 011x, 0101}} {0x0x \ { 0100, 0001, 0x01, 0x00, 0x00, 010x, 010x}, 1010 \ {1010}} {10xx \ {101x, 10x0, 10x0}, 1x0x \ {1x01, 1000, 110x}} {x011 \ {0011, 1011}, xxx1 \ {1011, 0x01, 1x11}} {1111 \ {1111}, x1x1 \ {1101, 0111, x111}, 0101 \ {0101}} {xx01 \ {x001, 0001, 0001}, xxxx \ {x10x, 1011, 10x1}, xx00 \ {0x00, 1x00, x000}} {0xx0 \ {0x00, 0110, 0000}, x1x0 \ {x110, 0100, x100}} {x0x0 \ {1000, 0010, 00x0}, 0000 \ {0000}} {0xx0 \ {01x0, 0010, 0110}, 111x \ {1111, 1110, 1110}} {xx1x \ {001x, 0010, 011x}} {1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}} {11xx \ {111x, 110x}} {x10x \ {x100, 1101, 0101}} {0x0x \ {0x0x}} {x10x \ {010x, 1100}} {} {} {10x1 \ {1001, 1011}, xx0x \ {0100, 000x, 1x0x}} {x00x \ {1001, 000x, 0000}} {0101 \ {0101}, 0x0x \ {0100, 0001, 010x, 0x00}} {x1x1 \ {1101, x101}} {001x \ {0011, 0010}} {1111 \ {1111}} {xx00 \ {0100, 1000, x000}} {0x10 \ {0010, 0110}, xx1x \ {0x10, x111, x110}} {} {x1x0 \ {0100, x100, 0110}, x0x1 \ {1011, 10x1, x011}} {0x1x \ {011x, 001x, 0x10}} {1010 \ {1010}, 1111 \ {1111}} {000x \ {0001, 0000, 0000}, 0x1x \ {001x, 0x10, 011x}} {01xx \ {01x1, 010x, 0110}} {0x0x \ {0x0x}, 1x1x \ {1x1x}} {0x0x \ {0100, 010x, 000x}} {x101 \ {0101}} {0101 \ {0101}} {x10x \ {x100, 0101, 1100}, 1x0x \ {1x01, 1100}, xx1x \ {111x, 1011, 0010}} {} {} {1xxx \ {101x, 10x1, 1110}} {1x00 \ {1100, 1000}} {0000 \ {0000}} {01xx \ {011x, 01x1}, x11x \ {0110, x110, 0111}} {x1xx \ {11xx, 01x1, 1101}, 01xx \ {01x0, 0100, 010x}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x1xx, 01xx}, xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x0xx, 00xx, 0xxx}, 1x1x \ {1110, 1011, 1x10, 111x}, 1x1x \ {1110, 1011, 1x10, 101x}} {011x \ {0111, 0110}} {x110 \ {1110, 0110}, xx00 \ {0x00, 1x00, x100}} {1010 \ {1010}} {10xx \ {1001, 1011, 101x}} {xxxx \ {x10x, 1000, 00xx}, 0x0x \ {0100, 0x01, 0000}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx01, xx11, xx1x, 00xx}, 0x0x \ {0100, 0001, 0x01, 010x, 000x}} {x10x \ {010x, x101, 0101}, 0x0x \ {000x, 0100, 0x01}, x0x0 \ {10x0}} {11xx \ {11x0}} {0x0x \ {0100, 0001, 0x01, 000x}, x0x0 \ {x0x0}} {} {00xx \ {000x, 00x1, 0011}, 0x1x \ {0110, 001x, 011x}} {} {xx01 \ {1x01, 1101, 1101}} {x11x \ {0111, 1111, 011x}, xx00 \ {x000, 1000, x100}, 0x10 \ {0110, 0010, 0010}} {} {0x0x \ {0100, 000x, 010x}, 1x0x \ {1101, 1x01, 1001}} {} {} {} {x001 \ {1001, 0001}} {} {xxx1 \ {0xx1, 0x11, x1x1}, x00x \ {1001, 000x, 000x}} {xx01 \ {0101, 1001, x101}, x01x \ {0010, 1010, 001x}} {0101, 1111} {xx01 \ {0x01, 1101}} {x11x \ {x111, 0110, x110}} {} {001x \ {0010}, 0xxx \ {011x, 0x00}} {} {} {x01x \ {x010, 101x, 101x}, 100x \ {1001, 1000, 1000}} {} {} {1x0x \ {1101, 110x, 110x}, x100 \ {0100}} {111x \ {1111, 1110}} {} {x1xx \ {01x0, 11x1, x11x}, 100x \ {1001, 1000}, x011 \ {1011, 0011}} {x1x0 \ {1100, 0100}} {x0x0 \ {1000, 0010, x010, 00x0}, 0000 \ {0000}} {x1x1 \ {1111, 0111, 01x1}, xxxx \ {0010, 00x1, 1010}} {} {} {xx00 \ {1000, 0000, 0100}} {} {} {11xx \ {1101, 11x1, 11x0}} {10x1 \ {1011, 1001, 1001}} {x1x1 \ {x1x1}} {01xx \ {01x0, 0100, 011x}} {1xx0 \ {1010, 1100, 11x0}, 01xx \ {0110, 010x, 0100}} {x0x0 \ {x0x0}, xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xxx0, xx00, xx1x, 10xx, 0xxx, 00xx}} {00x0 \ {0010, 0000, 0000}, 10x0 \ {1010}} {x110 \ {1110}, x010 \ {1010, 0010}} {1010 \ {1010}} {} {xxxx \ {000x, 010x, x11x}} {} {} {xxx0 \ {x010, x100, x0x0}} {} {x100 \ {0100}, x0xx \ {x000, 00x0}} {xxx0 \ {0110, x100, x0x0}} {0000 \ {0000}, x0x0 \ {1000, 0010, x000, 00x0}} {} {x0xx \ {1001, 0001, 0011}, x0xx \ {x000, 0000, x001}} {} {0xx0 \ {00x0, 0000, 01x0}, 1x01 \ {1001, 1101, 1101}} {1xxx \ {101x, 10x1, 1100}, 000x \ {0001, 0000, 0000}, 1x0x \ {1x01, 100x, 1001}} {x0x0 \ {x0x0}, 0000 \ {0000}, 0101 \ {0101}} {1xxx \ {1xx0, 10x0, 1001}, 0x10 \ {0110, 0010}} {x00x \ {1001, x001}} {0x0x \ {0100, 0001, 0x00, 010x}} {001x \ {0011, 0010, 0010}} {xxx0 \ {x000, 1010, 0000}, x0xx \ {000x, 00x0, 10x1}} {1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}} {0x00 \ {0000, 0100}} {11x0 \ {1110, 1100, 1100}, 11x0 \ {1100, 1110, 1110}, 101x \ {1010, 1011, 1011}} {0000 \ {0000}} {} {} {} {00xx \ {000x, 001x, 00x1}} {} {} {x011 \ {1011, 0011}, x01x \ {0010, 001x, x010}} {} {} {010x \ {0101, 0100, 0100}, xxx0 \ {0110, 1xx0, 1100}, x00x \ {000x, 1001}} {01xx \ {0110, 0111, 0100}} {x0x0 \ {1000, 0010, 10x0, 00x0}, 0x0x \ {0100, 0001, 000x, 0x01}} {x0x0 \ {1000, 0010, x000}} {100x \ {1001}, 1xx0 \ {1000, 11x0, 1x10}} {0000 \ {0000}, x0x0 \ {1000, 0010, x000, 10x0, 00x0}} {1x10 \ {1010, 1110}} {} {} {x1xx \ {x10x, 11x1, 11x0}, 00x0 \ {0000}} {x1xx \ {0100, 0101, 111x}, 0xxx \ {0001, 0110, 0010}} {xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx0x}, x0x0 \ {1000, 0010, x000}} {x0x1 \ {x001, 0001, 0011}} {101x \ {1010, 1011}} {1111 \ {1111}} {} {} {} {x1x0 \ {0110, 0100}} {x1x1 \ {0101, 1101, 1111}} {} {} {01xx \ {01x1, 011x, 0110}} {} {0xxx \ {0011, 0xx1, 0111}, xx11 \ {0011, x011}, x1xx \ {111x, x10x}} {000x \ {0000, 0001, 0001}, 0x10 \ {0110, 0010, 0010}} {0x0x \ {0100, 0001, 0x01, 000x, 010x, 010x}, 1010 \ {1010}} {x1x0 \ {0110, x100, 01x0}} {1x0x \ {1x01, 1001, 1x00}, x00x \ {0000, 0001, 100x}} {0000 \ {0000}} {} {x0x1 \ {10x1, 00x1, 00x1}} {} {} {x0x1 \ {0001, x011, 1011}, xxx1 \ {x011, 1xx1, 10x1}} {} {xx11 \ {1111, 1x11}} {11x1 \ {1111, 1101}} {1111 \ {1111}} {0xx1 \ {00x1, 01x1, 0x01}} {x1x0 \ {1110, 01x0, 1100}, xx0x \ {100x, 1000, 1100}} {0101 \ {0101}} {xx0x \ {110x, 000x, x001}, x11x \ {111x, x111, 0110}} {01x0 \ {0100, 0110}} {0000 \ {0000}, 1010 \ {1010}} {10xx \ {1001, 1010, 100x}} {x001 \ {1001, 0001}} {0101 \ {0101}} {0x00 \ {0100}} {xx0x \ {0000, 1x0x, xx01}} {0000} {1x0x \ {1100, 110x, 1x01}, x00x \ {1001, 0001, 0001}} {1x1x \ {1110, 101x, 1010}, xx01 \ {x001, 1101, 0x01}} {0101 \ {0101}} {} {} {} {x110 \ {0110, 1110}} {xx00 \ {0000, x100, x000}, xx00 \ {0000, x100}} {} {} {xx10 \ {0110, x110, x110}} {} {xx01 \ {0001, 1001}, 0xxx \ {0101, 0110, 0x1x}} {x01x \ {0011, 1011, x011}} {1x1x \ {1x1x}} {xxx1 \ {01x1, x011, 1011}, 1xx1 \ {1101, 1111, 1011}, 11xx \ {110x, 1110, 11x1}} {0x1x \ {011x, 0x11}} {1111 \ {1111}, 1x1x \ {1110, 1011, 1x10, 1x11, 111x}} {xxxx \ {x101, 0010, 110x}, 111x \ {1111, 1110}} {x0x0 \ {1000, 0010, 10x0}, x0x1 \ {1001, 0011}} {x0x0 \ {1000, 0010, 10x0}, x1x1 \ {1101, 0111}, 1010 \ {1010}, 1111 \ {1111}} {} {11x0 \ {1110, 1100}} {} {10xx \ {1001, 1011, 100x}} {00x1 \ {0001}, 11x1 \ {1111, 1101}} {x1x1 \ {1101, 0111, x101, x111, x101, 01x1}} {} {0xx1 \ {0011, 0111}} {} {11xx \ {1101, 11x0, 1110}} {x1xx \ {01x0, x10x, 110x}} {xxxx \ { x1x0, x0x1, 1x0x, 0x1x, xx01, xxx0, xx10, 0xxx, 00xx}} {1xx1 \ {1101, 1111}} {} {} {x101 \ {0101, 1101}} {0xx1 \ {0x01, 0001, 0111}, xxxx \ {0111, 1xx1, 001x}, x10x \ {1100, 110x, 0101}} {0101 \ {0101}} {01xx \ {0101, 011x, 0100}, x0x0 \ {00x0, x000, x010}, 0xxx \ {010x, 00x0, 00x1}} {10x1 \ {1001, 1011}, xx10 \ {1x10, x110, 1110}} {x1x1 \ {1101, 0111, 01x1, 11x1, x101}, 1010} {010x \ {0101, 0100}} {x11x \ {1111, 0111, 111x}, 0x00 \ {0100}} {0000 \ {0000}} {x0x0 \ {x010}} {1x0x \ {100x, 110x}} {0000 \ {0000}} {xx10 \ {0x10, x110, 0010}, 01x0 \ {0100, 0110, 0110}} {1x0x \ {1101, 100x, 1001}, 0xxx \ {0100, 0x10, 0010}} {1010 \ {1010}, 0000 \ {0000}, x0x0 \ {1000, 0010, x000, x010, x010, 10x0}} {1x0x \ {1100, 110x, 1000}, 1xx0 \ {1x10, 1x00, 10x0}, 1x1x \ {101x, 1111, 1x10}} {1x10 \ {1010, 1110, 1110}} {1010 \ {1010}} {} {0x0x \ {0x01, 0001, 0x00}} {} {} {x11x \ {1110, 0110, x111}} {} {0x00 \ {0000, 0100, 0100}} {xxx1 \ {x011, 0101, 1x01}} {} {x1x1 \ {01x1, 0111, 1111}} {01xx \ {0110, 0101, 01x1}} {x1x1 \ {x1x1}} {1x1x \ {1010, 111x, 1x10}} {} {} {} {10x0 \ {1000, 1010, 1010}} {} {} {x0x1 \ {1001, x001}, x01x \ {x010, 1011}} {} {0x1x \ {011x, 001x}, x0xx \ {x00x, 0011, 1001}} {xx00 \ {1100, x100}} {0000 \ {0000}} {xx00 \ {0100, 1100, 1100}, x11x \ {x110, x111, 0111}} {0xx1 \ {00x1, 0011, 0x01}} {1111 \ {1111}} {x0x1 \ {0011, 1001, 00x1}, 0x0x \ {0000, 0101, 000x}} {x100 \ {0100}} {0000} {} {} {} {xx10 \ {0110, 0x10}} {x0xx \ {x000, 10x1, 0001}} {1010} {} {x0x1 \ {00x1, 1011, 1011}} {} {} {01xx \ {010x, 011x}} {} {} {x1xx \ {11xx, 01xx, 010x}, xxx1 \ {00x1, 1101, 0001}} {} {xxxx \ {00x1, 010x, x111}, x101 \ {0101, 1101}} {0xx0 \ {0110, 0000, 0010}, 1x01 \ {1101, 1001}, 0x0x \ {0101, 0100, 0000}} {x0x0 \ {1000, 0010, 10x0}, 0101 \ {0101}, 0x0x \ {0100, 0001, 000x}} {x01x \ {0011, 101x, 101x}} {x101 \ {1101, 0101, 0101}} {} {xx10 \ {1x10, x110, 0x10}} {1x01 \ {1001, 1101, 1101}, 1xx1 \ {11x1, 1x01, 1111}} {} {0xx0 \ {0x00, 0010, 0010}} {x0xx \ {00x1, 10x0, 00x0}} {x0x0 \ {x0x0}} {x001 \ {0001, 1001}, 1x00 \ {1000, 1100, 1100}} {10xx \ {101x, 1011, 100x}, 1xxx \ {1011, 1xx0, 1111}} {0101 \ {0101}, 0000 \ {0000}} {x0x0 \ {0000, x010, 1000}, xx0x \ {1x0x, 0001, 1101}, xxx0 \ {11x0, 0xx0, 1xx0}} {001x \ {0010, 0011}} {1010 \ {1010}} {xx1x \ {x110, 1x10, 101x}, xx01 \ {0001, 0101, 1x01}, 0xx0 \ {0x00, 0010, 0100}} {xxxx \ {1010, xxx1, 100x}, xxx1 \ {01x1, 0011, 00x1}} {1x1x \ {1110, 1011, 111x}, 1111, 0101 \ {0101}, x0x0 \ {1000, 0010, x000}} {xx1x \ {001x, 1x10, 111x}} {x101 \ {0101}, x1xx \ {11x1, 0101, x1x0}} {1x1x \ {1110, 1011, 101x}} {01xx \ {01x0, 01x1, 0110}} {} {} {xxxx \ {101x, 0xx1, xx0x}, xx0x \ {0001, 1101}} {0xx0 \ {0110, 00x0}, 1xx0 \ {11x0, 1010, 1100}} {x0x0 \ {1000, 0010, x000, 10x0}, 0000} {0xxx \ {01xx, 00x1, 00x0}, xxx1 \ {1101, 0101, 0x01}} {0xx1 \ {01x1, 0011, 0011}, x00x \ {100x, 1001, x000}, xxx0 \ {x0x0, 1100, 1110}} {0x0x \ {0100, 0001, 000x, 0x01, 0x00}, x0x0 \ {x0x0}, x1x1 \ {1101, 0111, 11x1, 11x1}, 0101} {xxxx \ {01xx, 0xx0, 1xxx}} {} {} {xxx0 \ {x010, 0100}} {11xx \ {1100, 11x1, 11x1}} {x0x0 \ {1000, 0010, 00x0}} {00x0 \ {0010, 0000}} {1x0x \ {110x, 1100, 1001}} {0000 \ {0000}} {xxx1 \ {xx11, 00x1, 1x01}} {} {} {xx10 \ {x010, x110, 0110}} {00x1 \ {0011, 0001}, xx0x \ {x101, 0x01, 0x0x}, x11x \ {0111, 111x}} {1010 \ {1010}} {} {xx0x \ {100x, 0x00, x000}} {} {} {} {} {x011 \ {1011, 0011, 0011}, x0x0 \ {00x0, 1000, 1010}} {} {} {} {0xx1 \ {0x01, 0011, 0x11}} {} {x010 \ {0010, 1010}, xxx0 \ {1010, xx00, 00x0}} {xx10 \ {0x10, x110, x010}} {1010 \ {1010}} {x01x \ {x010, 001x}} {xxx0 \ {0000, 01x0, 1x00}, xxx1 \ {0x11, 0111, 1xx1}} {1010 \ {1010}, 1111 \ {1111}} {100x \ {1001, 1000, 1000}} {0x1x \ {0111, 0010, 0011}, xxx1 \ {11x1, 1011, 0011}} {0101 \ {0101}} {1x0x \ {1101, 1x00, 1001}} {0xx0 \ {0010, 00x0, 0x00}, 1x00 \ {1100, 1000}} {0000 \ {0000}} {0xxx \ {01x0, 000x, 00x1}, xx1x \ {0111, 1011, 0x11}} {} {} {xx1x \ {1110, 1111}} {xx1x \ {111x, x010, x011}, xx1x \ {0x1x, 1010, 011x}} {1x1x \ {1110, 1011}} t1:{0111} t2:{1100, 1101} t:{1101} {x0000 \ {10000, 00000}} {0x01x \ {00010, 0x011, 0101x}} {} {00xx1 \ {00101, 000x1, 00111}, 1xx10 \ {10010, 11010}} {x0111 \ {10111}, 0101x \ {01011}} { x011100x11 \ { x011100011, x011100111, 1011100x11}, 0101100x11 \ { 0101100011, 0101100111, 0101100x11}, 010101xx10 \ { 0101010010, 0101011010}} {01x11 \ {01011, 01111}, 1x0xx \ {10011, 11011, 110x1}} {} {} {1x110 \ {10110}, 10x10 \ {10110, 10010}} {110xx \ {1101x, 110x1, 110x0}} { 110101x110 \ { 1101010110, 110101x110, 110101x110}, 1101010x10 \ { 1101010110, 1101010010, 1101010x10, 1101010x10}} {xx01x \ {01010, x101x, 0101x}, 0xx01 \ {01001, 01101}, xx110 \ {11110, 01110, 00110}} {0xx0x \ {0000x, 00x01, 0100x}} { 0xx010xx01 \ { 0xx0101001, 0xx0101101, 000010xx01, 00x010xx01, 010010xx01}} {x0100 \ {00100}, 0x11x \ {0011x, 0x110, 00111}, xx001 \ {11001, 01001}} {0x1x1 \ {001x1, 01111, 0x101}, x1xxx \ {11x1x, 01011, 11001}, 00xxx \ {000x0, 00xx0, 001x1}} { x1x00x0100 \ { x1x0000100}, 00x00x0100 \ { 00x0000100, 00000x0100, 00x00x0100}, 0x1110x111 \ { 0x11100111, 0x11100111, 001110x111, 011110x111}, x1x1x0x11x \ { x1x110x110, x1x100x111, x1x1x0011x, x1x1x0x110, x1x1x00111, 11x1x0x11x, 010110x11x}, 00x1x0x11x \ { 00x110x110, 00x100x111, 00x1x0011x, 00x1x0x110, 00x1x00111, 000100x11x, 00x100x11x, 001110x11x}, 0x101xx001 \ { 0x10111001, 0x10101001, 00101xx001, 0x101xx001}, x1x01xx001 \ { x1x0111001, x1x0101001, 11001xx001}, 00x01xx001 \ { 00x0111001, 00x0101001, 00101xx001}} {xxxx0 \ {x11x0, 0xx00, 111x0}} {xx00x \ {11001, x0000}} { xx000xxx00 \ { xx000x1100, xx0000xx00, xx00011100, x0000xxx00}} {xxx01 \ {00001, 01001, 11x01}} {xxxx1 \ {x1101, 10x01, 0x011}} { xxx01xxx01 \ { xxx0100001, xxx0101001, xxx0111x01, x1101xxx01, 10x01xxx01}} {} {xx001 \ {x1001, 0x001}} {} {xx1xx \ {xx101, 1x10x, 0111x}} {00xx1 \ {00001, 00111, 00011}} { 00xx1xx1x1 \ { 00x11xx101, 00x01xx111, 00xx1xx101, 00xx11x101, 00xx101111, 00001xx1x1, 00111xx1x1, 00011xx1x1}} {01x0x \ {01100, 01001, 01x01}, 0xxxx \ {00xx0, 0x0xx, 0xx00}} {xx00x \ {xx001, x000x, 0000x}} { xx00x01x0x \ { xx00101x00, xx00001x01, xx00x01100, xx00x01001, xx00x01x01, xx00101x0x, x000x01x0x, 0000x01x0x}, xx00x0xx0x \ { xx0010xx00, xx0000xx01, xx00x00x00, xx00x0x00x, xx00x0xx00, xx0010xx0x, x000x0xx0x, 0000x0xx0x}} {11x1x \ {11010, 11011, 11011}, 01xxx \ {01010, 010xx, 01x1x}} {} {} {1xx0x \ {1000x, 10x0x, 11101}, 1x1x1 \ {10111, 111x1, 11111}} {0xxxx \ {00111, 0x100, 01xx1}, xx01x \ {0x011, 11010, x101x}} { 0xx0x1xx0x \ { 0xx011xx00, 0xx001xx01, 0xx0x1000x, 0xx0x10x0x, 0xx0x11101, 0x1001xx0x, 01x011xx0x}, 0xxx11x1x1 \ { 0xx111x101, 0xx011x111, 0xxx110111, 0xxx1111x1, 0xxx111111, 001111x1x1, 01xx11x1x1}, xx0111x111 \ { xx01110111, xx01111111, xx01111111, 0x0111x111, x10111x111}} {110xx \ {11000, 110x1, 11010}} {x0111 \ {10111}, 11xxx \ {11110, 11x1x, 110x0}} { x011111011 \ { x011111011, 1011111011}, 11xxx110xx \ { 11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx11000, 11xxx110x1, 11xxx11010, 11110110xx, 11x1x110xx, 110x0110xx}} {x0110 \ {10110, 00110, 00110}} {xx00x \ {x0000, 1x000, 0000x}, 1x0x1 \ {10011, 1x001, 1x001}} {} {0x11x \ {00110, 01111, 0x110}} {x01x0 \ {00100, 10100, x0100}} { x01100x110 \ { x011000110, x01100x110}} {0xxxx \ {00111, 00xxx, 0x1x1}, 00x10 \ {00110, 00010}} {x10xx \ {x10x0, 11000, 010x1}, x1xx0 \ {x11x0, x10x0, 011x0}} { x10xx0xxxx \ { x10x10xxx0, x10x00xxx1, x101x0xx0x, x100x0xx1x, x10xx00111, x10xx00xxx, x10xx0x1x1, x10x00xxxx, 110000xxxx, 010x10xxxx}, x1xx00xxx0 \ { x1x100xx00, x1x000xx10, x1xx000xx0, x11x00xxx0, x10x00xxx0, 011x00xxx0}, x101000x10 \ { x101000110, x101000010, x101000x10}, x1x1000x10 \ { x1x1000110, x1x1000010, x111000x10, x101000x10, 0111000x10}} {0xxx0 \ {01010, 00110, 01100}, xxx10 \ {01110, x0010, x1110}} {00xxx \ {00010, 0010x, 00111}, x11xx \ {1111x, x110x, 11100}} { 00xx00xxx0 \ { 00x100xx00, 00x000xx10, 00xx001010, 00xx000110, 00xx001100, 000100xxx0, 001000xxx0}, x11x00xxx0 \ { x11100xx00, x11000xx10, x11x001010, x11x000110, x11x001100, 111100xxx0, x11000xxx0, 111000xxx0}, 00x10xxx10 \ { 00x1001110, 00x10x0010, 00x10x1110, 00010xxx10}, x1110xxx10 \ { x111001110, x1110x0010, x1110x1110, 11110xxx10}} {0x0x0 \ {000x0, 01010, 01000}} {xx1xx \ {x1100, xx101, 0x1x1}, 0x01x \ {00011, 0x010}} { xx1x00x0x0 \ { xx1100x000, xx1000x010, xx1x0000x0, xx1x001010, xx1x001000, x11000x0x0}, 0x0100x010 \ { 0x01000010, 0x01001010, 0x0100x010}} {xx110 \ {01110, x0110, x0110}, 10x11 \ {10111, 10011}, 0x1xx \ {01111, 011xx, 01100}} {x100x \ {0100x, x1000, 11000}, x100x \ {0100x, 01000, x1000}} { x100x0x10x \ { x10010x100, x10000x101, x100x0110x, x100x01100, 0100x0x10x, x10000x10x, 110000x10x}} {100x1 \ {10011}, xx111 \ {00111, 01111, x1111}} {xxx0x \ {0xx0x, xx001, x000x}} { xxx0110001 \ { 0xx0110001, xx00110001, x000110001}} {000xx \ {00000, 000x0, 0000x}} {1100x \ {11001, 11000}, x011x \ {0011x, x0110, 00110}, xxx00 \ {1x000, x1100, 01x00}} { 1100x0000x \ { 1100100000, 1100000001, 1100x00000, 1100x00000, 1100x0000x, 110010000x, 110000000x}, x011x0001x \ { x011100010, x011000011, x011x00010, 0011x0001x, x01100001x, 001100001x}, xxx0000000 \ { xxx0000000, xxx0000000, xxx0000000, 1x00000000, x110000000, 01x0000000}} {0xxx1 \ {00x01, 0x1x1, 01x01}, x1x01 \ {01x01, 11101}} {xx110 \ {x1110, 11110, 1x110}, 01x00 \ {01100, 01000}} {} {} {x100x \ {1100x, x1001, 01001}, 00xx1 \ {00x01, 00001}, 111x0 \ {11100, 11110}} {} {1111x \ {11111}, x11x1 \ {11111, 011x1, 011x1}, 0x1xx \ {0x10x, 0x1x0, 001x0}} {0x111 \ {01111, 00111}, 0111x \ {01110}} { 0x11111111 \ { 0x11111111, 0111111111, 0011111111}, 0111x1111x \ { 0111111110, 0111011111, 0111x11111, 011101111x}, 0x111x1111 \ { 0x11111111, 0x11101111, 0x11101111, 01111x1111, 00111x1111}, 01111x1111 \ { 0111111111, 0111101111, 0111101111}, 0x1110x111 \ { 011110x111, 001110x111}, 0111x0x11x \ { 011110x110, 011100x111, 0111x0x110, 0111x00110, 011100x11x}} {11xxx \ {11xx1, 11111, 110x1}, 00x10 \ {00110, 00010}} {x0011 \ {00011, 10011}, 0001x \ {00010, 00011}} { x001111x11 \ { x001111x11, x001111111, x001111011, 0001111x11, 1001111x11}, 0001x11x1x \ { 0001111x10, 0001011x11, 0001x11x11, 0001x11111, 0001x11011, 0001011x1x, 0001111x1x}, 0001000x10 \ { 0001000110, 0001000010, 0001000x10}} {1xx00 \ {11x00, 11100, 1x100}, 0x10x \ {00100, 01101, 01100}} {1010x \ {10101, 10100}} { 101001xx00 \ { 1010011x00, 1010011100, 101001x100, 101001xx00}, 1010x0x10x \ { 101010x100, 101000x101, 1010x00100, 1010x01101, 1010x01100, 101010x10x, 101000x10x}} {0x0xx \ {010xx, 000xx, 01011}} {0110x \ {01100, 01101}} { 0110x0x00x \ { 011010x000, 011000x001, 0110x0100x, 0110x0000x, 011000x00x, 011010x00x}} {1x00x \ {1x001, 1100x, 10000}, 111xx \ {11110, 11101, 111x0}} {01xx0 \ {01x10, 01000, 01010}, x1x10 \ {11010, 01110, 11110}, x11x0 \ {01100, x1110, 011x0}} { 01x001x000 \ { 01x0011000, 01x0010000, 010001x000}, x11001x000 \ { x110011000, x110010000, 011001x000, 011001x000}, 01xx0111x0 \ { 01x1011100, 01x0011110, 01xx011110, 01xx0111x0, 01x10111x0, 01000111x0, 01010111x0}, x1x1011110 \ { x1x1011110, x1x1011110, 1101011110, 0111011110, 1111011110}, x11x0111x0 \ { x111011100, x110011110, x11x011110, x11x0111x0, 01100111x0, x1110111x0, 011x0111x0}} {xx1x0 \ {01110, x01x0, 101x0}, xx01x \ {1001x, 11010, x1010}} {0xxx1 \ {01001, 00x11, 00001}, x00x0 \ {000x0, x0010, x0010}} { x00x0xx1x0 \ { x0010xx100, x0000xx110, x00x001110, x00x0x01x0, x00x0101x0, 000x0xx1x0, x0010xx1x0, x0010xx1x0}, 0xx11xx011 \ { 0xx1110011, 00x11xx011}, x0010xx010 \ { x001010010, x001011010, x0010x1010, 00010xx010, x0010xx010, x0010xx010}} {} {x0x1x \ {1001x, 10011, 10111}} {} {00x11 \ {00111, 00011, 00011}, 1xx0x \ {10x0x, 10001, 1x10x}} {1xx01 \ {1x001, 10101, 11x01}, x1001 \ {11001, 01001}} { 1xx011xx01 \ { 1xx0110x01, 1xx0110001, 1xx011x101, 1x0011xx01, 101011xx01, 11x011xx01}, x10011xx01 \ { x100110x01, x100110001, x10011x101, 110011xx01, 010011xx01}} {xxxxx \ {1x001, xx011, 1x10x}, 000x1 \ {00011, 00001, 00001}, xx100 \ {10100, 1x100}} {1100x \ {11001, 11000, 11000}, 0x10x \ {01100, 01101}} { 1100xxxx0x \ { 11001xxx00, 11000xxx01, 1100x1x001, 1100x1x10x, 11001xxx0x, 11000xxx0x, 11000xxx0x}, 0x10xxxx0x \ { 0x101xxx00, 0x100xxx01, 0x10x1x001, 0x10x1x10x, 01100xxx0x, 01101xxx0x}, 1100100001 \ { 1100100001, 1100100001, 1100100001}, 0x10100001 \ { 0x10100001, 0x10100001, 0110100001}, 11000xx100 \ { 1100010100, 110001x100, 11000xx100, 11000xx100}, 0x100xx100 \ { 0x10010100, 0x1001x100, 01100xx100}} {xxx01 \ {10101, 1x001, 0x101}} {1xx10 \ {11110, 10x10}} {} {xxx0x \ {x1x00, 1x001, 01000}} {01xx0 \ {01000, 01110, 010x0}, 000xx \ {000x1, 00010, 00010}, 0x11x \ {0x111, 00111, 00111}} { 01x00xxx00 \ { 01x00x1x00, 01x0001000, 01000xxx00, 01000xxx00}, 0000xxxx0x \ { 00001xxx00, 00000xxx01, 0000xx1x00, 0000x1x001, 0000x01000, 00001xxx0x}} {} {xxxx1 \ {0x111, 101x1, 01xx1}, 10xxx \ {10101, 10xx0, 100x1}} {} {x1001 \ {01001, 11001}, 0xx10 \ {00x10, 01110, 0x010}} {xxxx1 \ {1xx01, 0xx01, 110x1}, 11xx1 \ {11x11, 111x1, 111x1}, x0x1x \ {1011x, 1001x, 0011x}} { xxx01x1001 \ { xxx0101001, xxx0111001, 1xx01x1001, 0xx01x1001, 11001x1001}, 11x01x1001 \ { 11x0101001, 11x0111001, 11101x1001, 11101x1001}, x0x100xx10 \ { x0x1000x10, x0x1001110, x0x100x010, 101100xx10, 100100xx10, 001100xx10}} {x0x11 \ {10111, x0011, 10x11}} {0xx11 \ {01011, 01111, 01111}, x0xx1 \ {00111, x0101, 00011}, 0x00x \ {0x001, 01001, 0x000}} { 0xx11x0x11 \ { 0xx1110111, 0xx11x0011, 0xx1110x11, 01011x0x11, 01111x0x11, 01111x0x11}, x0x11x0x11 \ { x0x1110111, x0x11x0011, x0x1110x11, 00111x0x11, 00011x0x11}} {11x1x \ {11011, 11x11}} {x0110 \ {10110}} { x011011x10 \ { 1011011x10}} {010xx \ {0101x, 01010, 010x1}, x1x11 \ {11x11, x1111}} {} {} {0xxx1 \ {0x101, 0x011, 010x1}, 00x1x \ {00x10, 00011}} {0x11x \ {0x110, 0x111, 01110}} { 0x1110xx11 \ { 0x1110x011, 0x11101011, 0x1110xx11}, 0x11x00x1x \ { 0x11100x10, 0x11000x11, 0x11x00x10, 0x11x00011, 0x11000x1x, 0x11100x1x, 0111000x1x}} {x0101 \ {00101, 10101, 10101}, 1x1xx \ {11111, 1110x, 111x0}} {} {} {1xxxx \ {11xxx, 1xx01, 11001}, 01x01 \ {01101, 01001, 01001}} {xx1x0 \ {0x1x0, x01x0, 001x0}, x1000 \ {11000}} { xx1x01xxx0 \ { xx1101xx00, xx1001xx10, xx1x011xx0, 0x1x01xxx0, x01x01xxx0, 001x01xxx0}, x10001xx00 \ { x100011x00, 110001xx00}} {x0111 \ {00111, 10111}, 1101x \ {11010, 11011}} {0xx00 \ {01100, 01000, 00100}} {} {} {x0x1x \ {0001x, 10x10, x0x11}} {} {} {} {} {11xx1 \ {11011, 110x1, 111x1}, xx00x \ {xx001, x000x}} {0x0xx \ {00001, 0001x, 000x1}} { 0x0x111xx1 \ { 0x01111x01, 0x00111x11, 0x0x111011, 0x0x1110x1, 0x0x1111x1, 0000111xx1, 0001111xx1, 000x111xx1}, 0x00xxx00x \ { 0x001xx000, 0x000xx001, 0x00xxx001, 0x00xx000x, 00001xx00x, 00001xx00x}} {xx010 \ {00010, 11010, x0010}} {0x11x \ {0x111, 01111}} { 0x110xx010 \ { 0x11000010, 0x11011010, 0x110x0010}} {000xx \ {000x0, 0000x, 000x1}} {0x11x \ {01111, 00110, 00111}, x11x1 \ {11101, 111x1}} { 0x11x0001x \ { 0x11100010, 0x11000011, 0x11x00010, 0x11x00011, 011110001x, 001100001x, 001110001x}, x11x1000x1 \ { x111100001, x110100011, x11x100001, x11x1000x1, 11101000x1, 111x1000x1}} {xxx10 \ {00010, 11110, 10x10}, 0x110 \ {01110, 00110}, 1x1x0 \ {111x0, 101x0}} {011xx \ {01111, 0110x}, 1xx00 \ {11x00, 10x00, 1x100}, 1x0x1 \ {10011, 110x1}} { 01110xxx10 \ { 0111000010, 0111011110, 0111010x10}, 011100x110 \ { 0111001110, 0111000110}, 011x01x1x0 \ { 011101x100, 011001x110, 011x0111x0, 011x0101x0, 011001x1x0}, 1xx001x100 \ { 1xx0011100, 1xx0010100, 11x001x100, 10x001x100, 1x1001x100}} {x11x1 \ {x1101, 11101, 011x1}, xx1x0 \ {01110, 1x1x0, xx110}} {x111x \ {01111, 01110, 11111}, 001x0 \ {00110, 00100, 00100}} { x1111x1111 \ { x111101111, 01111x1111, 11111x1111}, x1110xx110 \ { x111001110, x11101x110, x1110xx110, 01110xx110}, 001x0xx1x0 \ { 00110xx100, 00100xx110, 001x001110, 001x01x1x0, 001x0xx110, 00110xx1x0, 00100xx1x0, 00100xx1x0}} {1xxxx \ {1xx00, 1100x, 1x111}, 10x10 \ {10110, 10010, 10010}} {x001x \ {00010, 0001x}, 11xxx \ {11x00, 111xx, 1110x}} { x001x1xx1x \ { x00111xx10, x00101xx11, x001x1x111, 000101xx1x, 0001x1xx1x}, 11xxx1xxxx \ { 11xx11xxx0, 11xx01xxx1, 11x1x1xx0x, 11x0x1xx1x, 11xxx1xx00, 11xxx1100x, 11xxx1x111, 11x001xxxx, 111xx1xxxx, 1110x1xxxx}, x001010x10 \ { x001010110, x001010010, x001010010, 0001010x10, 0001010x10}, 11x1010x10 \ { 11x1010110, 11x1010010, 11x1010010, 1111010x10}} {00x1x \ {00010, 00110, 00x10}} {1x1x0 \ {1x100, 11110, 101x0}, 100x0 \ {10000}, x101x \ {x1010, 11010, 11010}} { 1x11000x10 \ { 1x11000010, 1x11000110, 1x11000x10, 1111000x10, 1011000x10}, 1001000x10 \ { 1001000010, 1001000110, 1001000x10}, x101x00x1x \ { x101100x10, x101000x11, x101x00010, x101x00110, x101x00x10, x101000x1x, 1101000x1x, 1101000x1x}} {00x1x \ {00x11, 00011, 00x10}} {1x0xx \ {11000, 100x0, 100xx}, 0x11x \ {0x111, 00110, 0111x}} { 1x01x00x1x \ { 1x01100x10, 1x01000x11, 1x01x00x11, 1x01x00011, 1x01x00x10, 1001000x1x, 1001x00x1x}, 0x11x00x1x \ { 0x11100x10, 0x11000x11, 0x11x00x11, 0x11x00011, 0x11x00x10, 0x11100x1x, 0011000x1x, 0111x00x1x}} {11xx0 \ {11000, 11100, 11x00}, 1x101 \ {10101, 11101, 11101}} {0xxx1 \ {01xx1, 0x011, 01011}, xxx11 \ {xx011, 0xx11, 01011}} { 0xx011x101 \ { 0xx0110101, 0xx0111101, 0xx0111101, 01x011x101}} {} {xx1x0 \ {x1100, 11100, 111x0}, xx110 \ {01110, 10110, 11110}} {} {} {xxxx0 \ {xx100, x0110, 11100}, 000x1 \ {00011}} {} {x0xx0 \ {00100, x0x10, 00110}, 1x10x \ {10101, 1x100, 1x100}} {00x10 \ {00110}} { 00x10x0x10 \ { 00x10x0x10, 00x1000110, 00110x0x10}} {011xx \ {0111x, 0110x, 0110x}} {xx1x1 \ {01101, 0x111, 10101}} { xx1x1011x1 \ { xx11101101, xx10101111, xx1x101111, xx1x101101, xx1x101101, 01101011x1, 0x111011x1, 10101011x1}} {xx11x \ {00111, 01111, 1111x}} {} {} {0x0x1 \ {000x1, 0x011, 01001}, 10x0x \ {10001, 1010x, 10100}, 1x001 \ {11001}} {x11x1 \ {x1111, 111x1, 011x1}} { x11x10x0x1 \ { x11110x001, x11010x011, x11x1000x1, x11x10x011, x11x101001, x11110x0x1, 111x10x0x1, 011x10x0x1}, x110110x01 \ { x110110001, x110110101, 1110110x01, 0110110x01}, x11011x001 \ { x110111001, 111011x001, 011011x001}} {x1x1x \ {1101x, 11110, 0111x}, xxxxx \ {0x101, x1x1x, 011x0}, 1xx01 \ {1x001, 10x01, 10x01}} {x1x01 \ {11101, 01001, 01001}} { x1x01xxx01 \ { x1x010x101, 11101xxx01, 01001xxx01, 01001xxx01}, x1x011xx01 \ { x1x011x001, x1x0110x01, x1x0110x01, 111011xx01, 010011xx01, 010011xx01}} {11xx0 \ {11110, 110x0}} {x0x1x \ {10x10, 00x10, 00x1x}} { x0x1011x10 \ { x0x1011110, x0x1011010, 10x1011x10, 00x1011x10, 00x1011x10}} {x1xxx \ {110xx, x1111, 01x11}} {0xx11 \ {0x011, 01x11, 01x11}, 00x1x \ {00x10, 00x11, 0001x}} { 0xx11x1x11 \ { 0xx1111011, 0xx11x1111, 0xx1101x11, 0x011x1x11, 01x11x1x11, 01x11x1x11}, 00x1xx1x1x \ { 00x11x1x10, 00x10x1x11, 00x1x1101x, 00x1xx1111, 00x1x01x11, 00x10x1x1x, 00x11x1x1x, 0001xx1x1x}} {01x01 \ {01001, 01101}, xxxx0 \ {xxx10, x00x0, x0010}} {x1xx1 \ {11101, 11x11, x1001}, xx1xx \ {x01x1, xx1x1, x111x}, xxx1x \ {0101x, 11010, x0110}} { x1x0101x01 \ { x1x0101001, x1x0101101, 1110101x01, x100101x01}, xx10101x01 \ { xx10101001, xx10101101, x010101x01, xx10101x01}, xx1x0xxxx0 \ { xx110xxx00, xx100xxx10, xx1x0xxx10, xx1x0x00x0, xx1x0x0010, x1110xxxx0}, xxx10xxx10 \ { xxx10xxx10, xxx10x0010, xxx10x0010, 01010xxx10, 11010xxx10, x0110xxx10}} {01x1x \ {01011, 0111x, 0111x}, 01x01 \ {01001, 01101}} {11x1x \ {11011, 11111}, 1x1x1 \ {11111, 111x1, 11101}} { 11x1x01x1x \ { 11x1101x10, 11x1001x11, 11x1x01011, 11x1x0111x, 11x1x0111x, 1101101x1x, 1111101x1x}, 1x11101x11 \ { 1x11101011, 1x11101111, 1x11101111, 1111101x11, 1111101x11}, 1x10101x01 \ { 1x10101001, 1x10101101, 1110101x01, 1110101x01}} {0xxx0 \ {01110, 0x110}} {xxx0x \ {1110x, 0x000, x0x00}, 0xx0x \ {01x00, 01x0x}} { xxx000xx00 \ { 111000xx00, 0x0000xx00, x0x000xx00}, 0xx000xx00 \ { 01x000xx00, 01x000xx00}} {} {1101x \ {11010, 11011}} {} {x1x11 \ {11x11, x1011, 01x11}} {} {} {1xx00 \ {1x100, 1x000}} {x000x \ {00000, x0001}, 01xxx \ {01x0x, 01000, 01xx0}} { x00001xx00 \ { x00001x100, x00001x000, 000001xx00}, 01x001xx00 \ { 01x001x100, 01x001x000, 01x001xx00, 010001xx00, 01x001xx00}} {0x11x \ {01111, 00110, 00111}, 100xx \ {100x0, 100x1, 10001}} {} {} {010xx \ {01001, 01011, 01000}, 01xx0 \ {01110, 01100}, 111x0 \ {11100}} {} {} {xxx11 \ {10011, x0011, x0x11}, 1x00x \ {11000, 10001, 10001}, 0xxx0 \ {0x110, 01x00, 0xx00}} {} {} {xxx1x \ {xx111, 01011, 0001x}, 00x0x \ {0010x, 0000x, 00001}} {} {} {00x0x \ {00101, 00100}, x0100 \ {10100, 00100}} {0x00x \ {01001}} { 0x00x00x0x \ { 0x00100x00, 0x00000x01, 0x00x00101, 0x00x00100, 0100100x0x}, 0x000x0100 \ { 0x00010100, 0x00000100}} {00x1x \ {00110, 0001x}, 001xx \ {00110, 001x0, 0011x}} {xx001 \ {01001, x0001, 11001}} { xx00100101 \ { 0100100101, x000100101, 1100100101}} {x00xx \ {x00x1, 10000, 1001x}, 11x11 \ {11011, 11111}, x11xx \ {01101, 01111, x1101}} {} {} {xx0x1 \ {xx011, 00011, x0011}, xxxx0 \ {10110, 010x0, 010x0}, x10x0 \ {x1010, 110x0, 01010}} {0x10x \ {00101, 01100, 0010x}} { 0x101xx001 \ { 00101xx001, 00101xx001}, 0x100xxx00 \ { 0x10001000, 0x10001000, 01100xxx00, 00100xxx00}, 0x100x1000 \ { 0x10011000, 01100x1000, 00100x1000}} {} {0x1x1 \ {0x101, 01111, 01111}, x1x10 \ {x1110, 01110, 01110}, xx000 \ {11000, 00000}} {} {x10xx \ {x1000, 01011, 11010}, 1xx1x \ {1xx11, 10x1x, 10x11}} {xxx00 \ {01100, 01x00, 01x00}} { xxx00x1000 \ { xxx00x1000, 01100x1000, 01x00x1000, 01x00x1000}} {} {x11x1 \ {01111, 11101, 111x1}} {} {x1x1x \ {11x1x, x111x, 01011}, 1100x \ {11001, 11000}} {0x001 \ {01001, 00001}} { 0x00111001 \ { 0x00111001, 0100111001, 0000111001}} {1xx00 \ {11000, 10000}, x1x01 \ {x1001, 01x01, 01x01}} {x0x1x \ {x0011, 10x10, 00011}, x00x1 \ {x0001, 00011, 100x1}} { x0001x1x01 \ { x0001x1001, x000101x01, x000101x01, x0001x1x01, 10001x1x01}} {xxxx0 \ {01000, x1010, 11000}} {10x1x \ {10010, 1011x, 10x10}, xx0x0 \ {0x0x0, 0x000, xx010}, x0xxx \ {10101, 001xx, 00x00}} { 10x10xxx10 \ { 10x10x1010, 10010xxx10, 10110xxx10, 10x10xxx10}, xx0x0xxxx0 \ { xx010xxx00, xx000xxx10, xx0x001000, xx0x0x1010, xx0x011000, 0x0x0xxxx0, 0x000xxxx0, xx010xxxx0}, x0xx0xxxx0 \ { x0x10xxx00, x0x00xxx10, x0xx001000, x0xx0x1010, x0xx011000, 001x0xxxx0, 00x00xxxx0}} {x1100 \ {11100}} {x101x \ {x1010, 01011, x1011}, 00xx1 \ {00001, 00101}} {} {0x1x1 \ {001x1, 01111, 0x101}} {x0x0x \ {10001, 00100, x0100}, xx001 \ {x1001, 00001, 00001}} { x0x010x101 \ { x0x0100101, x0x010x101, 100010x101}, xx0010x101 \ { xx00100101, xx0010x101, x10010x101, 000010x101, 000010x101}} {1100x \ {11001, 11000}, x1x0x \ {x1001, 11101, 11001}} {x001x \ {10010, x0010}, xx001 \ {x0001, 01001, 11001}, 1110x \ {11101, 11100, 11100}} { xx00111001 \ { xx00111001, x000111001, 0100111001, 1100111001}, 1110x1100x \ { 1110111000, 1110011001, 1110x11001, 1110x11000, 111011100x, 111001100x, 111001100x}, xx001x1x01 \ { xx001x1001, xx00111101, xx00111001, x0001x1x01, 01001x1x01, 11001x1x01}, 1110xx1x0x \ { 11101x1x00, 11100x1x01, 1110xx1001, 1110x11101, 1110x11001, 11101x1x0x, 11100x1x0x, 11100x1x0x}} {xxx00 \ {x1100, 00000, 10x00}, 01xxx \ {01101, 010x0, 01x0x}} {01xxx \ {011x0, 01x0x}} { 01x00xxx00 \ { 01x00x1100, 01x0000000, 01x0010x00, 01100xxx00, 01x00xxx00}, 01xxx01xxx \ { 01xx101xx0, 01xx001xx1, 01x1x01x0x, 01x0x01x1x, 01xxx01101, 01xxx010x0, 01xxx01x0x, 011x001xxx, 01x0x01xxx}} {} {xx110 \ {11110, 01110, 00110}, 1xx00 \ {11x00, 10x00, 1x000}} {} {10xxx \ {1011x, 10x01, 101x1}, xx111 \ {01111, 0x111, x1111}} {x0xx1 \ {x01x1, 10111, 00111}, xx1x1 \ {10111, 10101, x11x1}} { x0xx110xx1 \ { x0x1110x01, x0x0110x11, x0xx110111, x0xx110x01, x0xx1101x1, x01x110xx1, 1011110xx1, 0011110xx1}, xx1x110xx1 \ { xx11110x01, xx10110x11, xx1x110111, xx1x110x01, xx1x1101x1, 1011110xx1, 1010110xx1, x11x110xx1}, x0x11xx111 \ { x0x1101111, x0x110x111, x0x11x1111, x0111xx111, 10111xx111, 00111xx111}, xx111xx111 \ { xx11101111, xx1110x111, xx111x1111, 10111xx111, x1111xx111}} {xx1xx \ {1011x, 00100, 00100}, x1x01 \ {01101}} {01x10 \ {01110}, xx011 \ {x0011, 01011}} { 01x10xx110 \ { 01x1010110, 01110xx110}, xx011xx111 \ { xx01110111, x0011xx111, 01011xx111}} {00xx0 \ {000x0, 00010, 00010}, 01xx1 \ {011x1, 01101, 01x11}} {1x01x \ {1101x, 1x010}, 0x1x0 \ {00100, 001x0, 01100}} { 1x01000x10 \ { 1x01000010, 1x01000010, 1x01000010, 1101000x10, 1x01000x10}, 0x1x000xx0 \ { 0x11000x00, 0x10000x10, 0x1x0000x0, 0x1x000010, 0x1x000010, 0010000xx0, 001x000xx0, 0110000xx0}, 1x01101x11 \ { 1x01101111, 1x01101x11, 1101101x11}} {1x01x \ {11010, 1x010, 11011}} {11xx1 \ {11111, 11101, 110x1}, 10x1x \ {1001x, 10010, 10x10}, x1x01 \ {01x01, x1101, x1001}} { 11x111x011 \ { 11x1111011, 111111x011, 110111x011}, 10x1x1x01x \ { 10x111x010, 10x101x011, 10x1x11010, 10x1x1x010, 10x1x11011, 1001x1x01x, 100101x01x, 10x101x01x}} {x0x11 \ {10011, 00x11, 10111}, xx1xx \ {x0101, x111x, 11100}, x0x0x \ {00001, x000x, 00x0x}} {1x111 \ {10111}, x1xxx \ {x1101, x1000, 01001}} { 1x111x0x11 \ { 1x11110011, 1x11100x11, 1x11110111, 10111x0x11}, x1x11x0x11 \ { x1x1110011, x1x1100x11, x1x1110111}, 1x111xx111 \ { 1x111x1111, 10111xx111}, x1xxxxx1xx \ { x1xx1xx1x0, x1xx0xx1x1, x1x1xxx10x, x1x0xxx11x, x1xxxx0101, x1xxxx111x, x1xxx11100, x1101xx1xx, x1000xx1xx, 01001xx1xx}, x1x0xx0x0x \ { x1x01x0x00, x1x00x0x01, x1x0x00001, x1x0xx000x, x1x0x00x0x, x1101x0x0x, x1000x0x0x, 01001x0x0x}} {x0xxx \ {x00xx, x0x11, 10010}} {xxx0x \ {0x10x, 11x01, 0x000}, xxx10 \ {x1x10, 1x010, xx110}} { xxx0xx0x0x \ { xxx01x0x00, xxx00x0x01, xxx0xx000x, 0x10xx0x0x, 11x01x0x0x, 0x000x0x0x}, xxx10x0x10 \ { xxx10x0010, xxx1010010, x1x10x0x10, 1x010x0x10, xx110x0x10}} {x1x10 \ {x1110, x1010}, xx100 \ {10100, 11100}} {} {} {x0111 \ {00111, 10111}, x1x00 \ {11x00, 11000, x1000}, xxxx1 \ {11101, 100x1, 1x001}} {x00x1 \ {00011, 000x1, 10001}, 1x01x \ {10011, 1x011, 11010}} { x0011x0111 \ { x001100111, x001110111, 00011x0111, 00011x0111}, 1x011x0111 \ { 1x01100111, 1x01110111, 10011x0111, 1x011x0111}, x00x1xxxx1 \ { x0011xxx01, x0001xxx11, x00x111101, x00x1100x1, x00x11x001, 00011xxxx1, 000x1xxxx1, 10001xxxx1}, 1x011xxx11 \ { 1x01110011, 10011xxx11, 1x011xxx11}} {x01xx \ {10100, 00110, 1011x}, x1111 \ {11111, 01111, 01111}} {000x0 \ {00010, 00000, 00000}, x111x \ {11110, 01111, x1110}, 1xx10 \ {11x10, 10110, 10010}} { 000x0x01x0 \ { 00010x0100, 00000x0110, 000x010100, 000x000110, 000x010110, 00010x01x0, 00000x01x0, 00000x01x0}, x111xx011x \ { x1111x0110, x1110x0111, x111x00110, x111x1011x, 11110x011x, 01111x011x, x1110x011x}, 1xx10x0110 \ { 1xx1000110, 1xx1010110, 11x10x0110, 10110x0110, 10010x0110}, x1111x1111 \ { x111111111, x111101111, x111101111, 01111x1111}} {0x0xx \ {0x01x, 000xx, 000x1}, 10x11 \ {10011, 10111}} {010xx \ {01001, 010x0, 010x1}} { 010xx0x0xx \ { 010x10x0x0, 010x00x0x1, 0101x0x00x, 0100x0x01x, 010xx0x01x, 010xx000xx, 010xx000x1, 010010x0xx, 010x00x0xx, 010x10x0xx}, 0101110x11 \ { 0101110011, 0101110111, 0101110x11}} {xx0xx \ {1x0xx, 10011, x10x0}, 10x1x \ {10011, 1001x, 10110}, 101x1 \ {10101}} {} {} {001xx \ {00100, 001x1, 00101}, 1xxx1 \ {10xx1, 1x001, 11111}} {0xx10 \ {01110, 01x10, 0x110}} { 0xx1000110 \ { 0111000110, 01x1000110, 0x11000110}} {} {1110x \ {11100}} {} {1001x \ {10010}, 0100x \ {01001, 01000, 01000}} {} {} {1x1x0 \ {10100, 10110, 11110}, 0010x \ {00100, 00101}} {x110x \ {01100, x1101, 01101}, x1x01 \ {x1101, 01001, 01x01}} { x11001x100 \ { x110010100, 011001x100}, x110x0010x \ { x110100100, x110000101, x110x00100, x110x00101, 011000010x, x11010010x, 011010010x}, x1x0100101 \ { x1x0100101, x110100101, 0100100101, 01x0100101}} {11x1x \ {11x10, 11x11, 11111}} {1xxx0 \ {1x0x0, 1x100, 100x0}} { 1xx1011x10 \ { 1xx1011x10, 1x01011x10, 1001011x10}} {01xx0 \ {01000, 01x10, 01x00}} {x011x \ {10111, x0111, x0110}} { x011001x10 \ { x011001x10, x011001x10}} {0x0x1 \ {01001, 010x1, 0x001}} {} {} {11x1x \ {11011, 1101x, 1101x}, 0001x \ {00011, 00010}, x0xx0 \ {x00x0, 10100, 00100}} {10x1x \ {10111, 10110}, 10xx1 \ {10x01, 100x1, 101x1}} { 10x1x11x1x \ { 10x1111x10, 10x1011x11, 10x1x11011, 10x1x1101x, 10x1x1101x, 1011111x1x, 1011011x1x}, 10x1111x11 \ { 10x1111011, 10x1111011, 10x1111011, 1001111x11, 1011111x11}, 10x1x0001x \ { 10x1100010, 10x1000011, 10x1x00011, 10x1x00010, 101110001x, 101100001x}, 10x1100011 \ { 10x1100011, 1001100011, 1011100011}, 10x10x0x10 \ { 10x10x0010, 10110x0x10}} {1x01x \ {10011, 11011, 11011}, x1101 \ {01101, 11101}} {x0xx0 \ {x0110, x0x00, 00100}} { x0x101x010 \ { x01101x010}} {xxxx1 \ {x1xx1, xx1x1, x1101}, 010x0 \ {01000}, x00x0 \ {10000, 000x0, 100x0}} {xx011 \ {x1011, x0011}} { xx011xxx11 \ { xx011x1x11, xx011xx111, x1011xxx11, x0011xxx11}} {xxx11 \ {xx011, 1x111, 00011}, 11x0x \ {11100, 11x01, 1100x}, xx0x0 \ {010x0, xx010, x10x0}} {x1x01 \ {x1101, 01x01, 01001}, xx010 \ {00010, x1010, 1x010}} { x1x0111x01 \ { x1x0111x01, x1x0111001, x110111x01, 01x0111x01, 0100111x01}, xx010xx010 \ { xx01001010, xx010xx010, xx010x1010, 00010xx010, x1010xx010, 1x010xx010}} {x0x00 \ {00000, 10x00}, 1110x \ {11100, 11101, 11101}, x01xx \ {001x0, 1011x, 00111}} {1x10x \ {11100, 11101, 10100}, 11xx0 \ {11000, 11x00}, x11x0 \ {111x0, 01100, x1100}} { 1x100x0x00 \ { 1x10000000, 1x10010x00, 11100x0x00, 10100x0x00}, 11x00x0x00 \ { 11x0000000, 11x0010x00, 11000x0x00, 11x00x0x00}, x1100x0x00 \ { x110000000, x110010x00, 11100x0x00, 01100x0x00, x1100x0x00}, 1x10x1110x \ { 1x10111100, 1x10011101, 1x10x11100, 1x10x11101, 1x10x11101, 111001110x, 111011110x, 101001110x}, 11x0011100 \ { 11x0011100, 1100011100, 11x0011100}, x110011100 \ { x110011100, 1110011100, 0110011100, x110011100}, 1x10xx010x \ { 1x101x0100, 1x100x0101, 1x10x00100, 11100x010x, 11101x010x, 10100x010x}, 11xx0x01x0 \ { 11x10x0100, 11x00x0110, 11xx0001x0, 11xx010110, 11000x01x0, 11x00x01x0}, x11x0x01x0 \ { x1110x0100, x1100x0110, x11x0001x0, x11x010110, 111x0x01x0, 01100x01x0, x1100x01x0}} {} {1xxxx \ {110x0, 11xx1, 111x1}, x11xx \ {11101, 1111x, 11100}} {} {} {1011x \ {10111}, x0xx1 \ {x0011, x0101, 00xx1}} {} {1001x \ {10011, 10010, 10010}} {0x0x1 \ {010x1, 01001, 000x1}} { 0x01110011 \ { 0x01110011, 0101110011, 0001110011}} {01xxx \ {0110x, 01101, 010x1}, x10xx \ {11010, 010x1, 01001}} {xx0xx \ {x00x1, 010x0, 11001}} { xx0xx01xxx \ { xx0x101xx0, xx0x001xx1, xx01x01x0x, xx00x01x1x, xx0xx0110x, xx0xx01101, xx0xx010x1, x00x101xxx, 010x001xxx, 1100101xxx}, xx0xxx10xx \ { xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx11010, xx0xx010x1, xx0xx01001, x00x1x10xx, 010x0x10xx, 11001x10xx}} {x0x0x \ {00x01, x010x, x0101}, xx0xx \ {xx0x1, 010xx, 11001}} {0x1x1 \ {011x1, 01101, 001x1}, 1x01x \ {1x010, 10010, 10010}} { 0x101x0x01 \ { 0x10100x01, 0x101x0101, 0x101x0101, 01101x0x01, 01101x0x01, 00101x0x01}, 0x1x1xx0x1 \ { 0x111xx001, 0x101xx011, 0x1x1xx0x1, 0x1x1010x1, 0x1x111001, 011x1xx0x1, 01101xx0x1, 001x1xx0x1}, 1x01xxx01x \ { 1x011xx010, 1x010xx011, 1x01xxx011, 1x01x0101x, 1x010xx01x, 10010xx01x, 10010xx01x}} {111x1 \ {11111, 11101}} {000xx \ {00000, 00010, 00010}} { 000x1111x1 \ { 0001111101, 0000111111, 000x111111, 000x111101}} {xx011 \ {0x011, x1011}, x0x0x \ {00x01, 10101, 1000x}} {xxx11 \ {x1011, 1x111, x1111}, xxx0x \ {0x001, 11x00, x0x0x}} { xxx11xx011 \ { xxx110x011, xxx11x1011, x1011xx011, 1x111xx011, x1111xx011}, xxx0xx0x0x \ { xxx01x0x00, xxx00x0x01, xxx0x00x01, xxx0x10101, xxx0x1000x, 0x001x0x0x, 11x00x0x0x, x0x0xx0x0x}} {} {0x01x \ {00010, 0101x, 0001x}} {} {x1xxx \ {01100, 11x11, x111x}, 0xx01 \ {01x01, 0x101}, 1xx1x \ {10011, 10x11, 1x011}} {x00xx \ {0000x, 10011, 000x0}, 11x1x \ {11011, 1111x, 11x10}} { x00xxx1xxx \ { x00x1x1xx0, x00x0x1xx1, x001xx1x0x, x000xx1x1x, x00xx01100, x00xx11x11, x00xxx111x, 0000xx1xxx, 10011x1xxx, 000x0x1xxx}, 11x1xx1x1x \ { 11x11x1x10, 11x10x1x11, 11x1x11x11, 11x1xx111x, 11011x1x1x, 1111xx1x1x, 11x10x1x1x}, x00010xx01 \ { x000101x01, x00010x101, 000010xx01}, x001x1xx1x \ { x00111xx10, x00101xx11, x001x10011, x001x10x11, x001x1x011, 100111xx1x, 000101xx1x}, 11x1x1xx1x \ { 11x111xx10, 11x101xx11, 11x1x10011, 11x1x10x11, 11x1x1x011, 110111xx1x, 1111x1xx1x, 11x101xx1x}} {xx11x \ {0x110, 00111, 01110}, 11x11 \ {11011, 11111, 11111}} {1x0x1 \ {11011, 10011, 1x011}, xx01x \ {0x01x, 10010, xx010}} { 1x011xx111 \ { 1x01100111, 11011xx111, 10011xx111, 1x011xx111}, xx01xxx11x \ { xx011xx110, xx010xx111, xx01x0x110, xx01x00111, xx01x01110, 0x01xxx11x, 10010xx11x, xx010xx11x}, 1x01111x11 \ { 1x01111011, 1x01111111, 1x01111111, 1101111x11, 1001111x11, 1x01111x11}, xx01111x11 \ { xx01111011, xx01111111, xx01111111, 0x01111x11}} {xx10x \ {x0101, 00101, xx101}, x01x1 \ {10101, 10111, 00111}} {xxx11 \ {1x011, 0x111, x1011}} { xxx11x0111 \ { xxx1110111, xxx1100111, 1x011x0111, 0x111x0111, x1011x0111}} {1001x \ {10011, 10010, 10010}, xx010 \ {1x010, 0x010}} {00x00 \ {00100}} {} {xxxx1 \ {00001, xx111, x1111}, 0x01x \ {0x011, 01011, 00010}} {1xx1x \ {11x11, 1x011, 10111}} { 1xx11xxx11 \ { 1xx11xx111, 1xx11x1111, 11x11xxx11, 1x011xxx11, 10111xxx11}, 1xx1x0x01x \ { 1xx110x010, 1xx100x011, 1xx1x0x011, 1xx1x01011, 1xx1x00010, 11x110x01x, 1x0110x01x, 101110x01x}} {} {1x0x1 \ {110x1, 100x1, 10001}} {} {0x001 \ {00001, 01001}} {xx0xx \ {11010, x10x1, x10xx}, 0xxxx \ {01x1x, 0x101, 010x0}} { xx0010x001 \ { xx00100001, xx00101001, x10010x001, x10010x001}, 0xx010x001 \ { 0xx0100001, 0xx0101001, 0x1010x001}} {x1xxx \ {11011, x1001, x111x}, xx001 \ {x0001, x1001, 11001}} {0111x \ {01111, 01110, 01110}, xx11x \ {x111x, 1111x, 11110}} { 0111xx1x1x \ { 01111x1x10, 01110x1x11, 0111x11011, 0111xx111x, 01111x1x1x, 01110x1x1x, 01110x1x1x}, xx11xx1x1x \ { xx111x1x10, xx110x1x11, xx11x11011, xx11xx111x, x111xx1x1x, 1111xx1x1x, 11110x1x1x}} {11x0x \ {11100, 1100x, 1110x}, x1000 \ {01000}, x1x01 \ {11001, x1101}} {xx111 \ {11111, 01111}} {} {x11xx \ {111x0, 1111x}} {x0x00 \ {x0000, 00x00, 00000}, 101x1 \ {10111}, 0x11x \ {01110, 00111}} { x0x00x1100 \ { x0x0011100, x0000x1100, 00x00x1100, 00000x1100}, 101x1x11x1 \ { 10111x1101, 10101x1111, 101x111111, 10111x11x1}, 0x11xx111x \ { 0x111x1110, 0x110x1111, 0x11x11110, 0x11x1111x, 01110x111x, 00111x111x}} {xx1x0 \ {10100, 00100, 10110}, x10x0 \ {01010, 010x0, 01000}} {xx00x \ {10000, 00001, xx001}} { xx000xx100 \ { xx00010100, xx00000100, 10000xx100}, xx000x1000 \ { xx00001000, xx00001000, 10000x1000}} {000x0 \ {00000}} {01x0x \ {01x00, 01000, 01100}, x1xx0 \ {11x00, 01x00, 11000}} { 01x0000000 \ { 01x0000000, 01x0000000, 0100000000, 0110000000}, x1xx0000x0 \ { x1x1000000, x1x0000010, x1xx000000, 11x00000x0, 01x00000x0, 11000000x0}} {xx0xx \ {10011, 11001, x001x}, 1xx10 \ {11010, 10110, 1x110}} {011x0 \ {01110}, x1xxx \ {010x1, 11010, x11x1}} { 011x0xx0x0 \ { 01110xx000, 01100xx010, 011x0x0010, 01110xx0x0}, x1xxxxx0xx \ { x1xx1xx0x0, x1xx0xx0x1, x1x1xxx00x, x1x0xxx01x, x1xxx10011, x1xxx11001, x1xxxx001x, 010x1xx0xx, 11010xx0xx, x11x1xx0xx}, 011101xx10 \ { 0111011010, 0111010110, 011101x110, 011101xx10}, x1x101xx10 \ { x1x1011010, x1x1010110, x1x101x110, 110101xx10}} {0xxxx \ {0110x, 01111, 00xx1}, 000x0 \ {00000, 00010, 00010}} {} {} {} {} {} {x0001 \ {00001}} {x11x1 \ {x1101, 01101, 01111}} { x1101x0001 \ { x110100001, x1101x0001, 01101x0001}} {x001x \ {1001x, x0010, 00011}, 001xx \ {00101, 00100}} {0x000 \ {01000, 00000}} { 0x00000100 \ { 0x00000100, 0100000100, 0000000100}} {1x010 \ {11010, 10010}, 1x0xx \ {1x000, 1x0x0, 10000}, 000xx \ {00011, 00010}} {11xxx \ {11111, 11x11, 11010}, 0x1x1 \ {0x111, 001x1, 00111}} { 11x101x010 \ { 11x1011010, 11x1010010, 110101x010}, 11xxx1x0xx \ { 11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1x000, 11xxx1x0x0, 11xxx10000, 111111x0xx, 11x111x0xx, 110101x0xx}, 0x1x11x0x1 \ { 0x1111x001, 0x1011x011, 0x1111x0x1, 001x11x0x1, 001111x0x1}, 11xxx000xx \ { 11xx1000x0, 11xx0000x1, 11x1x0000x, 11x0x0001x, 11xxx00011, 11xxx00010, 11111000xx, 11x11000xx, 11010000xx}, 0x1x1000x1 \ { 0x11100001, 0x10100011, 0x1x100011, 0x111000x1, 001x1000x1, 00111000x1}} {x11xx \ {111xx, 01111, x110x}, xx1x1 \ {x11x1, x1111, 0x111}} {x10xx \ {1101x, x10x0, 010xx}, 1010x \ {10100}} { x10xxx11xx \ { x10x1x11x0, x10x0x11x1, x101xx110x, x100xx111x, x10xx111xx, x10xx01111, x10xxx110x, 1101xx11xx, x10x0x11xx, 010xxx11xx}, 1010xx110x \ { 10101x1100, 10100x1101, 1010x1110x, 1010xx110x, 10100x110x}, x10x1xx1x1 \ { x1011xx101, x1001xx111, x10x1x11x1, x10x1x1111, x10x10x111, 11011xx1x1, 010x1xx1x1}, 10101xx101 \ { 10101x1101}} {x0101 \ {10101}} {} {} {0x1xx \ {01100, 00100, 0x1x0}, 00x11 \ {00111, 00011, 00011}} {xx010 \ {x0010}, 1xx00 \ {10x00, 1x000, 1x000}} { xx0100x110 \ { xx0100x110, x00100x110}, 1xx000x100 \ { 1xx0001100, 1xx0000100, 1xx000x100, 10x000x100, 1x0000x100, 1x0000x100}} {11xxx \ {11000, 11x10, 1111x}} {x0xx0 \ {10110, 10xx0, x0110}} { x0xx011xx0 \ { x0x1011x00, x0x0011x10, x0xx011000, x0xx011x10, x0xx011110, 1011011xx0, 10xx011xx0, x011011xx0}} {001x0 \ {00100, 00110, 00110}, x01x0 \ {10110, 10100, x0100}} {} {} {} {xxx01 \ {x0x01, 0x101, 11101}} {} {0xx0x \ {00001, 0000x, 0110x}, 1xx1x \ {11010, 10x10, 10011}} {xx0x1 \ {11011, x0011, x1011}, xx1xx \ {101xx, 1111x, x1110}} { xx0010xx01 \ { xx00100001, xx00100001, xx00101101}, xx10x0xx0x \ { xx1010xx00, xx1000xx01, xx10x00001, xx10x0000x, xx10x0110x, 1010x0xx0x}, xx0111xx11 \ { xx01110011, 110111xx11, x00111xx11, x10111xx11}, xx11x1xx1x \ { xx1111xx10, xx1101xx11, xx11x11010, xx11x10x10, xx11x10011, 1011x1xx1x, 1111x1xx1x, x11101xx1x}} {xxx01 \ {1xx01, 1x101, x1001}, x0xxx \ {1010x, x00x0, 00x11}} {00x11 \ {00011, 00111}} { 00x11x0x11 \ { 00x1100x11, 00011x0x11, 00111x0x11}} {x111x \ {1111x, 0111x}, 10xx0 \ {10010, 10000}} {11x0x \ {11001, 11x00, 11x01}} { 11x0010x00 \ { 11x0010000, 11x0010x00}} {xx0x0 \ {1x010, xx010, 0x0x0}, xx0xx \ {0001x, 0000x, 110x1}, 1x1x1 \ {10101, 111x1, 1x111}} {001xx \ {0011x, 001x0, 0010x}, 00x1x \ {0011x, 0001x, 00010}} { 001x0xx0x0 \ { 00110xx000, 00100xx010, 001x01x010, 001x0xx010, 001x00x0x0, 00110xx0x0, 001x0xx0x0, 00100xx0x0}, 00x10xx010 \ { 00x101x010, 00x10xx010, 00x100x010, 00110xx010, 00010xx010, 00010xx010}, 001xxxx0xx \ { 001x1xx0x0, 001x0xx0x1, 0011xxx00x, 0010xxx01x, 001xx0001x, 001xx0000x, 001xx110x1, 0011xxx0xx, 001x0xx0xx, 0010xxx0xx}, 00x1xxx01x \ { 00x11xx010, 00x10xx011, 00x1x0001x, 00x1x11011, 0011xxx01x, 0001xxx01x, 00010xx01x}, 001x11x1x1 \ { 001111x101, 001011x111, 001x110101, 001x1111x1, 001x11x111, 001111x1x1, 001011x1x1}, 00x111x111 \ { 00x1111111, 00x111x111, 001111x111, 000111x111}} {x01xx \ {00111, x01x1, 001x0}, 1x0xx \ {10000, 110xx, 1x001}} {1xx1x \ {10111, 1xx10, 11111}} { 1xx1xx011x \ { 1xx11x0110, 1xx10x0111, 1xx1x00111, 1xx1xx0111, 1xx1x00110, 10111x011x, 1xx10x011x, 11111x011x}, 1xx1x1x01x \ { 1xx111x010, 1xx101x011, 1xx1x1101x, 101111x01x, 1xx101x01x, 111111x01x}} {1x0xx \ {1x011, 10001, 1000x}} {} {} {10x1x \ {10011, 1011x, 10x11}} {} {} {xx0xx \ {0x00x, 11000, x0011}, 00x1x \ {00x11, 00110, 00111}} {010xx \ {010x1, 0100x, 01010}} { 010xxxx0xx \ { 010x1xx0x0, 010x0xx0x1, 0101xxx00x, 0100xxx01x, 010xx0x00x, 010xx11000, 010xxx0011, 010x1xx0xx, 0100xxx0xx, 01010xx0xx}, 0101x00x1x \ { 0101100x10, 0101000x11, 0101x00x11, 0101x00110, 0101x00111, 0101100x1x, 0101000x1x}} {10xx1 \ {10001, 10x11, 10x01}, 0xx00 \ {01100, 01x00, 01000}} {0xx01 \ {0x001, 0x101, 00x01}, 1xxx1 \ {10011, 111x1, 11x01}} { 0xx0110x01 \ { 0xx0110001, 0xx0110x01, 0x00110x01, 0x10110x01, 00x0110x01}, 1xxx110xx1 \ { 1xx1110x01, 1xx0110x11, 1xxx110001, 1xxx110x11, 1xxx110x01, 1001110xx1, 111x110xx1, 11x0110xx1}} {00xx1 \ {00x11, 001x1, 00101}} {xxxx1 \ {x1xx1, 10xx1, 11101}, 1xxxx \ {10x0x, 11xx0, 1101x}} { xxxx100xx1 \ { xxx1100x01, xxx0100x11, xxxx100x11, xxxx1001x1, xxxx100101, x1xx100xx1, 10xx100xx1, 1110100xx1}, 1xxx100xx1 \ { 1xx1100x01, 1xx0100x11, 1xxx100x11, 1xxx1001x1, 1xxx100101, 10x0100xx1, 1101100xx1}} {00x00 \ {00000, 00100, 00100}} {1x100 \ {11100, 10100}, 0x0x1 \ {00011, 010x1, 00001}, 0xxx1 \ {00001, 00011, 01x01}} { 1x10000x00 \ { 1x10000000, 1x10000100, 1x10000100, 1110000x00, 1010000x00}} {xx010 \ {10010}} {x000x \ {10001, 00001, 0000x}} {} {11x0x \ {11100, 11x01, 11001}, xx000 \ {x0000, x1000, 10000}} {xxx0x \ {0xx00, x010x, 0x001}, 001x1 \ {00111, 00101, 00101}} { xxx0x11x0x \ { xxx0111x00, xxx0011x01, xxx0x11100, xxx0x11x01, xxx0x11001, 0xx0011x0x, x010x11x0x, 0x00111x0x}, 0010111x01 \ { 0010111x01, 0010111001, 0010111x01, 0010111x01}, xxx00xx000 \ { xxx00x0000, xxx00x1000, xxx0010000, 0xx00xx000, x0100xx000}} {xxxx1 \ {0x0x1, xx011, 1x011}, 010xx \ {01000, 01010, 010x0}} {0x1x1 \ {01111, 0x111, 00111}} { 0x1x1xxxx1 \ { 0x111xxx01, 0x101xxx11, 0x1x10x0x1, 0x1x1xx011, 0x1x11x011, 01111xxxx1, 0x111xxxx1, 00111xxxx1}, 0x1x1010x1 \ { 0x11101001, 0x10101011, 01111010x1, 0x111010x1, 00111010x1}} {1x010 \ {11010, 10010, 10010}, xx0xx \ {x0011, 10011, 110x1}} {0011x \ {00110, 00111}} { 001101x010 \ { 0011011010, 0011010010, 0011010010, 001101x010}, 0011xxx01x \ { 00111xx010, 00110xx011, 0011xx0011, 0011x10011, 0011x11011, 00110xx01x, 00111xx01x}} {xx0xx \ {0x011, 0000x, 11000}, 001xx \ {0011x, 00101, 00100}, 11xx1 \ {11011, 11x01}} {01x01 \ {01101}, 1xxx0 \ {10x10, 1x1x0, 1x010}} { 01x01xx001 \ { 01x0100001, 01101xx001}, 1xxx0xx0x0 \ { 1xx10xx000, 1xx00xx010, 1xxx000000, 1xxx011000, 10x10xx0x0, 1x1x0xx0x0, 1x010xx0x0}, 01x0100101 \ { 01x0100101, 0110100101}, 1xxx0001x0 \ { 1xx1000100, 1xx0000110, 1xxx000110, 1xxx000100, 10x10001x0, 1x1x0001x0, 1x010001x0}, 01x0111x01 \ { 01x0111x01, 0110111x01}} {1x1xx \ {1x1x1, 1x111, 1011x}} {0xx1x \ {0011x, 0x01x, 00x11}} { 0xx1x1x11x \ { 0xx111x110, 0xx101x111, 0xx1x1x111, 0xx1x1x111, 0xx1x1011x, 0011x1x11x, 0x01x1x11x, 00x111x11x}} {x1xx0 \ {11xx0, x1010, 11110}} {} {} {} {x111x \ {01111, x1110, 11110}} {} {x0xx1 \ {00xx1, 00x01, 00x11}, x01x0 \ {101x0, 001x0}} {x1010 \ {11010}, x0x00 \ {10000, 10x00, 10100}} { x1010x0110 \ { x101010110, x101000110, 11010x0110}, x0x00x0100 \ { x0x0010100, x0x0000100, 10000x0100, 10x00x0100, 10100x0100}} {0x00x \ {0100x, 0x001, 00001}, xx0xx \ {01000, 0001x, xx00x}} {} {} {01x1x \ {01110, 0111x, 0101x}} {x011x \ {x0111, 10110, 0011x}} { x011x01x1x \ { x011101x10, x011001x11, x011x01110, x011x0111x, x011x0101x, x011101x1x, 1011001x1x, 0011x01x1x}} {11xxx \ {11101, 11011, 11x11}} {0x0xx \ {000x1, 0x00x}, xx1xx \ {11100, 00100, 1010x}, 0x00x \ {0000x, 00000, 00000}} { 0x0xx11xxx \ { 0x0x111xx0, 0x0x011xx1, 0x01x11x0x, 0x00x11x1x, 0x0xx11101, 0x0xx11011, 0x0xx11x11, 000x111xxx, 0x00x11xxx}, xx1xx11xxx \ { xx1x111xx0, xx1x011xx1, xx11x11x0x, xx10x11x1x, xx1xx11101, xx1xx11011, xx1xx11x11, 1110011xxx, 0010011xxx, 1010x11xxx}, 0x00x11x0x \ { 0x00111x00, 0x00011x01, 0x00x11101, 0000x11x0x, 0000011x0x, 0000011x0x}} {1xx01 \ {10001, 10x01, 1x001}} {00xxx \ {001x0, 00111, 00x00}} { 00x011xx01 \ { 00x0110001, 00x0110x01, 00x011x001}} {x0101 \ {10101, 00101}} {1x010 \ {11010, 10010, 10010}, xx1xx \ {xx110, 1110x, x01xx}, 1xx11 \ {1x111, 1x011, 1x011}} { xx101x0101 \ { xx10110101, xx10100101, 11101x0101, x0101x0101}} {x0110 \ {10110}} {1xx1x \ {11x11, 1011x, 1111x}, 1xx1x \ {1xx11, 11x10, 1111x}} { 1xx10x0110 \ { 1xx1010110, 10110x0110, 11110x0110}, 1xx10x0110 \ { 1xx1010110, 11x10x0110, 11110x0110}} {} {} {} {01x0x \ {01100, 01001, 01000}, 00x0x \ {00001, 00101}} {xx101 \ {1x101, 00101}} { xx10101x01 \ { xx10101001, 1x10101x01, 0010101x01}, xx10100x01 \ { xx10100001, xx10100101, 1x10100x01, 0010100x01}} {111x1 \ {11101, 11111}} {01x1x \ {0111x, 0101x, 01010}, x1x01 \ {01101}} { 01x1111111 \ { 01x1111111, 0111111111, 0101111111}, x1x0111101 \ { x1x0111101, 0110111101}} {xx110 \ {00110, x1110, 01110}, x10xx \ {01000, 01001, 110x0}} {1x01x \ {10011, 1001x, 1x011}, xx1x0 \ {1x100, 11100, 001x0}} { 1x010xx110 \ { 1x01000110, 1x010x1110, 1x01001110, 10010xx110}, xx110xx110 \ { xx11000110, xx110x1110, xx11001110, 00110xx110}, 1x01xx101x \ { 1x011x1010, 1x010x1011, 1x01x11010, 10011x101x, 1001xx101x, 1x011x101x}, xx1x0x10x0 \ { xx110x1000, xx100x1010, xx1x001000, xx1x0110x0, 1x100x10x0, 11100x10x0, 001x0x10x0}} {x1x11 \ {x1011, 11011, 01x11}, 1x01x \ {11010, 11011, 10011}} {xx1x0 \ {11100, 01100, 0x100}} { xx1101x010 \ { xx11011010}} {0000x \ {00000, 00001}} {1x110 \ {10110}, 000x1 \ {00001, 00011}, x1xx1 \ {11111, 01001, 01x01}} { 0000100001 \ { 0000100001, 0000100001}, x1x0100001 \ { x1x0100001, 0100100001, 01x0100001}} {1xx10 \ {10110, 11010, 10x10}, x1x01 \ {11001, x1101, 01101}} {x11x1 \ {111x1, 11111, x1101}, 1x11x \ {1x111, 10110}} { 1x1101xx10 \ { 1x11010110, 1x11011010, 1x11010x10, 101101xx10}, x1101x1x01 \ { x110111001, x1101x1101, x110101101, 11101x1x01, x1101x1x01}} {0x000 \ {00000, 01000, 01000}} {1x010 \ {11010, 10010}, xx111 \ {x1111, 0x111}} {} {0x1x1 \ {0x111, 01111, 00101}} {xx10x \ {01100, 11100, x0100}} { xx1010x101 \ { xx10100101}} {0xxx0 \ {01x10, 0xx00, 000x0}} {x1xx1 \ {01011, 11x01, 011x1}, 0x101 \ {00101, 01101}, 0xxxx \ {0xx1x, 0x0xx}} { 0xxx00xxx0 \ { 0xx100xx00, 0xx000xx10, 0xxx001x10, 0xxx00xx00, 0xxx0000x0, 0xx100xxx0, 0x0x00xxx0}} {x011x \ {10111, 10110, x0110}, 1x1xx \ {1x101, 101x1, 11100}} {0000x \ {00001, 00000}, x0x1x \ {00x11, 1001x, x011x}} { x0x1xx011x \ { x0x11x0110, x0x10x0111, x0x1x10111, x0x1x10110, x0x1xx0110, 00x11x011x, 1001xx011x, x011xx011x}, 0000x1x10x \ { 000011x100, 000001x101, 0000x1x101, 0000x10101, 0000x11100, 000011x10x, 000001x10x}, x0x1x1x11x \ { x0x111x110, x0x101x111, x0x1x10111, 00x111x11x, 1001x1x11x, x011x1x11x}} {1xx00 \ {10x00, 11x00, 10100}} {x0x10 \ {10010, 10110, 00x10}, 1xx0x \ {1x000, 11000, 1x100}, xx101 \ {11101, 1x101}} { 1xx001xx00 \ { 1xx0010x00, 1xx0011x00, 1xx0010100, 1x0001xx00, 110001xx00, 1x1001xx00}} {x00xx \ {10011, x0010, 1001x}, x10x1 \ {01001, x1001, 110x1}, 01xx1 \ {01111, 010x1, 01101}} {x0xxx \ {x0010, x01xx, 00100}, xxxx0 \ {00000, xxx00, 01x10}, 0x110 \ {01110, 00110}} { x0xxxx00xx \ { x0xx1x00x0, x0xx0x00x1, x0x1xx000x, x0x0xx001x, x0xxx10011, x0xxxx0010, x0xxx1001x, x0010x00xx, x01xxx00xx, 00100x00xx}, xxxx0x00x0 \ { xxx10x0000, xxx00x0010, xxxx0x0010, xxxx010010, 00000x00x0, xxx00x00x0, 01x10x00x0}, 0x110x0010 \ { 0x110x0010, 0x11010010, 01110x0010, 00110x0010}, x0xx1x10x1 \ { x0x11x1001, x0x01x1011, x0xx101001, x0xx1x1001, x0xx1110x1, x01x1x10x1}, x0xx101xx1 \ { x0x1101x01, x0x0101x11, x0xx101111, x0xx1010x1, x0xx101101, x01x101xx1}} {x110x \ {1110x, 01101, 01101}} {xx10x \ {1x100, xx101, x1101}} { xx10xx110x \ { xx101x1100, xx100x1101, xx10x1110x, xx10x01101, xx10x01101, 1x100x110x, xx101x110x, x1101x110x}} {xx010 \ {x0010, x1010, 00010}} {1xxx1 \ {11101, 11xx1, 101x1}, 1xx01 \ {10x01, 11x01, 11101}} {} {1x0x1 \ {1x011, 1x001, 1x001}, 1x1xx \ {1110x, 1x111, 1x101}, 001xx \ {00111, 001x0}} {x001x \ {10010, 0001x}, 1x110 \ {10110}} { x00111x011 \ { x00111x011, 000111x011}, x001x1x11x \ { x00111x110, x00101x111, x001x1x111, 100101x11x, 0001x1x11x}, 1x1101x110 \ { 101101x110}, x001x0011x \ { x001100110, x001000111, x001x00111, x001x00110, 100100011x, 0001x0011x}, 1x11000110 \ { 1x11000110, 1011000110}} {1001x \ {10010, 10011}, x0x0x \ {0000x, 00x0x}, x0000 \ {10000, 00000}} {0x100 \ {01100}} { 0x100x0x00 \ { 0x10000000, 0x10000x00, 01100x0x00}, 0x100x0000 \ { 0x10010000, 0x10000000, 01100x0000}} {xx0x1 \ {1x001, xx001, 01001}} {0x111 \ {01111, 00111, 00111}} { 0x111xx011 \ { 01111xx011, 00111xx011, 00111xx011}} {} {100xx \ {1001x, 1000x, 100x0}} {} {x0x1x \ {0001x, 00x10, 10011}, 1x0xx \ {110xx, 110x0, 1000x}} {011xx \ {01110, 0111x, 01101}, xx1x1 \ {xx111, 00101, 01101}} { 0111xx0x1x \ { 01111x0x10, 01110x0x11, 0111x0001x, 0111x00x10, 0111x10011, 01110x0x1x, 0111xx0x1x}, xx111x0x11 \ { xx11100011, xx11110011, xx111x0x11}, 011xx1x0xx \ { 011x11x0x0, 011x01x0x1, 0111x1x00x, 0110x1x01x, 011xx110xx, 011xx110x0, 011xx1000x, 011101x0xx, 0111x1x0xx, 011011x0xx}, xx1x11x0x1 \ { xx1111x001, xx1011x011, xx1x1110x1, xx1x110001, xx1111x0x1, 001011x0x1, 011011x0x1}} {x1x1x \ {x1x10, 11x10, x1010}, 0x11x \ {00111, 01110}} {} {} {01x1x \ {01x11, 01110, 01x10}, xxxx0 \ {0x0x0, 01xx0, x00x0}} {x000x \ {10000, 00000}, 1x100 \ {10100}} { x0000xxx00 \ { x00000x000, x000001x00, x0000x0000, 10000xxx00, 00000xxx00}, 1x100xxx00 \ { 1x1000x000, 1x10001x00, 1x100x0000, 10100xxx00}} {xxx0x \ {0x000, 00001, 00x00}, 0xx11 \ {00x11, 00011, 0x011}} {x1x11 \ {01x11, x1111}, 0x011 \ {00011}} { x1x110xx11 \ { x1x1100x11, x1x1100011, x1x110x011, 01x110xx11, x11110xx11}, 0x0110xx11 \ { 0x01100x11, 0x01100011, 0x0110x011, 000110xx11}} {x0x00 \ {x0000, 00000, 00100}, x10xx \ {x10x0, 010x1, 01010}} {xx101 \ {0x101, 11101, 01101}} { xx101x1001 \ { xx10101001, 0x101x1001, 11101x1001, 01101x1001}} {xxx00 \ {xx000, 10000, x0x00}, x0x01 \ {10001, x0001}, 0x1xx \ {01110, 001x1, 01111}} {1xx11 \ {10011, 11111, 11011}, 00x11 \ {00011}} { 1xx110x111 \ { 1xx1100111, 1xx1101111, 100110x111, 111110x111, 110110x111}, 00x110x111 \ { 00x1100111, 00x1101111, 000110x111}} {x1100 \ {11100, 01100}} {0x0xx \ {00011, 01000}} { 0x000x1100 \ { 0x00011100, 0x00001100, 01000x1100}} {x0x10 \ {00x10, x0110, x0010}, x1x10 \ {11110, 01010, 01x10}} {001x1 \ {00111}, 001xx \ {0010x, 00100, 0011x}, x1x0x \ {11000, 11100, 01101}} { 00110x0x10 \ { 0011000x10, 00110x0110, 00110x0010, 00110x0x10}, 00110x1x10 \ { 0011011110, 0011001010, 0011001x10, 00110x1x10}} {x1xx0 \ {01xx0, 11100, x1110}, x100x \ {01001, 1100x, x1000}} {xx010 \ {1x010, x0010}, xx1xx \ {x01x0, 011x0, x11xx}} { xx010x1x10 \ { xx01001x10, xx010x1110, 1x010x1x10, x0010x1x10}, xx1x0x1xx0 \ { xx110x1x00, xx100x1x10, xx1x001xx0, xx1x011100, xx1x0x1110, x01x0x1xx0, 011x0x1xx0, x11x0x1xx0}, xx10xx100x \ { xx101x1000, xx100x1001, xx10x01001, xx10x1100x, xx10xx1000, x0100x100x, 01100x100x, x110xx100x}} {0xxx0 \ {0x110, 00010, 01xx0}} {x110x \ {11101, 11100, x1100}, x1x01 \ {11x01, 11001, x1001}} { x11000xx00 \ { x110001x00, 111000xx00, x11000xx00}} {00x00 \ {00100, 00000, 00000}, 00xx1 \ {00x01, 00111, 00101}} {x111x \ {x1110, 11110, 01110}, x1001 \ {11001, 01001, 01001}, 1x100 \ {10100, 11100, 11100}} { 1x10000x00 \ { 1x10000100, 1x10000000, 1x10000000, 1010000x00, 1110000x00, 1110000x00}, x111100x11 \ { x111100111}, x100100x01 \ { x100100x01, x100100101, 1100100x01, 0100100x01, 0100100x01}} {} {1xx1x \ {11011, 11x1x, 10010}, x00xx \ {10001, 10010, 00011}, 0x0x0 \ {000x0, 010x0}} {} {0x1x0 \ {0x110, 001x0, 01100}, x1000 \ {11000, 01000}, x1x0x \ {11101, 01x00, x110x}} {xx0x0 \ {x1000, 1x000, 11010}, 1xx10 \ {11110, 1x110, 10x10}, x1x01 \ {11001, 01001, 01x01}} { xx0x00x1x0 \ { xx0100x100, xx0000x110, xx0x00x110, xx0x0001x0, xx0x001100, x10000x1x0, 1x0000x1x0, 110100x1x0}, 1xx100x110 \ { 1xx100x110, 1xx1000110, 111100x110, 1x1100x110, 10x100x110}, xx000x1000 \ { xx00011000, xx00001000, x1000x1000, 1x000x1000}, xx000x1x00 \ { xx00001x00, xx000x1100, x1000x1x00, 1x000x1x00}, x1x01x1x01 \ { x1x0111101, x1x01x1101, 11001x1x01, 01001x1x01, 01x01x1x01}} {x1010 \ {11010}, xx111 \ {00111, 1x111, 10111}} {x00xx \ {00000, 000x0, 0001x}, xx010 \ {00010, 0x010, x0010}} { x0010x1010 \ { x001011010, 00010x1010, 00010x1010}, xx010x1010 \ { xx01011010, 00010x1010, 0x010x1010, x0010x1010}, x0011xx111 \ { x001100111, x00111x111, x001110111, 00011xx111}} {1x1x0 \ {101x0, 10110, 1x100}} {xx0x0 \ {1x000, x00x0, 01000}} { xx0x01x1x0 \ { xx0101x100, xx0001x110, xx0x0101x0, xx0x010110, xx0x01x100, 1x0001x1x0, x00x01x1x0, 010001x1x0}} {} {xx111 \ {10111, x1111, 0x111}, xx001 \ {00001, 01001, x1001}} {} {11x1x \ {11x10, 11011, 11110}, 11xxx \ {110x1, 1110x, 11x1x}} {xx10x \ {1x100, 0010x, 1x101}, x1xx0 \ {11xx0, 11x10, x10x0}} { x1x1011x10 \ { x1x1011x10, x1x1011110, 11x1011x10, 11x1011x10, x101011x10}, xx10x11x0x \ { xx10111x00, xx10011x01, xx10x11001, xx10x1110x, 1x10011x0x, 0010x11x0x, 1x10111x0x}, x1xx011xx0 \ { x1x1011x00, x1x0011x10, x1xx011100, x1xx011x10, 11xx011xx0, 11x1011xx0, x10x011xx0}} {101xx \ {101x1, 10100, 101x0}, 0x101 \ {00101, 01101}} {x01xx \ {101x1, 1010x, 00110}, 110x1 \ {11001}} { x01xx101xx \ { x01x1101x0, x01x0101x1, x011x1010x, x010x1011x, x01xx101x1, x01xx10100, x01xx101x0, 101x1101xx, 1010x101xx, 00110101xx}, 110x1101x1 \ { 1101110101, 1100110111, 110x1101x1, 11001101x1}, x01010x101 \ { x010100101, x010101101, 101010x101, 101010x101}, 110010x101 \ { 1100100101, 1100101101, 110010x101}} {x1xxx \ {0111x, 11x01, 01x10}, 0100x \ {01001, 01000}} {x10xx \ {010x1, x1011, 01001}, 11xxx \ {11010, 1101x, 110x0}} { x10xxx1xxx \ { x10x1x1xx0, x10x0x1xx1, x101xx1x0x, x100xx1x1x, x10xx0111x, x10xx11x01, x10xx01x10, 010x1x1xxx, x1011x1xxx, 01001x1xxx}, 11xxxx1xxx \ { 11xx1x1xx0, 11xx0x1xx1, 11x1xx1x0x, 11x0xx1x1x, 11xxx0111x, 11xxx11x01, 11xxx01x10, 11010x1xxx, 1101xx1xxx, 110x0x1xxx}, x100x0100x \ { x100101000, x100001001, x100x01001, x100x01000, 010010100x, 010010100x}, 11x0x0100x \ { 11x0101000, 11x0001001, 11x0x01001, 11x0x01000, 110000100x}} {x010x \ {10100, 00100, 1010x}, x1010 \ {11010, 01010, 01010}, xxx11 \ {11011, 0x011, 01x11}} {1x11x \ {1x111, 10110}, x1101 \ {01101, 11101}, 0x1xx \ {001x0, 0x100, 00100}} { x1101x0101 \ { x110110101, 01101x0101, 11101x0101}, 0x10xx010x \ { 0x101x0100, 0x100x0101, 0x10x10100, 0x10x00100, 0x10x1010x, 00100x010x, 0x100x010x, 00100x010x}, 1x110x1010 \ { 1x11011010, 1x11001010, 1x11001010, 10110x1010}, 0x110x1010 \ { 0x11011010, 0x11001010, 0x11001010, 00110x1010}, 1x111xxx11 \ { 1x11111011, 1x1110x011, 1x11101x11, 1x111xxx11}, 0x111xxx11 \ { 0x11111011, 0x1110x011, 0x11101x11}} {xx1x1 \ {01111, 111x1, 11101}} {0001x \ {00011, 00010}, 1x1x0 \ {10100, 11110, 10110}, x0101 \ {00101}} { 00011xx111 \ { 0001101111, 0001111111, 00011xx111}, x0101xx101 \ { x010111101, x010111101, 00101xx101}} {} {xxx0x \ {11101, x0x01, 00x01}, 1x011 \ {11011, 10011}} {} {0xx01 \ {01101, 00x01}} {x001x \ {10010, x0010, 10011}, 1110x \ {11100, 11101}} { 111010xx01 \ { 1110101101, 1110100x01, 111010xx01}} {xx0x0 \ {x1000, 1x0x0, x10x0}, xxxx0 \ {11010, 0xx00, 01000}} {1xxx0 \ {1x100, 11100, 11110}, 0x00x \ {01001, 01000}, 10x10 \ {10110, 10010, 10010}} { 1xxx0xx0x0 \ { 1xx10xx000, 1xx00xx010, 1xxx0x1000, 1xxx01x0x0, 1xxx0x10x0, 1x100xx0x0, 11100xx0x0, 11110xx0x0}, 0x000xx000 \ { 0x000x1000, 0x0001x000, 0x000x1000, 01000xx000}, 10x10xx010 \ { 10x101x010, 10x10x1010, 10110xx010, 10010xx010, 10010xx010}, 1xxx0xxxx0 \ { 1xx10xxx00, 1xx00xxx10, 1xxx011010, 1xxx00xx00, 1xxx001000, 1x100xxxx0, 11100xxxx0, 11110xxxx0}, 0x000xxx00 \ { 0x0000xx00, 0x00001000, 01000xxx00}, 10x10xxx10 \ { 10x1011010, 10110xxx10, 10010xxx10, 10010xxx10}} {x101x \ {11011, x1010, 0101x}, 1xxx1 \ {10001, 10011, 11x01}} {1xx0x \ {10000, 1xx01, 10001}} { 1xx011xx01 \ { 1xx0110001, 1xx0111x01, 1xx011xx01, 100011xx01}} {xxxx1 \ {0x111, 111x1, x0001}, 0x110 \ {01110, 00110}, xx001 \ {10001, x0001, 11001}} {} {} {xx101 \ {x1101}, 1x0xx \ {10001, 1000x, 11000}} {111xx \ {11101, 1110x, 11100}} { 11101xx101 \ { 11101x1101, 11101xx101, 11101xx101}, 111xx1x0xx \ { 111x11x0x0, 111x01x0x1, 1111x1x00x, 1110x1x01x, 111xx10001, 111xx1000x, 111xx11000, 111011x0xx, 1110x1x0xx, 111001x0xx}} {x0x00 \ {10x00, x0100, 00000}, 1x0x1 \ {1x001, 11011, 100x1}, x0xxx \ {x00xx, 10x1x, 00xx0}} {} {} {xxx00 \ {x1100, 0x100, xx100}, x10xx \ {010xx, 110x1, 110xx}} {0xxxx \ {00x0x, 01x01}, 10xx1 \ {10111, 10x11, 10x01}, 01x0x \ {01100, 0100x, 01101}} { 0xx00xxx00 \ { 0xx00x1100, 0xx000x100, 0xx00xx100, 00x00xxx00}, 01x00xxx00 \ { 01x00x1100, 01x000x100, 01x00xx100, 01100xxx00, 01000xxx00}, 0xxxxx10xx \ { 0xxx1x10x0, 0xxx0x10x1, 0xx1xx100x, 0xx0xx101x, 0xxxx010xx, 0xxxx110x1, 0xxxx110xx, 00x0xx10xx, 01x01x10xx}, 10xx1x10x1 \ { 10x11x1001, 10x01x1011, 10xx1010x1, 10xx1110x1, 10xx1110x1, 10111x10x1, 10x11x10x1, 10x01x10x1}, 01x0xx100x \ { 01x01x1000, 01x00x1001, 01x0x0100x, 01x0x11001, 01x0x1100x, 01100x100x, 0100xx100x, 01101x100x}} {1x0x0 \ {100x0, 11010, 10010}} {xx11x \ {x1111, x111x, xx111}, 100xx \ {1000x, 10001, 10010}} { xx1101x010 \ { xx11010010, xx11011010, xx11010010, x11101x010}, 100x01x0x0 \ { 100101x000, 100001x010, 100x0100x0, 100x011010, 100x010010, 100001x0x0, 100101x0x0}} {x10x0 \ {x1000, 11010, 11000}, 10xx0 \ {100x0, 10x10, 10110}, 101x0 \ {10100, 10110, 10110}} {x0x00 \ {00x00, x0000, 10100}} { x0x00x1000 \ { x0x00x1000, x0x0011000, 00x00x1000, x0000x1000, 10100x1000}, x0x0010x00 \ { x0x0010000, 00x0010x00, x000010x00, 1010010x00}, x0x0010100 \ { x0x0010100, 00x0010100, x000010100, 1010010100}} {0101x \ {01010, 01011, 01011}, xxxx1 \ {01001, 00011, x1011}} {0x00x \ {00001, 00000, 00000}} { 0x001xxx01 \ { 0x00101001, 00001xxx01}} {x1011 \ {11011, 01011}, x001x \ {00010, 10011, 0001x}} {0x001 \ {00001}} {} {x0xx1 \ {10x11, 10111, x00x1}, 11x0x \ {11x00, 1110x, 11101}, xx100 \ {01100, x0100, x0100}} {} {} {0x1x0 \ {00100, 0x100, 0x100}} {x0x10 \ {10x10, 00x10, 00x10}, 0000x \ {00001, 00000}, 1xx0x \ {10x00, 1110x, 1100x}} { x0x100x110 \ { 10x100x110, 00x100x110, 00x100x110}, 000000x100 \ { 0000000100, 000000x100, 000000x100, 000000x100}, 1xx000x100 \ { 1xx0000100, 1xx000x100, 1xx000x100, 10x000x100, 111000x100, 110000x100}} {x1xxx \ {01xx1, 11x01, x101x}, x01xx \ {x0100, 101xx, 0011x}} {0x001 \ {01001, 00001}, 011xx \ {011x1, 01100}} { 0x001x1x01 \ { 0x00101x01, 0x00111x01, 01001x1x01, 00001x1x01}, 011xxx1xxx \ { 011x1x1xx0, 011x0x1xx1, 0111xx1x0x, 0110xx1x1x, 011xx01xx1, 011xx11x01, 011xxx101x, 011x1x1xxx, 01100x1xxx}, 0x001x0101 \ { 0x00110101, 01001x0101, 00001x0101}, 011xxx01xx \ { 011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xxx0100, 011xx101xx, 011xx0011x, 011x1x01xx, 01100x01xx}} {1xxxx \ {1011x, 110x0, 1010x}, xx101 \ {00101, x0101, 11101}} {1111x \ {11111, 11110}, xx000 \ {x0000, 11000, 01000}} { 1111x1xx1x \ { 111111xx10, 111101xx11, 1111x1011x, 1111x11010, 111111xx1x, 111101xx1x}, xx0001xx00 \ { xx00011000, xx00010100, x00001xx00, 110001xx00, 010001xx00}} {x1x00 \ {x1100, 11100, 01100}, xx0x0 \ {1x000, xx000, x0010}} {xx01x \ {00011, 00010, x0010}} { xx010xx010 \ { xx010x0010, 00010xx010, x0010xx010}} {11xxx \ {1100x, 11x0x, 11x01}} {} {} {xx111 \ {10111, 11111, 01111}, 1xxx0 \ {10x00, 100x0, 11000}} {x10x0 \ {x1010, 11010, 01000}, 10xx1 \ {100x1, 10001}} { 10x11xx111 \ { 10x1110111, 10x1111111, 10x1101111, 10011xx111}, x10x01xxx0 \ { x10101xx00, x10001xx10, x10x010x00, x10x0100x0, x10x011000, x10101xxx0, 110101xxx0, 010001xxx0}} {x11x0 \ {01110, 11110, 11100}, x1xx1 \ {01001, x1x11, x1001}} {10x1x \ {1011x, 10x10, 10110}, x11xx \ {x110x, 111xx, 011xx}} { 10x10x1110 \ { 10x1001110, 10x1011110, 10110x1110, 10x10x1110, 10110x1110}, x11x0x11x0 \ { x1110x1100, x1100x1110, x11x001110, x11x011110, x11x011100, x1100x11x0, 111x0x11x0, 011x0x11x0}, 10x11x1x11 \ { 10x11x1x11, 10111x1x11}, x11x1x1xx1 \ { x1111x1x01, x1101x1x11, x11x101001, x11x1x1x11, x11x1x1001, x1101x1xx1, 111x1x1xx1, 011x1x1xx1}} {xx110 \ {00110, x0110, 1x110}, 1x01x \ {1x010, 10011}} {00x0x \ {0000x, 00001, 00x01}} {} {xx1x1 \ {x1111, 10111, x0101}, 100x0 \ {10000, 10010}} {x1x1x \ {01x10, x1010, x111x}, 1x00x \ {1000x, 1x001, 10001}, 0x00x \ {0x001, 0100x, 00001}} { x1x11xx111 \ { x1x11x1111, x1x1110111, x1111xx111}, 1x001xx101 \ { 1x001x0101, 10001xx101, 1x001xx101, 10001xx101}, 0x001xx101 \ { 0x001x0101, 0x001xx101, 01001xx101, 00001xx101}, x1x1010010 \ { x1x1010010, 01x1010010, x101010010, x111010010}, 1x00010000 \ { 1x00010000, 1000010000}, 0x00010000 \ { 0x00010000, 0100010000}} {x10x1 \ {01001, x1011, 11011}, 01x11 \ {01011, 01111}} {xx100 \ {x1100, 11100}, xx00x \ {0100x, 00000, 1x000}} { xx001x1001 \ { xx00101001, 01001x1001}} {x0x11 \ {x0111, 10111, 00x11}} {xx1xx \ {011x0, 001x0, 1111x}, xxxx1 \ {0x111, 110x1, x10x1}} { xx111x0x11 \ { xx111x0111, xx11110111, xx11100x11, 11111x0x11}, xxx11x0x11 \ { xxx11x0111, xxx1110111, xxx1100x11, 0x111x0x11, 11011x0x11, x1011x0x11}} {xxxx0 \ {01100, xx010, 1x010}} {} {} {} {1x1x0 \ {11110, 111x0, 111x0}, 01xxx \ {01x1x, 01xx1, 011x0}} {} {110x0 \ {11000}, x0100 \ {00100}} {} {} {x1x0x \ {01101, 11101, x1101}} {xxxxx \ {1xx11, 011x1, 01xx0}, 01x01 \ {01001}, x011x \ {10111, x0110, 00111}} { xxx0xx1x0x \ { xxx01x1x00, xxx00x1x01, xxx0x01101, xxx0x11101, xxx0xx1101, 01101x1x0x, 01x00x1x0x}, 01x01x1x01 \ { 01x0101101, 01x0111101, 01x01x1101, 01001x1x01}} {xx0xx \ {x1010, xx00x, 1x011}} {01x0x \ {01000, 01001, 01x00}} { 01x0xxx00x \ { 01x01xx000, 01x00xx001, 01x0xxx00x, 01000xx00x, 01001xx00x, 01x00xx00x}} {1x0xx \ {1101x, 1x010, 11011}} {010xx \ {0101x, 01000, 010x0}, 101x1 \ {10111, 10101}} { 010xx1x0xx \ { 010x11x0x0, 010x01x0x1, 0101x1x00x, 0100x1x01x, 010xx1101x, 010xx1x010, 010xx11011, 0101x1x0xx, 010001x0xx, 010x01x0xx}, 101x11x0x1 \ { 101111x001, 101011x011, 101x111011, 101x111011, 101111x0x1, 101011x0x1}} {10x01 \ {10101, 10001}, xx011 \ {01011, 10011}, xx0x1 \ {1x0x1, xx001, x1001}} {0xx00 \ {01100, 01x00, 0x000}, 0x10x \ {00101, 0010x, 01100}} { 0x10110x01 \ { 0x10110101, 0x10110001, 0010110x01, 0010110x01}, 0x101xx001 \ { 0x1011x001, 0x101xx001, 0x101x1001, 00101xx001, 00101xx001}} {0xx11 \ {00011, 0x011, 0x011}, 11x1x \ {11010, 1111x, 11110}, x0x1x \ {10111, x0011, x001x}} {0xx11 \ {01x11, 00011, 00111}, 1x00x \ {1x000, 1x001, 10001}} { 0xx110xx11 \ { 0xx1100011, 0xx110x011, 0xx110x011, 01x110xx11, 000110xx11, 001110xx11}, 0xx1111x11 \ { 0xx1111111, 01x1111x11, 0001111x11, 0011111x11}, 0xx11x0x11 \ { 0xx1110111, 0xx11x0011, 0xx11x0011, 01x11x0x11, 00011x0x11, 00111x0x11}} {x001x \ {0001x, x0010, 10010}, 1xxxx \ {1x11x, 11111, 110xx}} {x1x11 \ {x1111, 11011, 11x11}, xxxx1 \ {001x1, x0001, x1x01}} { x1x11x0011 \ { x1x1100011, x1111x0011, 11011x0011, 11x11x0011}, xxx11x0011 \ { xxx1100011, 00111x0011}, x1x111xx11 \ { x1x111x111, x1x1111111, x1x1111011, x11111xx11, 110111xx11, 11x111xx11}, xxxx11xxx1 \ { xxx111xx01, xxx011xx11, xxxx11x111, xxxx111111, xxxx1110x1, 001x11xxx1, x00011xxx1, x1x011xxx1}} {xx1xx \ {111xx, 10111, 0111x}, xxxx1 \ {01001, 10x01, 00x01}} {} {} {0x01x \ {00011, 0001x, 0101x}, x011x \ {0011x, 10111}, x11x0 \ {011x0, 11110, 11100}} {110x0 \ {11010, 11000}, 10xx1 \ {101x1, 10011}} { 110100x010 \ { 1101000010, 1101001010, 110100x010}, 10x110x011 \ { 10x1100011, 10x1100011, 10x1101011, 101110x011, 100110x011}, 11010x0110 \ { 1101000110, 11010x0110}, 10x11x0111 \ { 10x1100111, 10x1110111, 10111x0111, 10011x0111}, 110x0x11x0 \ { 11010x1100, 11000x1110, 110x0011x0, 110x011110, 110x011100, 11010x11x0, 11000x11x0}} {11x10 \ {11110, 11010}, x1x1x \ {11111, 01x1x, 01111}} {000xx \ {00010, 0001x, 000x0}} { 0001011x10 \ { 0001011110, 0001011010, 0001011x10, 0001011x10, 0001011x10}, 0001xx1x1x \ { 00011x1x10, 00010x1x11, 0001x11111, 0001x01x1x, 0001x01111, 00010x1x1x, 0001xx1x1x, 00010x1x1x}} {} {x1x1x \ {01011, 1101x, 01111}, xx10x \ {11100, 1110x, x0101}} {} {x1010 \ {11010}, x110x \ {11100, x1100, 11101}} {x001x \ {10011, 0001x, 00010}, x10x1 \ {11001, 110x1, 11011}} { x0010x1010 \ { x001011010, 00010x1010, 00010x1010}, x1001x1101 \ { x100111101, 11001x1101, 11001x1101}} {xxx0x \ {1100x, 0x10x, 0xx01}} {111x0 \ {11100, 11110}} { 11100xxx00 \ { 1110011000, 111000x100, 11100xxx00}} {011xx \ {0111x, 0110x, 01110}, xxx10 \ {1x110, x1010, 01110}, 0x0x0 \ {00010, 01010}} {x1100 \ {01100}, x1xxx \ {01100, 11x1x, x1xx1}} { x110001100 \ { x110001100, 0110001100}, x1xxx011xx \ { x1xx1011x0, x1xx0011x1, x1x1x0110x, x1x0x0111x, x1xxx0111x, x1xxx0110x, x1xxx01110, 01100011xx, 11x1x011xx, x1xx1011xx}, x1x10xxx10 \ { x1x101x110, x1x10x1010, x1x1001110, 11x10xxx10}, x11000x000 \ { 011000x000}, x1xx00x0x0 \ { x1x100x000, x1x000x010, x1xx000010, x1xx001010, 011000x0x0, 11x100x0x0}} {01xxx \ {0110x, 01x0x, 01111}} {0x1x0 \ {01100, 0x100, 001x0}, 0x0x0 \ {00000, 000x0}, 1xx11 \ {10x11, 1x111, 10011}} { 0x1x001xx0 \ { 0x11001x00, 0x10001x10, 0x1x001100, 0x1x001x00, 0110001xx0, 0x10001xx0, 001x001xx0}, 0x0x001xx0 \ { 0x01001x00, 0x00001x10, 0x0x001100, 0x0x001x00, 0000001xx0, 000x001xx0}, 1xx1101x11 \ { 1xx1101111, 10x1101x11, 1x11101x11, 1001101x11}} {x101x \ {01011, 1101x, 0101x}, x0xx1 \ {00101, 000x1, 10x01}} {1xx0x \ {10100, 1x100, 1000x}} { 1xx01x0x01 \ { 1xx0100101, 1xx0100001, 1xx0110x01, 10001x0x01}} {x111x \ {0111x, 11110, 01111}, x0xx1 \ {x00x1, x0x01, 10001}, x0100 \ {00100, 10100}} {x01xx \ {x011x, x0110, 10100}, 0001x \ {00010, 00011}} { x011xx111x \ { x0111x1110, x0110x1111, x011x0111x, x011x11110, x011x01111, x011xx111x, x0110x111x}, 0001xx111x \ { 00011x1110, 00010x1111, 0001x0111x, 0001x11110, 0001x01111, 00010x111x, 00011x111x}, x01x1x0xx1 \ { x0111x0x01, x0101x0x11, x01x1x00x1, x01x1x0x01, x01x110001, x0111x0xx1}, 00011x0x11 \ { 00011x0011, 00011x0x11}, x0100x0100 \ { x010000100, x010010100, 10100x0100}} {x0xx0 \ {100x0, 00x10, 00x10}} {xxxx1 \ {x0xx1, x1001, 011x1}, x1100 \ {11100, 01100}, x0000 \ {00000}} { x1100x0x00 \ { x110010000, 11100x0x00, 01100x0x00}, x0000x0x00 \ { x000010000, 00000x0x00}} {1xx0x \ {10101, 11101, 1x10x}, x11xx \ {11111, 0110x, 111x0}, 0x10x \ {0x101, 00100, 00100}} {000xx \ {0000x, 00001, 00011}, x00x1 \ {00011, 000x1, x0001}} { 0000x1xx0x \ { 000011xx00, 000001xx01, 0000x10101, 0000x11101, 0000x1x10x, 0000x1xx0x, 000011xx0x}, x00011xx01 \ { x000110101, x000111101, x00011x101, 000011xx01, x00011xx01}, 000xxx11xx \ { 000x1x11x0, 000x0x11x1, 0001xx110x, 0000xx111x, 000xx11111, 000xx0110x, 000xx111x0, 0000xx11xx, 00001x11xx, 00011x11xx}, x00x1x11x1 \ { x0011x1101, x0001x1111, x00x111111, x00x101101, 00011x11x1, 000x1x11x1, x0001x11x1}, 0000x0x10x \ { 000010x100, 000000x101, 0000x0x101, 0000x00100, 0000x00100, 0000x0x10x, 000010x10x}, x00010x101 \ { x00010x101, 000010x101, x00010x101}} {1x1xx \ {1010x, 1x110, 10100}, x11x1 \ {01101, x1101, 011x1}} {00xx1 \ {00101, 00001, 00x11}} { 00xx11x1x1 \ { 00x111x101, 00x011x111, 00xx110101, 001011x1x1, 000011x1x1, 00x111x1x1}, 00xx1x11x1 \ { 00x11x1101, 00x01x1111, 00xx101101, 00xx1x1101, 00xx1011x1, 00101x11x1, 00001x11x1, 00x11x11x1}} {0xx0x \ {00101, 0x101, 0xx00}} {xxx1x \ {x1111, 00011}} {} {xx0x0 \ {10000, 1x010, 1x0x0}} {x0x00 \ {10x00, x0000, 10000}} { x0x00xx000 \ { x0x0010000, x0x001x000, 10x00xx000, x0000xx000, 10000xx000}} {01x0x \ {0110x, 01000, 01101}} {x011x \ {00110, 10111, 1011x}, xx1x1 \ {001x1, xx111, x01x1}} { xx10101x01 \ { xx10101101, xx10101101, 0010101x01, x010101x01}} {} {x0xx1 \ {10101, 00011, 00xx1}, 0xx1x \ {0001x, 0xx10, 0x110}} {} {01xx1 \ {01001, 01111, 01011}} {x00x1 \ {x0011, 00001, 000x1}, 0x1x1 \ {0x101, 01101}} { x00x101xx1 \ { x001101x01, x000101x11, x00x101001, x00x101111, x00x101011, x001101xx1, 0000101xx1, 000x101xx1}, 0x1x101xx1 \ { 0x11101x01, 0x10101x11, 0x1x101001, 0x1x101111, 0x1x101011, 0x10101xx1, 0110101xx1}} {x0xx1 \ {10001, 10101, 101x1}, 000xx \ {00001, 00000}} {x1x1x \ {11111, 01x1x, 01x1x}, x00xx \ {1001x, x0010, x0010}, 1xx01 \ {1x001, 10101}} { x1x11x0x11 \ { x1x1110111, 11111x0x11, 01x11x0x11, 01x11x0x11}, x00x1x0xx1 \ { x0011x0x01, x0001x0x11, x00x110001, x00x110101, x00x1101x1, 10011x0xx1}, 1xx01x0x01 \ { 1xx0110001, 1xx0110101, 1xx0110101, 1x001x0x01, 10101x0x01}, x1x1x0001x \ { x1x1100010, x1x1000011, 111110001x, 01x1x0001x, 01x1x0001x}, x00xx000xx \ { x00x1000x0, x00x0000x1, x001x0000x, x000x0001x, x00xx00001, x00xx00000, 1001x000xx, x0010000xx, x0010000xx}, 1xx0100001 \ { 1xx0100001, 1x00100001, 1010100001}} {1xxx1 \ {1x1x1, 11011}, x1xx0 \ {01x10, 11100, 111x0}} {0x101 \ {00101}} { 0x1011xx01 \ { 0x1011x101, 001011xx01}} {1010x \ {10101, 10100, 10100}, x0x01 \ {10101, 00x01}} {xxxxx \ {001x0, 11100, 1xx10}, xx0x1 \ {1x001, 01011, 00011}} { xxx0x1010x \ { xxx0110100, xxx0010101, xxx0x10101, xxx0x10100, xxx0x10100, 001001010x, 111001010x}, xx00110101 \ { xx00110101, 1x00110101}, xxx01x0x01 \ { xxx0110101, xxx0100x01}, xx001x0x01 \ { xx00110101, xx00100x01, 1x001x0x01}} {1xx00 \ {10100, 1x000, 11100}, 11xxx \ {11x11, 111x0, 11100}} {xx011 \ {00011, 01011, x0011}, xx1x1 \ {x11x1, 10111, 11101}} { xx01111x11 \ { xx01111x11, 0001111x11, 0101111x11, x001111x11}, xx1x111xx1 \ { xx11111x01, xx10111x11, xx1x111x11, x11x111xx1, 1011111xx1, 1110111xx1}} {} {0x100 \ {01100}, 10xx0 \ {101x0, 10x10}, 00xx1 \ {00111, 00x11, 00001}} {} {x00xx \ {100x0, x0000, x001x}, 11x00 \ {11000}} {x10x0 \ {01010, 010x0, x1010}} { x10x0x00x0 \ { x1010x0000, x1000x0010, x10x0100x0, x10x0x0000, x10x0x0010, 01010x00x0, 010x0x00x0, x1010x00x0}, x100011x00 \ { x100011000, 0100011x00}} {x11x0 \ {11110, 011x0}} {} {} {0xx11 \ {0x111, 00011, 00x11}, x1000 \ {01000, 11000}} {001x1 \ {00111, 00101}, xx111 \ {0x111, x1111}} { 001110xx11 \ { 001110x111, 0011100011, 0011100x11, 001110xx11}, xx1110xx11 \ { xx1110x111, xx11100011, xx11100x11, 0x1110xx11, x11110xx11}} {0x1xx \ {0x110, 01101}, x1x1x \ {11x1x, 01x11, 11011}} {x01x0 \ {10110, 00100, 101x0}, xx1x0 \ {1x1x0, 111x0, 1x110}} { x01x00x1x0 \ { x01100x100, x01000x110, x01x00x110, 101100x1x0, 001000x1x0, 101x00x1x0}, xx1x00x1x0 \ { xx1100x100, xx1000x110, xx1x00x110, 1x1x00x1x0, 111x00x1x0, 1x1100x1x0}, x0110x1x10 \ { x011011x10, 10110x1x10, 10110x1x10}, xx110x1x10 \ { xx11011x10, 1x110x1x10, 11110x1x10, 1x110x1x10}} {xxx10 \ {11x10, 00110, xx010}, 10x00 \ {10000}} {xx111 \ {x0111, 01111, 00111}} {} {x11x0 \ {011x0, 11100, x1110}, x01xx \ {001x0, 10100, x0100}, 000xx \ {000x1, 0000x, 00000}} {x100x \ {0100x, 01001}, 11x1x \ {11111, 11011, 11010}} { x1000x1100 \ { x100001100, x100011100, 01000x1100}, 11x10x1110 \ { 11x1001110, 11x10x1110, 11010x1110}, x100xx010x \ { x1001x0100, x1000x0101, x100x00100, x100x10100, x100xx0100, 0100xx010x, 01001x010x}, 11x1xx011x \ { 11x11x0110, 11x10x0111, 11x1x00110, 11111x011x, 11011x011x, 11010x011x}, x100x0000x \ { x100100000, x100000001, x100x00001, x100x0000x, x100x00000, 0100x0000x, 010010000x}, 11x1x0001x \ { 11x1100010, 11x1000011, 11x1x00011, 111110001x, 110110001x, 110100001x}} {x0xx0 \ {000x0, 00x10, x0x10}, 1xx01 \ {1x001, 11x01, 1x101}} {} {} {xx01x \ {00010, 1001x, xx011}} {} {} {xx000 \ {x1000, 1x000, 00000}, x1xxx \ {0100x, 11x11, 11101}, 0x1xx \ {001x0, 0x110, 0x1x0}} {xxx01 \ {10101, 00x01}} { xxx01x1x01 \ { xxx0101001, xxx0111101, 10101x1x01, 00x01x1x01}, xxx010x101 \ { 101010x101, 00x010x101}} {x1xx1 \ {x1x11, x1101, 01x01}, 0x0xx \ {010x0, 0x01x, 00000}} {0xxx0 \ {0x0x0, 011x0, 0xx00}} { 0xxx00x0x0 \ { 0xx100x000, 0xx000x010, 0xxx0010x0, 0xxx00x010, 0xxx000000, 0x0x00x0x0, 011x00x0x0, 0xx000x0x0}} {11x01 \ {11101, 11001}} {0x0x0 \ {00000, 0x000, 000x0}} {} {1x10x \ {1x101, 1110x, 1110x}} {0x1x0 \ {00100, 0x100, 0x110}} { 0x1001x100 \ { 0x10011100, 0x10011100, 001001x100, 0x1001x100}} {00x0x \ {00100, 00x00}} {1100x \ {11001, 11000, 11000}} { 1100x00x0x \ { 1100100x00, 1100000x01, 1100x00100, 1100x00x00, 1100100x0x, 1100000x0x, 1100000x0x}} {000x0 \ {00000, 00010, 00010}} {xx10x \ {xx101, 10101, 1x101}} { xx10000000 \ { xx10000000}} {0x0x0 \ {000x0, 0x000, 00010}} {x1x10 \ {11x10, 11110, 11110}, 01xxx \ {0101x, 010x0, 01101}} { x1x100x010 \ { x1x1000010, x1x1000010, 11x100x010, 111100x010, 111100x010}, 01xx00x0x0 \ { 01x100x000, 01x000x010, 01xx0000x0, 01xx00x000, 01xx000010, 010100x0x0, 010x00x0x0}} {00xx0 \ {00010, 000x0, 00100}, xx000 \ {00000}} {00xx0 \ {001x0, 00x10, 00x10}, 0xx1x \ {01x11, 0111x, 01011}} { 00xx000xx0 \ { 00x1000x00, 00x0000x10, 00xx000010, 00xx0000x0, 00xx000100, 001x000xx0, 00x1000xx0, 00x1000xx0}, 0xx1000x10 \ { 0xx1000010, 0xx1000010, 0111000x10}, 00x00xx000 \ { 00x0000000, 00100xx000}} {1111x \ {11111, 11110, 11110}, 0x1x1 \ {011x1, 001x1, 01111}, 110x1 \ {11001, 11011}} {001xx \ {001x1, 00111, 001x0}} { 0011x1111x \ { 0011111110, 0011011111, 0011x11111, 0011x11110, 0011x11110, 001111111x, 001111111x, 001101111x}, 001x10x1x1 \ { 001110x101, 001010x111, 001x1011x1, 001x1001x1, 001x101111, 001x10x1x1, 001110x1x1}, 001x1110x1 \ { 0011111001, 0010111011, 001x111001, 001x111011, 001x1110x1, 00111110x1}} {x1001 \ {11001, 01001}, 010x1 \ {01001}} {xx1xx \ {01110, 01101, xx1x1}} { xx101x1001 \ { xx10111001, xx10101001, 01101x1001, xx101x1001}, xx1x1010x1 \ { xx11101001, xx10101011, xx1x101001, 01101010x1, xx1x1010x1}} {1x11x \ {11111, 11110, 1111x}, 11x11 \ {11011, 11111}} {01xx1 \ {01011, 010x1}, 1xx0x \ {1xx00, 10100, 1x10x}} { 01x111x111 \ { 01x1111111, 01x1111111, 010111x111, 010111x111}, 01x1111x11 \ { 01x1111011, 01x1111111, 0101111x11, 0101111x11}} {} {x00xx \ {x0000, 1001x, 1001x}} {} {xx111 \ {10111, 00111}, xxx0x \ {0x00x, x0x00, 11x0x}, 11x11 \ {11011}} {00x0x \ {00100, 00x01, 00000}, x10x0 \ {x1010, 11000, 11010}, 010x0 \ {01000, 01010}} { 00x0xxxx0x \ { 00x01xxx00, 00x00xxx01, 00x0x0x00x, 00x0xx0x00, 00x0x11x0x, 00100xxx0x, 00x01xxx0x, 00000xxx0x}, x1000xxx00 \ { x10000x000, x1000x0x00, x100011x00, 11000xxx00}, 01000xxx00 \ { 010000x000, 01000x0x00, 0100011x00, 01000xxx00}} {xx01x \ {0001x, 1x010, xx010}} {1xxx1 \ {10x01, 11001, 110x1}, 1xx1x \ {10011, 10010, 1x011}} { 1xx11xx011 \ { 1xx1100011, 11011xx011}, 1xx1xxx01x \ { 1xx11xx010, 1xx10xx011, 1xx1x0001x, 1xx1x1x010, 1xx1xxx010, 10011xx01x, 10010xx01x, 1x011xx01x}} {10x10 \ {10110, 10010}, 00x1x \ {00010, 00011, 00110}, 10x11 \ {10011, 10111, 10111}} {} {} {x1x10 \ {11110, 01x10, x1110}, xx0xx \ {010x0, 0001x, x001x}} {x111x \ {01111, x1111, 1111x}, x1x10 \ {01010, 11010}, x0101 \ {00101}} { x1110x1x10 \ { x111011110, x111001x10, x1110x1110, 11110x1x10}, x1x10x1x10 \ { x1x1011110, x1x1001x10, x1x10x1110, 01010x1x10, 11010x1x10}, x111xxx01x \ { x1111xx010, x1110xx011, x111x01010, x111x0001x, x111xx001x, 01111xx01x, x1111xx01x, 1111xxx01x}, x1x10xx010 \ { x1x1001010, x1x1000010, x1x10x0010, 01010xx010, 11010xx010}, x0101xx001 \ { 00101xx001}} {1xx11 \ {1x111, 10011}, 000x0 \ {00000}} {xx1xx \ {0x10x, xx11x, 0111x}, 1x0x0 \ {11010, 110x0, 100x0}} { xx1111xx11 \ { xx1111x111, xx11110011, xx1111xx11, 011111xx11}, xx1x0000x0 \ { xx11000000, xx10000010, xx1x000000, 0x100000x0, xx110000x0, 01110000x0}, 1x0x0000x0 \ { 1x01000000, 1x00000010, 1x0x000000, 11010000x0, 110x0000x0, 100x0000x0}} {10xx1 \ {10001, 100x1, 10111}, x11xx \ {x11x1, 01100, 11100}} {1xx11 \ {1x011, 10x11, 11x11}, x11x1 \ {11111, 111x1, x1111}, xxx01 \ {xx001, 0x001, 0x001}} { 1xx1110x11 \ { 1xx1110011, 1xx1110111, 1x01110x11, 10x1110x11, 11x1110x11}, x11x110xx1 \ { x111110x01, x110110x11, x11x110001, x11x1100x1, x11x110111, 1111110xx1, 111x110xx1, x111110xx1}, xxx0110x01 \ { xxx0110001, xxx0110001, xx00110x01, 0x00110x01, 0x00110x01}, 1xx11x1111 \ { 1xx11x1111, 1x011x1111, 10x11x1111, 11x11x1111}, x11x1x11x1 \ { x1111x1101, x1101x1111, x11x1x11x1, 11111x11x1, 111x1x11x1, x1111x11x1}, xxx01x1101 \ { xxx01x1101, xx001x1101, 0x001x1101, 0x001x1101}} {0xxx1 \ {000x1, 0xx01, 01x11}, 0x00x \ {01000, 0100x}, x111x \ {01111, x1110, 0111x}} {} {} {x1x01 \ {11x01, 01001, 01x01}, 0x0x0 \ {000x0, 0x010, 01000}} {00xxx \ {00100, 0010x, 000x0}, 011xx \ {0110x, 01110, 01100}, x10xx \ {01010, 11011, 110xx}} { 00x01x1x01 \ { 00x0111x01, 00x0101001, 00x0101x01, 00101x1x01}, 01101x1x01 \ { 0110111x01, 0110101001, 0110101x01, 01101x1x01}, x1001x1x01 \ { x100111x01, x100101001, x100101x01, 11001x1x01}, 00xx00x0x0 \ { 00x100x000, 00x000x010, 00xx0000x0, 00xx00x010, 00xx001000, 001000x0x0, 001000x0x0, 000x00x0x0}, 011x00x0x0 \ { 011100x000, 011000x010, 011x0000x0, 011x00x010, 011x001000, 011000x0x0, 011100x0x0, 011000x0x0}, x10x00x0x0 \ { x10100x000, x10000x010, x10x0000x0, x10x00x010, x10x001000, 010100x0x0, 110x00x0x0}} {010xx \ {01010, 01000, 01011}} {xx011 \ {x0011, 01011, 10011}, 0xx11 \ {0x111, 01011, 00111}, 11xxx \ {11x1x, 1101x, 11101}} { xx01101011 \ { xx01101011, x001101011, 0101101011, 1001101011}, 0xx1101011 \ { 0xx1101011, 0x11101011, 0101101011, 0011101011}, 11xxx010xx \ { 11xx1010x0, 11xx0010x1, 11x1x0100x, 11x0x0101x, 11xxx01010, 11xxx01000, 11xxx01011, 11x1x010xx, 1101x010xx, 11101010xx}} {010x0 \ {01000, 01010}, x10xx \ {01011, 010xx, 1100x}, xx11x \ {xx110, 1x11x, 0x110}} {1x10x \ {11101, 1010x}} { 1x10001000 \ { 1x10001000, 1010001000}, 1x10xx100x \ { 1x101x1000, 1x100x1001, 1x10x0100x, 1x10x1100x, 11101x100x, 1010xx100x}} {11xx1 \ {110x1, 111x1, 11101}, 0xxxx \ {01x0x, 001xx, 0101x}} {10xx1 \ {10x11, 101x1, 10111}} { 10xx111xx1 \ { 10x1111x01, 10x0111x11, 10xx1110x1, 10xx1111x1, 10xx111101, 10x1111xx1, 101x111xx1, 1011111xx1}, 10xx10xxx1 \ { 10x110xx01, 10x010xx11, 10xx101x01, 10xx1001x1, 10xx101011, 10x110xxx1, 101x10xxx1, 101110xxx1}} {1xxxx \ {10x11, 1x011, 1011x}, 1x1x0 \ {11110, 11100}} {0x1xx \ {0x100, 01100, 0111x}} { 0x1xx1xxxx \ { 0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx10x11, 0x1xx1x011, 0x1xx1011x, 0x1001xxxx, 011001xxxx, 0111x1xxxx}, 0x1x01x1x0 \ { 0x1101x100, 0x1001x110, 0x1x011110, 0x1x011100, 0x1001x1x0, 011001x1x0, 011101x1x0}} {1x11x \ {1x111, 1x110, 1x110}} {} {} {xx0x1 \ {1x011, 01001, xx001}, 01x10 \ {01010}} {1111x \ {11111, 11110}} { 11111xx011 \ { 111111x011, 11111xx011}, 1111001x10 \ { 1111001010, 1111001x10}} {x110x \ {1110x, 0110x}, x1xxx \ {x10x0, 01x1x, 11011}, 0x010 \ {01010, 00010}} {x10x1 \ {11001, x1011, x1011}} { x1001x1101 \ { x100111101, x100101101, 11001x1101}, x10x1x1xx1 \ { x1011x1x01, x1001x1x11, x10x101x11, x10x111011, 11001x1xx1, x1011x1xx1, x1011x1xx1}} {x01xx \ {x0100, x0101, 00101}} {11x1x \ {1111x, 11x10}} { 11x1xx011x \ { 11x11x0110, 11x10x0111, 1111xx011x, 11x10x011x}} {x1xx1 \ {011x1, x1x11, 01101}} {0x110 \ {00110, 01110}, xx100 \ {01100, 10100}, 10xx1 \ {10001, 10011, 10111}} { 10xx1x1xx1 \ { 10x11x1x01, 10x01x1x11, 10xx1011x1, 10xx1x1x11, 10xx101101, 10001x1xx1, 10011x1xx1, 10111x1xx1}} {} {001xx \ {00110, 0010x, 00101}} {} {1x00x \ {1x000, 11001, 10001}, 1x111 \ {11111, 10111}} {xxxx1 \ {0x111, 11x01, x1x01}, 101x1 \ {10111, 10101}, x00xx \ {000x0, x0001, 0001x}} { xxx011x001 \ { xxx0111001, xxx0110001, 11x011x001, x1x011x001}, 101011x001 \ { 1010111001, 1010110001, 101011x001}, x000x1x00x \ { x00011x000, x00001x001, x000x1x000, x000x11001, x000x10001, 000001x00x, x00011x00x}, xxx111x111 \ { xxx1111111, xxx1110111, 0x1111x111}, 101111x111 \ { 1011111111, 1011110111, 101111x111}, x00111x111 \ { x001111111, x001110111, 000111x111}} {} {1x11x \ {1111x, 1x111, 1011x}, xx10x \ {0x10x, 11101, 11100}} {} {x0xx1 \ {x0x01, 100x1, 00x01}, x11xx \ {x1101, 0111x, 11100}} {01x10 \ {01110, 01010}, 1xxxx \ {10100, 10x10, 10000}} { 1xxx1x0xx1 \ { 1xx11x0x01, 1xx01x0x11, 1xxx1x0x01, 1xxx1100x1, 1xxx100x01}, 01x10x1110 \ { 01x1001110, 01110x1110, 01010x1110}, 1xxxxx11xx \ { 1xxx1x11x0, 1xxx0x11x1, 1xx1xx110x, 1xx0xx111x, 1xxxxx1101, 1xxxx0111x, 1xxxx11100, 10100x11xx, 10x10x11xx, 10000x11xx}} {00xx0 \ {00100, 001x0, 000x0}} {x10xx \ {110xx, 11011, x1011}, 000x0 \ {00000, 00010, 00010}} { x10x000xx0 \ { x101000x00, x100000x10, x10x000100, x10x0001x0, x10x0000x0, 110x000xx0}, 000x000xx0 \ { 0001000x00, 0000000x10, 000x000100, 000x0001x0, 000x0000x0, 0000000xx0, 0001000xx0, 0001000xx0}} {0xxx1 \ {0xx11, 0x0x1, 0x1x1}} {x101x \ {x1010, 1101x, 0101x}, x1xx1 \ {x11x1, 11001, 11x01}} { x10110xx11 \ { x10110xx11, x10110x011, x10110x111, 110110xx11, 010110xx11}, x1xx10xxx1 \ { x1x110xx01, x1x010xx11, x1xx10xx11, x1xx10x0x1, x1xx10x1x1, x11x10xxx1, 110010xxx1, 11x010xxx1}} {x0100 \ {00100, 10100, 10100}} {} {} {0x10x \ {0x100, 00100, 00100}, xx010 \ {11010, 00010, x1010}, x0x10 \ {x0010, 00110, x0110}} {xxx01 \ {01x01, 10101, 11101}, 0xx10 \ {0x110, 00010, 01110}} { xxx010x101 \ { 01x010x101, 101010x101, 111010x101}, 0xx10xx010 \ { 0xx1011010, 0xx1000010, 0xx10x1010, 0x110xx010, 00010xx010, 01110xx010}, 0xx10x0x10 \ { 0xx10x0010, 0xx1000110, 0xx10x0110, 0x110x0x10, 00010x0x10, 01110x0x10}} {x0100 \ {00100, 10100}, x1001 \ {01001}} {} {} {x10x0 \ {x1010, 11010, 01010}} {00xx1 \ {00101, 001x1}} {} {00x1x \ {00x11, 00010, 00111}, x1xx1 \ {x1001, x1111, 01xx1}, 101xx \ {101x1, 101x0, 10100}} {} {} {xxxxx \ {10110, xxx0x, x11x1}, x0x01 \ {10101, 10001, 00001}} {0x0xx \ {01011, 00011, 010xx}, 01x0x \ {01001, 0100x, 01101}, xx0x1 \ {11011, 0x0x1, 1x011}} { 0x0xxxxxxx \ { 0x0x1xxxx0, 0x0x0xxxx1, 0x01xxxx0x, 0x00xxxx1x, 0x0xx10110, 0x0xxxxx0x, 0x0xxx11x1, 01011xxxxx, 00011xxxxx, 010xxxxxxx}, 01x0xxxx0x \ { 01x01xxx00, 01x00xxx01, 01x0xxxx0x, 01x0xx1101, 01001xxx0x, 0100xxxx0x, 01101xxx0x}, xx0x1xxxx1 \ { xx011xxx01, xx001xxx11, xx0x1xxx01, xx0x1x11x1, 11011xxxx1, 0x0x1xxxx1, 1x011xxxx1}, 0x001x0x01 \ { 0x00110101, 0x00110001, 0x00100001, 01001x0x01}, 01x01x0x01 \ { 01x0110101, 01x0110001, 01x0100001, 01001x0x01, 01001x0x01, 01101x0x01}, xx001x0x01 \ { xx00110101, xx00110001, xx00100001, 0x001x0x01}} {xxxx0 \ {x0010, 0xxx0, 000x0}, xx1xx \ {00101, 0111x, 10101}} {x0101 \ {00101, 10101}} { x0101xx101 \ { x010100101, x010110101, 00101xx101, 10101xx101}} {10xx1 \ {100x1, 10001, 10001}} {} {} {0x111 \ {01111, 00111}, 00x1x \ {00111, 00x11, 00110}, xx1x1 \ {01111, xx111, 0x111}} {1011x \ {10111, 10110}, xx1x1 \ {011x1, 11101, 10111}, x0x1x \ {10x1x, x0111, x011x}} { 101110x111 \ { 1011101111, 1011100111, 101110x111}, xx1110x111 \ { xx11101111, xx11100111, 011110x111, 101110x111}, x0x110x111 \ { x0x1101111, x0x1100111, 10x110x111, x01110x111, x01110x111}, 1011x00x1x \ { 1011100x10, 1011000x11, 1011x00111, 1011x00x11, 1011x00110, 1011100x1x, 1011000x1x}, xx11100x11 \ { xx11100111, xx11100x11, 0111100x11, 1011100x11}, x0x1x00x1x \ { x0x1100x10, x0x1000x11, x0x1x00111, x0x1x00x11, x0x1x00110, 10x1x00x1x, x011100x1x, x011x00x1x}, 10111xx111 \ { 1011101111, 10111xx111, 101110x111, 10111xx111}, xx1x1xx1x1 \ { xx111xx101, xx101xx111, xx1x101111, xx1x1xx111, xx1x10x111, 011x1xx1x1, 11101xx1x1, 10111xx1x1}, x0x11xx111 \ { x0x1101111, x0x11xx111, x0x110x111, 10x11xx111, x0111xx111, x0111xx111}} {0110x \ {01101, 01100}} {xx0x1 \ {00011, 100x1, 110x1}, 01xx1 \ {011x1, 01001, 010x1}} { xx00101101 \ { xx00101101, 1000101101, 1100101101}, 01x0101101 \ { 01x0101101, 0110101101, 0100101101, 0100101101}} {111x0 \ {11100, 11110}, xx101 \ {0x101, 00101, 11101}} {xxx01 \ {10101, 10x01, 0x101}} { xxx01xx101 \ { xxx010x101, xxx0100101, xxx0111101, 10101xx101, 10x01xx101, 0x101xx101}} {} {0xx0x \ {0xx01, 00001}} {} {1xx1x \ {11110, 1xx11, 1111x}, 00x10 \ {00010}, 0x1x0 \ {011x0, 00100, 00100}} {x0011 \ {00011, 10011}, xxx0x \ {00x01, 0110x, 0100x}} { x00111xx11 \ { x00111xx11, x001111111, 000111xx11, 100111xx11}, xxx000x100 \ { xxx0001100, xxx0000100, xxx0000100, 011000x100, 010000x100}} {01x11 \ {01111}} {0x0xx \ {00001, 000x1, 010x1}} { 0x01101x11 \ { 0x01101111, 0001101x11, 0101101x11}} {10x00 \ {10000, 10100, 10100}, 00x00 \ {00100, 00000}, x10xx \ {0101x, 11001, 010x0}} {01x1x \ {01x11, 0111x, 01111}, 100x0 \ {10000, 10010}} { 1000010x00 \ { 1000010000, 1000010100, 1000010100, 1000010x00}, 1000000x00 \ { 1000000100, 1000000000, 1000000x00}, 01x1xx101x \ { 01x11x1010, 01x10x1011, 01x1x0101x, 01x1x01010, 01x11x101x, 0111xx101x, 01111x101x}, 100x0x10x0 \ { 10010x1000, 10000x1010, 100x001010, 100x0010x0, 10000x10x0, 10010x10x0}} {01x00 \ {01100, 01000}, x1x0x \ {11101, 11x00, 01000}} {01xx0 \ {010x0, 01110, 01x00}} { 01x0001x00 \ { 01x0001100, 01x0001000, 0100001x00, 01x0001x00}, 01x00x1x00 \ { 01x0011x00, 01x0001000, 01000x1x00, 01x00x1x00}} {x11xx \ {011x1, x111x, x110x}, 01x11 \ {01111, 01011, 01011}} {000x1 \ {00011, 00001, 00001}} { 000x1x11x1 \ { 00011x1101, 00001x1111, 000x1011x1, 000x1x1111, 000x1x1101, 00011x11x1, 00001x11x1, 00001x11x1}, 0001101x11 \ { 0001101111, 0001101011, 0001101011, 0001101x11}} {1xx01 \ {11x01, 10x01, 10101}, 1x1x0 \ {1x100, 11100, 1x110}} {} {} {xxx11 \ {10111, xx111}, 1x101 \ {11101, 10101, 10101}} {x1x0x \ {x1x01, x110x, 11x00}} { x1x011x101 \ { x1x0111101, x1x0110101, x1x0110101, x1x011x101, x11011x101}} {010xx \ {010x1, 0101x, 01000}} {0xx1x \ {01111, 01x10, 01x11}} { 0xx1x0101x \ { 0xx1101010, 0xx1001011, 0xx1x01011, 0xx1x0101x, 011110101x, 01x100101x, 01x110101x}} {} {1xx1x \ {10x11, 1x010, 10011}, x1xx0 \ {01100, x1x00, 11xx0}} {} {00x1x \ {00x10, 00111, 00011}} {x010x \ {00101, 0010x, 10101}} {} {1x1x0 \ {1x100, 101x0, 111x0}, 1xx11 \ {11x11, 1x011, 10111}} {0xx00 \ {0x000, 01000, 01000}, 1x101 \ {11101}} { 0xx001x100 \ { 0xx001x100, 0xx0010100, 0xx0011100, 0x0001x100, 010001x100, 010001x100}} {1x11x \ {1x111, 10111, 1011x}, 0xxxx \ {00x0x, 0xx00, 00x10}} {x1x11 \ {01x11, 11011, 11011}, xx0xx \ {010xx, xx001, x101x}} { x1x111x111 \ { x1x111x111, x1x1110111, x1x1110111, 01x111x111, 110111x111, 110111x111}, xx01x1x11x \ { xx0111x110, xx0101x111, xx01x1x111, xx01x10111, xx01x1011x, 0101x1x11x, x101x1x11x}, x1x110xx11 \ { 01x110xx11, 110110xx11, 110110xx11}, xx0xx0xxxx \ { xx0x10xxx0, xx0x00xxx1, xx01x0xx0x, xx00x0xx1x, xx0xx00x0x, xx0xx0xx00, xx0xx00x10, 010xx0xxxx, xx0010xxxx, x101x0xxxx}} {xx110 \ {0x110, 1x110}, 10x10 \ {10010, 10110, 10110}} {} {} {1xx11 \ {11011, 11111, 10x11}, x0111 \ {10111, 00111, 00111}} {0xxxx \ {0x01x, 01101, 00x00}, 0x0x1 \ {010x1, 00011, 01011}, x1xxx \ {01110, 110x1, 11110}} { 0xx111xx11 \ { 0xx1111011, 0xx1111111, 0xx1110x11, 0x0111xx11}, 0x0111xx11 \ { 0x01111011, 0x01111111, 0x01110x11, 010111xx11, 000111xx11, 010111xx11}, x1x111xx11 \ { x1x1111011, x1x1111111, x1x1110x11, 110111xx11}, 0xx11x0111 \ { 0xx1110111, 0xx1100111, 0xx1100111, 0x011x0111}, 0x011x0111 \ { 0x01110111, 0x01100111, 0x01100111, 01011x0111, 00011x0111, 01011x0111}, x1x11x0111 \ { x1x1110111, x1x1100111, x1x1100111, 11011x0111}} {1x1x1 \ {111x1, 11101, 11111}, 1100x \ {11001}, 0001x \ {00011, 00010, 00010}} {10xx0 \ {10010, 100x0, 10x10}, xx01x \ {00010, xx011, xx011}} { xx0111x111 \ { xx01111111, xx01111111, xx0111x111, xx0111x111}, 10x0011000 \ { 1000011000}, 10x1000010 \ { 10x1000010, 10x1000010, 1001000010, 1001000010, 10x1000010}, xx01x0001x \ { xx01100010, xx01000011, xx01x00011, xx01x00010, xx01x00010, 000100001x, xx0110001x, xx0110001x}} {x01x1 \ {x0111, 10101, x0101}} {0xx00 \ {01100, 01000, 01x00}, x100x \ {01001, x1001, 01000}, 0xxx0 \ {001x0, 0x0x0, 00110}} { x1001x0101 \ { x100110101, x1001x0101, 01001x0101, x1001x0101}} {xx001 \ {00001, 1x001}, x0x1x \ {00011, 10x1x, 10x10}, xx100 \ {1x100, 11100, 0x100}} {x1001 \ {01001}, x00xx \ {10011, 00010, 0000x}} { x1001xx001 \ { x100100001, x10011x001, 01001xx001}, x0001xx001 \ { x000100001, x00011x001, 00001xx001}, x001xx0x1x \ { x0011x0x10, x0010x0x11, x001x00011, x001x10x1x, x001x10x10, 10011x0x1x, 00010x0x1x}, x0000xx100 \ { x00001x100, x000011100, x00000x100, 00000xx100}} {01xx1 \ {01011, 01111, 01x11}} {1xx0x \ {11x0x, 1xx01}, x101x \ {x1011, 1101x, 1101x}} { 1xx0101x01 \ { 11x0101x01, 1xx0101x01}, x101101x11 \ { x101101011, x101101111, x101101x11, x101101x11, 1101101x11, 1101101x11}} {xxx0x \ {00101, 1x100, xx001}} {} {} {00xx0 \ {00100, 00110, 00010}, xxx1x \ {1xx1x, 11010, 00110}} {1x01x \ {1x011, 1x010, 10010}, xx0x0 \ {01000, x0010, 1x000}} { 1x01000x10 \ { 1x01000110, 1x01000010, 1x01000x10, 1001000x10}, xx0x000xx0 \ { xx01000x00, xx00000x10, xx0x000100, xx0x000110, xx0x000010, 0100000xx0, x001000xx0, 1x00000xx0}, 1x01xxxx1x \ { 1x011xxx10, 1x010xxx11, 1x01x1xx1x, 1x01x11010, 1x01x00110, 1x011xxx1x, 1x010xxx1x, 10010xxx1x}, xx010xxx10 \ { xx0101xx10, xx01011010, xx01000110, x0010xxx10}} {xxx10 \ {0x110, 1x010, x1010}, 0x01x \ {00010, 01011, 0001x}} {00xxx \ {000x0, 0001x, 001xx}} { 00x10xxx10 \ { 00x100x110, 00x101x010, 00x10x1010, 00010xxx10, 00010xxx10, 00110xxx10}, 00x1x0x01x \ { 00x110x010, 00x100x011, 00x1x00010, 00x1x01011, 00x1x0001x, 000100x01x, 0001x0x01x, 0011x0x01x}} {10x10 \ {10010, 10110, 10110}} {1xx1x \ {1xx10, 10x11, 1x01x}, 1xx0x \ {11000, 1x00x, 11001}, x1011 \ {01011}} { 1xx1010x10 \ { 1xx1010010, 1xx1010110, 1xx1010110, 1xx1010x10, 1x01010x10}} {0111x \ {01110, 01111}, xx1x0 \ {00100, 1x100, 1x110}} {} {} {0x011 \ {01011}} {xx100 \ {00100, 0x100, x0100}} {} {1xx01 \ {11x01, 10101, 10101}, xx00x \ {01001, x1000, 0100x}, xxx1x \ {x0011, 1011x, 10111}} {1xx0x \ {1x101, 10000, 1x001}} { 1xx011xx01 \ { 1xx0111x01, 1xx0110101, 1xx0110101, 1x1011xx01, 1x0011xx01}, 1xx0xxx00x \ { 1xx01xx000, 1xx00xx001, 1xx0x01001, 1xx0xx1000, 1xx0x0100x, 1x101xx00x, 10000xx00x, 1x001xx00x}} {0xxx1 \ {01111, 00x11, 010x1}} {} {} {x0100 \ {10100, 00100}} {x11x1 \ {111x1, x1101}, x1x00 \ {x1000, 11000, 01x00}} { x1x00x0100 \ { x1x0010100, x1x0000100, x1000x0100, 11000x0100, 01x00x0100}} {x1100 \ {11100, 01100, 01100}, x0x0x \ {10x00, x0100, 10x01}, 1xxx0 \ {110x0, 111x0, 1x110}} {01xx1 \ {01011, 01101}, 0xx01 \ {01x01, 00x01, 00x01}} { 01x01x0x01 \ { 01x0110x01, 01101x0x01}, 0xx01x0x01 \ { 0xx0110x01, 01x01x0x01, 00x01x0x01, 00x01x0x01}} {x001x \ {x0010, 00010, 1001x}, x0001 \ {10001, 00001}} {011xx \ {011x0, 01111}, 11xxx \ {11x01, 110xx, 11xx1}} { 0111xx001x \ { 01111x0010, 01110x0011, 0111xx0010, 0111x00010, 0111x1001x, 01110x001x, 01111x001x}, 11x1xx001x \ { 11x11x0010, 11x10x0011, 11x1xx0010, 11x1x00010, 11x1x1001x, 1101xx001x, 11x11x001x}, 01101x0001 \ { 0110110001, 0110100001}, 11x01x0001 \ { 11x0110001, 11x0100001, 11x01x0001, 11001x0001, 11x01x0001}} {11x01 \ {11101, 11001, 11001}} {x1xxx \ {01xx0, 11x10, 01010}} { x1x0111x01 \ { x1x0111101, x1x0111001, x1x0111001}} {x1x10 \ {11110, x1110, 01x10}} {0x11x \ {0x111, 00111, 0111x}} { 0x110x1x10 \ { 0x11011110, 0x110x1110, 0x11001x10, 01110x1x10}} {10x1x \ {10011, 10111, 1001x}} {x10x0 \ {01010, 01000, 110x0}, xx1x1 \ {01101, x0101, 11111}} { x101010x10 \ { x101010010, 0101010x10, 1101010x10}, xx11110x11 \ { xx11110011, xx11110111, xx11110011, 1111110x11}} {0110x \ {01100, 01101, 01101}, 11x01 \ {11001, 11101}} {xx01x \ {x101x, 10010, 01010}, 1x01x \ {11010, 1x010, 10011}, x1xxx \ {110x0, 11011, x11xx}} { x1x0x0110x \ { x1x0101100, x1x0001101, x1x0x01100, x1x0x01101, x1x0x01101, 110000110x, x110x0110x}, x1x0111x01 \ { x1x0111001, x1x0111101, x110111x01}} {x00xx \ {10001, x001x, 00011}, x1000 \ {11000, 01000, 01000}, 0x1x0 \ {01110, 0x110, 0x110}} {0xx1x \ {0x110, 0x010, 0001x}, 0101x \ {01010, 01011}} { 0xx1xx001x \ { 0xx11x0010, 0xx10x0011, 0xx1xx001x, 0xx1x00011, 0x110x001x, 0x010x001x, 0001xx001x}, 0101xx001x \ { 01011x0010, 01010x0011, 0101xx001x, 0101x00011, 01010x001x, 01011x001x}, 0xx100x110 \ { 0xx1001110, 0xx100x110, 0xx100x110, 0x1100x110, 0x0100x110, 000100x110}, 010100x110 \ { 0101001110, 010100x110, 010100x110, 010100x110}} {} {} {} {x1x11 \ {01x11, 11011, 11111}} {} {} {} {10xxx \ {10x00, 101x0, 1010x}, xx100 \ {00100, 10100, 01100}} {} {00xx1 \ {00x11, 00111, 00111}, 11x00 \ {11100}} {11xxx \ {110x0, 11110, 11x11}, x0x1x \ {x0111, 00011}} { 11xx100xx1 \ { 11x1100x01, 11x0100x11, 11xx100x11, 11xx100111, 11xx100111, 11x1100xx1}, x0x1100x11 \ { x0x1100x11, x0x1100111, x0x1100111, x011100x11, 0001100x11}, 11x0011x00 \ { 11x0011100, 1100011x00}} {1xx0x \ {11001, 11000, 10x00}, x00x0 \ {00000, x0010, 10000}} {1x1x1 \ {11111, 1x101, 10111}} { 1x1011xx01 \ { 1x10111001, 1x1011xx01}} {xxx0x \ {x0x01, 01101, 1000x}, xxx11 \ {x1111, x0x11, xx111}, 11xx0 \ {11x00, 111x0, 11x10}} {xxx0x \ {1x101, 10001, 0x001}, 0x01x \ {01010, 01011}, 1110x \ {11101, 11100}} { xxx0xxxx0x \ { xxx01xxx00, xxx00xxx01, xxx0xx0x01, xxx0x01101, xxx0x1000x, 1x101xxx0x, 10001xxx0x, 0x001xxx0x}, 1110xxxx0x \ { 11101xxx00, 11100xxx01, 1110xx0x01, 1110x01101, 1110x1000x, 11101xxx0x, 11100xxx0x}, 0x011xxx11 \ { 0x011x1111, 0x011x0x11, 0x011xx111, 01011xxx11}, xxx0011x00 \ { xxx0011x00, xxx0011100}, 0x01011x10 \ { 0x01011110, 0x01011x10, 0101011x10}, 1110011x00 \ { 1110011x00, 1110011100, 1110011x00}} {xx001 \ {x1001, 00001, 01001}, 11xx1 \ {11x01, 11x11}} {0000x \ {00001, 00000}} { 00001xx001 \ { 00001x1001, 0000100001, 0000101001, 00001xx001}, 0000111x01 \ { 0000111x01, 0000111x01}} {x000x \ {x0000, 00001, 00000}, xx110 \ {01110, 0x110, x1110}} {x10x0 \ {11010, 01010, 11000}} { x1000x0000 \ { x1000x0000, x100000000, 11000x0000}, x1010xx110 \ { x101001110, x10100x110, x1010x1110, 11010xx110, 01010xx110}} {xx110 \ {1x110, 00110}} {xx0xx \ {11000, xx01x, 00010}} { xx010xx110 \ { xx0101x110, xx01000110, xx010xx110, 00010xx110}} {x0x10 \ {x0110, 00110, 00x10}, x0xxx \ {00x1x, 00101, 100x1}} {x0xxx \ {00110, 10101, x00xx}, x1110 \ {01110}} { x0x10x0x10 \ { x0x10x0110, x0x1000110, x0x1000x10, 00110x0x10, x0010x0x10}, x0xxxx0xxx \ { x0xx1x0xx0, x0xx0x0xx1, x0x1xx0x0x, x0x0xx0x1x, x0xxx00x1x, x0xxx00101, x0xxx100x1, 00110x0xxx, 10101x0xxx, x00xxx0xxx}, x1110x0x10 \ { x111000x10, 01110x0x10}} {x1110 \ {11110, 01110}} {x11x0 \ {011x0, 11110, 11100}} { x1110x1110 \ { x111011110, x111001110, 01110x1110, 11110x1110}} {100x1 \ {10001}, 0xxxx \ {01x01, 00x10, 0xxx1}} {0x0x0 \ {00010, 0x010, 0x000}, 1xx0x \ {10001, 10101, 10000}} { 1xx0110001 \ { 1xx0110001, 1000110001, 1010110001}, 0x0x00xxx0 \ { 0x0100xx00, 0x0000xx10, 0x0x000x10, 000100xxx0, 0x0100xxx0, 0x0000xxx0}, 1xx0x0xx0x \ { 1xx010xx00, 1xx000xx01, 1xx0x01x01, 1xx0x0xx01, 100010xx0x, 101010xx0x, 100000xx0x}} {00x00 \ {00000, 00100}, 00x00 \ {00000, 00100}, 1xxx0 \ {10x10, 10000, 11x10}} {01x1x \ {01010, 01x11, 01x11}} { 01x101xx10 \ { 01x1010x10, 01x1011x10, 010101xx10}} {00x0x \ {0000x, 00000, 00101}, x1101 \ {11101, 01101}} {0x110 \ {01110, 00110, 00110}, 1x100 \ {11100, 10100}} { 1x10000x00 \ { 1x10000000, 1x10000000, 1110000x00, 1010000x00}} {1x0xx \ {1x001, 1100x, 11011}, x0x10 \ {10x10, 00110, x0110}} {1101x \ {11010, 11011, 11011}, 00xxx \ {0000x, 00101, 00100}, x11x0 \ {01100, x1100, 111x0}} { 1101x1x01x \ { 110111x010, 110101x011, 1101x11011, 110101x01x, 110111x01x, 110111x01x}, 00xxx1x0xx \ { 00xx11x0x0, 00xx01x0x1, 00x1x1x00x, 00x0x1x01x, 00xxx1x001, 00xxx1100x, 00xxx11011, 0000x1x0xx, 001011x0xx, 001001x0xx}, x11x01x0x0 \ { x11101x000, x11001x010, x11x011000, 011001x0x0, x11001x0x0, 111x01x0x0}, 11010x0x10 \ { 1101010x10, 1101000110, 11010x0110, 11010x0x10}, 00x10x0x10 \ { 00x1010x10, 00x1000110, 00x10x0110}, x1110x0x10 \ { x111010x10, x111000110, x1110x0110, 11110x0x10}} {xx111 \ {x1111, x0111, 01111}, 1xxxx \ {10111, 100x0, 11x00}} {xx001 \ {00001, x1001, 01001}, 0x10x \ {00100, 0x100, 00101}} { xx0011xx01 \ { 000011xx01, x10011xx01, 010011xx01}, 0x10x1xx0x \ { 0x1011xx00, 0x1001xx01, 0x10x10000, 0x10x11x00, 001001xx0x, 0x1001xx0x, 001011xx0x}} {0xx11 \ {01011, 01111, 01x11}} {x111x \ {x1111, 11111, 11110}} { x11110xx11 \ { x111101011, x111101111, x111101x11, x11110xx11, 111110xx11}} {x11x0 \ {011x0, 01110, x1110}, 01xx1 \ {01x01, 01011}} {0xxxx \ {00001, 011x1, 0x011}, 1x0x0 \ {10010, 1x000, 110x0}} { 0xxx0x11x0 \ { 0xx10x1100, 0xx00x1110, 0xxx0011x0, 0xxx001110, 0xxx0x1110}, 1x0x0x11x0 \ { 1x010x1100, 1x000x1110, 1x0x0011x0, 1x0x001110, 1x0x0x1110, 10010x11x0, 1x000x11x0, 110x0x11x0}, 0xxx101xx1 \ { 0xx1101x01, 0xx0101x11, 0xxx101x01, 0xxx101011, 0000101xx1, 011x101xx1, 0x01101xx1}} {1x0xx \ {1x010, 11001, 10010}, 0x1x0 \ {0x110, 01110}} {} {} {10x1x \ {10x11, 10010, 10010}} {110x0 \ {11010, 11000}} { 1101010x10 \ { 1101010010, 1101010010, 1101010x10}} {01x1x \ {01x11, 01x10, 0101x}, 10xx1 \ {10001, 101x1}} {xxx00 \ {10x00, 00000, 01000}, 110xx \ {1100x, 11001}} { 1101x01x1x \ { 1101101x10, 1101001x11, 1101x01x11, 1101x01x10, 1101x0101x}, 110x110xx1 \ { 1101110x01, 1100110x11, 110x110001, 110x1101x1, 1100110xx1, 1100110xx1}} {} {xx01x \ {11011, 1x010, 1x010}, 01x0x \ {01x00, 01000, 01x01}} {} {01x0x \ {01000, 01x01, 0100x}} {01x10 \ {01010, 01110, 01110}, 1x1x1 \ {111x1, 1x101}} { 1x10101x01 \ { 1x10101x01, 1x10101001, 1110101x01, 1x10101x01}} {000xx \ {0000x, 00001, 000x0}} {xx111 \ {0x111, 01111, 10111}, x1x1x \ {01011, 01x11, 11011}} { xx11100011 \ { 0x11100011, 0111100011, 1011100011}, x1x1x0001x \ { x1x1100010, x1x1000011, x1x1x00010, 010110001x, 01x110001x, 110110001x}} {xx11x \ {00111, x1111, x0111}, x10xx \ {x10x0, 01001, 0101x}} {x111x \ {11110, x1111, 01111}} { x111xxx11x \ { x1111xx110, x1110xx111, x111x00111, x111xx1111, x111xx0111, 11110xx11x, x1111xx11x, 01111xx11x}, x111xx101x \ { x1111x1010, x1110x1011, x111xx1010, x111x0101x, 11110x101x, x1111x101x, 01111x101x}} {} {x1110 \ {01110, 11110, 11110}, x000x \ {10001, 1000x, 0000x}} {} {x0xx0 \ {100x0, x0x10, x0110}, 0x0xx \ {0101x, 00010, 0x011}} {x00x1 \ {000x1, x0001, x0001}, 0x1xx \ {0x1x1, 0x11x, 0x1x0}, 10xxx \ {101x1, 10000, 10x01}} { 0x1x0x0xx0 \ { 0x110x0x00, 0x100x0x10, 0x1x0100x0, 0x1x0x0x10, 0x1x0x0110, 0x110x0xx0, 0x1x0x0xx0}, 10xx0x0xx0 \ { 10x10x0x00, 10x00x0x10, 10xx0100x0, 10xx0x0x10, 10xx0x0110, 10000x0xx0}, x00x10x0x1 \ { x00110x001, x00010x011, x00x101011, x00x10x011, 000x10x0x1, x00010x0x1, x00010x0x1}, 0x1xx0x0xx \ { 0x1x10x0x0, 0x1x00x0x1, 0x11x0x00x, 0x10x0x01x, 0x1xx0101x, 0x1xx00010, 0x1xx0x011, 0x1x10x0xx, 0x11x0x0xx, 0x1x00x0xx}, 10xxx0x0xx \ { 10xx10x0x0, 10xx00x0x1, 10x1x0x00x, 10x0x0x01x, 10xxx0101x, 10xxx00010, 10xxx0x011, 101x10x0xx, 100000x0xx, 10x010x0xx}} {x000x \ {10001, 00000, 1000x}} {} {} {0xxx0 \ {00x00, 00xx0, 0x0x0}} {x1x0x \ {11x0x, 11101, x100x}, xxxxx \ {1xxx0, 0x101, 11000}, xxx10 \ {01010, 1xx10, 11x10}} { x1x000xx00 \ { x1x0000x00, x1x0000x00, x1x000x000, 11x000xx00, x10000xx00}, xxxx00xxx0 \ { xxx100xx00, xxx000xx10, xxxx000x00, xxxx000xx0, xxxx00x0x0, 1xxx00xxx0, 110000xxx0}, xxx100xx10 \ { xxx1000x10, xxx100x010, 010100xx10, 1xx100xx10, 11x100xx10}} {x0xx0 \ {00110, 101x0, x0010}, 1xx10 \ {11010, 10x10, 10010}} {0x10x \ {01100, 0110x, 00100}, 0x11x \ {00111, 00110, 0x111}} { 0x100x0x00 \ { 0x10010100, 01100x0x00, 01100x0x00, 00100x0x00}, 0x110x0x10 \ { 0x11000110, 0x11010110, 0x110x0010, 00110x0x10}, 0x1101xx10 \ { 0x11011010, 0x11010x10, 0x11010010, 001101xx10}} {x1x10 \ {11x10, 11110, x1010}, x10xx \ {010xx, x100x, 01001}} {} {} {0x1xx \ {001xx, 01100}, x110x \ {x1100, 1110x, 0110x}} {10x00 \ {10100}} { 10x000x100 \ { 10x0000100, 10x0001100, 101000x100}, 10x00x1100 \ { 10x00x1100, 10x0011100, 10x0001100, 10100x1100}} {x00xx \ {100x0, 00001, 10000}} {xx00x \ {11001, 00000, xx000}} { xx00xx000x \ { xx001x0000, xx000x0001, xx00x10000, xx00x00001, xx00x10000, 11001x000x, 00000x000x, xx000x000x}} {x00xx \ {x00x0, x001x}, 0010x \ {00101, 00100}, 011xx \ {011x0, 01100, 01100}} {01xxx \ {0111x, 0110x, 011x0}, x001x \ {10011, 00010}, xxx0x \ {00100, 01x01, 11x0x}} { 01xxxx00xx \ { 01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxxx00x0, 01xxxx001x, 0111xx00xx, 0110xx00xx, 011x0x00xx}, x001xx001x \ { x0011x0010, x0010x0011, x001xx0010, x001xx001x, 10011x001x, 00010x001x}, xxx0xx000x \ { xxx01x0000, xxx00x0001, xxx0xx0000, 00100x000x, 01x01x000x, 11x0xx000x}, 01x0x0010x \ { 01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 0110x0010x, 011000010x}, xxx0x0010x \ { xxx0100100, xxx0000101, xxx0x00101, xxx0x00100, 001000010x, 01x010010x, 11x0x0010x}, 01xxx011xx \ { 01xx1011x0, 01xx0011x1, 01x1x0110x, 01x0x0111x, 01xxx011x0, 01xxx01100, 01xxx01100, 0111x011xx, 0110x011xx, 011x0011xx}, x001x0111x \ { x001101110, x001001111, x001x01110, 100110111x, 000100111x}, xxx0x0110x \ { xxx0101100, xxx0001101, xxx0x01100, xxx0x01100, xxx0x01100, 001000110x, 01x010110x, 11x0x0110x}} {10xx1 \ {10111, 10001, 101x1}, 0111x \ {01110, 01111, 01111}, 010xx \ {010x1, 01000, 01011}} {1xx1x \ {11x10, 1x110}} { 1xx1110x11 \ { 1xx1110111, 1xx1110111}, 1xx1x0111x \ { 1xx1101110, 1xx1001111, 1xx1x01110, 1xx1x01111, 1xx1x01111, 11x100111x, 1x1100111x}, 1xx1x0101x \ { 1xx1101010, 1xx1001011, 1xx1x01011, 1xx1x01011, 11x100101x, 1x1100101x}} {x1xxx \ {x111x, 11000, 0111x}} {0xx1x \ {0x111, 00111, 00010}} { 0xx1xx1x1x \ { 0xx11x1x10, 0xx10x1x11, 0xx1xx111x, 0xx1x0111x, 0x111x1x1x, 00111x1x1x, 00010x1x1x}} {00xxx \ {001x0, 0010x, 00x11}} {} {} {1x11x \ {1x111, 1x110, 1111x}} {0x0xx \ {0x00x, 0x0x1, 0100x}, x1000 \ {01000, 11000}} { 0x01x1x11x \ { 0x0111x110, 0x0101x111, 0x01x1x111, 0x01x1x110, 0x01x1111x, 0x0111x11x}} {111xx \ {11101, 11110, 11111}, xxx10 \ {01x10, 11010, 01110}} {x1x10 \ {01x10, x1110, 01110}} { x1x1011110 \ { x1x1011110, 01x1011110, x111011110, 0111011110}, x1x10xxx10 \ { x1x1001x10, x1x1011010, x1x1001110, 01x10xxx10, x1110xxx10, 01110xxx10}} {x0xx1 \ {x01x1, 10011}, x00x1 \ {10001, x0001}} {100xx \ {1000x, 10010, 10011}} { 100x1x0xx1 \ { 10011x0x01, 10001x0x11, 100x1x01x1, 100x110011, 10001x0xx1, 10011x0xx1}, 100x1x00x1 \ { 10011x0001, 10001x0011, 100x110001, 100x1x0001, 10001x00x1, 10011x00x1}} {} {} {} {11xxx \ {11101, 11x11, 11x10}} {xxx1x \ {0011x, 11x10, x0x1x}} { xxx1x11x1x \ { xxx1111x10, xxx1011x11, xxx1x11x11, xxx1x11x10, 0011x11x1x, 11x1011x1x, x0x1x11x1x}} {xxx1x \ {xxx11, 01x1x, 11x10}} {xxxx0 \ {10x10, 01x10, x11x0}, xx011 \ {x0011, 01011, x1011}} { xxx10xxx10 \ { xxx1001x10, xxx1011x10, 10x10xxx10, 01x10xxx10, x1110xxx10}, xx011xxx11 \ { xx011xxx11, xx01101x11, x0011xxx11, 01011xxx11, x1011xxx11}} {x101x \ {01011, 1101x, 0101x}, 0x11x \ {0x111, 0011x, 01111}} {011x1 \ {01101, 01111}} { 01111x1011 \ { 0111101011, 0111111011, 0111101011, 01111x1011}, 011110x111 \ { 011110x111, 0111100111, 0111101111, 011110x111}} {} {1xxxx \ {110x0, 11011, 1001x}, x0001 \ {00001, 10001, 10001}} {} {11xxx \ {1111x, 11x1x, 110xx}, 1x11x \ {10111, 1111x}, 1xx10 \ {11x10, 1x010}} {} {} {010xx \ {01000, 010x1}} {0x01x \ {0x010, 0101x}} { 0x01x0101x \ { 0x01101010, 0x01001011, 0x01x01011, 0x0100101x, 0101x0101x}} {x1x0x \ {x100x, 01x0x, 01101}} {0xxx0 \ {0x010, 001x0, 00000}, 101x0 \ {10110}} { 0xx00x1x00 \ { 0xx00x1000, 0xx0001x00, 00100x1x00, 00000x1x00}, 10100x1x00 \ { 10100x1000, 1010001x00}} {0x1x0 \ {001x0, 0x110, 01100}} {0x0x1 \ {01011, 000x1, 010x1}} {} {xx010 \ {0x010, 11010, 01010}, x1101 \ {11101, 01101}} {x1x1x \ {x1010, 0111x, 01x1x}} { x1x10xx010 \ { x1x100x010, x1x1011010, x1x1001010, x1010xx010, 01110xx010, 01x10xx010}} {x10xx \ {11001, 0101x, 010xx}, x100x \ {0100x, 11000, 11000}} {1x01x \ {1x011, 11011, 10011}, 111x1 \ {11111}} { 1x01xx101x \ { 1x011x1010, 1x010x1011, 1x01x0101x, 1x01x0101x, 1x011x101x, 11011x101x, 10011x101x}, 111x1x10x1 \ { 11111x1001, 11101x1011, 111x111001, 111x101011, 111x1010x1, 11111x10x1}, 11101x1001 \ { 1110101001}} {xx100 \ {x1100, x0100, x0100}} {x11x1 \ {111x1, 011x1}, 1111x \ {11110, 11111}, 01x1x \ {0101x, 01111}} {} {00xx0 \ {00x10, 00x00, 00110}, xxx11 \ {x0011, x1011, xx011}} {0xx00 \ {00x00, 0x000, 0x100}, 1x10x \ {10101, 11101, 11101}} { 0xx0000x00 \ { 0xx0000x00, 00x0000x00, 0x00000x00, 0x10000x00}, 1x10000x00 \ { 1x10000x00}} {1xx10 \ {10x10, 10110, 10110}, 1xx00 \ {11100, 1x000, 1x100}} {xx01x \ {00010, 11011, x001x}} { xx0101xx10 \ { xx01010x10, xx01010110, xx01010110, 000101xx10, x00101xx10}} {} {1x00x \ {1x001, 11000, 11001}} {} {x0x0x \ {10101, 1000x, x0001}} {1xxx1 \ {11111, 11001, 101x1}} { 1xx01x0x01 \ { 1xx0110101, 1xx0110001, 1xx01x0001, 11001x0x01, 10101x0x01}} {11x0x \ {11x00, 1100x, 11100}} {xx110 \ {11110, 01110, 01110}} {} {x010x \ {10101, 0010x, x0101}, x1x0x \ {x1001, 01100, x1x01}} {1010x \ {10100}, 000x1 \ {00011, 00001}} { 1010xx010x \ { 10101x0100, 10100x0101, 1010x10101, 1010x0010x, 1010xx0101, 10100x010x}, 00001x0101 \ { 0000110101, 0000100101, 00001x0101, 00001x0101}, 1010xx1x0x \ { 10101x1x00, 10100x1x01, 1010xx1001, 1010x01100, 1010xx1x01, 10100x1x0x}, 00001x1x01 \ { 00001x1001, 00001x1x01, 00001x1x01}} {xx011 \ {0x011, 00011, 1x011}} {0011x \ {00111}, 00xxx \ {00110, 00x0x, 00011}, x0x0x \ {00101, 10000, 10101}} { 00111xx011 \ { 001110x011, 0011100011, 001111x011, 00111xx011}, 00x11xx011 \ { 00x110x011, 00x1100011, 00x111x011, 00011xx011}} {1x11x \ {1x111, 11110}, xx01x \ {1x010, 0001x, 11010}, x0x10 \ {00x10, 10110}} {xx1x1 \ {x0111, 0x1x1, 10111}, xx0x1 \ {11011, 1x001, 01011}} { xx1111x111 \ { xx1111x111, x01111x111, 0x1111x111, 101111x111}, xx0111x111 \ { xx0111x111, 110111x111, 010111x111}, xx111xx011 \ { xx11100011, x0111xx011, 0x111xx011, 10111xx011}, xx011xx011 \ { xx01100011, 11011xx011, 01011xx011}} {xx0x0 \ {100x0, 11010, 0x010}} {1x00x \ {1x000, 1000x, 11000}, 110x1 \ {11001}, 01xx1 \ {01001, 011x1, 01101}} { 1x000xx000 \ { 1x00010000, 1x000xx000, 10000xx000, 11000xx000}} {1x1x1 \ {101x1, 11101, 11101}} {x0x11 \ {10011, 00x11, 10111}, 10xxx \ {10xx0, 10110, 10010}} { x0x111x111 \ { x0x1110111, 100111x111, 00x111x111, 101111x111}, 10xx11x1x1 \ { 10x111x101, 10x011x111, 10xx1101x1, 10xx111101, 10xx111101}} {0xx00 \ {0x000, 00100, 01x00}, 0x00x \ {0x001, 01000, 01000}} {10xxx \ {10001, 10x01, 10x00}} { 10x000xx00 \ { 10x000x000, 10x0000100, 10x0001x00, 10x000xx00}, 10x0x0x00x \ { 10x010x000, 10x000x001, 10x0x0x001, 10x0x01000, 10x0x01000, 100010x00x, 10x010x00x, 10x000x00x}} {011xx \ {0111x, 011x1, 011x0}, 11xx0 \ {11010, 110x0, 11x10}} {111xx \ {11100, 111x1}, 01xx0 \ {01x10, 011x0}, 0x1x0 \ {0x100, 00100, 01110}} { 111xx011xx \ { 111x1011x0, 111x0011x1, 1111x0110x, 1110x0111x, 111xx0111x, 111xx011x1, 111xx011x0, 11100011xx, 111x1011xx}, 01xx0011x0 \ { 01x1001100, 01x0001110, 01xx001110, 01xx0011x0, 01x10011x0, 011x0011x0}, 0x1x0011x0 \ { 0x11001100, 0x10001110, 0x1x001110, 0x1x0011x0, 0x100011x0, 00100011x0, 01110011x0}, 111x011xx0 \ { 1111011x00, 1110011x10, 111x011010, 111x0110x0, 111x011x10, 1110011xx0}, 01xx011xx0 \ { 01x1011x00, 01x0011x10, 01xx011010, 01xx0110x0, 01xx011x10, 01x1011xx0, 011x011xx0}, 0x1x011xx0 \ { 0x11011x00, 0x10011x10, 0x1x011010, 0x1x0110x0, 0x1x011x10, 0x10011xx0, 0010011xx0, 0111011xx0}} {xx100 \ {x1100, 1x100, 11100}} {x0x0x \ {00001, 00x01, 00x0x}} { x0x00xx100 \ { x0x00x1100, x0x001x100, x0x0011100, 00x00xx100}} {} {x11xx \ {x111x, x110x, 1111x}} {} {xx0xx \ {xx01x, 10010, xx00x}, xx0xx \ {1x0x1, 01001, x00x0}} {01xxx \ {01111, 010x1, 011x0}} { 01xxxxx0xx \ { 01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxxx01x, 01xxx10010, 01xxxxx00x, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}, 01xxxxx0xx \ { 01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxx1x0x1, 01xxx01001, 01xxxx00x0, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}} {1xxxx \ {1x00x, 1001x, 1000x}, 01xx1 \ {01001, 01011, 01x11}, 0xx0x \ {00x01, 0x00x, 01100}} {0xx00 \ {01x00, 01100, 00000}, x0xx0 \ {10100, 00x10, x0010}, x1100 \ {01100, 11100, 11100}} { 0xx001xx00 \ { 0xx001x000, 0xx0010000, 01x001xx00, 011001xx00, 000001xx00}, x0xx01xxx0 \ { x0x101xx00, x0x001xx10, x0xx01x000, x0xx010010, x0xx010000, 101001xxx0, 00x101xxx0, x00101xxx0}, x11001xx00 \ { x11001x000, x110010000, 011001xx00, 111001xx00, 111001xx00}, 0xx000xx00 \ { 0xx000x000, 0xx0001100, 01x000xx00, 011000xx00, 000000xx00}, x0x000xx00 \ { x0x000x000, x0x0001100, 101000xx00}, x11000xx00 \ { x11000x000, x110001100, 011000xx00, 111000xx00, 111000xx00}} {xx01x \ {1101x, 0x01x, x0010}, 1001x \ {10010, 10011}} {10xxx \ {10010, 100x0, 10011}} { 10x1xxx01x \ { 10x11xx010, 10x10xx011, 10x1x1101x, 10x1x0x01x, 10x1xx0010, 10010xx01x, 10010xx01x, 10011xx01x}, 10x1x1001x \ { 10x1110010, 10x1010011, 10x1x10010, 10x1x10011, 100101001x, 100101001x, 100111001x}} {10x01 \ {10101}} {1xx1x \ {11011, 10111, 11x10}} {} {x0100 \ {10100}} {x10xx \ {x10x0, 010x0, x1011}} { x1000x0100 \ { x100010100, x1000x0100, 01000x0100}} {x0xx0 \ {10x10, x0x10, 10xx0}} {0x1x1 \ {01101, 0x111}, x01x0 \ {10100, 00110, 00110}} { x01x0x0xx0 \ { x0110x0x00, x0100x0x10, x01x010x10, x01x0x0x10, x01x010xx0, 10100x0xx0, 00110x0xx0, 00110x0xx0}} {1x1x0 \ {10100, 11110, 11100}, 111xx \ {11100, 11101, 1110x}} {x01xx \ {00110, 001xx, 10100}} { x01x01x1x0 \ { x01101x100, x01001x110, x01x010100, x01x011110, x01x011100, 001101x1x0, 001x01x1x0, 101001x1x0}, x01xx111xx \ { x01x1111x0, x01x0111x1, x011x1110x, x010x1111x, x01xx11100, x01xx11101, x01xx1110x, 00110111xx, 001xx111xx, 10100111xx}} {0xx11 \ {0x011, 01111, 00x11}, x11xx \ {x1100, 111x1, 01101}} {1100x \ {11000}, xx0x1 \ {xx001, 1x001, x0011}} { xx0110xx11 \ { xx0110x011, xx01101111, xx01100x11, x00110xx11}, 1100xx110x \ { 11001x1100, 11000x1101, 1100xx1100, 1100x11101, 1100x01101, 11000x110x}, xx0x1x11x1 \ { xx011x1101, xx001x1111, xx0x1111x1, xx0x101101, xx001x11x1, 1x001x11x1, x0011x11x1}} {001xx \ {001x0, 00100, 00111}, 1xxxx \ {111x1, 10xx1, 11111}, 0x010 \ {01010, 00010, 00010}} {1xx00 \ {1x000, 11100, 10x00}} { 1xx0000100 \ { 1xx0000100, 1xx0000100, 1x00000100, 1110000100, 10x0000100}, 1xx001xx00 \ { 1x0001xx00, 111001xx00, 10x001xx00}} {} {} {} {xx0x0 \ {x1010, 0x010, 00010}} {1x0xx \ {10010, 11011, 1x011}} { 1x0x0xx0x0 \ { 1x010xx000, 1x000xx010, 1x0x0x1010, 1x0x00x010, 1x0x000010, 10010xx0x0}} {11xxx \ {1100x, 11001, 11001}, 1x011 \ {11011, 10011}, 00x0x \ {0010x, 00000, 00101}} {1x0xx \ {10000, 11010}} { 1x0xx11xxx \ { 1x0x111xx0, 1x0x011xx1, 1x01x11x0x, 1x00x11x1x, 1x0xx1100x, 1x0xx11001, 1x0xx11001, 1000011xxx, 1101011xxx}, 1x0111x011 \ { 1x01111011, 1x01110011}, 1x00x00x0x \ { 1x00100x00, 1x00000x01, 1x00x0010x, 1x00x00000, 1x00x00101, 1000000x0x}} {x1111 \ {11111, 01111, 01111}, 11xx1 \ {11101, 11001}} {x1xxx \ {11100, x100x, 11xx1}} { x1x11x1111 \ { x1x1111111, x1x1101111, x1x1101111, 11x11x1111}, x1xx111xx1 \ { x1x1111x01, x1x0111x11, x1xx111101, x1xx111001, x100111xx1, 11xx111xx1}} {x0xx1 \ {x0011, 00x01, 00x01}} {} {} {000x1 \ {00011}, 01x0x \ {0100x, 01001, 0110x}} {01x11 \ {01011, 01111, 01111}, xx111 \ {11111, x0111, 01111}} { 01x1100011 \ { 01x1100011, 0101100011, 0111100011, 0111100011}, xx11100011 \ { xx11100011, 1111100011, x011100011, 0111100011}} {11xx0 \ {11x10, 11x00, 110x0}} {x1x1x \ {x1110, 0111x, x111x}, 10x0x \ {1000x, 10000, 10000}} { x1x1011x10 \ { x1x1011x10, x1x1011010, x111011x10, 0111011x10, x111011x10}, 10x0011x00 \ { 10x0011x00, 10x0011000, 1000011x00, 1000011x00, 1000011x00}} {xx0x1 \ {01001, x0011, xx001}} {0011x \ {00111, 00110, 00110}, 1xxx0 \ {10xx0, 10100, 10x00}} { 00111xx011 \ { 00111x0011, 00111xx011}} {xx0x0 \ {100x0, 1x000, x00x0}, x1000 \ {01000, 11000, 11000}} {} {} {xx001 \ {0x001, x1001, 11001}} {1x11x \ {1x111, 10110}} {} {010xx \ {01011, 01001, 01010}, 1xx01 \ {10001, 11x01, 11x01}} {x10xx \ {x1011, x101x}} { x10xx010xx \ { x10x1010x0, x10x0010x1, x101x0100x, x100x0101x, x10xx01011, x10xx01001, x10xx01010, x1011010xx, x101x010xx}, x10011xx01 \ { x100110001, x100111x01, x100111x01}} {} {1x0x0 \ {11010, 11000, 110x0}} {} {} {0xx0x \ {01x0x, 00x0x, 01000}, x1000 \ {11000, 01000}} {} {} {10x00 \ {10100, 10000}} {} {} {x11xx \ {1111x, 111xx, 111xx}} {} {xxxxx \ {0xx0x, x0101, 0xxx0}, 01xxx \ {01111, 011x0, 01x01}} {x110x \ {01100, 1110x}, 10x1x \ {10111, 10x10}} { x110xxxx0x \ { x1101xxx00, x1100xxx01, x110x0xx0x, x110xx0101, x110x0xx00, 01100xxx0x, 1110xxxx0x}, 10x1xxxx1x \ { 10x11xxx10, 10x10xxx11, 10x1x0xx10, 10111xxx1x, 10x10xxx1x}, x110x01x0x \ { x110101x00, x110001x01, x110x01100, x110x01x01, 0110001x0x, 1110x01x0x}, 10x1x01x1x \ { 10x1101x10, 10x1001x11, 10x1x01111, 10x1x01110, 1011101x1x, 10x1001x1x}} {} {1x1x0 \ {111x0, 10100, 1x100}, 000x1 \ {00001, 00011, 00011}} {} {xx11x \ {xx111, 1x111, 11110}} {x1x10 \ {01110, x1110}, 0001x \ {00010, 00011}} { x1x10xx110 \ { x1x1011110, 01110xx110, x1110xx110}, 0001xxx11x \ { 00011xx110, 00010xx111, 0001xxx111, 0001x1x111, 0001x11110, 00010xx11x, 00011xx11x}} {} {xx1x0 \ {101x0, 0x1x0, 111x0}} {} {0x010 \ {01010, 00010}, x110x \ {0110x, 01101}} {0x1xx \ {00101, 0x111, 0x100}, x0x1x \ {x0x10, x0010, 10111}} { 0x1100x010 \ { 0x11001010, 0x11000010}, x0x100x010 \ { x0x1001010, x0x1000010, x0x100x010, x00100x010}, 0x10xx110x \ { 0x101x1100, 0x100x1101, 0x10x0110x, 0x10x01101, 00101x110x, 0x100x110x}} {0101x \ {01010, 01011, 01011}} {xx01x \ {01011, 0001x, 1001x}, xxxx1 \ {x10x1, 1x0x1, xx001}, 00xxx \ {000x0, 00011, 000x1}} { xx01x0101x \ { xx01101010, xx01001011, xx01x01010, xx01x01011, xx01x01011, 010110101x, 0001x0101x, 1001x0101x}, xxx1101011 \ { xxx1101011, xxx1101011, x101101011, 1x01101011}, 00x1x0101x \ { 00x1101010, 00x1001011, 00x1x01010, 00x1x01011, 00x1x01011, 000100101x, 000110101x, 000110101x}} {x0x01 \ {00001, 10001, 10101}, x1010 \ {11010, 01010}} {x0x1x \ {10x1x, 10010}, 010x0 \ {01010, 01000}, xxx00 \ {x0000, x0x00, 00100}} { x0x10x1010 \ { x0x1011010, x0x1001010, 10x10x1010, 10010x1010}, 01010x1010 \ { 0101011010, 0101001010, 01010x1010}} {x0x0x \ {0010x, x000x, x0000}, 0xxxx \ {0xxx0, 0x0x0, 0011x}} {101xx \ {101x0, 10110, 10100}} { 1010xx0x0x \ { 10101x0x00, 10100x0x01, 1010x0010x, 1010xx000x, 1010xx0000, 10100x0x0x, 10100x0x0x}, 101xx0xxxx \ { 101x10xxx0, 101x00xxx1, 1011x0xx0x, 1010x0xx1x, 101xx0xxx0, 101xx0x0x0, 101xx0011x, 101x00xxxx, 101100xxxx, 101000xxxx}} {1xx00 \ {11x00, 1x000, 10000}, 0xx1x \ {0x011, 0x110, 00111}} {xx010 \ {1x010, 00010, 0x010}, 1xxx0 \ {10010, 10110, 110x0}} { 1xx001xx00 \ { 1xx0011x00, 1xx001x000, 1xx0010000, 110001xx00}, xx0100xx10 \ { xx0100x110, 1x0100xx10, 000100xx10, 0x0100xx10}, 1xx100xx10 \ { 1xx100x110, 100100xx10, 101100xx10, 110100xx10}} {x00xx \ {1000x, 10001, 00000}, x0x1x \ {1001x, 10110}, 1xx10 \ {11010, 11x10}} {1xx10 \ {10x10, 10010}} { 1xx10x0010 \ { 10x10x0010, 10010x0010}, 1xx10x0x10 \ { 1xx1010010, 1xx1010110, 10x10x0x10, 10010x0x10}, 1xx101xx10 \ { 1xx1011010, 1xx1011x10, 10x101xx10, 100101xx10}} {0x010 \ {00010, 01010}} {x100x \ {01000, 11000, 11000}, x100x \ {11000, 01001}} {} {} {1x1x1 \ {10111, 11111}} {} {10x11 \ {10111, 10011}} {1000x \ {10001, 10000}} {} {x00xx \ {10011, x00x0, 100x1}, xxxx1 \ {0x0x1, x1001, xx111}} {xx010 \ {x0010, 1x010, 1x010}, xxx01 \ {11101, 11x01, 10001}} { xx010x0010 \ { xx010x0010, x0010x0010, 1x010x0010, 1x010x0010}, xxx01x0001 \ { xxx0110001, 11101x0001, 11x01x0001, 10001x0001}, xxx01xxx01 \ { xxx010x001, xxx01x1001, 11101xxx01, 11x01xxx01, 10001xxx01}} {1x0xx \ {1000x, 10011, 110x1}, xx011 \ {x0011, 00011, 1x011}} {0x1xx \ {001x1, 00110, 0x1x0}} { 0x1xx1x0xx \ { 0x1x11x0x0, 0x1x01x0x1, 0x11x1x00x, 0x10x1x01x, 0x1xx1000x, 0x1xx10011, 0x1xx110x1, 001x11x0xx, 001101x0xx, 0x1x01x0xx}, 0x111xx011 \ { 0x111x0011, 0x11100011, 0x1111x011, 00111xx011}} {xx101 \ {11101, 0x101, x0101}} {x1xxx \ {11x0x, 0110x, 11xx0}, 10xxx \ {10xx1, 100x1, 10xx0}} { x1x01xx101 \ { x1x0111101, x1x010x101, x1x01x0101, 11x01xx101, 01101xx101}, 10x01xx101 \ { 10x0111101, 10x010x101, 10x01x0101, 10x01xx101, 10001xx101}} {01x0x \ {0100x, 01001}} {} {} {0x11x \ {0x111, 00111, 00111}} {x01x0 \ {x0100, 00100, 001x0}} { x01100x110 \ { 001100x110}} {10xx0 \ {10x10, 100x0, 10000}, xx0x1 \ {x0001, xx011, 1x011}} {x1x0x \ {x1x01, 1100x, 11x01}, x1xxx \ {01x01, 01xx0, 01x10}, x1101 \ {01101, 11101}} { x1x0010x00 \ { x1x0010000, x1x0010000, 1100010x00}, x1xx010xx0 \ { x1x1010x00, x1x0010x10, x1xx010x10, x1xx0100x0, x1xx010000, 01xx010xx0, 01x1010xx0}, x1x01xx001 \ { x1x01x0001, x1x01xx001, 11001xx001, 11x01xx001}, x1xx1xx0x1 \ { x1x11xx001, x1x01xx011, x1xx1x0001, x1xx1xx011, x1xx11x011, 01x01xx0x1}, x1101xx001 \ { x1101x0001, 01101xx001, 11101xx001}} {x0001 \ {10001, 00001, 00001}} {x10xx \ {110x1, 0100x, 110xx}, x1xx0 \ {110x0, 11x10, x10x0}, 0x010 \ {00010, 01010}} { x1001x0001 \ { x100110001, x100100001, x100100001, 11001x0001, 01001x0001, 11001x0001}} {00xxx \ {00001, 00x0x, 00x0x}, 00xx0 \ {00x00, 00010}, x0x10 \ {10010, 00110, 00110}} {0x0xx \ {0100x, 0x01x, 0x00x}, 0x00x \ {0100x, 00000}} { 0x0xx00xxx \ { 0x0x100xx0, 0x0x000xx1, 0x01x00x0x, 0x00x00x1x, 0x0xx00001, 0x0xx00x0x, 0x0xx00x0x, 0100x00xxx, 0x01x00xxx, 0x00x00xxx}, 0x00x00x0x \ { 0x00100x00, 0x00000x01, 0x00x00001, 0x00x00x0x, 0x00x00x0x, 0100x00x0x, 0000000x0x}, 0x0x000xx0 \ { 0x01000x00, 0x00000x10, 0x0x000x00, 0x0x000010, 0100000xx0, 0x01000xx0, 0x00000xx0}, 0x00000x00 \ { 0x00000x00, 0100000x00, 0000000x00}, 0x010x0x10 \ { 0x01010010, 0x01000110, 0x01000110, 0x010x0x10}} {x10xx \ {x1011, 110x0, 01010}} {xxx0x \ {11001, 0x101, 1110x}, x0010 \ {00010}, 0xxx0 \ {0x100, 011x0, 0x0x0}} { xxx0xx100x \ { xxx01x1000, xxx00x1001, xxx0x11000, 11001x100x, 0x101x100x, 1110xx100x}, x0010x1010 \ { x001011010, x001001010, 00010x1010}, 0xxx0x10x0 \ { 0xx10x1000, 0xx00x1010, 0xxx0110x0, 0xxx001010, 0x100x10x0, 011x0x10x0, 0x0x0x10x0}} {00x10 \ {00010}} {0xx11 \ {01x11, 01111, 01111}, 0xx1x \ {01x11, 0111x, 00110}, 011x0 \ {01100}} { 0xx1000x10 \ { 0xx1000010, 0111000x10, 0011000x10}, 0111000x10 \ { 0111000010}} {x0x1x \ {0011x, x0110, 10x1x}} {x01xx \ {x0100, 00101, 10100}} { x011xx0x1x \ { x0111x0x10, x0110x0x11, x011x0011x, x011xx0110, x011x10x1x}} {x0x00 \ {10000, x0100, 10x00}, 001xx \ {001x1, 00100}} {00x0x \ {0010x}, xx111 \ {x1111}} { 00x00x0x00 \ { 00x0010000, 00x00x0100, 00x0010x00, 00100x0x00}, 00x0x0010x \ { 00x0100100, 00x0000101, 00x0x00101, 00x0x00100, 0010x0010x}, xx11100111 \ { xx11100111, x111100111}} {xx01x \ {0x011, 0x010, 11010}} {0xx1x \ {0001x, 0011x, 00111}} { 0xx1xxx01x \ { 0xx11xx010, 0xx10xx011, 0xx1x0x011, 0xx1x0x010, 0xx1x11010, 0001xxx01x, 0011xxx01x, 00111xx01x}} {0x01x \ {01011, 00010}, xx100 \ {1x100, x1100}} {x1x00 \ {01100, x1100, 11x00}} { x1x00xx100 \ { x1x001x100, x1x00x1100, 01100xx100, x1100xx100, 11x00xx100}} {1x0xx \ {110x0, 1001x, 1x011}} {1xx00 \ {10000, 11x00, 1x100}, 0x10x \ {00101, 0110x, 0x101}, 1xxx1 \ {1x111, 10011, 1xx01}} { 1xx001x000 \ { 1xx0011000, 100001x000, 11x001x000, 1x1001x000}, 0x10x1x00x \ { 0x1011x000, 0x1001x001, 0x10x11000, 001011x00x, 0110x1x00x, 0x1011x00x}, 1xxx11x0x1 \ { 1xx111x001, 1xx011x011, 1xxx110011, 1xxx11x011, 1x1111x0x1, 100111x0x1, 1xx011x0x1}} {x01x1 \ {001x1, 10101, 101x1}} {xxxx1 \ {xx111, 1x0x1, x01x1}} { xxxx1x01x1 \ { xxx11x0101, xxx01x0111, xxxx1001x1, xxxx110101, xxxx1101x1, xx111x01x1, 1x0x1x01x1, x01x1x01x1}} {x1xx1 \ {11111, x1111, 11011}} {0101x \ {01010, 01011}, xx010 \ {11010, 01010, 00010}} { 01011x1x11 \ { 0101111111, 01011x1111, 0101111011, 01011x1x11}} {x110x \ {x1101, 0110x, x1100}, 0x0x0 \ {01000, 010x0, 0x010}} {1x0x0 \ {100x0, 110x0, 10010}} { 1x000x1100 \ { 1x00001100, 1x000x1100, 10000x1100, 11000x1100}, 1x0x00x0x0 \ { 1x0100x000, 1x0000x010, 1x0x001000, 1x0x0010x0, 1x0x00x010, 100x00x0x0, 110x00x0x0, 100100x0x0}} {01x1x \ {01x11, 0101x, 01x10}} {11x1x \ {11x10, 11x11}, 110x1 \ {11001}} { 11x1x01x1x \ { 11x1101x10, 11x1001x11, 11x1x01x11, 11x1x0101x, 11x1x01x10, 11x1001x1x, 11x1101x1x}, 1101101x11 \ { 1101101x11, 1101101011}} {x10x0 \ {x1000, 11010, x1010}, x010x \ {x0100, 00100, x0101}} {xx011 \ {01011, 0x011}} {} {x0x10 \ {00x10, 10x10, 10010}} {xxx1x \ {x0111, 11111, x001x}, xx0x1 \ {11001, 110x1, xx001}, x001x \ {10011, 00010}} { xxx10x0x10 \ { xxx1000x10, xxx1010x10, xxx1010010, x0010x0x10}, x0010x0x10 \ { x001000x10, x001010x10, x001010010, 00010x0x10}} {0x110 \ {00110, 01110}, x11x0 \ {01110, 01100, x1100}} {00xx1 \ {000x1, 00x11, 001x1}, 100x0 \ {10010, 10000}} { 100100x110 \ { 1001000110, 1001001110, 100100x110}, 100x0x11x0 \ { 10010x1100, 10000x1110, 100x001110, 100x001100, 100x0x1100, 10010x11x0, 10000x11x0}} {1x10x \ {11100, 11101}, 0x1x0 \ {001x0, 0x100, 0x100}} {} {} {xx0x1 \ {xx011, xx001, 110x1}, x1010 \ {01010, 11010}} {x11xx \ {1111x, 11101, 11100}} { x11x1xx0x1 \ { x1111xx001, x1101xx011, x11x1xx011, x11x1xx001, x11x1110x1, 11111xx0x1, 11101xx0x1}, x1110x1010 \ { x111001010, x111011010, 11110x1010}} {x000x \ {00001, 10001}, 10xx1 \ {10x01, 10001, 10x11}} {x10x0 \ {01000, 01010, 11000}, 0x110 \ {01110, 00110}} { x1000x0000 \ { 01000x0000, 11000x0000}} {110xx \ {110x1, 11010}} {0x110 \ {01110, 00110, 00110}, x1100 \ {11100, 01100}} { 0x11011010 \ { 0x11011010, 0111011010, 0011011010, 0011011010}, x110011000 \ { 1110011000, 0110011000}} {1xx1x \ {11111, 1101x, 1x011}} {} {} {1011x \ {10111}} {0x1xx \ {011xx, 0011x}} { 0x11x1011x \ { 0x11110110, 0x11010111, 0x11x10111, 0111x1011x, 0011x1011x}} {110x1 \ {11011, 11001, 11001}} {1xxx0 \ {10x00, 10000, 1xx00}} {} {x0x1x \ {00110, x0x10, x001x}} {110xx \ {11010, 110x1, 1100x}, 1x11x \ {1x110, 1011x, 1011x}} { 1101xx0x1x \ { 11011x0x10, 11010x0x11, 1101x00110, 1101xx0x10, 1101xx001x, 11010x0x1x, 11011x0x1x}, 1x11xx0x1x \ { 1x111x0x10, 1x110x0x11, 1x11x00110, 1x11xx0x10, 1x11xx001x, 1x110x0x1x, 1011xx0x1x, 1011xx0x1x}} {xx1x0 \ {0x1x0, 111x0, x0110}, 0x1x0 \ {001x0, 011x0, 01110}} {x1111 \ {11111, 01111, 01111}} {} {} {100x0 \ {10010, 10000, 10000}, x110x \ {01100, 01101, x1100}} {} {10xx1 \ {10101, 10011, 100x1}, 1x01x \ {10011, 1x010, 10010}} {x0x10 \ {00x10, 10110, x0010}} { x0x101x010 \ { x0x101x010, x0x1010010, 00x101x010, 101101x010, x00101x010}} {x0xx1 \ {x0x01, 00011, 001x1}} {x0x00 \ {10100, 00000, 00x00}} {} {0xxx1 \ {01x01, 010x1, 01011}} {1x10x \ {1010x, 1x101, 11100}} { 1x1010xx01 \ { 1x10101x01, 1x10101001, 101010xx01, 1x1010xx01}} {x0xx0 \ {00100, 00xx0, 00000}} {00x1x \ {00010, 0001x, 00x11}} { 00x10x0x10 \ { 00x1000x10, 00010x0x10, 00010x0x10}} {10xx0 \ {10110, 10x10, 10000}, x01x1 \ {001x1, 00111, 00111}} {} {} {0x11x \ {00111}, 11xx0 \ {11000, 110x0, 11110}, xx100 \ {10100, 00100, 1x100}} {} {} {x111x \ {0111x, x1110}, 00xx1 \ {00x11, 00111}, 1x001 \ {10001}} {x00xx \ {000xx, x00x1, x0001}} { x001xx111x \ { x0011x1110, x0010x1111, x001x0111x, x001xx1110, 0001xx111x, x0011x111x}, x00x100xx1 \ { x001100x01, x000100x11, x00x100x11, x00x100111, 000x100xx1, x00x100xx1, x000100xx1}, x00011x001 \ { x000110001, 000011x001, x00011x001, x00011x001}} {xx0xx \ {xx000, 1x0x1, x0011}} {xx000 \ {01000, 1x000, x0000}, x000x \ {1000x, 00001}} { xx000xx000 \ { xx000xx000, 01000xx000, 1x000xx000, x0000xx000}, x000xxx00x \ { x0001xx000, x0000xx001, x000xxx000, x000x1x001, 1000xxx00x, 00001xx00x}} {x10x0 \ {01000, 010x0}} {x1101 \ {11101, 01101}} {} {} {xx100 \ {01100, 00100, x0100}} {} {1x011 \ {10011, 11011, 11011}} {1x1x1 \ {1x101, 11101}, 10xx1 \ {10011, 10001}} { 1x1111x011 \ { 1x11110011, 1x11111011, 1x11111011}, 10x111x011 \ { 10x1110011, 10x1111011, 10x1111011, 100111x011}} {x1xxx \ {x1111, 11x10, 111x0}, 101x1 \ {10111, 10101}} {x111x \ {1111x, x1111, x1110}} { x111xx1x1x \ { x1111x1x10, x1110x1x11, x111xx1111, x111x11x10, x111x11110, 1111xx1x1x, x1111x1x1x, x1110x1x1x}, x111110111 \ { x111110111, 1111110111, x111110111}} {0xxx1 \ {0x111, 01001, 01011}} {xx001 \ {0x001, x0001}, x011x \ {0011x, x0110, 00110}} { xx0010xx01 \ { xx00101001, 0x0010xx01, x00010xx01}, x01110xx11 \ { x01110x111, x011101011, 001110xx11}} {1x10x \ {1110x, 1010x, 1010x}} {x1xxx \ {01x01, 11x0x, x110x}, 110xx \ {1101x, 11000, 110x0}} { x1x0x1x10x \ { x1x011x100, x1x001x101, x1x0x1110x, x1x0x1010x, x1x0x1010x, 01x011x10x, 11x0x1x10x, x110x1x10x}, 1100x1x10x \ { 110011x100, 110001x101, 1100x1110x, 1100x1010x, 1100x1010x, 110001x10x, 110001x10x}} {x1110 \ {01110, 11110, 11110}} {11x10 \ {11010, 11110, 11110}} { 11x10x1110 \ { 11x1001110, 11x1011110, 11x1011110, 11010x1110, 11110x1110, 11110x1110}} {1011x \ {10111}, x1xx0 \ {01010, x1110, x11x0}, 1xx01 \ {10101, 11001, 10x01}} {} {} {010xx \ {010x1, 01011, 010x0}, x1x01 \ {x1101, 11101}} {x10x0 \ {x1010, 11000, 11010}} { x10x0010x0 \ { x101001000, x100001010, x10x0010x0, x1010010x0, 11000010x0, 11010010x0}} {x1111 \ {11111, 01111, 01111}} {00x10 \ {00010, 00110, 00110}, xx010 \ {00010, x0010, 11010}} {} {x1x10 \ {01110, 11110}} {xx1xx \ {111xx, x010x, 1x100}, 0x1x1 \ {00111, 001x1, 001x1}, 1xx1x \ {1x010, 10010, 1001x}} { xx110x1x10 \ { xx11001110, xx11011110, 11110x1x10}, 1xx10x1x10 \ { 1xx1001110, 1xx1011110, 1x010x1x10, 10010x1x10, 10010x1x10}} {xx111 \ {1x111, 01111, x0111}} {x0xx0 \ {00xx0, 10110, x0x00}, 0x0xx \ {00001, 0100x, 01001}} { 0x011xx111 \ { 0x0111x111, 0x01101111, 0x011x0111}} {1xx00 \ {11x00, 10x00}, 11xx0 \ {11x00, 11100}} {1x111 \ {10111, 11111}, 10xx0 \ {10000, 10100, 10010}} { 10x001xx00 \ { 10x0011x00, 10x0010x00, 100001xx00, 101001xx00}, 10xx011xx0 \ { 10x1011x00, 10x0011x10, 10xx011x00, 10xx011100, 1000011xx0, 1010011xx0, 1001011xx0}} {01xx1 \ {01001, 01101, 01x11}, 1xxx0 \ {11x00, 1xx00, 10x10}} {0100x \ {01000, 01001}} { 0100101x01 \ { 0100101001, 0100101101, 0100101x01}, 010001xx00 \ { 0100011x00, 010001xx00, 010001xx00}} {0x01x \ {0x011, 01011}} {01xx1 \ {010x1, 01x01, 01x11}} { 01x110x011 \ { 01x110x011, 01x1101011, 010110x011, 01x110x011}} {1x1x1 \ {10101, 1x101}, 010xx \ {010x0, 01000, 01000}} {x01x1 \ {x0101, 00111}, 11x0x \ {11100, 11x01, 1100x}, 1x10x \ {1110x, 1x101, 11101}} { x01x11x1x1 \ { x01111x101, x01011x111, x01x110101, x01x11x101, x01011x1x1, 001111x1x1}, 11x011x101 \ { 11x0110101, 11x011x101, 11x011x101, 110011x101}, 1x1011x101 \ { 1x10110101, 1x1011x101, 111011x101, 1x1011x101, 111011x101}, x01x1010x1 \ { x011101001, x010101011, x0101010x1, 00111010x1}, 11x0x0100x \ { 11x0101000, 11x0001001, 11x0x01000, 11x0x01000, 11x0x01000, 111000100x, 11x010100x, 1100x0100x}, 1x10x0100x \ { 1x10101000, 1x10001001, 1x10x01000, 1x10x01000, 1x10x01000, 1110x0100x, 1x1010100x, 111010100x}} {} {x0111 \ {00111}} {} {xx011 \ {11011, 01011, 0x011}, 001x1 \ {00111}} {x1x01 \ {11001, 01x01, 11101}, 10xx1 \ {10001, 10111, 10x01}} { 10x11xx011 \ { 10x1111011, 10x1101011, 10x110x011, 10111xx011}, x1x0100101 \ { 1100100101, 01x0100101, 1110100101}, 10xx1001x1 \ { 10x1100101, 10x0100111, 10xx100111, 10001001x1, 10111001x1, 10x01001x1}} {} {xxxxx \ {011x1, x0x0x, 00x00}, x11x1 \ {01111}, 000x0 \ {00000}} {} {xx011 \ {00011, 11011, 01011}, x01xx \ {x01x1, x01x0, 101x0}} {} {} {x0xx0 \ {x0100, 00xx0}, x11x0 \ {01110, 011x0, 011x0}} {x0x10 \ {00010, 00110, x0110}, x1011 \ {11011, 01011, 01011}, 1111x \ {11110, 11111, 11111}} { x0x10x0x10 \ { x0x1000x10, 00010x0x10, 00110x0x10, x0110x0x10}, 11110x0x10 \ { 1111000x10, 11110x0x10}, x0x10x1110 \ { x0x1001110, x0x1001110, x0x1001110, 00010x1110, 00110x1110, x0110x1110}, 11110x1110 \ { 1111001110, 1111001110, 1111001110, 11110x1110}} {1xx1x \ {10x1x, 10x11, 1111x}, 0xx01 \ {01x01, 00101, 00001}} {xxxx1 \ {10xx1, 1x0x1, x1x01}, x10xx \ {x100x, x10x1, 01011}, x0101 \ {10101, 00101}} { xxx111xx11 \ { xxx1110x11, xxx1110x11, xxx1111111, 10x111xx11, 1x0111xx11}, x101x1xx1x \ { x10111xx10, x10101xx11, x101x10x1x, x101x10x11, x101x1111x, x10111xx1x, 010111xx1x}, xxx010xx01 \ { xxx0101x01, xxx0100101, xxx0100001, 10x010xx01, 1x0010xx01, x1x010xx01}, x10010xx01 \ { x100101x01, x100100101, x100100001, x10010xx01, x10010xx01}, x01010xx01 \ { x010101x01, x010100101, x010100001, 101010xx01, 001010xx01}} {000xx \ {00011, 0000x, 00001}} {1xxxx \ {1x110, 10x0x, 1xx01}, x11xx \ {111xx, 0110x, 11100}, 10xxx \ {1000x, 10000, 101xx}} { 1xxxx000xx \ { 1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx00011, 1xxxx0000x, 1xxxx00001, 1x110000xx, 10x0x000xx, 1xx01000xx}, x11xx000xx \ { x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx00011, x11xx0000x, x11xx00001, 111xx000xx, 0110x000xx, 11100000xx}, 10xxx000xx \ { 10xx1000x0, 10xx0000x1, 10x1x0000x, 10x0x0001x, 10xxx00011, 10xxx0000x, 10xxx00001, 1000x000xx, 10000000xx, 101xx000xx}} {} {x010x \ {10100, 00101, 0010x}} {} {xxxx0 \ {100x0, 011x0, 11000}} {xx0x0 \ {xx000, 1x010}, 0xxx1 \ {0xx01, 00xx1, 001x1}, 0x01x \ {0101x, 01010}} { xx0x0xxxx0 \ { xx010xxx00, xx000xxx10, xx0x0100x0, xx0x0011x0, xx0x011000, xx000xxxx0, 1x010xxxx0}, 0x010xxx10 \ { 0x01010010, 0x01001110, 01010xxx10, 01010xxx10}} {1x111 \ {11111, 10111}} {0x01x \ {01010, 01011}, 100xx \ {10010, 100x0, 1001x}, x11x0 \ {11110, 01110}} { 0x0111x111 \ { 0x01111111, 0x01110111, 010111x111}, 100111x111 \ { 1001111111, 1001110111, 100111x111}} {x11x1 \ {111x1, 11101, 01101}} {} {} {0x1x0 \ {011x0, 0x100, 0x100}, 1xxx0 \ {1x100, 1x0x0}} {xx101 \ {1x101, 11101}, 1xx00 \ {10x00, 1x000, 11x00}, x110x \ {0110x, 01101, 11100}} { 1xx000x100 \ { 1xx0001100, 1xx000x100, 1xx000x100, 10x000x100, 1x0000x100, 11x000x100}, x11000x100 \ { x110001100, x11000x100, x11000x100, 011000x100, 111000x100}, 1xx001xx00 \ { 1xx001x100, 1xx001x000, 10x001xx00, 1x0001xx00, 11x001xx00}, x11001xx00 \ { x11001x100, x11001x000, 011001xx00, 111001xx00}} {x0xx1 \ {x01x1, 00001, 00xx1}, 101xx \ {1010x, 101x0, 10111}} {11x1x \ {1101x, 11111, 11011}, x11x1 \ {x1101, x1111}} { 11x11x0x11 \ { 11x11x0111, 11x1100x11, 11011x0x11, 11111x0x11, 11011x0x11}, x11x1x0xx1 \ { x1111x0x01, x1101x0x11, x11x1x01x1, x11x100001, x11x100xx1, x1101x0xx1, x1111x0xx1}, 11x1x1011x \ { 11x1110110, 11x1010111, 11x1x10110, 11x1x10111, 1101x1011x, 111111011x, 110111011x}, x11x1101x1 \ { x111110101, x110110111, x11x110101, x11x110111, x1101101x1, x1111101x1}} {x0xx0 \ {000x0, 001x0, 00010}, x011x \ {00110, 1011x, 1011x}} {} {} {x1100 \ {11100}, xx110 \ {x1110, 1x110}} {x1xx0 \ {01010, 11010, x1110}, x111x \ {11110, x1111}} { x1x00x1100 \ { x1x0011100}, x1x10xx110 \ { x1x10x1110, x1x101x110, 01010xx110, 11010xx110, x1110xx110}, x1110xx110 \ { x1110x1110, x11101x110, 11110xx110}} {1x1x1 \ {10101, 11101, 101x1}} {xx111 \ {0x111, 10111}, 0xxx1 \ {0x111, 001x1, 01101}, xxx01 \ {01x01, 0xx01, 11001}} { xx1111x111 \ { xx11110111, 0x1111x111, 101111x111}, 0xxx11x1x1 \ { 0xx111x101, 0xx011x111, 0xxx110101, 0xxx111101, 0xxx1101x1, 0x1111x1x1, 001x11x1x1, 011011x1x1}, xxx011x101 \ { xxx0110101, xxx0111101, xxx0110101, 01x011x101, 0xx011x101, 110011x101}} {xxx10 \ {xx010, x1110, 11010}} {xx1x0 \ {00110, x0110, x1110}} { xx110xxx10 \ { xx110xx010, xx110x1110, xx11011010, 00110xxx10, x0110xxx10, x1110xxx10}} {xxx01 \ {11001, 00x01, 10001}} {00xxx \ {00x01, 0000x, 001x0}} { 00x01xxx01 \ { 00x0111001, 00x0100x01, 00x0110001, 00x01xxx01, 00001xxx01}} {x00x0 \ {00000, x0010, 00010}, xx110 \ {10110, 1x110, 00110}, 10xx0 \ {10100, 10x00, 10010}} {} {} {10xx1 \ {10001, 10101, 10101}, 10x1x \ {10011, 10111, 10x10}, 10x1x \ {10010, 1011x}} {01xx0 \ {011x0, 01x10}, 0x000 \ {00000, 01000, 01000}} { 01x1010x10 \ { 01x1010x10, 0111010x10, 01x1010x10}} {11xx0 \ {11x10, 11100, 11010}} {} {} {} {x0x01 \ {x0101, 00101, 10x01}, 11x1x \ {11011, 1101x, 11110}, 01xx1 \ {01011, 01111, 010x1}} {} {xx10x \ {1010x, 10100, 11100}, 101x0 \ {10110, 10100}, xx100 \ {10100, x1100, 00100}} {xxxx1 \ {110x1, x1111, x1011}, xx100 \ {00100, x1100, x0100}} { xxx01xx101 \ { xxx0110101, 11001xx101}, xx100xx100 \ { xx10010100, xx10010100, xx10011100, 00100xx100, x1100xx100, x0100xx100}, xx10010100 \ { xx10010100, 0010010100, x110010100, x010010100}} {0xxx1 \ {010x1, 00xx1, 01x11}} {x111x \ {11110, x1111, 01110}} { x11110xx11 \ { x111101011, x111100x11, x111101x11, x11110xx11}} {x001x \ {00011, 10011, x0011}} {} {} {1001x \ {10011, 10010}, 01xxx \ {0101x, 011xx, 01x00}} {x11x0 \ {01100, x1100, 01110}, x11x1 \ {011x1, 111x1, 111x1}} { x111010010 \ { x111010010, 0111010010}, x111110011 \ { x111110011, 0111110011, 1111110011, 1111110011}, x11x001xx0 \ { x111001x00, x110001x10, x11x001010, x11x0011x0, x11x001x00, 0110001xx0, x110001xx0, 0111001xx0}, x11x101xx1 \ { x111101x01, x110101x11, x11x101011, x11x1011x1, 011x101xx1, 111x101xx1, 111x101xx1}} {01x1x \ {01011, 01x11}, 1x00x \ {1x001, 1x000, 10001}} {000x1 \ {00011}} { 0001101x11 \ { 0001101011, 0001101x11, 0001101x11}, 000011x001 \ { 000011x001, 0000110001}} {00x1x \ {00011, 00110}, 0xx01 \ {0x001, 01101, 01101}} {x011x \ {00110, x0110}} { x011x00x1x \ { x011100x10, x011000x11, x011x00011, x011x00110, 0011000x1x, x011000x1x}} {110xx \ {11010, 110x1, 110x0}, 10xx0 \ {10000, 10110, 101x0}} {0x1x0 \ {01110, 011x0}} { 0x1x0110x0 \ { 0x11011000, 0x10011010, 0x1x011010, 0x1x0110x0, 01110110x0, 011x0110x0}, 0x1x010xx0 \ { 0x11010x00, 0x10010x10, 0x1x010000, 0x1x010110, 0x1x0101x0, 0111010xx0, 011x010xx0}} {11x0x \ {11100, 1110x, 11001}, 10xx0 \ {101x0, 10110, 10100}, 000xx \ {000x0, 00010, 00000}} {x0xx0 \ {00110, x00x0, x0x00}} { x0x0011x00 \ { x0x0011100, x0x0011100, x000011x00, x0x0011x00}, x0xx010xx0 \ { x0x1010x00, x0x0010x10, x0xx0101x0, x0xx010110, x0xx010100, 0011010xx0, x00x010xx0, x0x0010xx0}, x0xx0000x0 \ { x0x1000000, x0x0000010, x0xx0000x0, x0xx000010, x0xx000000, 00110000x0, x00x0000x0, x0x00000x0}} {x00x0 \ {100x0, 10000}, 0x0x1 \ {00001}} {xx0xx \ {000xx, xx010, 1x010}, x00xx \ {x0000, x00x0, 00011}} { xx0x0x00x0 \ { xx010x0000, xx000x0010, xx0x0100x0, xx0x010000, 000x0x00x0, xx010x00x0, 1x010x00x0}, x00x0x00x0 \ { x0010x0000, x0000x0010, x00x0100x0, x00x010000, x0000x00x0, x00x0x00x0}, xx0x10x0x1 \ { xx0110x001, xx0010x011, xx0x100001, 000x10x0x1}, x00x10x0x1 \ { x00110x001, x00010x011, x00x100001, 000110x0x1}} {xxx01 \ {01001, 00001, 10001}} {x01xx \ {10100, 0010x, 001x0}, x101x \ {x1010, 01010, 11011}} { x0101xxx01 \ { x010101001, x010100001, x010110001, 00101xxx01}} {100x1 \ {10001}} {0x1x0 \ {001x0, 01100, 0x100}, x10x1 \ {11001, x1001, x1011}} { x10x1100x1 \ { x101110001, x100110011, x10x110001, 11001100x1, x1001100x1, x1011100x1}} {xx101 \ {1x101, 01101, x1101}, 0xx11 \ {00011, 01111}} {00xx1 \ {00111, 00x11}, 011x1 \ {01111}} { 00x01xx101 \ { 00x011x101, 00x0101101, 00x01x1101}, 01101xx101 \ { 011011x101, 0110101101, 01101x1101}, 00x110xx11 \ { 00x1100011, 00x1101111, 001110xx11, 00x110xx11}, 011110xx11 \ { 0111100011, 0111101111, 011110xx11}} {} {1x100 \ {10100, 11100}, xx01x \ {11011, 10010, xx011}} {} {0001x \ {00011, 00010}} {00xxx \ {00010, 0011x, 0011x}, xx1x1 \ {1x111, xx111, 1x1x1}} { 00x1x0001x \ { 00x1100010, 00x1000011, 00x1x00011, 00x1x00010, 000100001x, 0011x0001x, 0011x0001x}, xx11100011 \ { xx11100011, 1x11100011, xx11100011, 1x11100011}} {xx100 \ {11100, x0100, 0x100}, 00xxx \ {00100, 00000}} {xxx11 \ {x1x11, x1111, 0xx11}, x110x \ {01101, x1101, 0110x}} { x1100xx100 \ { x110011100, x1100x0100, x11000x100, 01100xx100}, xxx1100x11 \ { x1x1100x11, x111100x11, 0xx1100x11}, x110x00x0x \ { x110100x00, x110000x01, x110x00100, x110x00000, 0110100x0x, x110100x0x, 0110x00x0x}} {x11x0 \ {01100, 111x0}, x1111 \ {11111, 01111}, xxx00 \ {1xx00, 01100}} {1xx01 \ {10001, 11101, 1x101}} {} {x0100 \ {10100, 00100, 00100}} {000x0 \ {00000, 00010}} { 00000x0100 \ { 0000010100, 0000000100, 0000000100, 00000x0100}} {0x0x1 \ {000x1, 0x011, 010x1}} {1x0x1 \ {100x1, 11011, 1x011}, xx10x \ {x0101, x1100, 11101}} { 1x0x10x0x1 \ { 1x0110x001, 1x0010x011, 1x0x1000x1, 1x0x10x011, 1x0x1010x1, 100x10x0x1, 110110x0x1, 1x0110x0x1}, xx1010x001 \ { xx10100001, xx10101001, x01010x001, 111010x001}} {} {0x11x \ {0011x, 00110, 00111}, 001x0 \ {00110, 00100, 00100}} {} {} {xxx10 \ {01010, 1xx10}, 0x11x \ {0011x, 00111, 0111x}} {} {} {1101x \ {11011}, 1xx10 \ {1x010, 1x110, 11010}} {} {} {xxx11 \ {1xx11, 0x011, xx011}, 10x0x \ {1000x, 10100, 10001}, 00x1x \ {00x11, 00011, 00010}} {} {1x01x \ {11010, 1x011}, 1x0xx \ {1x001, 1x010, 1x0x1}} {} {} {xx00x \ {0x000, 0x00x, 00000}} {xx010 \ {00010, 0x010, 0x010}, 011xx \ {0110x, 01111, 0111x}} { 0110xxx00x \ { 01101xx000, 01100xx001, 0110x0x000, 0110x0x00x, 0110x00000, 0110xxx00x}} {xx1x1 \ {x1101, 1x111, 0x101}, xxx00 \ {x1000, x1100, 01x00}} {1xx01 \ {11x01, 1x101, 11001}, 0x010 \ {01010, 00010}, 10x0x \ {10100, 10x01}} { 1xx01xx101 \ { 1xx01x1101, 1xx010x101, 11x01xx101, 1x101xx101, 11001xx101}, 10x01xx101 \ { 10x01x1101, 10x010x101, 10x01xx101}, 10x00xxx00 \ { 10x00x1000, 10x00x1100, 10x0001x00, 10100xxx00}} {0xx00 \ {01000, 00100, 0x100}} {x1x01 \ {x1101, 01x01}} {} {1xx00 \ {10100, 11100, 10x00}, xx01x \ {1001x, x0011, 00010}} {01xx0 \ {01100, 01010, 01x00}, 11x1x \ {1111x, 11011, 11010}} { 01x001xx00 \ { 01x0010100, 01x0011100, 01x0010x00, 011001xx00, 01x001xx00}, 01x10xx010 \ { 01x1010010, 01x1000010, 01010xx010}, 11x1xxx01x \ { 11x11xx010, 11x10xx011, 11x1x1001x, 11x1xx0011, 11x1x00010, 1111xxx01x, 11011xx01x, 11010xx01x}} {010x0 \ {01000, 01010, 01010}, xx10x \ {1010x, 0x10x, x110x}, x11xx \ {x110x, x11x0, x1110}} {x1xx0 \ {011x0, 01010, 01010}} { x1xx0010x0 \ { x1x1001000, x1x0001010, x1xx001000, x1xx001010, x1xx001010, 011x0010x0, 01010010x0, 01010010x0}, x1x00xx100 \ { x1x0010100, x1x000x100, x1x00x1100, 01100xx100}, x1xx0x11x0 \ { x1x10x1100, x1x00x1110, x1xx0x1100, x1xx0x11x0, x1xx0x1110, 011x0x11x0, 01010x11x0, 01010x11x0}} {x10x0 \ {010x0, 110x0, 11000}, x0x1x \ {00x10, x001x, 00011}} {xx0x0 \ {x10x0, xx000, 1x010}} { xx0x0x10x0 \ { xx010x1000, xx000x1010, xx0x0010x0, xx0x0110x0, xx0x011000, x10x0x10x0, xx000x10x0, 1x010x10x0}, xx010x0x10 \ { xx01000x10, xx010x0010, x1010x0x10, 1x010x0x10}} {xxx11 \ {01011, 10x11, 1x111}, 10xx1 \ {10x11, 101x1}, x00x1 \ {10011, 00011}} {1x11x \ {10111, 1x111, 10110}, 1xx11 \ {10111, 11111, 1x111}} { 1x111xxx11 \ { 1x11101011, 1x11110x11, 1x1111x111, 10111xxx11, 1x111xxx11}, 1xx11xxx11 \ { 1xx1101011, 1xx1110x11, 1xx111x111, 10111xxx11, 11111xxx11, 1x111xxx11}, 1x11110x11 \ { 1x11110x11, 1x11110111, 1011110x11, 1x11110x11}, 1xx1110x11 \ { 1xx1110x11, 1xx1110111, 1011110x11, 1111110x11, 1x11110x11}, 1x111x0011 \ { 1x11110011, 1x11100011, 10111x0011, 1x111x0011}, 1xx11x0011 \ { 1xx1110011, 1xx1100011, 10111x0011, 11111x0011, 1x111x0011}} {xx1x0 \ {1x110, x0100, xx100}} {xx0x0 \ {x00x0, x1010, 110x0}} { xx0x0xx1x0 \ { xx010xx100, xx000xx110, xx0x01x110, xx0x0x0100, xx0x0xx100, x00x0xx1x0, x1010xx1x0, 110x0xx1x0}} {1xxx1 \ {10x11, 10111, 10x01}, 1110x \ {11101, 11100, 11100}} {xx010 \ {x1010, 01010}} {} {} {11x01 \ {11101, 11001, 11001}} {} {1xx0x \ {1x00x, 1110x, 11000}} {} {} {xx10x \ {x110x, 00100, 0010x}, 11x0x \ {11000, 11100, 1100x}} {01xxx \ {010xx, 01010, 0111x}} { 01x0xxx10x \ { 01x01xx100, 01x00xx101, 01x0xx110x, 01x0x00100, 01x0x0010x, 0100xxx10x}, 01x0x11x0x \ { 01x0111x00, 01x0011x01, 01x0x11000, 01x0x11100, 01x0x1100x, 0100x11x0x}} {} {0x0x0 \ {0x000, 00000, 010x0}, x0x00 \ {00x00, 10x00, 10x00}, xxxx0 \ {x0x10, 01110, 100x0}} {} {01x00 \ {01100}} {xxx1x \ {x1x1x, xxx11, 00x10}} {} {0x1xx \ {0x11x, 0x110, 0x111}, 1xxx1 \ {11x11, 11x01, 10101}} {10xxx \ {10111, 10x00, 10x01}, x10xx \ {1100x, x1011, 010xx}, 011x1 \ {01101}} { 10xxx0x1xx \ { 10xx10x1x0, 10xx00x1x1, 10x1x0x10x, 10x0x0x11x, 10xxx0x11x, 10xxx0x110, 10xxx0x111, 101110x1xx, 10x000x1xx, 10x010x1xx}, x10xx0x1xx \ { x10x10x1x0, x10x00x1x1, x101x0x10x, x100x0x11x, x10xx0x11x, x10xx0x110, x10xx0x111, 1100x0x1xx, x10110x1xx, 010xx0x1xx}, 011x10x1x1 \ { 011110x101, 011010x111, 011x10x111, 011x10x111, 011010x1x1}, 10xx11xxx1 \ { 10x111xx01, 10x011xx11, 10xx111x11, 10xx111x01, 10xx110101, 101111xxx1, 10x011xxx1}, x10x11xxx1 \ { x10111xx01, x10011xx11, x10x111x11, x10x111x01, x10x110101, 110011xxx1, x10111xxx1, 010x11xxx1}, 011x11xxx1 \ { 011111xx01, 011011xx11, 011x111x11, 011x111x01, 011x110101, 011011xxx1}} {x1111 \ {11111, 01111}, 1x101 \ {10101}} {1xx11 \ {10x11, 10011, 1x011}, x11x1 \ {01111, 111x1, 11101}, 10x0x \ {1010x, 10000, 10x01}} { 1xx11x1111 \ { 1xx1111111, 1xx1101111, 10x11x1111, 10011x1111, 1x011x1111}, x1111x1111 \ { x111111111, x111101111, 01111x1111, 11111x1111}, x11011x101 \ { x110110101, 111011x101, 111011x101}, 10x011x101 \ { 10x0110101, 101011x101, 10x011x101}} {0xx0x \ {01101, 01x0x, 01x00}} {x00x1 \ {00001, 000x1, x0011}, x01x0 \ {00100, x0110}} { x00010xx01 \ { x000101101, x000101x01, 000010xx01, 000010xx01}, x01000xx00 \ { x010001x00, x010001x00, 001000xx00}} {1x1xx \ {111x0, 10101, 11111}} {x1xx1 \ {011x1, 01x11, x1x01}, x1x1x \ {01110, 11111, 0101x}, 1xxxx \ {1001x, 10010, 11x01}} { x1xx11x1x1 \ { x1x111x101, x1x011x111, x1xx110101, x1xx111111, 011x11x1x1, 01x111x1x1, x1x011x1x1}, x1x1x1x11x \ { x1x111x110, x1x101x111, x1x1x11110, x1x1x11111, 011101x11x, 111111x11x, 0101x1x11x}, 1xxxx1x1xx \ { 1xxx11x1x0, 1xxx01x1x1, 1xx1x1x10x, 1xx0x1x11x, 1xxxx111x0, 1xxxx10101, 1xxxx11111, 1001x1x1xx, 100101x1xx, 11x011x1xx}} {1xxx1 \ {10111, 1x101, 1xx01}} {110x1 \ {11011}, x0x01 \ {10101, 00001, 00001}} { 110x11xxx1 \ { 110111xx01, 110011xx11, 110x110111, 110x11x101, 110x11xx01, 110111xxx1}, x0x011xx01 \ { x0x011x101, x0x011xx01, 101011xx01, 000011xx01, 000011xx01}} {} {0x100 \ {01100}, xx11x \ {11110, 0x110, xx111}} {} {x110x \ {01100, x1101, 1110x}} {xxx0x \ {0010x, 0x001, 01100}} { xxx0xx110x \ { xxx01x1100, xxx00x1101, xxx0x01100, xxx0xx1101, xxx0x1110x, 0010xx110x, 0x001x110x, 01100x110x}} {xxx0x \ {0x101, 11x01, x0x0x}, 1xx00 \ {11000, 10000, 1x100}, x1010 \ {11010}} {} {} {} {10x0x \ {10100, 1000x, 10x01}} {} {10x0x \ {10100, 1010x}} {x1xx1 \ {x1x11, 01111, x1111}, 00x11 \ {00011}} { x1x0110x01 \ { x1x0110101}} {0xxx1 \ {01x01, 000x1, 01x11}, xx11x \ {x1110, 10111, 1x11x}} {1x11x \ {1x111, 11110, 1111x}, 110x0 \ {11010}} { 1x1110xx11 \ { 1x11100011, 1x11101x11, 1x1110xx11, 111110xx11}, 1x11xxx11x \ { 1x111xx110, 1x110xx111, 1x11xx1110, 1x11x10111, 1x11x1x11x, 1x111xx11x, 11110xx11x, 1111xxx11x}, 11010xx110 \ { 11010x1110, 110101x110, 11010xx110}} {xx0x0 \ {01010, 110x0, 000x0}, x1x0x \ {01x01, 01x00, x1000}, 10xx1 \ {10001, 10101, 10101}} {001x0 \ {00110, 00100}} { 001x0xx0x0 \ { 00110xx000, 00100xx010, 001x001010, 001x0110x0, 001x0000x0, 00110xx0x0, 00100xx0x0}, 00100x1x00 \ { 0010001x00, 00100x1000, 00100x1x00}} {} {00xx1 \ {00001, 00x01, 00101}, x0xx1 \ {00xx1, x0x01}} {} {x11x1 \ {01101, 11111}} {10xx1 \ {10101, 10x01, 10001}, 101x1 \ {10111, 10101}, x0x11 \ {x0111, x0011, x0011}} { 10xx1x11x1 \ { 10x11x1101, 10x01x1111, 10xx101101, 10xx111111, 10101x11x1, 10x01x11x1, 10001x11x1}, 101x1x11x1 \ { 10111x1101, 10101x1111, 101x101101, 101x111111, 10111x11x1, 10101x11x1}, x0x11x1111 \ { x0x1111111, x0111x1111, x0011x1111, x0011x1111}} {1x1xx \ {111xx, 101x0, 1x11x}, x101x \ {0101x, x1010, 11010}, 0xxx0 \ {0xx10, 00000, 00x00}} {10x11 \ {10011}, x010x \ {10100, 0010x}, 00xxx \ {00x01, 00xx1, 00101}} { 10x111x111 \ { 10x1111111, 10x111x111, 100111x111}, x010x1x10x \ { x01011x100, x01001x101, x010x1110x, x010x10100, 101001x10x, 0010x1x10x}, 00xxx1x1xx \ { 00xx11x1x0, 00xx01x1x1, 00x1x1x10x, 00x0x1x11x, 00xxx111xx, 00xxx101x0, 00xxx1x11x, 00x011x1xx, 00xx11x1xx, 001011x1xx}, 10x11x1011 \ { 10x1101011, 10011x1011}, 00x1xx101x \ { 00x11x1010, 00x10x1011, 00x1x0101x, 00x1xx1010, 00x1x11010, 00x11x101x}, x01000xx00 \ { x010000000, x010000x00, 101000xx00, 001000xx00}, 00xx00xxx0 \ { 00x100xx00, 00x000xx10, 00xx00xx10, 00xx000000, 00xx000x00}} {xxx1x \ {01x11, 00010, x0x1x}} {x1110 \ {01110, 11110}} { x1110xxx10 \ { x111000010, x1110x0x10, 01110xxx10, 11110xxx10}} {x0x10 \ {10110, 00010, 10010}, x001x \ {x0010, 00011, 10010}, 0xx1x \ {0011x, 0xx10, 00010}} {11x0x \ {11x00, 11100}, 01x1x \ {01011, 01010, 0111x}} { 01x10x0x10 \ { 01x1010110, 01x1000010, 01x1010010, 01010x0x10, 01110x0x10}, 01x1xx001x \ { 01x11x0010, 01x10x0011, 01x1xx0010, 01x1x00011, 01x1x10010, 01011x001x, 01010x001x, 0111xx001x}, 01x1x0xx1x \ { 01x110xx10, 01x100xx11, 01x1x0011x, 01x1x0xx10, 01x1x00010, 010110xx1x, 010100xx1x, 0111x0xx1x}} {} {x0x01 \ {10x01, 00x01, x0101}, 01xx0 \ {01000, 010x0, 01110}} {} {0x1x0 \ {01100, 00100, 01110}, xxx11 \ {01111, x1x11, 0x011}} {} {} {} {} {} {0xx1x \ {01010, 0xx11, 01110}, 0x1xx \ {01110, 001x0, 0x110}} {010x0 \ {01010}} { 010100xx10 \ { 0101001010, 0101001110, 010100xx10}, 010x00x1x0 \ { 010100x100, 010000x110, 010x001110, 010x0001x0, 010x00x110, 010100x1x0}} {11xxx \ {111x1, 11101}} {} {} {xx000 \ {01000, x0000, 10000}} {x000x \ {00001, x0001, x0001}} { x0000xx000 \ { x000001000, x0000x0000, x000010000}} {00x1x \ {0001x, 00x11, 0011x}, xxx10 \ {0xx10, 0x010, 1xx10}} {0xxx1 \ {010x1, 01111, 00xx1}, 1xx01 \ {11x01, 10101, 10001}, 00x1x \ {00111, 0001x, 00x10}} { 0xx1100x11 \ { 0xx1100011, 0xx1100x11, 0xx1100111, 0101100x11, 0111100x11, 00x1100x11}, 00x1x00x1x \ { 00x1100x10, 00x1000x11, 00x1x0001x, 00x1x00x11, 00x1x0011x, 0011100x1x, 0001x00x1x, 00x1000x1x}, 00x10xxx10 \ { 00x100xx10, 00x100x010, 00x101xx10, 00010xxx10, 00x10xxx10}} {1x1xx \ {10101, 1011x, 1x1x0}, 001xx \ {0010x, 0011x, 001x0}} {01xxx \ {010x1, 011x1}, 10x11 \ {10011, 10111, 10111}} { 01xxx1x1xx \ { 01xx11x1x0, 01xx01x1x1, 01x1x1x10x, 01x0x1x11x, 01xxx10101, 01xxx1011x, 01xxx1x1x0, 010x11x1xx, 011x11x1xx}, 10x111x111 \ { 10x1110111, 100111x111, 101111x111, 101111x111}, 01xxx001xx \ { 01xx1001x0, 01xx0001x1, 01x1x0010x, 01x0x0011x, 01xxx0010x, 01xxx0011x, 01xxx001x0, 010x1001xx, 011x1001xx}, 10x1100111 \ { 10x1100111, 1001100111, 1011100111, 1011100111}} {010xx \ {01011, 01010, 0100x}, x1xx0 \ {11010, 01010, x1000}, 1x110 \ {11110, 10110}} {} {} {0x100 \ {01100}, 0x100 \ {01100, 00100}, 00x11 \ {00111, 00011}} {101xx \ {10110, 10100, 10111}, xxx0x \ {1x101, x1001, x010x}, x10x0 \ {01000, 110x0, 010x0}} { 101000x100 \ { 1010001100, 101000x100}, xxx000x100 \ { xxx0001100, x01000x100}, x10000x100 \ { x100001100, 010000x100, 110000x100, 010000x100}, 1011100x11 \ { 1011100111, 1011100011, 1011100x11}} {} {0xx00 \ {00x00, 00100}, x01x1 \ {101x1, 10101, 001x1}} {} {1xx11 \ {11011, 10x11, 11111}} {10x01 \ {10101, 10001}, xxx1x \ {10110, 00x11, 1x111}} { xxx111xx11 \ { xxx1111011, xxx1110x11, xxx1111111, 00x111xx11, 1x1111xx11}} {0x000 \ {01000, 00000}, 0x1x0 \ {0x110, 0x100, 01100}} {} {} {xx0x1 \ {00011, 11011, 000x1}} {xxx10 \ {11010, 0xx10, 0xx10}, 1x0x1 \ {11011, 110x1, 10001}, 0011x \ {00110, 00111}} { 1x0x1xx0x1 \ { 1x011xx001, 1x001xx011, 1x0x100011, 1x0x111011, 1x0x1000x1, 11011xx0x1, 110x1xx0x1, 10001xx0x1}, 00111xx011 \ { 0011100011, 0011111011, 0011100011, 00111xx011}} {x0xxx \ {10011, x001x, x00x0}} {1x010 \ {11010, 10010, 10010}, x1x1x \ {11010, x1110, x1110}} { 1x010x0x10 \ { 1x010x0010, 1x010x0010, 11010x0x10, 10010x0x10, 10010x0x10}, x1x1xx0x1x \ { x1x11x0x10, x1x10x0x11, x1x1x10011, x1x1xx001x, x1x1xx0010, 11010x0x1x, x1110x0x1x, x1110x0x1x}} {10xx1 \ {100x1, 10101, 10001}, 11x0x \ {11001, 11000, 1110x}, x111x \ {x1111, 11110}} {0x1x0 \ {01100, 0x110, 011x0}, x10x1 \ {11011, 010x1, x1001}} { x10x110xx1 \ { x101110x01, x100110x11, x10x1100x1, x10x110101, x10x110001, 1101110xx1, 010x110xx1, x100110xx1}, 0x10011x00 \ { 0x10011000, 0x10011100, 0110011x00, 0110011x00}, x100111x01 \ { x100111001, x100111101, 0100111x01, x100111x01}, 0x110x1110 \ { 0x11011110, 0x110x1110, 01110x1110}, x1011x1111 \ { x1011x1111, 11011x1111, 01011x1111}} {1x1xx \ {111xx, 1x1x1, 10111}} {xxxxx \ {x0x10, 001x0, x01x0}} { xxxxx1x1xx \ { xxxx11x1x0, xxxx01x1x1, xxx1x1x10x, xxx0x1x11x, xxxxx111xx, xxxxx1x1x1, xxxxx10111, x0x101x1xx, 001x01x1xx, x01x01x1xx}} {0xx10 \ {01010, 0x110}} {xxxxx \ {01x0x, 111x0, 11000}} { xxx100xx10 \ { xxx1001010, xxx100x110, 111100xx10}} {100xx \ {10011, 1001x, 100x1}, x01x0 \ {x0100, 001x0, 00100}} {1x10x \ {11100, 10100, 1010x}, x111x \ {x1111, 1111x, 01110}, x1x11 \ {01011, x1011, 11011}} { 1x10x1000x \ { 1x10110000, 1x10010001, 1x10x10001, 111001000x, 101001000x, 1010x1000x}, x111x1001x \ { x111110010, x111010011, x111x10011, x111x1001x, x111x10011, x11111001x, 1111x1001x, 011101001x}, x1x1110011 \ { x1x1110011, x1x1110011, x1x1110011, 0101110011, x101110011, 1101110011}, 1x100x0100 \ { 1x100x0100, 1x10000100, 1x10000100, 11100x0100, 10100x0100, 10100x0100}, x1110x0110 \ { x111000110, 11110x0110, 01110x0110}} {xxx1x \ {11x1x, 00x11, 0x110}, 100xx \ {10010, 10001, 10000}} {xxxx0 \ {11100, 11x00, 01xx0}, xxx0x \ {01x00, 1010x, x1000}} { xxx10xxx10 \ { xxx1011x10, xxx100x110, 01x10xxx10}, xxxx0100x0 \ { xxx1010000, xxx0010010, xxxx010010, xxxx010000, 11100100x0, 11x00100x0, 01xx0100x0}, xxx0x1000x \ { xxx0110000, xxx0010001, xxx0x10001, xxx0x10000, 01x001000x, 1010x1000x, x10001000x}} {} {1x10x \ {11100, 1010x, 1010x}, 10x11 \ {10111}} {} {x01x1 \ {x0111, 101x1, 10101}, 1xxx0 \ {1x000, 1xx00, 11xx0}} {0xxx0 \ {011x0, 0x0x0, 00000}} { 0xxx01xxx0 \ { 0xx101xx00, 0xx001xx10, 0xxx01x000, 0xxx01xx00, 0xxx011xx0, 011x01xxx0, 0x0x01xxx0, 000001xxx0}} {0011x \ {00111, 00110}, 11x0x \ {1100x, 11x00, 11x00}} {1110x \ {11100, 11101, 11101}, 1x0xx \ {110x1, 1x000, 1x000}} { 1x01x0011x \ { 1x01100110, 1x01000111, 1x01x00111, 1x01x00110, 110110011x}, 1110x11x0x \ { 1110111x00, 1110011x01, 1110x1100x, 1110x11x00, 1110x11x00, 1110011x0x, 1110111x0x, 1110111x0x}, 1x00x11x0x \ { 1x00111x00, 1x00011x01, 1x00x1100x, 1x00x11x00, 1x00x11x00, 1100111x0x, 1x00011x0x, 1x00011x0x}} {1xx0x \ {11101, 10000, 10000}, 00x01 \ {00001, 00101}} {0x11x \ {0x110, 0111x, 00110}} {} {} {x111x \ {01111, 11111}, 0x0x0 \ {000x0, 010x0, 01000}, xx110 \ {0x110, 11110, 00110}} {} {01x0x \ {0100x, 01101, 01101}} {101x0 \ {10110, 10100}} { 1010001x00 \ { 1010001000, 1010001x00}} {xx0xx \ {x100x, x1010, 0x000}} {1xx1x \ {10x10, 11010, 1xx10}, 11x00 \ {11100, 11000, 11000}, 0x01x \ {01011, 00010, 01010}} { 1xx1xxx01x \ { 1xx11xx010, 1xx10xx011, 1xx1xx1010, 10x10xx01x, 11010xx01x, 1xx10xx01x}, 11x00xx000 \ { 11x00x1000, 11x000x000, 11100xx000, 11000xx000, 11000xx000}, 0x01xxx01x \ { 0x011xx010, 0x010xx011, 0x01xx1010, 01011xx01x, 00010xx01x, 01010xx01x}} {x100x \ {01000, x1000, 01001}, x0x11 \ {00011, x0111}} {0111x \ {01111, 01110, 01110}, 0x01x \ {01010, 0001x, 0101x}} { 01111x0x11 \ { 0111100011, 01111x0111, 01111x0x11}, 0x011x0x11 \ { 0x01100011, 0x011x0111, 00011x0x11, 01011x0x11}} {x1x1x \ {01x1x, 0111x, 1101x}} {} {} {0xxx0 \ {0x0x0, 01010, 0x010}} {xxx01 \ {10x01, 1x101, 0xx01}, 00x1x \ {00110, 00011, 0011x}} { 00x100xx10 \ { 00x100x010, 00x1001010, 00x100x010, 001100xx10, 001100xx10}} {0xxx0 \ {0x000, 000x0, 00xx0}, xx1xx \ {1x10x, 01111, 01111}} {x1xx0 \ {110x0, x10x0, x1000}, x0xx0 \ {00100, 00000, 00110}} { x1xx00xxx0 \ { x1x100xx00, x1x000xx10, x1xx00x000, x1xx0000x0, x1xx000xx0, 110x00xxx0, x10x00xxx0, x10000xxx0}, x0xx00xxx0 \ { x0x100xx00, x0x000xx10, x0xx00x000, x0xx0000x0, x0xx000xx0, 001000xxx0, 000000xxx0, 001100xxx0}, x1xx0xx1x0 \ { x1x10xx100, x1x00xx110, x1xx01x100, 110x0xx1x0, x10x0xx1x0, x1000xx1x0}, x0xx0xx1x0 \ { x0x10xx100, x0x00xx110, x0xx01x100, 00100xx1x0, 00000xx1x0, 00110xx1x0}} {x0x0x \ {10101, 10x00, 00x00}, x1011 \ {11011, 01011}} {11x00 \ {11000}, x11x0 \ {x1100, 01100, 01110}, 1x100 \ {10100}} { 11x00x0x00 \ { 11x0010x00, 11x0000x00, 11000x0x00}, x1100x0x00 \ { x110010x00, x110000x00, x1100x0x00, 01100x0x00}, 1x100x0x00 \ { 1x10010x00, 1x10000x00, 10100x0x00}} {001xx \ {00101, 001x0, 00111}} {01x0x \ {01000, 0110x, 01x01}, 100x0 \ {10000}} { 01x0x0010x \ { 01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 010000010x, 0110x0010x, 01x010010x}, 100x0001x0 \ { 1001000100, 1000000110, 100x0001x0, 10000001x0}} {110xx \ {110x1, 1101x}, 00xx1 \ {00001, 00x11}} {11xxx \ {11101, 11110, 111x0}, x01x1 \ {10101, 001x1, 101x1}} { 11xxx110xx \ { 11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx110x1, 11xxx1101x, 11101110xx, 11110110xx, 111x0110xx}, x01x1110x1 \ { x011111001, x010111011, x01x1110x1, x01x111011, 10101110x1, 001x1110x1, 101x1110x1}, 11xx100xx1 \ { 11x1100x01, 11x0100x11, 11xx100001, 11xx100x11, 1110100xx1}, x01x100xx1 \ { x011100x01, x010100x11, x01x100001, x01x100x11, 1010100xx1, 001x100xx1, 101x100xx1}} {x01x0 \ {00100, 00110, 10110}} {x11x0 \ {x1110, 01110}} { x11x0x01x0 \ { x1110x0100, x1100x0110, x11x000100, x11x000110, x11x010110, x1110x01x0, 01110x01x0}} {xx10x \ {11100, 10100, 1110x}, 1110x \ {11100, 11101}, 1110x \ {11101, 11100, 11100}} {x1x10 \ {11x10, 11010, x1110}} {} {0x010 \ {00010}, 1x0x1 \ {10001, 110x1, 11011}} {x101x \ {x1011, 01011, 11011}, x110x \ {1110x, 01101}} { x10100x010 \ { x101000010}, x10111x011 \ { x101111011, x101111011, x10111x011, 010111x011, 110111x011}, x11011x001 \ { x110110001, x110111001, 111011x001, 011011x001}} {01x1x \ {0111x, 01010, 01110}} {} {} {00xxx \ {00x1x, 0000x}} {x00x1 \ {00011, 00001}, x00x1 \ {000x1, 10011, 00001}} { x00x100xx1 \ { x001100x01, x000100x11, x00x100x11, x00x100001, 0001100xx1, 0000100xx1}} {1x101 \ {10101, 11101}} {10xx1 \ {10111, 10001, 101x1}} { 10x011x101 \ { 10x0110101, 10x0111101, 100011x101, 101011x101}} {1x1xx \ {11100, 111xx, 10111}} {xx0x1 \ {x0001, 110x1, x10x1}, 1x110 \ {11110}} { xx0x11x1x1 \ { xx0111x101, xx0011x111, xx0x1111x1, xx0x110111, x00011x1x1, 110x11x1x1, x10x11x1x1}, 1x1101x110 \ { 1x11011110, 111101x110}} {xx0xx \ {110xx, x000x, 01010}} {1x10x \ {1x101, 1010x, 1x100}} { 1x10xxx00x \ { 1x101xx000, 1x100xx001, 1x10x1100x, 1x10xx000x, 1x101xx00x, 1010xxx00x, 1x100xx00x}} {x111x \ {0111x, x1111, 01111}} {xx1x0 \ {10100, 11100, 111x0}, xx0xx \ {010x1, 1001x, 10010}} { xx110x1110 \ { xx11001110, 11110x1110}, xx01xx111x \ { xx011x1110, xx010x1111, xx01x0111x, xx01xx1111, xx01x01111, 01011x111x, 1001xx111x, 10010x111x}} {1x10x \ {1110x, 1x100, 1010x}, xx0xx \ {01000, x10x0, x0011}} {} {} {110x1 \ {11001, 11011, 11011}, 0xx10 \ {00110, 01110, 00x10}, 0x1x0 \ {011x0, 001x0, 00100}} {1xx00 \ {10100, 11100, 11000}, xx10x \ {0x10x}} { xx10111001 \ { xx10111001, 0x10111001}, 1xx000x100 \ { 1xx0001100, 1xx0000100, 1xx0000100, 101000x100, 111000x100, 110000x100}, xx1000x100 \ { xx10001100, xx10000100, xx10000100, 0x1000x100}} {xx011 \ {01011, x0011, 10011}} {1xx11 \ {10x11, 11011, 11011}} { 1xx11xx011 \ { 1xx1101011, 1xx11x0011, 1xx1110011, 10x11xx011, 11011xx011, 11011xx011}} {xx110 \ {x0110, 01110, 11110}} {00x01 \ {00101, 00001}} {} {x0xxx \ {10011, 001xx, 00xx0}} {1xx0x \ {1000x, 1x000, 11x0x}} { 1xx0xx0x0x \ { 1xx01x0x00, 1xx00x0x01, 1xx0x0010x, 1xx0x00x00, 1000xx0x0x, 1x000x0x0x, 11x0xx0x0x}} {10xx1 \ {10101, 101x1}, 1010x \ {10100, 10101, 10101}} {10xx0 \ {10x00, 10010, 10110}} { 10x0010100 \ { 10x0010100, 10x0010100}} {xxx1x \ {0xx1x, 10x1x, x0x1x}, 1xxx1 \ {1x111, 11x11, 11xx1}} {01x1x \ {01110, 0111x, 01010}} { 01x1xxxx1x \ { 01x11xxx10, 01x10xxx11, 01x1x0xx1x, 01x1x10x1x, 01x1xx0x1x, 01110xxx1x, 0111xxxx1x, 01010xxx1x}, 01x111xx11 \ { 01x111x111, 01x1111x11, 01x1111x11, 011111xx11}} {xx110 \ {x1110, 1x110, 00110}, 10xx0 \ {100x0, 10100, 10110}} {x01xx \ {10111, 00101, x0110}} { x0110xx110 \ { x0110x1110, x01101x110, x011000110, x0110xx110}, x01x010xx0 \ { x011010x00, x010010x10, x01x0100x0, x01x010100, x01x010110, x011010xx0}} {0x10x \ {00101, 01101, 00100}, x011x \ {00111, x0110, 1011x}} {0xxx0 \ {01000, 01xx0, 0x000}} { 0xx000x100 \ { 0xx0000100, 010000x100, 01x000x100, 0x0000x100}, 0xx10x0110 \ { 0xx10x0110, 0xx1010110, 01x10x0110}} {xxx11 \ {00011, x0111, 1xx11}} {x1x00 \ {01000}, x1xx1 \ {x10x1, 01111}} { x1x11xxx11 \ { x1x1100011, x1x11x0111, x1x111xx11, x1011xxx11, 01111xxx11}} {} {111xx \ {111x1, 11111, 11110}} {} {xx0x1 \ {010x1, 11001, 000x1}, x11x0 \ {111x0, 11100, 01110}} {00x1x \ {00x10, 00110, 00011}, 0xxx1 \ {01xx1, 0x111, 00001}} { 00x11xx011 \ { 00x1101011, 00x1100011, 00011xx011}, 0xxx1xx0x1 \ { 0xx11xx001, 0xx01xx011, 0xxx1010x1, 0xxx111001, 0xxx1000x1, 01xx1xx0x1, 0x111xx0x1, 00001xx0x1}, 00x10x1110 \ { 00x1011110, 00x1001110, 00x10x1110, 00110x1110}} {x1x01 \ {11101, 11001, x1001}, 1xxx0 \ {10100, 11xx0}} {00xxx \ {000xx, 00xx1}, x100x \ {01000, x1001}} { 00x01x1x01 \ { 00x0111101, 00x0111001, 00x01x1001, 00001x1x01, 00x01x1x01}, x1001x1x01 \ { x100111101, x100111001, x1001x1001, x1001x1x01}, 00xx01xxx0 \ { 00x101xx00, 00x001xx10, 00xx010100, 00xx011xx0, 000x01xxx0}, x10001xx00 \ { x100010100, x100011x00, 010001xx00}} {xx01x \ {00010, x001x, 11011}} {10xx1 \ {101x1, 10101, 10111}, 1x11x \ {11111, 10111}} { 10x11xx011 \ { 10x11x0011, 10x1111011, 10111xx011, 10111xx011}, 1x11xxx01x \ { 1x111xx010, 1x110xx011, 1x11x00010, 1x11xx001x, 1x11x11011, 11111xx01x, 10111xx01x}} {01x1x \ {0101x, 01010, 01111}, 10x0x \ {10000, 10101, 10001}} {} {} {} {xx01x \ {00010, 11010, 1x011}} {} {x1001 \ {11001, 01001}, xx100 \ {11100, 0x100, 01100}} {x010x \ {10100, x0100, 10101}} { x0101x1001 \ { x010111001, x010101001, 10101x1001}, x0100xx100 \ { x010011100, x01000x100, x010001100, 10100xx100, x0100xx100}} {} {x110x \ {01101, 0110x, 01100}, 11x0x \ {11101, 1100x}, xx10x \ {x010x, 1x100, x0100}} {} {0011x \ {00111}, x1x0x \ {01x0x, 01001, 01000}} {110x0 \ {11010, 11000, 11000}, x1xx1 \ {11xx1, 01x01, 11001}, x1x01 \ {01001, x1101}} { 1101000110 \ { 1101000110}, x1x1100111 \ { x1x1100111, 11x1100111}, 11000x1x00 \ { 1100001x00, 1100001000, 11000x1x00, 11000x1x00}, x1x01x1x01 \ { x1x0101x01, x1x0101001, 11x01x1x01, 01x01x1x01, 11001x1x01}, x1x01x1x01 \ { x1x0101x01, x1x0101001, 01001x1x01, x1101x1x01}} {x0xx1 \ {00x11, 00xx1, 10101}, 1xx11 \ {11011, 11x11, 11x11}} {} {} {110xx \ {11000, 1101x}} {xx1xx \ {001x1, 0x11x, 1x100}, 0x1xx \ {0x111, 0x10x, 01100}, 00xx1 \ {00x11, 00111, 00011}} { xx1xx110xx \ { xx1x1110x0, xx1x0110x1, xx11x1100x, xx10x1101x, xx1xx11000, xx1xx1101x, 001x1110xx, 0x11x110xx, 1x100110xx}, 0x1xx110xx \ { 0x1x1110x0, 0x1x0110x1, 0x11x1100x, 0x10x1101x, 0x1xx11000, 0x1xx1101x, 0x111110xx, 0x10x110xx, 01100110xx}, 00xx1110x1 \ { 00x1111001, 00x0111011, 00xx111011, 00x11110x1, 00111110x1, 00011110x1}} {x1x0x \ {11x01, x1000, x110x}, x010x \ {10100, x0100, 00101}, 01xxx \ {01011, 01x11, 0111x}} {101xx \ {101x1, 1010x, 10110}, 11x1x \ {1101x, 11011}} { 1010xx1x0x \ { 10101x1x00, 10100x1x01, 1010x11x01, 1010xx1000, 1010xx110x, 10101x1x0x, 1010xx1x0x}, 1010xx010x \ { 10101x0100, 10100x0101, 1010x10100, 1010xx0100, 1010x00101, 10101x010x, 1010xx010x}, 101xx01xxx \ { 101x101xx0, 101x001xx1, 1011x01x0x, 1010x01x1x, 101xx01011, 101xx01x11, 101xx0111x, 101x101xxx, 1010x01xxx, 1011001xxx}, 11x1x01x1x \ { 11x1101x10, 11x1001x11, 11x1x01011, 11x1x01x11, 11x1x0111x, 1101x01x1x, 1101101x1x}} {10x00 \ {10100, 10000}} {x01xx \ {10101, 00111, 0011x}} { x010010x00 \ { x010010100, x010010000}} {10xxx \ {10111, 10001, 10x10}} {x1111 \ {01111, 11111}} { x111110x11 \ { x111110111, 0111110x11, 1111110x11}} {1x000 \ {11000, 10000, 10000}} {00x0x \ {0010x, 0000x, 0000x}} { 00x001x000 \ { 00x0011000, 00x0010000, 00x0010000, 001001x000, 000001x000, 000001x000}} {} {xxx1x \ {01011, x0x11, 1x01x}, 0x10x \ {0110x, 0x100, 0010x}, 1x01x \ {1101x, 11010}} {} {x0x00 \ {00100, 10x00, x0000}, x01x1 \ {00101, 10101, 00111}} {00x0x \ {0000x, 0010x}, 1x0x1 \ {10001, 1x001}} { 00x00x0x00 \ { 00x0000100, 00x0010x00, 00x00x0000, 00000x0x00, 00100x0x00}, 00x01x0101 \ { 00x0100101, 00x0110101, 00001x0101, 00101x0101}, 1x0x1x01x1 \ { 1x011x0101, 1x001x0111, 1x0x100101, 1x0x110101, 1x0x100111, 10001x01x1, 1x001x01x1}} {00xx1 \ {000x1, 00001}} {x1100 \ {11100}} {} {1x10x \ {1x100, 10100, 1x101}, x1xx0 \ {01x10, x10x0, x1000}} {xx00x \ {0100x, xx001, x100x}} { xx00x1x10x \ { xx0011x100, xx0001x101, xx00x1x100, xx00x10100, xx00x1x101, 0100x1x10x, xx0011x10x, x100x1x10x}, xx000x1x00 \ { xx000x1000, xx000x1000, 01000x1x00, x1000x1x00}} {} {00x0x \ {00100, 00x00, 00x00}, x0x11 \ {x0011, 00111, 10011}} {} {x001x \ {00010, 10010, 00011}} {xxxxx \ {x0010, 11x11, 1xx00}, xxx10 \ {1x010, x1110, 00110}} { xxx1xx001x \ { xxx11x0010, xxx10x0011, xxx1x00010, xxx1x10010, xxx1x00011, x0010x001x, 11x11x001x}, xxx10x0010 \ { xxx1000010, xxx1010010, 1x010x0010, x1110x0010, 00110x0010}} {xxx00 \ {x0x00, x1100, x1000}} {xx1x1 \ {11101, 00111, 101x1}, x1x11 \ {11x11, 01x11}} {} {0110x \ {01100, 01101}} {} {} {0x101 \ {01101}, 10x01 \ {10001, 10101}} {01x1x \ {0111x, 01x11, 01111}} {} {xx0x1 \ {000x1, 10011}, 111xx \ {11101, 11111, 1111x}, x0x00 \ {00100, 10x00, 00000}} {00x1x \ {00111, 0011x}} { 00x11xx011 \ { 00x1100011, 00x1110011, 00111xx011, 00111xx011}, 00x1x1111x \ { 00x1111110, 00x1011111, 00x1x11111, 00x1x1111x, 001111111x, 0011x1111x}} {x1x10 \ {x1110, 11110, x1010}, x11x0 \ {01100, 01110}} {0xx10 \ {0x110, 00x10, 00x10}} { 0xx10x1x10 \ { 0xx10x1110, 0xx1011110, 0xx10x1010, 0x110x1x10, 00x10x1x10, 00x10x1x10}, 0xx10x1110 \ { 0xx1001110, 0x110x1110, 00x10x1110, 00x10x1110}} {x110x \ {11100, x1100, x1101}} {1xx1x \ {10010, 1x011, 1x01x}} {} {0100x \ {01000, 01001, 01001}, 1x0xx \ {1000x, 1101x, 110x1}} {x110x \ {11101, 0110x}, 11xxx \ {11x10, 11x11, 11011}} { x110x0100x \ { x110101000, x110001001, x110x01000, x110x01001, x110x01001, 111010100x, 0110x0100x}, 11x0x0100x \ { 11x0101000, 11x0001001, 11x0x01000, 11x0x01001, 11x0x01001}, x110x1x00x \ { x11011x000, x11001x001, x110x1000x, x110x11001, 111011x00x, 0110x1x00x}, 11xxx1x0xx \ { 11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1000x, 11xxx1101x, 11xxx110x1, 11x101x0xx, 11x111x0xx, 110111x0xx}} {01xxx \ {01010, 01x0x, 01111}} {x00x1 \ {00011, 100x1, 00001}} { x00x101xx1 \ { x001101x01, x000101x11, x00x101x01, x00x101111, 0001101xx1, 100x101xx1, 0000101xx1}} {1x0x1 \ {10001, 1x011, 100x1}, x0110 \ {10110, 00110, 00110}} {1xxxx \ {11100, 101xx, 101xx}, x1xx1 \ {111x1, 11001, 010x1}} { 1xxx11x0x1 \ { 1xx111x001, 1xx011x011, 1xxx110001, 1xxx11x011, 1xxx1100x1, 101x11x0x1, 101x11x0x1}, x1xx11x0x1 \ { x1x111x001, x1x011x011, x1xx110001, x1xx11x011, x1xx1100x1, 111x11x0x1, 110011x0x1, 010x11x0x1}, 1xx10x0110 \ { 1xx1010110, 1xx1000110, 1xx1000110, 10110x0110, 10110x0110}} {xx111 \ {01111, 10111, 10111}, 0xx10 \ {00x10, 00010, 01110}, x0x0x \ {1010x, 10001, x000x}} {101xx \ {1011x, 101x0, 10110}, x111x \ {11111, 01111, 01111}, x11x1 \ {x1111, x1101, x1101}} { 10111xx111 \ { 1011101111, 1011110111, 1011110111, 10111xx111}, x1111xx111 \ { x111101111, x111110111, x111110111, 11111xx111, 01111xx111, 01111xx111}, 101100xx10 \ { 1011000x10, 1011000010, 1011001110, 101100xx10, 101100xx10, 101100xx10}, x11100xx10 \ { x111000x10, x111000010, x111001110}, 1010xx0x0x \ { 10101x0x00, 10100x0x01, 1010x1010x, 1010x10001, 1010xx000x, 10100x0x0x}, x1101x0x01 \ { x110110101, x110110001, x1101x0001, x1101x0x01, x1101x0x01}} {} {x0xx1 \ {100x1, 000x1, 00x01}, 100xx \ {100x0, 10001, 100x1}} {} {x11xx \ {x111x, 011x0, x11x1}, 1xxxx \ {11xxx, 1111x, 11111}, 00xx0 \ {00010, 00100, 00110}} {01xxx \ {011x0, 01101, 010x1}, 11xx0 \ {11000, 11010}} { 01xxxx11xx \ { 01xx1x11x0, 01xx0x11x1, 01x1xx110x, 01x0xx111x, 01xxxx111x, 01xxx011x0, 01xxxx11x1, 011x0x11xx, 01101x11xx, 010x1x11xx}, 11xx0x11x0 \ { 11x10x1100, 11x00x1110, 11xx0x1110, 11xx0011x0, 11000x11x0, 11010x11x0}, 01xxx1xxxx \ { 01xx11xxx0, 01xx01xxx1, 01x1x1xx0x, 01x0x1xx1x, 01xxx11xxx, 01xxx1111x, 01xxx11111, 011x01xxxx, 011011xxxx, 010x11xxxx}, 11xx01xxx0 \ { 11x101xx00, 11x001xx10, 11xx011xx0, 11xx011110, 110001xxx0, 110101xxx0}, 01xx000xx0 \ { 01x1000x00, 01x0000x10, 01xx000010, 01xx000100, 01xx000110, 011x000xx0}, 11xx000xx0 \ { 11x1000x00, 11x0000x10, 11xx000010, 11xx000100, 11xx000110, 1100000xx0, 1101000xx0}} {xxx01 \ {0x101, x0x01, 00001}, x01x0 \ {00100, 101x0}} {xxx1x \ {x1x10, 01111, x0x10}} { xxx10x0110 \ { xxx1010110, x1x10x0110, x0x10x0110}} {x1xx0 \ {01x10, 11x10, x1x00}, x11x1 \ {011x1, 11101, 11101}} {x010x \ {00101, x0101}, 01xxx \ {01011, 01x10, 0101x}, x00x1 \ {00001, 10011, 000x1}} { x0100x1x00 \ { x0100x1x00}, 01xx0x1xx0 \ { 01x10x1x00, 01x00x1x10, 01xx001x10, 01xx011x10, 01xx0x1x00, 01x10x1xx0, 01010x1xx0}, x0101x1101 \ { x010101101, x010111101, x010111101, 00101x1101, x0101x1101}, 01xx1x11x1 \ { 01x11x1101, 01x01x1111, 01xx1011x1, 01xx111101, 01xx111101, 01011x11x1, 01011x11x1}, x00x1x11x1 \ { x0011x1101, x0001x1111, x00x1011x1, x00x111101, x00x111101, 00001x11x1, 10011x11x1, 000x1x11x1}} {} {x1x1x \ {x1110, 01010, 1101x}} {} {xx0x0 \ {x10x0, 10000, 01010}, 1x1x1 \ {11101, 11111, 10101}} {x0xx0 \ {x0x00, 00x10}} { x0xx0xx0x0 \ { x0x10xx000, x0x00xx010, x0xx0x10x0, x0xx010000, x0xx001010, x0x00xx0x0, 00x10xx0x0}} {} {xx0xx \ {x00x1, 11010, x1000}} {} {001xx \ {00100, 0010x, 0011x}, 01x0x \ {01100, 01x00, 01x00}} {xx0xx \ {00001, 11011, 00010}} { xx0xx001xx \ { xx0x1001x0, xx0x0001x1, xx01x0010x, xx00x0011x, xx0xx00100, xx0xx0010x, xx0xx0011x, 00001001xx, 11011001xx, 00010001xx}, xx00x01x0x \ { xx00101x00, xx00001x01, xx00x01100, xx00x01x00, xx00x01x00, 0000101x0x}} {110x0 \ {11010, 11000}, x100x \ {01001, 1100x, 0100x}} {1x001 \ {10001, 11001, 11001}, 1011x \ {10111, 10110, 10110}} { 1011011010 \ { 1011011010, 1011011010, 1011011010}, 1x001x1001 \ { 1x00101001, 1x00111001, 1x00101001, 10001x1001, 11001x1001, 11001x1001}} {xx0x0 \ {x1000, 11010, 01010}} {1x0xx \ {1x0x1, 1001x, 10000}, 011x1 \ {01101}, xx10x \ {xx101, 0110x, x010x}} { 1x0x0xx0x0 \ { 1x010xx000, 1x000xx010, 1x0x0x1000, 1x0x011010, 1x0x001010, 10010xx0x0, 10000xx0x0}, xx100xx000 \ { xx100x1000, 01100xx000, x0100xx000}} {x01x0 \ {x0110, 00100}} {0x0xx \ {00000, 010x0, 01001}, 01x11 \ {01111, 01011}, 01xx0 \ {01100, 01010, 01010}} { 0x0x0x01x0 \ { 0x010x0100, 0x000x0110, 0x0x0x0110, 0x0x000100, 00000x01x0, 010x0x01x0}, 01xx0x01x0 \ { 01x10x0100, 01x00x0110, 01xx0x0110, 01xx000100, 01100x01x0, 01010x01x0, 01010x01x0}} {1xx10 \ {10x10, 10110, 10110}, xxx1x \ {1001x, 0011x, x1010}, 1xx10 \ {10110, 1x110, 11010}} {0x10x \ {01101, 00100, 01100}} {} {0x1x0 \ {01110, 011x0, 0x110}, x100x \ {11000, 0100x, 01001}, x11xx \ {011x0, 11111, x11x1}} {011x0 \ {01110}, x1xxx \ {11x10, 01100, 110x0}} { 011x00x1x0 \ { 011100x100, 011000x110, 011x001110, 011x0011x0, 011x00x110, 011100x1x0}, x1xx00x1x0 \ { x1x100x100, x1x000x110, x1xx001110, x1xx0011x0, x1xx00x110, 11x100x1x0, 011000x1x0, 110x00x1x0}, 01100x1000 \ { 0110011000, 0110001000}, x1x0xx100x \ { x1x01x1000, x1x00x1001, x1x0x11000, x1x0x0100x, x1x0x01001, 01100x100x, 11000x100x}, 011x0x11x0 \ { 01110x1100, 01100x1110, 011x0011x0, 01110x11x0}, x1xxxx11xx \ { x1xx1x11x0, x1xx0x11x1, x1x1xx110x, x1x0xx111x, x1xxx011x0, x1xxx11111, x1xxxx11x1, 11x10x11xx, 01100x11xx, 110x0x11xx}} {0x10x \ {0010x, 01101, 00101}, x1000 \ {11000, 01000}} {11xxx \ {11000, 11010, 11x00}, xx001 \ {00001, 1x001}} { 11x0x0x10x \ { 11x010x100, 11x000x101, 11x0x0010x, 11x0x01101, 11x0x00101, 110000x10x, 11x000x10x}, xx0010x101 \ { xx00100101, xx00101101, xx00100101, 000010x101, 1x0010x101}, 11x00x1000 \ { 11x0011000, 11x0001000, 11000x1000, 11x00x1000}} {10x0x \ {10101, 10000}, 0xx0x \ {00x01, 01x00, 01100}} {xx011 \ {01011, x1011}, x011x \ {x0110, 1011x, 10110}} {} {x0xx1 \ {10011, x01x1, 10101}, x1xxx \ {x10x1, 11011, 110x0}} {xx0x0 \ {01010, 1x000, x1010}, 0xxx0 \ {01110, 00000, 001x0}, 10xx1 \ {10111, 101x1, 10101}} { 10xx1x0xx1 \ { 10x11x0x01, 10x01x0x11, 10xx110011, 10xx1x01x1, 10xx110101, 10111x0xx1, 101x1x0xx1, 10101x0xx1}, xx0x0x1xx0 \ { xx010x1x00, xx000x1x10, xx0x0110x0, 01010x1xx0, 1x000x1xx0, x1010x1xx0}, 0xxx0x1xx0 \ { 0xx10x1x00, 0xx00x1x10, 0xxx0110x0, 01110x1xx0, 00000x1xx0, 001x0x1xx0}, 10xx1x1xx1 \ { 10x11x1x01, 10x01x1x11, 10xx1x10x1, 10xx111011, 10111x1xx1, 101x1x1xx1, 10101x1xx1}} {x0x00 \ {10x00, 00x00, x0000}, 0xx00 \ {00000, 01000, 00100}} {1000x \ {10001, 10000}} { 10000x0x00 \ { 1000010x00, 1000000x00, 10000x0000, 10000x0x00}, 100000xx00 \ { 1000000000, 1000001000, 1000000100, 100000xx00}} {x101x \ {01010, 11011, 11011}, 10xxx \ {1001x, 100xx, 10000}} {111xx \ {11110, 11111, 1111x}, 011xx \ {01110, 01101, 011x1}} { 1111xx101x \ { 11111x1010, 11110x1011, 1111x01010, 1111x11011, 1111x11011, 11110x101x, 11111x101x, 1111xx101x}, 0111xx101x \ { 01111x1010, 01110x1011, 0111x01010, 0111x11011, 0111x11011, 01110x101x, 01111x101x}, 111xx10xxx \ { 111x110xx0, 111x010xx1, 1111x10x0x, 1110x10x1x, 111xx1001x, 111xx100xx, 111xx10000, 1111010xxx, 1111110xxx, 1111x10xxx}, 011xx10xxx \ { 011x110xx0, 011x010xx1, 0111x10x0x, 0110x10x1x, 011xx1001x, 011xx100xx, 011xx10000, 0111010xxx, 0110110xxx, 011x110xxx}} {x1x11 \ {01011, 01x11}, xxx01 \ {01x01, 00101, x0x01}} {xx111 \ {10111, x1111, x1111}, x1xx1 \ {01x11, 11x11, x1x11}} { xx111x1x11 \ { xx11101011, xx11101x11, 10111x1x11, x1111x1x11, x1111x1x11}, x1x11x1x11 \ { x1x1101011, x1x1101x11, 01x11x1x11, 11x11x1x11, x1x11x1x11}, x1x01xxx01 \ { x1x0101x01, x1x0100101, x1x01x0x01}} {} {x11xx \ {1110x, x11x0, 111x1}, 00x0x \ {00x01, 0010x, 00100}} {} {1xxx1 \ {1x001, 1xx01, 11x11}, x1xxx \ {01001, x100x, 11001}} {xxx10 \ {x0010, x0x10, xx010}, 1xx10 \ {10110, 11110, 11110}} { xxx10x1x10 \ { x0010x1x10, x0x10x1x10, xx010x1x10}, 1xx10x1x10 \ { 10110x1x10, 11110x1x10, 11110x1x10}} {x11x0 \ {01100, 011x0, 11110}, 0100x \ {01000, 01001}} {010x0 \ {01000, 01010, 01010}, 0xx01 \ {0x001, 00101}} { 010x0x11x0 \ { 01010x1100, 01000x1110, 010x001100, 010x0011x0, 010x011110, 01000x11x0, 01010x11x0, 01010x11x0}, 0100001000 \ { 0100001000, 0100001000}, 0xx0101001 \ { 0xx0101001, 0x00101001, 0010101001}} {1x000 \ {10000, 11000}, x0x10 \ {00110, 10110}, 01xx0 \ {01000, 01010}} {} {} {0xx1x \ {0001x, 00x10, 0x01x}, 1x1x1 \ {10111, 101x1, 10101}} {x0xxx \ {10xx1, x0001, 101x1}, 00x1x \ {00x11, 00011, 00011}} { x0x1x0xx1x \ { x0x110xx10, x0x100xx11, x0x1x0001x, x0x1x00x10, x0x1x0x01x, 10x110xx1x, 101110xx1x}, 00x1x0xx1x \ { 00x110xx10, 00x100xx11, 00x1x0001x, 00x1x00x10, 00x1x0x01x, 00x110xx1x, 000110xx1x, 000110xx1x}, x0xx11x1x1 \ { x0x111x101, x0x011x111, x0xx110111, x0xx1101x1, x0xx110101, 10xx11x1x1, x00011x1x1, 101x11x1x1}, 00x111x111 \ { 00x1110111, 00x1110111, 00x111x111, 000111x111, 000111x111}} {x10x0 \ {11000, 010x0, 01000}, x11x0 \ {x1110, 01110, 11100}, x001x \ {x0011, 00011, 10010}} {0x011 \ {01011}} { 0x011x0011 \ { 0x011x0011, 0x01100011, 01011x0011}} {111x1 \ {11111}} {x111x \ {0111x, x1110, 11111}, 1xx10 \ {11010, 10x10, 1x110}} { x111111111 \ { x111111111, 0111111111, 1111111111}} {110x0 \ {11010, 11000}} {x10xx \ {110x1, 010x0, x1000}} { x10x0110x0 \ { x101011000, x100011010, x10x011010, x10x011000, 010x0110x0, x1000110x0}} {x11xx \ {x1100, x1101}, x0xx1 \ {10001, 101x1, x0x11}, 11x0x \ {1110x, 11100, 11100}} {x0xxx \ {00xx0, 000x0, 101x1}} { x0xxxx11xx \ { x0xx1x11x0, x0xx0x11x1, x0x1xx110x, x0x0xx111x, x0xxxx1100, x0xxxx1101, 00xx0x11xx, 000x0x11xx, 101x1x11xx}, x0xx1x0xx1 \ { x0x11x0x01, x0x01x0x11, x0xx110001, x0xx1101x1, x0xx1x0x11, 101x1x0xx1}, x0x0x11x0x \ { x0x0111x00, x0x0011x01, x0x0x1110x, x0x0x11100, x0x0x11100, 00x0011x0x, 0000011x0x, 1010111x0x}} {1000x \ {10001, 10000}} {} {} {xx001 \ {x1001, 01001, 00001}, x1x11 \ {11x11, 01111}, 0xx00 \ {00000, 0x000, 00100}} {x01xx \ {x0111, 00101, 10111}, 110xx \ {11001, 11011, 1101x}} { x0101xx001 \ { x0101x1001, x010101001, x010100001, 00101xx001}, 11001xx001 \ { 11001x1001, 1100101001, 1100100001, 11001xx001}, x0111x1x11 \ { x011111x11, x011101111, x0111x1x11, 10111x1x11}, 11011x1x11 \ { 1101111x11, 1101101111, 11011x1x11, 11011x1x11}, x01000xx00 \ { x010000000, x01000x000, x010000100}, 110000xx00 \ { 1100000000, 110000x000, 1100000100}} {0xxx1 \ {010x1, 00x01, 000x1}, x0xxx \ {x0x00, 00101, 10x11}} {00x00 \ {00100, 00000}, x11xx \ {11101, 011x1, 011xx}} { x11x10xxx1 \ { x11110xx01, x11010xx11, x11x1010x1, x11x100x01, x11x1000x1, 111010xxx1, 011x10xxx1, 011x10xxx1}, 00x00x0x00 \ { 00x00x0x00, 00100x0x00, 00000x0x00}, x11xxx0xxx \ { x11x1x0xx0, x11x0x0xx1, x111xx0x0x, x110xx0x1x, x11xxx0x00, x11xx00101, x11xx10x11, 11101x0xxx, 011x1x0xxx, 011xxx0xxx}} {0xx01 \ {00001, 01001, 01001}, 10xx0 \ {10110, 10100}} {11x01 \ {11001, 11101, 11101}} { 11x010xx01 \ { 11x0100001, 11x0101001, 11x0101001, 110010xx01, 111010xx01, 111010xx01}} {xxx1x \ {00x11, 1111x, 0001x}, xx0xx \ {x1001, 010x0, xx011}} {} {} {xx1xx \ {00100, 011xx, x1101}, x1xxx \ {01xx0, 010x1, x11x1}, xxx10 \ {10010, 10110, 01010}} {x01x1 \ {x0111, 101x1, 10111}} { x01x1xx1x1 \ { x0111xx101, x0101xx111, x01x1011x1, x01x1x1101, x0111xx1x1, 101x1xx1x1, 10111xx1x1}, x01x1x1xx1 \ { x0111x1x01, x0101x1x11, x01x1010x1, x01x1x11x1, x0111x1xx1, 101x1x1xx1, 10111x1xx1}} {11xx0 \ {110x0, 11000, 11x00}} {x01xx \ {101x1, 0010x, 00101}} { x01x011xx0 \ { x011011x00, x010011x10, x01x0110x0, x01x011000, x01x011x00, 0010011xx0}} {0xx11 \ {01x11, 00x11, 00x11}, 011xx \ {01100, 011x0, 011x1}, 10xx1 \ {101x1, 10x01, 10101}} {xx1x1 \ {111x1, 0x1x1, 0x1x1}, 0x1x0 \ {01100, 0x110}} { xx1110xx11 \ { xx11101x11, xx11100x11, xx11100x11, 111110xx11, 0x1110xx11, 0x1110xx11}, xx1x1011x1 \ { xx11101101, xx10101111, xx1x1011x1, 111x1011x1, 0x1x1011x1, 0x1x1011x1}, 0x1x0011x0 \ { 0x11001100, 0x10001110, 0x1x001100, 0x1x0011x0, 01100011x0, 0x110011x0}, xx1x110xx1 \ { xx11110x01, xx10110x11, xx1x1101x1, xx1x110x01, xx1x110101, 111x110xx1, 0x1x110xx1, 0x1x110xx1}} {x1x00 \ {x1000, 11x00, x1100}} {xx011 \ {0x011, x1011}, x11xx \ {01110, 01111, 111xx}} { x1100x1x00 \ { x1100x1000, x110011x00, x1100x1100, 11100x1x00}} {11xx0 \ {11x10, 11110, 11010}, 1x1x0 \ {10110, 1x100, 1x100}} {x0x0x \ {00001, x000x, 00101}, xx1x1 \ {11111, xx111, 011x1}} { x0x0011x00 \ { x000011x00}, x0x001x100 \ { x0x001x100, x0x001x100, x00001x100}} {0xxx0 \ {0x010, 01010, 00110}} {x101x \ {11010, 01011, 01010}} { x10100xx10 \ { x10100x010, x101001010, x101000110, 110100xx10, 010100xx10}} {1x00x \ {1100x, 10000, 11000}, 00x10 \ {00010, 00110}} {xx1xx \ {x0101, 011xx, 101x1}, 101xx \ {10111, 10101, 101x1}, xx100 \ {01100, 1x100, 1x100}} { xx10x1x00x \ { xx1011x000, xx1001x001, xx10x1100x, xx10x10000, xx10x11000, x01011x00x, 0110x1x00x, 101011x00x}, 1010x1x00x \ { 101011x000, 101001x001, 1010x1100x, 1010x10000, 1010x11000, 101011x00x, 101011x00x}, xx1001x000 \ { xx10011000, xx10010000, xx10011000, 011001x000, 1x1001x000, 1x1001x000}, xx11000x10 \ { xx11000010, xx11000110, 0111000x10}, 1011000x10 \ { 1011000010, 1011000110}} {10xx1 \ {10011, 10111, 10001}} {010x1 \ {01001, 01011}, 111x0 \ {11100, 11110}} { 010x110xx1 \ { 0101110x01, 0100110x11, 010x110011, 010x110111, 010x110001, 0100110xx1, 0101110xx1}} {1x1x1 \ {11111, 10111, 101x1}} {1x11x \ {1011x, 10110, 1111x}} { 1x1111x111 \ { 1x11111111, 1x11110111, 1x11110111, 101111x111, 111111x111}} {x00x0 \ {00010, 10010, 100x0}} {x00x1 \ {00011, 10011}, 00x0x \ {00000, 00x01, 00001}} { 00x00x0000 \ { 00x0010000, 00000x0000}} {x10x0 \ {11000, 11010, 01000}} {1xxx1 \ {11111, 10101, 11x01}} {} {} {0xx0x \ {00101, 0xx01, 00000}, 0x0x0 \ {0x010, 000x0, 00000}} {} {0xx01 \ {00101, 00001, 00x01}, 01x11 \ {01111, 01011}} {} {} {x1xx1 \ {x1x01, 01011, x11x1}} {0x1x0 \ {0x100, 01110, 01110}, x00x0 \ {10010, 100x0, 100x0}} {} {0xx10 \ {0x010, 00110, 01010}, 10x11 \ {10011, 10111}} {} {} {xx011 \ {1x011, x0011}, 010x1 \ {01001, 01011}} {xx0xx \ {100xx, 1x011, xx0x0}} { xx011xx011 \ { xx0111x011, xx011x0011, 10011xx011, 1x011xx011}, xx0x1010x1 \ { xx01101001, xx00101011, xx0x101001, xx0x101011, 100x1010x1, 1x011010x1}} {} {xxxx0 \ {xx100, xx010, 10x10}} {} {xxxx0 \ {1x100, x1x10, x1110}} {x010x \ {x0101, 10100}, x0011 \ {10011, 00011}, x11x0 \ {01100, 11100, x1100}} { x0100xxx00 \ { x01001x100, 10100xxx00}, x11x0xxxx0 \ { x1110xxx00, x1100xxx10, x11x01x100, x11x0x1x10, x11x0x1110, 01100xxxx0, 11100xxxx0, x1100xxxx0}} {x0x00 \ {x0000, 00x00, 00000}, 0x1xx \ {0x100, 0111x, 011x0}} {1x1x1 \ {11101, 11111}, x1x10 \ {11010, 01x10, 01010}, x0x01 \ {00101, x0101}} { 1x1x10x1x1 \ { 1x1110x101, 1x1010x111, 1x1x101111, 111010x1x1, 111110x1x1}, x1x100x110 \ { x1x1001110, x1x1001110, 110100x110, 01x100x110, 010100x110}, x0x010x101 \ { 001010x101, x01010x101}} {0x01x \ {00010, 0001x, 0001x}} {0x0x1 \ {0x001, 010x1, 0x011}} { 0x0110x011 \ { 0x01100011, 0x01100011, 010110x011, 0x0110x011}} {} {} {} {00xxx \ {000x1, 00101}, 01x0x \ {0110x, 01100}} {01x10 \ {01010, 01110}, 1x00x \ {11001, 1100x, 10000}} { 01x1000x10 \ { 0101000x10, 0111000x10}, 1x00x00x0x \ { 1x00100x00, 1x00000x01, 1x00x00001, 1x00x00101, 1100100x0x, 1100x00x0x, 1000000x0x}, 1x00x01x0x \ { 1x00101x00, 1x00001x01, 1x00x0110x, 1x00x01100, 1100101x0x, 1100x01x0x, 1000001x0x}} {0x11x \ {0x111, 00111, 0x110}, 1xxx0 \ {10x10, 10x00, 1x0x0}, 0xxx1 \ {01001, 00x11, 0xx11}} {1xx10 \ {10010, 1x110, 10x10}, 111xx \ {111x0, 11110, 111x1}} { 1xx100x110 \ { 1xx100x110, 100100x110, 1x1100x110, 10x100x110}, 1111x0x11x \ { 111110x110, 111100x111, 1111x0x111, 1111x00111, 1111x0x110, 111100x11x, 111100x11x, 111110x11x}, 1xx101xx10 \ { 1xx1010x10, 1xx101x010, 100101xx10, 1x1101xx10, 10x101xx10}, 111x01xxx0 \ { 111101xx00, 111001xx10, 111x010x10, 111x010x00, 111x01x0x0, 111x01xxx0, 111101xxx0}, 111x10xxx1 \ { 111110xx01, 111010xx11, 111x101001, 111x100x11, 111x10xx11, 111x10xxx1}} {x1x00 \ {01x00, 11x00, x1000}} {01xxx \ {0111x, 011x1, 01x0x}} { 01x00x1x00 \ { 01x0001x00, 01x0011x00, 01x00x1000, 01x00x1x00}} {010xx \ {01000, 0101x, 01011}} {1x110 \ {11110, 10110}, 0011x \ {00111, 00110}} { 1x11001010 \ { 1x11001010, 1111001010, 1011001010}, 0011x0101x \ { 0011101010, 0011001011, 0011x0101x, 0011x01011, 001110101x, 001100101x}} {x01x0 \ {x0110, x0100}, 1x101 \ {10101}} {x0x1x \ {x001x, 10x11, 00111}} { x0x10x0110 \ { x0x10x0110, x0010x0110}} {101x1 \ {10101, 10111, 10111}, 0010x \ {00101, 00100, 00100}} {0x1x1 \ {01101, 00111}, xxx00 \ {xx100, 11000, 10000}} { 0x1x1101x1 \ { 0x11110101, 0x10110111, 0x1x110101, 0x1x110111, 0x1x110111, 01101101x1, 00111101x1}, 0x10100101 \ { 0x10100101, 0110100101}, xxx0000100 \ { xxx0000100, xxx0000100, xx10000100, 1100000100, 1000000100}} {} {01x10 \ {01110, 01010}} {} {11xxx \ {11x1x, 11001, 11x01}, 011x0 \ {01110, 01100}} {0xx10 \ {00010, 01x10, 00110}} { 0xx1011x10 \ { 0xx1011x10, 0001011x10, 01x1011x10, 0011011x10}, 0xx1001110 \ { 0xx1001110, 0001001110, 01x1001110, 0011001110}} {1x10x \ {11100, 1010x, 1x101}, 1xx1x \ {10011, 1xx10, 1101x}} {10x10 \ {10110}, 01xxx \ {010xx, 01010, 01xx1}, xx1xx \ {0x1xx, x01xx, xx11x}} { 01x0x1x10x \ { 01x011x100, 01x001x101, 01x0x11100, 01x0x1010x, 01x0x1x101, 0100x1x10x, 01x011x10x}, xx10x1x10x \ { xx1011x100, xx1001x101, xx10x11100, xx10x1010x, xx10x1x101, 0x10x1x10x, x010x1x10x}, 10x101xx10 \ { 10x101xx10, 10x1011010, 101101xx10}, 01x1x1xx1x \ { 01x111xx10, 01x101xx11, 01x1x10011, 01x1x1xx10, 01x1x1101x, 0101x1xx1x, 010101xx1x, 01x111xx1x}, xx11x1xx1x \ { xx1111xx10, xx1101xx11, xx11x10011, xx11x1xx10, xx11x1101x, 0x11x1xx1x, x011x1xx1x, xx11x1xx1x}} {01x0x \ {01101, 0110x, 01x01}, 00x10 \ {00010, 00110, 00110}} {001x1 \ {00101, 00111}, x0xx1 \ {00x01, x0011, 10x01}} { 0010101x01 \ { 0010101101, 0010101101, 0010101x01, 0010101x01}, x0x0101x01 \ { x0x0101101, x0x0101101, x0x0101x01, 00x0101x01, 10x0101x01}} {xx101 \ {01101, x1101, x0101}, 101x0 \ {10110, 10100}, 11x00 \ {11000}} {} {} {10x11 \ {10111, 10011, 10011}, xx001 \ {x0001, 01001, 01001}} {} {} {0xx0x \ {01x01, 0x10x}} {} {} {10xx0 \ {10100, 10110, 10010}, xx0xx \ {000x1, 10001, x00xx}} {} {} {0xxx0 \ {01x10, 00100, 0xx10}, 0110x \ {01100, 01101}} {01x1x \ {0101x, 01110, 01x11}, 1x01x \ {1x011, 1001x, 1001x}} { 01x100xx10 \ { 01x1001x10, 01x100xx10, 010100xx10, 011100xx10}, 1x0100xx10 \ { 1x01001x10, 1x0100xx10, 100100xx10, 100100xx10}} {0x0xx \ {010x0, 010x1, 01001}, 0x0xx \ {0x0x1, 01000, 0100x}, 11x10 \ {11110, 11010}} {011x0 \ {01100}, 110x0 \ {11000}} { 011x00x0x0 \ { 011100x000, 011000x010, 011x001000, 011x001000, 011000x0x0}, 110x00x0x0 \ { 110100x000, 110000x010, 110x001000, 110x001000, 110000x0x0}, 0111011x10 \ { 0111011110, 0111011010}, 1101011x10 \ { 1101011110, 1101011010}} {x11x0 \ {011x0, x1110, 111x0}, 0xx01 \ {00001, 01101, 00101}} {x000x \ {10000, 10001, 00001}} { x0000x1100 \ { x000001100, x000011100, 10000x1100}, x00010xx01 \ { x000100001, x000101101, x000100101, 100010xx01, 000010xx01}} {10xxx \ {10001, 10x0x, 10100}, xx0x1 \ {0x0x1, xx001, x0011}} {0xx1x \ {0x11x, 0x010, 0111x}, 000xx \ {0000x, 00001, 0001x}} { 0xx1x10x1x \ { 0xx1110x10, 0xx1010x11, 0x11x10x1x, 0x01010x1x, 0111x10x1x}, 000xx10xxx \ { 000x110xx0, 000x010xx1, 0001x10x0x, 0000x10x1x, 000xx10001, 000xx10x0x, 000xx10100, 0000x10xxx, 0000110xxx, 0001x10xxx}, 0xx11xx011 \ { 0xx110x011, 0xx11x0011, 0x111xx011, 01111xx011}, 000x1xx0x1 \ { 00011xx001, 00001xx011, 000x10x0x1, 000x1xx001, 000x1x0011, 00001xx0x1, 00001xx0x1, 00011xx0x1}} {x00xx \ {1000x, x001x, 100xx}, xxx10 \ {01x10, 10x10, 00x10}} {01xxx \ {01010, 01101, 01110}, x100x \ {01001, 01000, 11001}} { 01xxxx00xx \ { 01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxx1000x, 01xxxx001x, 01xxx100xx, 01010x00xx, 01101x00xx, 01110x00xx}, x100xx000x \ { x1001x0000, x1000x0001, x100x1000x, x100x1000x, 01001x000x, 01000x000x, 11001x000x}, 01x10xxx10 \ { 01x1001x10, 01x1010x10, 01x1000x10, 01010xxx10, 01110xxx10}} {00x10 \ {00110, 00010}} {00xxx \ {00101, 0010x, 001x0}} { 00x1000x10 \ { 00x1000110, 00x1000010, 0011000x10}} {111xx \ {111x0, 11100}} {x101x \ {x1011, 01011}, x11xx \ {x11x0, 11100, x110x}} { x101x1111x \ { x101111110, x101011111, x101x11110, x10111111x, 010111111x}, x11xx111xx \ { x11x1111x0, x11x0111x1, x111x1110x, x110x1111x, x11xx111x0, x11xx11100, x11x0111xx, 11100111xx, x110x111xx}} {x00xx \ {10000, x0011, x00x0}, xx1x0 \ {0x1x0, xx110, xx100}} {10x1x \ {10110, 10x11}, x110x \ {x1101, 0110x, 1110x}} { 10x1xx001x \ { 10x11x0010, 10x10x0011, 10x1xx0011, 10x1xx0010, 10110x001x, 10x11x001x}, x110xx000x \ { x1101x0000, x1100x0001, x110x10000, x110xx0000, x1101x000x, 0110xx000x, 1110xx000x}, 10x10xx110 \ { 10x100x110, 10x10xx110, 10110xx110}, x1100xx100 \ { x11000x100, x1100xx100, 01100xx100, 11100xx100}} {x011x \ {10110, 00111, x0111}} {0x1x1 \ {001x1, 00101, 011x1}, 000x1 \ {00001}} { 0x111x0111 \ { 0x11100111, 0x111x0111, 00111x0111, 01111x0111}, 00011x0111 \ { 0001100111, 00011x0111}} {xxxxx \ {10101, x1xx1, xx1xx}, 0xx10 \ {0x110, 01110, 01010}} {10x01 \ {10101}, x1x0x \ {x1100, 1110x, x110x}} { 10x01xxx01 \ { 10x0110101, 10x01x1x01, 10x01xx101, 10101xxx01}, x1x0xxxx0x \ { x1x01xxx00, x1x00xxx01, x1x0x10101, x1x0xx1x01, x1x0xxx10x, x1100xxx0x, 1110xxxx0x, x110xxxx0x}} {1x1x1 \ {11111, 11101, 10111}} {x110x \ {0110x, 11101}} { x11011x101 \ { x110111101, 011011x101, 111011x101}} {} {xx001 \ {1x001, 11001, 11001}} {} {00x0x \ {00x00, 00x01, 0010x}, 0110x \ {01101}, x01x0 \ {x0110, 10110, 10110}} {} {} {1x0xx \ {100x1, 1x000}} {xxx01 \ {11001, 10x01, 01101}, x0x0x \ {10000, 00101, x0101}, 0x10x \ {00100, 0010x, 0010x}} { xxx011x001 \ { xxx0110001, 110011x001, 10x011x001, 011011x001}, x0x0x1x00x \ { x0x011x000, x0x001x001, x0x0x10001, x0x0x1x000, 100001x00x, 001011x00x, x01011x00x}, 0x10x1x00x \ { 0x1011x000, 0x1001x001, 0x10x10001, 0x10x1x000, 001001x00x, 0010x1x00x, 0010x1x00x}} {xx10x \ {x110x, 10101, 11100}} {1011x \ {10111, 10110, 10110}, x0xxx \ {x0100, 00100, 00001}} { x0x0xxx10x \ { x0x01xx100, x0x00xx101, x0x0xx110x, x0x0x10101, x0x0x11100, x0100xx10x, 00100xx10x, 00001xx10x}} {x1x11 \ {x1011, 11011, 11x11}, xx10x \ {1110x, 1x100, 0x100}} {xxx1x \ {x1110, 00111, 01x1x}} { xxx11x1x11 \ { xxx11x1011, xxx1111011, xxx1111x11, 00111x1x11, 01x11x1x11}} {x0x11 \ {10011, x0111, 00x11}} {xxxx1 \ {0x101, 000x1, 00101}} { xxx11x0x11 \ { xxx1110011, xxx11x0111, xxx1100x11, 00011x0x11}} {01xxx \ {011x0, 01x00, 01x01}, x1xxx \ {11101, 11011, x1x11}} {xx111 \ {x1111, 1x111, x0111}, x0xx1 \ {10001, 10111, 001x1}} { xx11101x11 \ { x111101x11, 1x11101x11, x011101x11}, x0xx101xx1 \ { x0x1101x01, x0x0101x11, x0xx101x01, 1000101xx1, 1011101xx1, 001x101xx1}, xx111x1x11 \ { xx11111011, xx111x1x11, x1111x1x11, 1x111x1x11, x0111x1x11}, x0xx1x1xx1 \ { x0x11x1x01, x0x01x1x11, x0xx111101, x0xx111011, x0xx1x1x11, 10001x1xx1, 10111x1xx1, 001x1x1xx1}} {xx001 \ {1x001, 0x001, 10001}, 011xx \ {0110x, 01101, 0111x}} {100xx \ {10001, 100x1}} { 10001xx001 \ { 100011x001, 100010x001, 1000110001, 10001xx001, 10001xx001}, 100xx011xx \ { 100x1011x0, 100x0011x1, 1001x0110x, 1000x0111x, 100xx0110x, 100xx01101, 100xx0111x, 10001011xx, 100x1011xx}} {01xx1 \ {01111, 01001}} {x0xx1 \ {00001, x00x1, x0001}} { x0xx101xx1 \ { x0x1101x01, x0x0101x11, x0xx101111, x0xx101001, 0000101xx1, x00x101xx1, x000101xx1}} {x110x \ {1110x, 01101, x1101}, x11x0 \ {11100, 011x0}} {x011x \ {00110, 0011x, 1011x}, 01xxx \ {010x1, 01100}} { 01x0xx110x \ { 01x01x1100, 01x00x1101, 01x0x1110x, 01x0x01101, 01x0xx1101, 01001x110x, 01100x110x}, x0110x1110 \ { x011001110, 00110x1110, 00110x1110, 10110x1110}, 01xx0x11x0 \ { 01x10x1100, 01x00x1110, 01xx011100, 01xx0011x0, 01100x11x0}} {11xx1 \ {11101, 11111, 111x1}} {1x001 \ {11001, 10001}, xxxx0 \ {101x0, 0xx10, 1x100}, 1xxx1 \ {10xx1, 10101, 1xx01}} { 1x00111x01 \ { 1x00111101, 1x00111101, 1100111x01, 1000111x01}, 1xxx111xx1 \ { 1xx1111x01, 1xx0111x11, 1xxx111101, 1xxx111111, 1xxx1111x1, 10xx111xx1, 1010111xx1, 1xx0111xx1}} {x011x \ {x0111, 1011x, 00110}} {x0010 \ {10010, 00010, 00010}, 00x1x \ {00010, 00011, 00110}} { x0010x0110 \ { x001010110, x001000110, 10010x0110, 00010x0110, 00010x0110}, 00x1xx011x \ { 00x11x0110, 00x10x0111, 00x1xx0111, 00x1x1011x, 00x1x00110, 00010x011x, 00011x011x, 00110x011x}} {x010x \ {00100, x0100, 10100}, 01x10 \ {01110, 01010}} {0xx0x \ {0xx01, 0000x, 0x100}} { 0xx0xx010x \ { 0xx01x0100, 0xx00x0101, 0xx0x00100, 0xx0xx0100, 0xx0x10100, 0xx01x010x, 0000xx010x, 0x100x010x}} {011xx \ {011x0, 01101, 0111x}, xx1xx \ {x110x, x01x0, 0111x}} {00x01 \ {00101, 00001}, 0xxx1 \ {00111, 00001, 00011}} { 00x0101101 \ { 00x0101101, 0010101101, 0000101101}, 0xxx1011x1 \ { 0xx1101101, 0xx0101111, 0xxx101101, 0xxx101111, 00111011x1, 00001011x1, 00011011x1}, 00x01xx101 \ { 00x01x1101, 00101xx101, 00001xx101}, 0xxx1xx1x1 \ { 0xx11xx101, 0xx01xx111, 0xxx1x1101, 0xxx101111, 00111xx1x1, 00001xx1x1, 00011xx1x1}} {111xx \ {111x1, 1111x, 1111x}, x011x \ {x0111, 00110}} {xx11x \ {xx110, x1111, 01111}, x10xx \ {01001, 1101x, 11010}} { xx11x1111x \ { xx11111110, xx11011111, xx11x11111, xx11x1111x, xx11x1111x, xx1101111x, x11111111x, 011111111x}, x10xx111xx \ { x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx111x1, x10xx1111x, x10xx1111x, 01001111xx, 1101x111xx, 11010111xx}, xx11xx011x \ { xx111x0110, xx110x0111, xx11xx0111, xx11x00110, xx110x011x, x1111x011x, 01111x011x}, x101xx011x \ { x1011x0110, x1010x0111, x101xx0111, x101x00110, 1101xx011x, 11010x011x}} {x1xx1 \ {010x1, 11x01, x1111}} {0x10x \ {0x101, 00101, 00100}} { 0x101x1x01 \ { 0x10101001, 0x10111x01, 0x101x1x01, 00101x1x01}} {} {11x1x \ {11010, 11x10, 1111x}} {} {1001x \ {10011, 10010}} {x000x \ {10000, x0000, 1000x}, 1x001 \ {10001, 11001}, 0xxxx \ {0000x, 0x10x, 0x0xx}} { 0xx1x1001x \ { 0xx1110010, 0xx1010011, 0xx1x10011, 0xx1x10010, 0x01x1001x}} {xx0xx \ {x0001, 0x01x, x000x}, xx00x \ {x1000, x100x, 1x001}, xx1x0 \ {11110, 01100, 11100}} {xx101 \ {1x101, 01101, 0x101}, 01xxx \ {011x1, 01001, 0101x}} { xx101xx001 \ { xx101x0001, xx101x0001, 1x101xx001, 01101xx001, 0x101xx001}, 01xxxxx0xx \ { 01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxx0001, 01xxx0x01x, 01xxxx000x, 011x1xx0xx, 01001xx0xx, 0101xxx0xx}, xx101xx001 \ { xx101x1001, xx1011x001, 1x101xx001, 01101xx001, 0x101xx001}, 01x0xxx00x \ { 01x01xx000, 01x00xx001, 01x0xx1000, 01x0xx100x, 01x0x1x001, 01101xx00x, 01001xx00x}, 01xx0xx1x0 \ { 01x10xx100, 01x00xx110, 01xx011110, 01xx001100, 01xx011100, 01010xx1x0}} {1xxx0 \ {10010, 10000, 110x0}, 0x001 \ {01001, 00001}} {x1x11 \ {01011, 11x11, 11x11}} {} {111xx \ {11110, 11100, 11111}, x110x \ {01100, 1110x, x1100}} {} {} {1x0x1 \ {10001, 110x1, 110x1}} {10xx0 \ {100x0, 10x10}, xx11x \ {1x110, 0111x, 11110}, 01x00 \ {01100, 01000, 01000}} { xx1111x011 \ { xx11111011, xx11111011, 011111x011}} {1001x \ {10010, 10011}} {} {} {101x0 \ {10100, 10110}, 1x1x1 \ {11111, 10101, 10111}} {1x0xx \ {1x000, 1001x, 1000x}} { 1x0x0101x0 \ { 1x01010100, 1x00010110, 1x0x010100, 1x0x010110, 1x000101x0, 10010101x0, 10000101x0}, 1x0x11x1x1 \ { 1x0111x101, 1x0011x111, 1x0x111111, 1x0x110101, 1x0x110111, 100111x1x1, 100011x1x1}} {x11x0 \ {11110, 111x0, x1100}, xx0xx \ {1000x, 0x00x, 00001}, 1xxxx \ {1x11x, 101xx, 10000}} {1xx01 \ {10x01, 11x01, 10101}, 0x1xx \ {0110x, 001xx, 0x101}, x101x \ {11010, x1011, 01011}} { 0x1x0x11x0 \ { 0x110x1100, 0x100x1110, 0x1x011110, 0x1x0111x0, 0x1x0x1100, 01100x11x0, 001x0x11x0}, x1010x1110 \ { x101011110, x101011110, 11010x1110}, 1xx01xx001 \ { 1xx0110001, 1xx010x001, 1xx0100001, 10x01xx001, 11x01xx001, 10101xx001}, 0x1xxxx0xx \ { 0x1x1xx0x0, 0x1x0xx0x1, 0x11xxx00x, 0x10xxx01x, 0x1xx1000x, 0x1xx0x00x, 0x1xx00001, 0110xxx0xx, 001xxxx0xx, 0x101xx0xx}, x101xxx01x \ { x1011xx010, x1010xx011, 11010xx01x, x1011xx01x, 01011xx01x}, 1xx011xx01 \ { 1xx0110101, 10x011xx01, 11x011xx01, 101011xx01}, 0x1xx1xxxx \ { 0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx1x11x, 0x1xx101xx, 0x1xx10000, 0110x1xxxx, 001xx1xxxx, 0x1011xxxx}, x101x1xx1x \ { x10111xx10, x10101xx11, x101x1x11x, x101x1011x, 110101xx1x, x10111xx1x, 010111xx1x}} {0111x \ {01111, 01110}} {0x00x \ {00000, 0x001, 0100x}, x1x0x \ {01101, 01001, x100x}, x0xxx \ {00100, 001x1, 00x01}} { x0x1x0111x \ { x0x1101110, x0x1001111, x0x1x01111, x0x1x01110, 001110111x}} {x11x0 \ {011x0, 11100}, xxx0x \ {xx001, x000x, xxx00}, x1x1x \ {x1111, 1101x, x1110}} {01x0x \ {0100x, 01001, 01101}} { 01x00x1100 \ { 01x0001100, 01x0011100, 01000x1100}, 01x0xxxx0x \ { 01x01xxx00, 01x00xxx01, 01x0xxx001, 01x0xx000x, 01x0xxxx00, 0100xxxx0x, 01001xxx0x, 01101xxx0x}} {} {xx1xx \ {0x101, 101xx, 0x110}, 0xx00 \ {0x100, 01000, 01000}} {} {} {00x1x \ {00010, 0011x, 00110}, x0x1x \ {x0110, 10111, 10x10}} {} {} {10xxx \ {10001, 10011, 10xx0}, x1xxx \ {1101x, x1001, 11xx0}, x1xx1 \ {01111, 11101, 11x11}} {} {x1x11 \ {11x11, 11011, 11111}, xxx10 \ {x0110, 00x10, 11x10}} {xx100 \ {11100, x1100, 1x100}, 1x01x \ {11011, 10010, 1001x}} { 1x011x1x11 \ { 1x01111x11, 1x01111011, 1x01111111, 11011x1x11, 10011x1x11}, 1x010xxx10 \ { 1x010x0110, 1x01000x10, 1x01011x10, 10010xxx10, 10010xxx10}} {10xx1 \ {10011, 10001, 10x01}} {01x1x \ {0101x, 01110}} { 01x1110x11 \ { 01x1110011, 0101110x11}} {xx010 \ {1x010, 10010, 11010}, xx10x \ {11101, 0x100, 11100}} {x0x10 \ {x0010, x0110, 00110}, 00xx1 \ {00101, 001x1, 000x1}} { x0x10xx010 \ { x0x101x010, x0x1010010, x0x1011010, x0010xx010, x0110xx010, 00110xx010}, 00x01xx101 \ { 00x0111101, 00101xx101, 00101xx101, 00001xx101}} {x1xxx \ {01000, x1xx1, 01x00}, 00x01 \ {00001, 00101}} {x110x \ {11100, 11101, x1100}, 1xx1x \ {11x11, 1x010, 1x011}} { x110xx1x0x \ { x1101x1x00, x1100x1x01, x110x01000, x110xx1x01, x110x01x00, 11100x1x0x, 11101x1x0x, x1100x1x0x}, 1xx1xx1x1x \ { 1xx11x1x10, 1xx10x1x11, 1xx1xx1x11, 11x11x1x1x, 1x010x1x1x, 1x011x1x1x}, x110100x01 \ { x110100001, x110100101, 1110100x01}} {1x00x \ {11000, 10001, 11001}, 10xx1 \ {101x1, 10111}, 10x1x \ {10x10, 10x11, 10111}} {00xx0 \ {001x0, 00000, 00110}} { 00x001x000 \ { 00x0011000, 001001x000, 000001x000}, 00x1010x10 \ { 00x1010x10, 0011010x10, 0011010x10}} {x0x1x \ {00x10, 00x1x}, 11x1x \ {1111x}} {01xx0 \ {01x00, 010x0}, xx111 \ {11111, 0x111, 1x111}} { 01x10x0x10 \ { 01x1000x10, 01x1000x10, 01010x0x10}, xx111x0x11 \ { xx11100x11, 11111x0x11, 0x111x0x11, 1x111x0x11}, 01x1011x10 \ { 01x1011110, 0101011x10}, xx11111x11 \ { xx11111111, 1111111x11, 0x11111x11, 1x11111x11}} {x1xx1 \ {010x1, 01011, x1x01}} {0x0x0 \ {0x010, 01000, 0x000}, 011xx \ {01100, 01110, 01110}} { 011x1x1xx1 \ { 01111x1x01, 01101x1x11, 011x1010x1, 011x101011, 011x1x1x01}} {0xx10 \ {00110, 01110, 0x010}, 01x0x \ {0100x, 01000, 01000}} {xx1xx \ {x010x, 0110x, 101xx}, 00xx1 \ {00x01, 00011}} { xx1100xx10 \ { xx11000110, xx11001110, xx1100x010, 101100xx10}, xx10x01x0x \ { xx10101x00, xx10001x01, xx10x0100x, xx10x01000, xx10x01000, x010x01x0x, 0110x01x0x, 1010x01x0x}, 00x0101x01 \ { 00x0101001, 00x0101x01}} {x0x1x \ {00x11, 10011, 00x10}, x1xxx \ {x1100, 11011, x1x01}} {010xx \ {010x0, 01010, 01011}, xx100 \ {00100, 1x100, 11100}} { 0101xx0x1x \ { 01011x0x10, 01010x0x11, 0101x00x11, 0101x10011, 0101x00x10, 01010x0x1x, 01010x0x1x, 01011x0x1x}, 010xxx1xxx \ { 010x1x1xx0, 010x0x1xx1, 0101xx1x0x, 0100xx1x1x, 010xxx1100, 010xx11011, 010xxx1x01, 010x0x1xxx, 01010x1xxx, 01011x1xxx}, xx100x1x00 \ { xx100x1100, 00100x1x00, 1x100x1x00, 11100x1x00}} {1x0x0 \ {100x0, 11010, 11000}, 00x0x \ {00101, 00x00, 0010x}, x1x11 \ {01111, 01011, 01011}} {0111x \ {01110, 01111}} { 011101x010 \ { 0111010010, 0111011010, 011101x010}, 01111x1x11 \ { 0111101111, 0111101011, 0111101011, 01111x1x11}} {xx1x1 \ {x1101, x01x1, 00101}} {0011x \ {00110, 00111}} { 00111xx111 \ { 00111x0111, 00111xx111}} {} {x1x0x \ {x1101, x100x, 11x01}} {} {xx011 \ {x0011, 10011, 0x011}, xx00x \ {1x000, 01000, 01000}} {} {} {1x001 \ {11001, 10001}, 10xx0 \ {10x00, 10100, 100x0}} {1x011 \ {11011, 10011, 10011}} {} {xxx1x \ {x1x11, xx11x, 1011x}, x1x11 \ {11111, 11011, 01111}} {x01x0 \ {x0100, x0110, 10110}} { x0110xxx10 \ { x0110xx110, x011010110, x0110xxx10, 10110xxx10}} {x0xx0 \ {10000, 00100, x0x00}} {00xx1 \ {00001, 001x1, 00011}, 1101x \ {11010}, 01x0x \ {01001, 01x01, 0100x}} { 11010x0x10 \ { 11010x0x10}, 01x00x0x00 \ { 01x0010000, 01x0000100, 01x00x0x00, 01000x0x00}} {x1x10 \ {11x10, x1110, 01x10}, 110xx \ {1101x, 11000, 11010}} {1011x \ {10110}} { 10110x1x10 \ { 1011011x10, 10110x1110, 1011001x10, 10110x1x10}, 1011x1101x \ { 1011111010, 1011011011, 1011x1101x, 1011x11010, 101101101x}} {1xxx1 \ {11111, 1x011, 10xx1}, 110xx \ {11000, 1101x, 110x1}} {1xx0x \ {11x00, 10x0x, 10x01}} { 1xx011xx01 \ { 1xx0110x01, 10x011xx01, 10x011xx01}, 1xx0x1100x \ { 1xx0111000, 1xx0011001, 1xx0x11000, 1xx0x11001, 11x001100x, 10x0x1100x, 10x011100x}} {x1xxx \ {11x10, 11100, 010xx}} {} {} {01x00 \ {01100, 01000}} {1xx1x \ {11x10, 11010, 1x111}, 10x10 \ {10110}} {} {} {0x010 \ {01010}, xx101 \ {11101, 00101, 01101}} {} {000xx \ {000x0, 0001x, 00011}} {x11xx \ {x1110, 111xx, x11x0}, x101x \ {x1011, 11011}} { x11xx000xx \ { x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx000x0, x11xx0001x, x11xx00011, x1110000xx, 111xx000xx, x11x0000xx}, x101x0001x \ { x101100010, x101000011, x101x00010, x101x0001x, x101x00011, x10110001x, 110110001x}} {01x1x \ {0111x, 01011}} {0xxx0 \ {00100, 01110, 0x010}, xx000 \ {0x000, 10000, 10000}} { 0xx1001x10 \ { 0xx1001110, 0111001x10, 0x01001x10}} {x100x \ {01000, 0100x, 11001}} {11xx1 \ {11111, 111x1}, x1xx0 \ {11x00, 11100, x1110}} { 11x01x1001 \ { 11x0101001, 11x0111001, 11101x1001}, x1x00x1000 \ { x1x0001000, x1x0001000, 11x00x1000, 11100x1000}} {x1xxx \ {11xxx, 1101x, 0111x}, 1xxx1 \ {1x0x1, 10001, 11x01}} {x00x1 \ {000x1, 00001, x0001}, xx11x \ {x111x, 0x11x, 0x111}} { x00x1x1xx1 \ { x0011x1x01, x0001x1x11, x00x111xx1, x00x111011, x00x101111, 000x1x1xx1, 00001x1xx1, x0001x1xx1}, xx11xx1x1x \ { xx111x1x10, xx110x1x11, xx11x11x1x, xx11x1101x, xx11x0111x, x111xx1x1x, 0x11xx1x1x, 0x111x1x1x}, x00x11xxx1 \ { x00111xx01, x00011xx11, x00x11x0x1, x00x110001, x00x111x01, 000x11xxx1, 000011xxx1, x00011xxx1}, xx1111xx11 \ { xx1111x011, x11111xx11, 0x1111xx11, 0x1111xx11}} {11xx0 \ {11x10, 11110}, x0010 \ {00010, 10010}} {x0xx0 \ {x0000, x0100, 10110}, x0xx0 \ {10000, x0100, 10x00}} { x0xx011xx0 \ { x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, x000011xx0, x010011xx0, 1011011xx0}, x0xx011xx0 \ { x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, 1000011xx0, x010011xx0, 10x0011xx0}, x0x10x0010 \ { x0x1000010, x0x1010010}} {x110x \ {x1100, 11100, 0110x}, xxx01 \ {xx101, 00001, 1xx01}} {xx101 \ {x0101, x1101, 11101}, x101x \ {11010, x1010}} { xx101x1101 \ { xx10101101, x0101x1101, x1101x1101, 11101x1101}, xx101xxx01 \ { xx101xx101, xx10100001, xx1011xx01, x0101xxx01, x1101xxx01, 11101xxx01}} {x000x \ {x0001, 1000x, 0000x}, x0xxx \ {00101, 00x0x, x000x}} {10xx0 \ {10010, 101x0, 101x0}} { 10x00x0000 \ { 10x0010000, 10x0000000, 10100x0000, 10100x0000}, 10xx0x0xx0 \ { 10x10x0x00, 10x00x0x10, 10xx000x00, 10xx0x0000, 10010x0xx0, 101x0x0xx0, 101x0x0xx0}} {01xxx \ {01x00, 01x0x, 01000}, x11xx \ {01101, 0111x, 1110x}} {1xxx1 \ {10x01, 100x1, 1x101}} { 1xxx101xx1 \ { 1xx1101x01, 1xx0101x11, 1xxx101x01, 10x0101xx1, 100x101xx1, 1x10101xx1}, 1xxx1x11x1 \ { 1xx11x1101, 1xx01x1111, 1xxx101101, 1xxx101111, 1xxx111101, 10x01x11x1, 100x1x11x1, 1x101x11x1}} {} {x001x \ {00010, 10011, 0001x}, 0x0x1 \ {0x011, 0x001, 01001}} {} {01xx1 \ {011x1, 010x1}, 0xxx0 \ {01110, 00100, 01000}} {} {} {1xxx0 \ {100x0, 10010, 110x0}} {x0110 \ {00110}} { x01101xx10 \ { x011010010, x011010010, x011011010, 001101xx10}} {10x1x \ {10x11, 10011, 10111}, 0xx0x \ {0xx01, 0x001, 0x000}} {x0x11 \ {10x11, 10011, x0011}} { x0x1110x11 \ { x0x1110x11, x0x1110011, x0x1110111, 10x1110x11, 1001110x11, x001110x11}} {10x00 \ {10000, 10100}, 11xxx \ {11001, 11111, 111xx}} {1x1x1 \ {11111, 11101, 10101}} { 1x1x111xx1 \ { 1x11111x01, 1x10111x11, 1x1x111001, 1x1x111111, 1x1x1111x1, 1111111xx1, 1110111xx1, 1010111xx1}} {0x01x \ {00011, 0101x, 0101x}, 0xx01 \ {01001, 0x001}} {10xxx \ {10111, 100xx, 10x01}} { 10x1x0x01x \ { 10x110x010, 10x100x011, 10x1x00011, 10x1x0101x, 10x1x0101x, 101110x01x, 1001x0x01x}, 10x010xx01 \ { 10x0101001, 10x010x001, 100010xx01, 10x010xx01}} {} {11xxx \ {11110, 1110x, 11x1x}, x101x \ {x1011, 0101x, 11011}, 01x1x \ {01x10, 0101x, 0111x}} {} {01x0x \ {0100x, 01101, 01101}} {11xx0 \ {11100, 11010, 11110}, xx1x0 \ {00100, 00110, 00110}, 110xx \ {11010, 110x1, 1101x}} { 11x0001x00 \ { 11x0001000, 1110001x00}, xx10001x00 \ { xx10001000, 0010001x00}, 1100x01x0x \ { 1100101x00, 1100001x01, 1100x0100x, 1100x01101, 1100x01101, 1100101x0x}} {1001x \ {10010, 10011}, x110x \ {01100, x1101}, xx1xx \ {0x10x, 1x11x, 0x101}} {} {} {xx10x \ {00100, 10101, xx101}} {1x01x \ {1x011, 1001x}} {} {xx0x0 \ {01010, 010x0, xx010}} {1x1x0 \ {1x100, 111x0}} { 1x1x0xx0x0 \ { 1x110xx000, 1x100xx010, 1x1x001010, 1x1x0010x0, 1x1x0xx010, 1x100xx0x0, 111x0xx0x0}} {00xx0 \ {000x0}} {} {} {} {xxx11 \ {01111, 10111, 11x11}, x00x1 \ {000x1, 10001, 00011}, x0xx0 \ {00000, x0x10, 10x00}} {} {} {xxx01 \ {0x001, x1x01, 11x01}, 11x0x \ {11000, 11101, 11x00}} {} {1x001 \ {10001, 11001}, 011x1 \ {01111}} {} {} {01x0x \ {01x01, 01000}} {xxx10 \ {xx110, 01010, 01010}} {} {0x000 \ {01000, 00000}} {0x1x0 \ {00100, 01110, 00110}, xx11x \ {x1111, 10110, 0x111}} { 0x1000x000 \ { 0x10001000, 0x10000000, 001000x000}} {11x0x \ {1110x, 11101, 11000}, 0xx11 \ {01x11, 0x111}} {10x00 \ {10100}, x0xx0 \ {00x00, x0110, 00000}} { 10x0011x00 \ { 10x0011100, 10x0011000, 1010011x00}, x0x0011x00 \ { x0x0011100, x0x0011000, 00x0011x00, 0000011x00}} {} {x1x10 \ {11x10, x1110}, 0xx01 \ {00101, 0x101, 01001}, x001x \ {10010, 1001x, x0010}} {} {0xx1x \ {00010, 01x10, 0xx10}, 00xx1 \ {00101, 001x1, 00x01}} {x1x01 \ {11101, 11001, x1001}, xx1xx \ {111x0, 01111, 0x100}} { xx11x0xx1x \ { xx1110xx10, xx1100xx11, xx11x00010, xx11x01x10, xx11x0xx10, 111100xx1x, 011110xx1x}, x1x0100x01 \ { x1x0100101, x1x0100101, x1x0100x01, 1110100x01, 1100100x01, x100100x01}, xx1x100xx1 \ { xx11100x01, xx10100x11, xx1x100101, xx1x1001x1, xx1x100x01, 0111100xx1}} {xxxxx \ {x1xxx, 1x111, 010x1}, xx0xx \ {11010, 1x01x, 0x0xx}, 01xx1 \ {01101, 01011, 01x01}} {10x0x \ {10001, 1010x}, 01x0x \ {01100, 01101}} { 10x0xxxx0x \ { 10x01xxx00, 10x00xxx01, 10x0xx1x0x, 10x0x01001, 10001xxx0x, 1010xxxx0x}, 01x0xxxx0x \ { 01x01xxx00, 01x00xxx01, 01x0xx1x0x, 01x0x01001, 01100xxx0x, 01101xxx0x}, 10x0xxx00x \ { 10x01xx000, 10x00xx001, 10x0x0x00x, 10001xx00x, 1010xxx00x}, 01x0xxx00x \ { 01x01xx000, 01x00xx001, 01x0x0x00x, 01100xx00x, 01101xx00x}, 10x0101x01 \ { 10x0101101, 10x0101x01, 1000101x01, 1010101x01}, 01x0101x01 \ { 01x0101101, 01x0101x01, 0110101x01}} {} {} {} {} {10x10 \ {10110, 10010, 10010}, x10xx \ {110xx, x1000, 11011}} {} {00x1x \ {00x10, 0011x, 00011}, 01x01 \ {01001, 01101}, xxxx0 \ {11010, 01x00, 1xx00}} {xx11x \ {1x110, 0x11x, x0110}, x1x10 \ {11010, x1010, x1010}} { xx11x00x1x \ { xx11100x10, xx11000x11, xx11x00x10, xx11x0011x, xx11x00011, 1x11000x1x, 0x11x00x1x, x011000x1x}, x1x1000x10 \ { x1x1000x10, x1x1000110, 1101000x10, x101000x10, x101000x10}, xx110xxx10 \ { xx11011010, 1x110xxx10, 0x110xxx10, x0110xxx10}, x1x10xxx10 \ { x1x1011010, 11010xxx10, x1010xxx10, x1010xxx10}} {x10x1 \ {01011, 01001, 010x1}, xx110 \ {00110, x1110, 11110}} {x0x0x \ {00001, 00x0x, 0010x}, xxx11 \ {1xx11, x1111}} { x0x01x1001 \ { x0x0101001, x0x0101001, 00001x1001, 00x01x1001, 00101x1001}, xxx11x1011 \ { xxx1101011, xxx1101011, 1xx11x1011, x1111x1011}} {x001x \ {1001x, 00011}, 1x0x0 \ {11010, 10010, 10010}} {x1xxx \ {01110, 010x0, 01x0x}, 00x01 \ {00101, 00001}, 0xx01 \ {00001}} { x1x1xx001x \ { x1x11x0010, x1x10x0011, x1x1x1001x, x1x1x00011, 01110x001x, 01010x001x}, x1xx01x0x0 \ { x1x101x000, x1x001x010, x1xx011010, x1xx010010, x1xx010010, 011101x0x0, 010x01x0x0, 01x001x0x0}} {xx110 \ {11110, x0110}, x101x \ {0101x, x1011, 1101x}} {xx00x \ {1x000, 11001, 10001}} {} {110xx \ {11000, 110x0}, 1xxx0 \ {1x110, 1x100, 1x0x0}} {0x0x0 \ {0x000, 01010, 010x0}, xx010 \ {1x010, 11010}} { 0x0x0110x0 \ { 0x01011000, 0x00011010, 0x0x011000, 0x0x0110x0, 0x000110x0, 01010110x0, 010x0110x0}, xx01011010 \ { xx01011010, 1x01011010, 1101011010}, 0x0x01xxx0 \ { 0x0101xx00, 0x0001xx10, 0x0x01x110, 0x0x01x100, 0x0x01x0x0, 0x0001xxx0, 010101xxx0, 010x01xxx0}, xx0101xx10 \ { xx0101x110, xx0101x010, 1x0101xx10, 110101xx10}} {x0010 \ {10010}, 011xx \ {01110, 011x1, 011x1}} {} {} {xx100 \ {11100, x0100, 10100}} {1xx01 \ {11x01, 11001, 1x101}, x0000 \ {10000}} { x0000xx100 \ { x000011100, x0000x0100, x000010100, 10000xx100}} {01xx1 \ {01101, 01111, 01111}, 0x0xx \ {00010, 010x0, 00001}, 10x0x \ {10x01, 1000x, 1000x}} {xxx00 \ {01x00, 11100, 01000}, 1xxxx \ {1xx01, 1xxx0, 1x101}} { 1xxx101xx1 \ { 1xx1101x01, 1xx0101x11, 1xxx101101, 1xxx101111, 1xxx101111, 1xx0101xx1, 1x10101xx1}, xxx000x000 \ { xxx0001000, 01x000x000, 111000x000, 010000x000}, 1xxxx0x0xx \ { 1xxx10x0x0, 1xxx00x0x1, 1xx1x0x00x, 1xx0x0x01x, 1xxxx00010, 1xxxx010x0, 1xxxx00001, 1xx010x0xx, 1xxx00x0xx, 1x1010x0xx}, xxx0010x00 \ { xxx0010000, xxx0010000, 01x0010x00, 1110010x00, 0100010x00}, 1xx0x10x0x \ { 1xx0110x00, 1xx0010x01, 1xx0x10x01, 1xx0x1000x, 1xx0x1000x, 1xx0110x0x, 1xx0010x0x, 1x10110x0x}} {1xxxx \ {10001, 11001, 1x101}} {0x100 \ {01100}} { 0x1001xx00 \ { 011001xx00}} {00xx1 \ {000x1, 00001, 00111}} {} {} {x1x00 \ {01000, 11100, 11000}} {0x1x0 \ {01110, 011x0}} { 0x100x1x00 \ { 0x10001000, 0x10011100, 0x10011000, 01100x1x00}} {0xx10 \ {01010, 00010, 00x10}, 1x00x \ {1100x, 10000, 1000x}} {xxxx1 \ {00011, 010x1, 1x1x1}} { xxx011x001 \ { xxx0111001, xxx0110001, 010011x001, 1x1011x001}} {xxxxx \ {x1xx0, 11x01, xx1x0}} {111xx \ {1110x, 111x0, 111x0}} { 111xxxxxxx \ { 111x1xxxx0, 111x0xxxx1, 1111xxxx0x, 1110xxxx1x, 111xxx1xx0, 111xx11x01, 111xxxx1x0, 1110xxxxxx, 111x0xxxxx, 111x0xxxxx}} {xx00x \ {1x000, 0x000, 1000x}} {xx10x \ {0110x, x110x, 00101}, xxxxx \ {x11x0, 0x111, xx1xx}} { xx10xxx00x \ { xx101xx000, xx100xx001, xx10x1x000, xx10x0x000, xx10x1000x, 0110xxx00x, x110xxx00x, 00101xx00x}, xxx0xxx00x \ { xxx01xx000, xxx00xx001, xxx0x1x000, xxx0x0x000, xxx0x1000x, x1100xx00x, xx10xxx00x}} {1x011 \ {11011, 10011}, 1x0xx \ {110x1, 1x00x, 1x011}} {x1xxx \ {x1111, x1xx0, 01110}} { x1x111x011 \ { x1x1111011, x1x1110011, x11111x011}, x1xxx1x0xx \ { x1xx11x0x0, x1xx01x0x1, x1x1x1x00x, x1x0x1x01x, x1xxx110x1, x1xxx1x00x, x1xxx1x011, x11111x0xx, x1xx01x0xx, 011101x0xx}} {x00x0 \ {00000, x0010}, 0xxx1 \ {00x11, 00011, 01011}} {x100x \ {1100x, 0100x, x1000}} { x1000x0000 \ { x100000000, 11000x0000, 01000x0000, x1000x0000}, x10010xx01 \ { 110010xx01, 010010xx01}} {x011x \ {10111, 0011x, 10110}, xx100 \ {1x100, x1100, 11100}} {x0100 \ {10100, 00100, 00100}} { x0100xx100 \ { x01001x100, x0100x1100, x010011100, 10100xx100, 00100xx100, 00100xx100}} {1x010 \ {11010, 10010, 10010}, xxxxx \ {0x0xx, x1xx1, x0001}} {xxx01 \ {00x01, x0x01, x1x01}} { xxx01xxx01 \ { xxx010x001, xxx01x1x01, xxx01x0001, 00x01xxx01, x0x01xxx01, x1x01xxx01}} {} {1xx0x \ {1x10x, 11000, 1xx00}, x0x00 \ {10x00, x0000}} {} {xxx01 \ {0xx01, 00101, 01101}} {xx0x0 \ {x1010, 10000, 1x000}, 0x11x \ {0x110, 01111, 01111}} {} {11x10 \ {11010, 11110}, 0010x \ {00101, 00100, 00100}, 11x11 \ {11011}} {xxx10 \ {10x10, 0xx10, 11010}, x11xx \ {01110, x11x1, 1111x}, xx1xx \ {1x11x, 1x101, x0100}} { xxx1011x10 \ { xxx1011010, xxx1011110, 10x1011x10, 0xx1011x10, 1101011x10}, x111011x10 \ { x111011010, x111011110, 0111011x10, 1111011x10}, xx11011x10 \ { xx11011010, xx11011110, 1x11011x10}, x110x0010x \ { x110100100, x110000101, x110x00101, x110x00100, x110x00100, x11010010x}, xx10x0010x \ { xx10100100, xx10000101, xx10x00101, xx10x00100, xx10x00100, 1x1010010x, x01000010x}, x111111x11 \ { x111111011, x111111x11, 1111111x11}, xx11111x11 \ { xx11111011, 1x11111x11}} {1xx10 \ {1x110, 11110, 11x10}, xx10x \ {x0101, 01101, 0010x}} {01xxx \ {01x0x, 01100, 0101x}} { 01x101xx10 \ { 01x101x110, 01x1011110, 01x1011x10, 010101xx10}, 01x0xxx10x \ { 01x01xx100, 01x00xx101, 01x0xx0101, 01x0x01101, 01x0x0010x, 01x0xxx10x, 01100xx10x}} {} {10xxx \ {10001, 100x1}} {} {11x1x \ {11111, 11011, 11010}, xx000 \ {00000, 10000}} {xx101 \ {00101, 11101}, 0x100 \ {00100}, x0x1x \ {0011x, x001x, x0010}} { x0x1x11x1x \ { x0x1111x10, x0x1011x11, x0x1x11111, x0x1x11011, x0x1x11010, 0011x11x1x, x001x11x1x, x001011x1x}, 0x100xx000 \ { 0x10000000, 0x10010000, 00100xx000}} {xxx00 \ {01100, 00x00, 00000}} {x10x1 \ {11001, x1001, 11011}} {} {000xx \ {0000x, 000x1, 000x0}, 11xxx \ {1100x, 11001, 11x00}} {1xxxx \ {10xxx, 110x0, 111x0}} { 1xxxx000xx \ { 1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx0000x, 1xxxx000x1, 1xxxx000x0, 10xxx000xx, 110x0000xx, 111x0000xx}, 1xxxx11xxx \ { 1xxx111xx0, 1xxx011xx1, 1xx1x11x0x, 1xx0x11x1x, 1xxxx1100x, 1xxxx11001, 1xxxx11x00, 10xxx11xxx, 110x011xxx, 111x011xxx}} {0x10x \ {01100, 00101, 0x101}, 1xx10 \ {11110, 1x010, 1x010}} {1x11x \ {1111x, 10111, 10110}} { 1x1101xx10 \ { 1x11011110, 1x1101x010, 1x1101x010, 111101xx10, 101101xx10}} {0xx0x \ {01100, 00x01, 00x00}, x01xx \ {10101, 10110, 1010x}} {011xx \ {0111x, 0110x, 011x1}} { 0110x0xx0x \ { 011010xx00, 011000xx01, 0110x01100, 0110x00x01, 0110x00x00, 0110x0xx0x, 011010xx0x}, 011xxx01xx \ { 011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xx10101, 011xx10110, 011xx1010x, 0111xx01xx, 0110xx01xx, 011x1x01xx}} {001x0 \ {00100, 00110}, 1x0xx \ {10011, 11000, 1000x}} {x011x \ {0011x, 00111}} { x011000110 \ { x011000110, 0011000110}, x011x1x01x \ { x01111x010, x01101x011, x011x10011, 0011x1x01x, 001111x01x}} {01xxx \ {01xx1, 01110, 01110}, 0xxx1 \ {01x01, 000x1, 001x1}} {00xx1 \ {001x1, 00001}} { 00xx101xx1 \ { 00x1101x01, 00x0101x11, 00xx101xx1, 001x101xx1, 0000101xx1}, 00xx10xxx1 \ { 00x110xx01, 00x010xx11, 00xx101x01, 00xx1000x1, 00xx1001x1, 001x10xxx1, 000010xxx1}} {0x10x \ {0110x, 00100, 00101}} {1x00x \ {10000, 11000, 10001}, x1x0x \ {01101, 11000, 01x0x}} { 1x00x0x10x \ { 1x0010x100, 1x0000x101, 1x00x0110x, 1x00x00100, 1x00x00101, 100000x10x, 110000x10x, 100010x10x}, x1x0x0x10x \ { x1x010x100, x1x000x101, x1x0x0110x, x1x0x00100, x1x0x00101, 011010x10x, 110000x10x, 01x0x0x10x}} {xxxx0 \ {0xx10, 01x00, x0xx0}, x1x0x \ {01101, 11001, 01000}} {0xx10 \ {01010, 01110, 00110}, xx110 \ {01110, 11110, 10110}} { 0xx10xxx10 \ { 0xx100xx10, 0xx10x0x10, 01010xxx10, 01110xxx10, 00110xxx10}, xx110xxx10 \ { xx1100xx10, xx110x0x10, 01110xxx10, 11110xxx10, 10110xxx10}} {xxxxx \ {1xxxx, x0111, 0x0x1}, 0x01x \ {0001x, 01010, 01010}} {x0x11 \ {10x11, 00111, 10011}} { x0x11xxx11 \ { x0x111xx11, x0x11x0111, x0x110x011, 10x11xxx11, 00111xxx11, 10011xxx11}, x0x110x011 \ { x0x1100011, 10x110x011, 001110x011, 100110x011}} {11xx1 \ {11x11, 110x1}} {00x1x \ {00x10, 0011x, 00111}} { 00x1111x11 \ { 00x1111x11, 00x1111011, 0011111x11, 0011111x11}} {110x1 \ {11011}, 001x0 \ {00110, 00100, 00100}} {xx01x \ {x1010, x101x, xx010}, 1x01x \ {1x011, 1x010, 10010}, xxx0x \ {11001, 01000, 01x00}} { xx01111011 \ { xx01111011, x101111011}, 1x01111011 \ { 1x01111011, 1x01111011}, xxx0111001 \ { 1100111001}, xx01000110 \ { xx01000110, x101000110, x101000110, xx01000110}, 1x01000110 \ { 1x01000110, 1x01000110, 1001000110}, xxx0000100 \ { xxx0000100, xxx0000100, 0100000100, 01x0000100}} {x1xx0 \ {11x00, 01x00}, xx101 \ {0x101, 10101, 00101}} {001x0 \ {00100, 00110, 00110}, x1x10 \ {01010, 11110}} { 001x0x1xx0 \ { 00110x1x00, 00100x1x10, 001x011x00, 001x001x00, 00100x1xx0, 00110x1xx0, 00110x1xx0}, x1x10x1x10 \ { 01010x1x10, 11110x1x10}} {x1x01 \ {11x01, 11001, 11001}, 11xx0 \ {11x00, 11000, 110x0}, xx10x \ {11101, 01100, 00100}} {xxxx1 \ {1x1x1, 011x1, xxx11}, x11x1 \ {11101, 01101, 11111}} { xxx01x1x01 \ { xxx0111x01, xxx0111001, xxx0111001, 1x101x1x01, 01101x1x01}, x1101x1x01 \ { x110111x01, x110111001, x110111001, 11101x1x01, 01101x1x01}, xxx01xx101 \ { xxx0111101, 1x101xx101, 01101xx101}, x1101xx101 \ { x110111101, 11101xx101, 01101xx101}} {xx1x0 \ {111x0, 1x100, 0x1x0}, 1x0xx \ {1100x, 1x0x0, 11011}, xxxx1 \ {01011, 10111, 01xx1}} {1xxxx \ {1x1xx, 1111x, 10x00}} { 1xxx0xx1x0 \ { 1xx10xx100, 1xx00xx110, 1xxx0111x0, 1xxx01x100, 1xxx00x1x0, 1x1x0xx1x0, 11110xx1x0, 10x00xx1x0}, 1xxxx1x0xx \ { 1xxx11x0x0, 1xxx01x0x1, 1xx1x1x00x, 1xx0x1x01x, 1xxxx1100x, 1xxxx1x0x0, 1xxxx11011, 1x1xx1x0xx, 1111x1x0xx, 10x001x0xx}, 1xxx1xxxx1 \ { 1xx11xxx01, 1xx01xxx11, 1xxx101011, 1xxx110111, 1xxx101xx1, 1x1x1xxxx1, 11111xxxx1}} {xx011 \ {01011, x1011, 00011}, x01xx \ {001xx, 0011x, 1010x}} {x11xx \ {x11x1, 111xx, 011x0}, x0x1x \ {10x11, 10010}} { x1111xx011 \ { x111101011, x1111x1011, x111100011, x1111xx011, 11111xx011}, x0x11xx011 \ { x0x1101011, x0x11x1011, x0x1100011, 10x11xx011}, x11xxx01xx \ { x11x1x01x0, x11x0x01x1, x111xx010x, x110xx011x, x11xx001xx, x11xx0011x, x11xx1010x, x11x1x01xx, 111xxx01xx, 011x0x01xx}, x0x1xx011x \ { x0x11x0110, x0x10x0111, x0x1x0011x, x0x1x0011x, 10x11x011x, 10010x011x}} {x000x \ {0000x, 00001, x0000}, 0000x \ {00000}} {00x1x \ {00011, 00111}} {} {x111x \ {11111}} {011xx \ {011x0, 0111x, 0111x}, x1xx1 \ {x1x11, x1111, 11111}} { 0111xx111x \ { 01111x1110, 01110x1111, 0111x11111, 01110x111x, 0111xx111x, 0111xx111x}, x1x11x1111 \ { x1x1111111, x1x11x1111, x1111x1111, 11111x1111}} {1xx1x \ {11x1x, 10111}, x011x \ {0011x, 1011x, 10111}, x110x \ {x1100, x1101, 01100}} {0xx11 \ {01x11, 01111, 00111}, x1001 \ {11001, 01001}} { 0xx111xx11 \ { 0xx1111x11, 0xx1110111, 01x111xx11, 011111xx11, 001111xx11}, 0xx11x0111 \ { 0xx1100111, 0xx1110111, 0xx1110111, 01x11x0111, 01111x0111, 00111x0111}, x1001x1101 \ { x1001x1101, 11001x1101, 01001x1101}} {1x10x \ {10101, 10100, 11100}, 00xx0 \ {00100, 00x00, 00x00}} {xx110 \ {11110, 1x110, 00110}, 0x0xx \ {01000, 010xx, 010x1}, x01x0 \ {001x0, 101x0}} { 0x00x1x10x \ { 0x0011x100, 0x0001x101, 0x00x10101, 0x00x10100, 0x00x11100, 010001x10x, 0100x1x10x, 010011x10x}, x01001x100 \ { x010010100, x010011100, 001001x100, 101001x100}, xx11000x10 \ { 1111000x10, 1x11000x10, 0011000x10}, 0x0x000xx0 \ { 0x01000x00, 0x00000x10, 0x0x000100, 0x0x000x00, 0x0x000x00, 0100000xx0, 010x000xx0}, x01x000xx0 \ { x011000x00, x010000x10, x01x000100, x01x000x00, x01x000x00, 001x000xx0, 101x000xx0}} {xxx10 \ {11x10, 10110, x0010}} {01x00 \ {01000}} {} {} {xx111 \ {x1111, 1x111, 11111}} {} {x0101 \ {00101, 10101}, x1x01 \ {01101, x1101, x1101}} {xxx1x \ {1xx1x, xxx10, x0x1x}, 0xx10 \ {01110, 00110, 00110}} {} {0x11x \ {0111x, 0x111, 0011x}, 0xx0x \ {0010x, 00000, 01100}} {} {} {1xxx1 \ {10x11, 1xx11, 100x1}, x0011 \ {10011, 00011}} {} {} {} {01x11 \ {01111, 01011}, 0x11x \ {0111x}} {} {1xx10 \ {1x010, 1x110, 10010}, xx00x \ {0x00x, 10000, 0x000}} {x1x0x \ {01000, x1001, x100x}} { x1x0xxx00x \ { x1x01xx000, x1x00xx001, x1x0x0x00x, x1x0x10000, x1x0x0x000, 01000xx00x, x1001xx00x, x100xxx00x}} {0xx11 \ {00111, 01011, 01x11}, 0x1xx \ {00110, 00100, 001x1}} {01xx1 \ {01111, 01011, 01x11}, xxx10 \ {11x10, 0x110, x1110}} { 01x110xx11 \ { 01x1100111, 01x1101011, 01x1101x11, 011110xx11, 010110xx11, 01x110xx11}, 01xx10x1x1 \ { 01x110x101, 01x010x111, 01xx1001x1, 011110x1x1, 010110x1x1, 01x110x1x1}, xxx100x110 \ { xxx1000110, 11x100x110, 0x1100x110, x11100x110}} {1x000 \ {11000, 10000, 10000}, 00xxx \ {00100, 0000x}} {xxx1x \ {x0011, 10x11, x001x}, x1xx1 \ {x1111, x11x1, 01101}} { xxx1x00x1x \ { xxx1100x10, xxx1000x11, x001100x1x, 10x1100x1x, x001x00x1x}, x1xx100xx1 \ { x1x1100x01, x1x0100x11, x1xx100001, x111100xx1, x11x100xx1, 0110100xx1}} {1100x \ {11001, 11000}, 0x1x1 \ {01111, 001x1, 00111}} {xx01x \ {x101x, 11011, x0010}, xx1x0 \ {1x110, 0x110}} { xx10011000 \ { xx10011000}, xx0110x111 \ { xx01101111, xx01100111, xx01100111, x10110x111, 110110x111}} {1110x \ {11101, 11100, 11100}} {010x1 \ {01011, 01001}, 1xx1x \ {11110, 11011, 1x110}} { 0100111101 \ { 0100111101, 0100111101}} {10x01 \ {10001}} {x00xx \ {x0010, 000xx, 10011}, x1x00 \ {11100, 01x00}} { x000110x01 \ { x000110001, 0000110x01}} {001x0 \ {00100, 00110}} {11xxx \ {11100, 1101x}, xx101 \ {x1101, 1x101, 10101}, 10x10 \ {10110}} { 11xx0001x0 \ { 11x1000100, 11x0000110, 11xx000100, 11xx000110, 11100001x0, 11010001x0}, 10x1000110 \ { 10x1000110, 1011000110}} {} {01x01 \ {01001}} {} {x0xx1 \ {x01x1, x0001, 00xx1}, xx1x1 \ {00111, 10111, 1x1x1}} {x11xx \ {x1111, 0111x, 0110x}, 11x0x \ {1100x, 11101}} { x11x1x0xx1 \ { x1111x0x01, x1101x0x11, x11x1x01x1, x11x1x0001, x11x100xx1, x1111x0xx1, 01111x0xx1, 01101x0xx1}, 11x01x0x01 \ { 11x01x0101, 11x01x0001, 11x0100x01, 11001x0x01, 11101x0x01}, x11x1xx1x1 \ { x1111xx101, x1101xx111, x11x100111, x11x110111, x11x11x1x1, x1111xx1x1, 01111xx1x1, 01101xx1x1}, 11x01xx101 \ { 11x011x101, 11001xx101, 11101xx101}} {00xx1 \ {00001, 00x01, 00111}} {100xx \ {10010, 1000x, 10000}, 0xx00 \ {00000, 00100, 01000}, xxxx1 \ {x1x01, 00101, 11xx1}} { 100x100xx1 \ { 1001100x01, 1000100x11, 100x100001, 100x100x01, 100x100111, 1000100xx1}, xxxx100xx1 \ { xxx1100x01, xxx0100x11, xxxx100001, xxxx100x01, xxxx100111, x1x0100xx1, 0010100xx1, 11xx100xx1}} {x00xx \ {x0010, 1001x, x0000}, 010x1 \ {01011, 01001}} {x0x1x \ {10x1x, x0010, x001x}, 0111x \ {01110, 01111}} { x0x1xx001x \ { x0x11x0010, x0x10x0011, x0x1xx0010, x0x1x1001x, 10x1xx001x, x0010x001x, x001xx001x}, 0111xx001x \ { 01111x0010, 01110x0011, 0111xx0010, 0111x1001x, 01110x001x, 01111x001x}, x0x1101011 \ { x0x1101011, 10x1101011, x001101011}, 0111101011 \ { 0111101011, 0111101011}} {1xxx1 \ {10101, 100x1, 11xx1}, x0101 \ {10101, 00101}} {0x00x \ {01000, 0x001, 0100x}} { 0x0011xx01 \ { 0x00110101, 0x00110001, 0x00111x01, 0x0011xx01, 010011xx01}, 0x001x0101 \ { 0x00110101, 0x00100101, 0x001x0101, 01001x0101}} {10x0x \ {10x01, 10001}} {0x1x1 \ {01101, 0x101, 0x101}} { 0x10110x01 \ { 0x10110x01, 0x10110001, 0110110x01, 0x10110x01, 0x10110x01}} {11xx1 \ {11001, 11011}, xx0x0 \ {1x0x0, x0010, x00x0}} {1xx01 \ {11x01, 10x01, 10101}, x0xxx \ {10101, x000x, 10xx1}, xx10x \ {01100, 01101, 0110x}} { 1xx0111x01 \ { 1xx0111001, 11x0111x01, 10x0111x01, 1010111x01}, x0xx111xx1 \ { x0x1111x01, x0x0111x11, x0xx111001, x0xx111011, 1010111xx1, x000111xx1, 10xx111xx1}, xx10111x01 \ { xx10111001, 0110111x01, 0110111x01}, x0xx0xx0x0 \ { x0x10xx000, x0x00xx010, x0xx01x0x0, x0xx0x0010, x0xx0x00x0, x0000xx0x0}, xx100xx000 \ { xx1001x000, xx100x0000, 01100xx000, 01100xx000}} {xxx1x \ {00110, xx111, x001x}} {00x11 \ {00111, 00011}, 0xxx0 \ {01x10, 00100}, x010x \ {10101, x0100, 00100}} { 00x11xxx11 \ { 00x11xx111, 00x11x0011, 00111xxx11, 00011xxx11}, 0xx10xxx10 \ { 0xx1000110, 0xx10x0010, 01x10xxx10}} {0xxx0 \ {00000, 0x110, 00110}} {x11x0 \ {x1110, 01110, x1100}, x00x1 \ {00001, 10001}} { x11x00xxx0 \ { x11100xx00, x11000xx10, x11x000000, x11x00x110, x11x000110, x11100xxx0, 011100xxx0, x11000xxx0}} {} {0x1x0 \ {011x0, 01110, 00100}} {} {1x0x1 \ {110x1, 100x1, 10001}} {00x10 \ {00010, 00110}, x10xx \ {x1011, 11001, 01010}} { x10x11x0x1 \ { x10111x001, x10011x011, x10x1110x1, x10x1100x1, x10x110001, x10111x0x1, 110011x0x1}} {111x0 \ {11100}, 0x1xx \ {0010x, 01101, 011x0}} {xx0x0 \ {x0000, 0x010, x1000}} { xx0x0111x0 \ { xx01011100, xx00011110, xx0x011100, x0000111x0, 0x010111x0, x1000111x0}, xx0x00x1x0 \ { xx0100x100, xx0000x110, xx0x000100, xx0x0011x0, x00000x1x0, 0x0100x1x0, x10000x1x0}} {x0x1x \ {x0111, 0001x, 1011x}, 111x0 \ {11110, 11100, 11100}} {} {} {x0x00 \ {00x00, x0000, x0100}, 0x101 \ {01101}} {1xxxx \ {10x11, 1x101, 10x1x}, 0x1x0 \ {011x0, 0x110}} { 1xx00x0x00 \ { 1xx0000x00, 1xx00x0000, 1xx00x0100}, 0x100x0x00 \ { 0x10000x00, 0x100x0000, 0x100x0100, 01100x0x00}, 1xx010x101 \ { 1xx0101101, 1x1010x101}} {xx110 \ {10110, 01110, 0x110}} {1111x \ {11110, 11111}} { 11110xx110 \ { 1111010110, 1111001110, 111100x110, 11110xx110}} {x10xx \ {110xx, 1100x, 110x0}, xx0xx \ {x00x1, xx010, x10x1}} {0011x \ {00111}, xx0x0 \ {100x0, 01000, 1x010}, 0xx0x \ {0x101, 01100, 00001}} { 0011xx101x \ { 00111x1010, 00110x1011, 0011x1101x, 0011x11010, 00111x101x}, xx0x0x10x0 \ { xx010x1000, xx000x1010, xx0x0110x0, xx0x011000, xx0x0110x0, 100x0x10x0, 01000x10x0, 1x010x10x0}, 0xx0xx100x \ { 0xx01x1000, 0xx00x1001, 0xx0x1100x, 0xx0x1100x, 0xx0x11000, 0x101x100x, 01100x100x, 00001x100x}, 0011xxx01x \ { 00111xx010, 00110xx011, 0011xx0011, 0011xxx010, 0011xx1011, 00111xx01x}, xx0x0xx0x0 \ { xx010xx000, xx000xx010, xx0x0xx010, 100x0xx0x0, 01000xx0x0, 1x010xx0x0}, 0xx0xxx00x \ { 0xx01xx000, 0xx00xx001, 0xx0xx0001, 0xx0xx1001, 0x101xx00x, 01100xx00x, 00001xx00x}} {x1x10 \ {01110, 11110, x1010}, x1xxx \ {1111x, x1xx0, x1011}} {x1011 \ {11011, 01011}, 10x0x \ {1000x, 10001, 10x00}, 10x1x \ {10x11, 10x10, 10111}} { 10x10x1x10 \ { 10x1001110, 10x1011110, 10x10x1010, 10x10x1x10}, x1011x1x11 \ { x101111111, x1011x1011, 11011x1x11, 01011x1x11}, 10x0xx1x0x \ { 10x01x1x00, 10x00x1x01, 10x0xx1x00, 1000xx1x0x, 10001x1x0x, 10x00x1x0x}, 10x1xx1x1x \ { 10x11x1x10, 10x10x1x11, 10x1x1111x, 10x1xx1x10, 10x1xx1011, 10x11x1x1x, 10x10x1x1x, 10111x1x1x}} {0110x \ {01100, 01101}, x1x00 \ {x1100, 01000}} {00xx0 \ {001x0, 00010, 00x00}, 00xx1 \ {00x11, 00111, 00001}} { 00x0001100 \ { 00x0001100, 0010001100, 00x0001100}, 00x0101101 \ { 00x0101101, 0000101101}, 00x00x1x00 \ { 00x00x1100, 00x0001000, 00100x1x00, 00x00x1x00}} {x11xx \ {1110x, 111xx, x11x0}, 1x1x1 \ {11101, 11111, 10111}} {x011x \ {00110, 0011x, x0111}, 011x1 \ {01101}} { x011xx111x \ { x0111x1110, x0110x1111, x011x1111x, x011xx1110, 00110x111x, 0011xx111x, x0111x111x}, 011x1x11x1 \ { 01111x1101, 01101x1111, 011x111101, 011x1111x1, 01101x11x1}, x01111x111 \ { x011111111, x011110111, 001111x111, x01111x111}, 011x11x1x1 \ { 011111x101, 011011x111, 011x111101, 011x111111, 011x110111, 011011x1x1}} {1x0x1 \ {11001, 1x011, 1x011}, x001x \ {10010, 0001x}} {0001x \ {00011, 00010}, 00x10 \ {00010, 00110}} { 000111x011 \ { 000111x011, 000111x011, 000111x011}, 0001xx001x \ { 00011x0010, 00010x0011, 0001x10010, 0001x0001x, 00011x001x, 00010x001x}, 00x10x0010 \ { 00x1010010, 00x1000010, 00010x0010, 00110x0010}} {01x01 \ {01001, 01101}} {01x0x \ {01101, 0100x}} { 01x0101x01 \ { 01x0101001, 01x0101101, 0110101x01, 0100101x01}} {xx11x \ {x1111, 1x11x, x0111}, x00x1 \ {x0001, 10011, 00001}, x10xx \ {0100x, x100x, x1010}} {xx0xx \ {10010, 0x00x, x100x}, 0x00x \ {0x000, 0x001, 01000}, 11xx0 \ {11010, 111x0, 11110}} { xx01xxx11x \ { xx011xx110, xx010xx111, xx01xx1111, xx01x1x11x, xx01xx0111, 10010xx11x}, 11x10xx110 \ { 11x101x110, 11010xx110, 11110xx110, 11110xx110}, xx0x1x00x1 \ { xx011x0001, xx001x0011, xx0x1x0001, xx0x110011, xx0x100001, 0x001x00x1, x1001x00x1}, 0x001x0001 \ { 0x001x0001, 0x00100001, 0x001x0001}, xx0xxx10xx \ { xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx0100x, xx0xxx100x, xx0xxx1010, 10010x10xx, 0x00xx10xx, x100xx10xx}, 0x00xx100x \ { 0x001x1000, 0x000x1001, 0x00x0100x, 0x00xx100x, 0x000x100x, 0x001x100x, 01000x100x}, 11xx0x10x0 \ { 11x10x1000, 11x00x1010, 11xx001000, 11xx0x1000, 11xx0x1010, 11010x10x0, 111x0x10x0, 11110x10x0}} {} {100xx \ {10011, 10001, 1001x}} {} {10x1x \ {10010, 10x11, 10011}, 010x1 \ {01011, 01001}} {10x10 \ {10110, 10010}} { 10x1010x10 \ { 10x1010010, 1011010x10, 1001010x10}} {} {0x0x0 \ {00010, 01000, 010x0}} {} {x1001 \ {01001, 11001, 11001}, xx001 \ {01001, x0001, 1x001}} {0x01x \ {0x011, 01010}} {} {x1x1x \ {1111x, 11110, 01011}} {0x1x0 \ {01100, 01110, 011x0}, x0xxx \ {x00x1, 10010, 000xx}} { 0x110x1x10 \ { 0x11011110, 0x11011110, 01110x1x10, 01110x1x10}, x0x1xx1x1x \ { x0x11x1x10, x0x10x1x11, x0x1x1111x, x0x1x11110, x0x1x01011, x0011x1x1x, 10010x1x1x, 0001xx1x1x}} {xx0x0 \ {0x0x0, 01000, xx010}} {1x001 \ {11001, 10001, 10001}} {} {x000x \ {x0000, x0001, x0001}, 1x0x1 \ {10001, 11001, 1x001}} {0xx01 \ {01x01, 00001, 01101}, x1xx0 \ {11x10, 01100, x11x0}, xx10x \ {0x101, 1x10x, 11101}} { 0xx01x0001 \ { 0xx01x0001, 0xx01x0001, 01x01x0001, 00001x0001, 01101x0001}, x1x00x0000 \ { x1x00x0000, 01100x0000, x1100x0000}, xx10xx000x \ { xx101x0000, xx100x0001, xx10xx0000, xx10xx0001, xx10xx0001, 0x101x000x, 1x10xx000x, 11101x000x}, 0xx011x001 \ { 0xx0110001, 0xx0111001, 0xx011x001, 01x011x001, 000011x001, 011011x001}, xx1011x001 \ { xx10110001, xx10111001, xx1011x001, 0x1011x001, 1x1011x001, 111011x001}} {00xx0 \ {00110, 00x00}} {00xx0 \ {001x0, 00100, 000x0}, 1010x \ {10100, 10101}, x10xx \ {x1000, x10x0, 110x0}} { 00xx000xx0 \ { 00x1000x00, 00x0000x10, 00xx000110, 00xx000x00, 001x000xx0, 0010000xx0, 000x000xx0}, 1010000x00 \ { 1010000x00, 1010000x00}, x10x000xx0 \ { x101000x00, x100000x10, x10x000110, x10x000x00, x100000xx0, x10x000xx0, 110x000xx0}} {x00xx \ {1000x, 100x0, 0001x}, x1xx1 \ {111x1, x1011, 11xx1}, 00xx1 \ {00101, 000x1, 001x1}} {0x10x \ {0110x, 0010x, 00100}, x0101 \ {10101, 00101}, x10xx \ {11011, 11010, x10x0}} { 0x10xx000x \ { 0x101x0000, 0x100x0001, 0x10x1000x, 0x10x10000, 0110xx000x, 0010xx000x, 00100x000x}, x0101x0001 \ { x010110001, 10101x0001, 00101x0001}, x10xxx00xx \ { x10x1x00x0, x10x0x00x1, x101xx000x, x100xx001x, x10xx1000x, x10xx100x0, x10xx0001x, 11011x00xx, 11010x00xx, x10x0x00xx}, 0x101x1x01 \ { 0x10111101, 0x10111x01, 01101x1x01, 00101x1x01}, x0101x1x01 \ { x010111101, x010111x01, 10101x1x01, 00101x1x01}, x10x1x1xx1 \ { x1011x1x01, x1001x1x11, x10x1111x1, x10x1x1011, x10x111xx1, 11011x1xx1}, 0x10100x01 \ { 0x10100101, 0x10100001, 0x10100101, 0110100x01, 0010100x01}, x010100x01 \ { x010100101, x010100001, x010100101, 1010100x01, 0010100x01}, x10x100xx1 \ { x101100x01, x100100x11, x10x100101, x10x1000x1, x10x1001x1, 1101100xx1}} {} {x0x10 \ {00110, x0110}, 0xx11 \ {00011, 01x11}} {} {} {x10x1 \ {01001, x1011, 01011}, 0xx01 \ {0x001, 00101, 01101}} {} {1x110 \ {10110, 11110, 11110}} {x11x1 \ {11101, x1101, x1101}} {} {1x11x \ {11110, 10111, 11111}} {1xxx0 \ {1x000, 10x00, 110x0}} { 1xx101x110 \ { 1xx1011110, 110101x110}} {} {x0xx1 \ {10101, 100x1, x0101}, 1x0xx \ {1001x, 11010}} {} {xxxx1 \ {01101, 01001, xx0x1}, 00x10 \ {00110, 00010, 00010}} {0xx10 \ {00010, 01x10, 01010}, 1x010 \ {11010, 10010}} { 0xx1000x10 \ { 0xx1000110, 0xx1000010, 0xx1000010, 0001000x10, 01x1000x10, 0101000x10}, 1x01000x10 \ { 1x01000110, 1x01000010, 1x01000010, 1101000x10, 1001000x10}} {01x1x \ {01x11, 01011}} {00xx1 \ {001x1, 00101, 00111}, x101x \ {11010, 11011}} { 00x1101x11 \ { 00x1101x11, 00x1101011, 0011101x11, 0011101x11}, x101x01x1x \ { x101101x10, x101001x11, x101x01x11, x101x01011, 1101001x1x, 1101101x1x}} {} {} {} {} {x000x \ {10001, 1000x, 10000}} {} {00xxx \ {00111, 00011, 00x1x}, 010x1 \ {01001, 01011}} {xxx11 \ {x1111, x0x11, 0x011}, 1x0x1 \ {100x1, 110x1, 10001}} { xxx1100x11 \ { xxx1100111, xxx1100011, xxx1100x11, x111100x11, x0x1100x11, 0x01100x11}, 1x0x100xx1 \ { 1x01100x01, 1x00100x11, 1x0x100111, 1x0x100011, 1x0x100x11, 100x100xx1, 110x100xx1, 1000100xx1}, xxx1101011 \ { xxx1101011, x111101011, x0x1101011, 0x01101011}, 1x0x1010x1 \ { 1x01101001, 1x00101011, 1x0x101001, 1x0x101011, 100x1010x1, 110x1010x1, 10001010x1}} {x0x1x \ {00110, 1011x, x0011}} {} {} {01x1x \ {01x10, 01111, 01111}, x0x01 \ {10001, 10101, x0101}} {x110x \ {11101, 01100}, xxx01 \ {11001, 0x101, 01101}} { x1101x0x01 \ { x110110001, x110110101, x1101x0101, 11101x0x01}, xxx01x0x01 \ { xxx0110001, xxx0110101, xxx01x0101, 11001x0x01, 0x101x0x01, 01101x0x01}} {1xx0x \ {1x000, 11100, 10000}, 1x01x \ {10011, 1001x}} {x11xx \ {111xx, x110x, x11x0}} { x110x1xx0x \ { x11011xx00, x11001xx01, x110x1x000, x110x11100, x110x10000, 1110x1xx0x, x110x1xx0x, x11001xx0x}, x111x1x01x \ { x11111x010, x11101x011, x111x10011, x111x1001x, 1111x1x01x, x11101x01x}} {} {} {} {xx010 \ {11010, 0x010}} {xxx10 \ {10110, 10x10, x1010}, 1x011 \ {11011, 10011}} { xxx10xx010 \ { xxx1011010, xxx100x010, 10110xx010, 10x10xx010, x1010xx010}} {0x0xx \ {0101x, 01011, 010x0}, 1x001 \ {10001, 11001, 11001}} {xx0x1 \ {x10x1, 010x1, 01001}} { xx0x10x0x1 \ { xx0110x001, xx0010x011, xx0x101011, xx0x101011, x10x10x0x1, 010x10x0x1, 010010x0x1}, xx0011x001 \ { xx00110001, xx00111001, xx00111001, x10011x001, 010011x001, 010011x001}} {x0010 \ {10010, 00010}, 10x00 \ {10100, 10000}} {x1x1x \ {0111x, 01011}, x1xx0 \ {x11x0, 01000, 01110}} { x1x10x0010 \ { x1x1010010, x1x1000010, 01110x0010}, x1x0010x00 \ { x1x0010100, x1x0010000, x110010x00, 0100010x00}} {x11x1 \ {111x1, 011x1, 11101}, x0x01 \ {10101, 10x01, x0001}} {xx10x \ {x010x, x1101, 1x10x}, x11x0 \ {011x0, 11100}} { xx101x1101 \ { xx10111101, xx10101101, xx10111101, x0101x1101, x1101x1101, 1x101x1101}, xx101x0x01 \ { xx10110101, xx10110x01, xx101x0001, x0101x0x01, x1101x0x01, 1x101x0x01}} {x1x11 \ {11111, x1111, 11x11}, x1x01 \ {01101, x1101, 01x01}} {10xx1 \ {10011, 10001, 101x1}} { 10x11x1x11 \ { 10x1111111, 10x11x1111, 10x1111x11, 10011x1x11, 10111x1x11}, 10x01x1x01 \ { 10x0101101, 10x01x1101, 10x0101x01, 10001x1x01, 10101x1x01}} {xxxx1 \ {0x1x1, 0xxx1, xx0x1}, 1xxxx \ {11xxx, 1x101, 110xx}, 10xx1 \ {10x11, 101x1, 101x1}} {1101x \ {11011, 11010, 11010}} { 11011xxx11 \ { 110110x111, 110110xx11, 11011xx011, 11011xxx11}, 1101x1xx1x \ { 110111xx10, 110101xx11, 1101x11x1x, 1101x1101x, 110111xx1x, 110101xx1x, 110101xx1x}, 1101110x11 \ { 1101110x11, 1101110111, 1101110111, 1101110x11}} {xxxx0 \ {xxx00, 00010, 01110}, 0x0x0 \ {01000, 00010, 010x0}} {x1xx0 \ {x1100, 01100, 11x00}, x1010 \ {11010}} { x1xx0xxxx0 \ { x1x10xxx00, x1x00xxx10, x1xx0xxx00, x1xx000010, x1xx001110, x1100xxxx0, 01100xxxx0, 11x00xxxx0}, x1010xxx10 \ { x101000010, x101001110, 11010xxx10}, x1xx00x0x0 \ { x1x100x000, x1x000x010, x1xx001000, x1xx000010, x1xx0010x0, x11000x0x0, 011000x0x0, 11x000x0x0}, x10100x010 \ { x101000010, x101001010, 110100x010}} {} {x0100 \ {00100}, 00xxx \ {00011, 0011x, 000x1}} {} {x10xx \ {010xx, 11010, x1010}, xx100 \ {x0100, 01100}} {x000x \ {00001, 1000x}, x10x0 \ {11010, x1010, 01010}, xx11x \ {1x11x, 0x110, 1x110}} { x000xx100x \ { x0001x1000, x0000x1001, x000x0100x, 00001x100x, 1000xx100x}, x10x0x10x0 \ { x1010x1000, x1000x1010, x10x0010x0, x10x011010, x10x0x1010, 11010x10x0, x1010x10x0, 01010x10x0}, xx11xx101x \ { xx111x1010, xx110x1011, xx11x0101x, xx11x11010, xx11xx1010, 1x11xx101x, 0x110x101x, 1x110x101x}, x0000xx100 \ { x0000x0100, x000001100, 10000xx100}, x1000xx100 \ { x1000x0100, x100001100}} {10xx1 \ {10101, 10x01, 10001}} {x0xx0 \ {x0110, x0000, 10100}} {} {11xxx \ {1110x, 11111, 11100}, 1011x \ {10111, 10110}} {0x101 \ {00101, 01101}, 10x1x \ {10110, 10010, 10x10}} { 0x10111x01 \ { 0x10111101, 0010111x01, 0110111x01}, 10x1x11x1x \ { 10x1111x10, 10x1011x11, 10x1x11111, 1011011x1x, 1001011x1x, 10x1011x1x}, 10x1x1011x \ { 10x1110110, 10x1010111, 10x1x10111, 10x1x10110, 101101011x, 100101011x, 10x101011x}} {x0xx0 \ {00010, 10000, 00100}, xx0x0 \ {00000, xx000, 010x0}} {} {} {xx1xx \ {10111, x0110, 111x0}} {00xxx \ {00xx0, 00010}, xxx01 \ {1x001, 01001, 1xx01}} { 00xxxxx1xx \ { 00xx1xx1x0, 00xx0xx1x1, 00x1xxx10x, 00x0xxx11x, 00xxx10111, 00xxxx0110, 00xxx111x0, 00xx0xx1xx, 00010xx1xx}, xxx01xx101 \ { 1x001xx101, 01001xx101, 1xx01xx101}} {x1x11 \ {x1011, 01111, 11011}, xx01x \ {10010, 0001x, 0x01x}} {0x1x1 \ {0x111, 01111, 011x1}, 0xxxx \ {01x0x, 0x10x, 01x00}} { 0x111x1x11 \ { 0x111x1011, 0x11101111, 0x11111011, 0x111x1x11, 01111x1x11, 01111x1x11}, 0xx11x1x11 \ { 0xx11x1011, 0xx1101111, 0xx1111011}, 0x111xx011 \ { 0x11100011, 0x1110x011, 0x111xx011, 01111xx011, 01111xx011}, 0xx1xxx01x \ { 0xx11xx010, 0xx10xx011, 0xx1x10010, 0xx1x0001x, 0xx1x0x01x}} {xxx00 \ {0xx00, 00000, 10x00}} {0010x \ {00101, 00100}} { 00100xxx00 \ { 001000xx00, 0010000000, 0010010x00, 00100xxx00}} {} {0xx1x \ {0xx10, 00111, 00x1x}, 10x1x \ {1001x}} {} {xx100 \ {00100, 0x100, 01100}, 1x011 \ {10011, 11011}} {11x1x \ {11011, 1111x}} { 11x111x011 \ { 11x1110011, 11x1111011, 110111x011, 111111x011}} {1x01x \ {10011, 1101x, 1101x}, 0100x \ {01001, 01000}} {x0xx1 \ {10001, x0011, x0111}, 0xx00 \ {01x00, 00000, 0x000}} { x0x111x011 \ { x0x1110011, x0x1111011, x0x1111011, x00111x011, x01111x011}, x0x0101001 \ { x0x0101001, 1000101001}, 0xx0001000 \ { 0xx0001000, 01x0001000, 0000001000, 0x00001000}} {xxx11 \ {0x011, 00011, xx011}, 1xxx1 \ {1xx11, 10xx1, 11111}} {x1000 \ {11000, 01000}} {} {00xxx \ {0001x, 00110, 001x1}, 1x010 \ {11010, 10010}} {0110x \ {01100, 01101, 01101}, x1x00 \ {01x00, 01100, 11000}} { 0110x00x0x \ { 0110100x00, 0110000x01, 0110x00101, 0110000x0x, 0110100x0x, 0110100x0x}, x1x0000x00 \ { 01x0000x00, 0110000x00, 1100000x00}} {10x1x \ {10x10, 10010, 1011x}, xx00x \ {0x00x, 11001, 01001}, 010x1 \ {01001, 01011, 01011}} {x010x \ {x0101, 00101}, 110xx \ {11000, 11011}} { 1101x10x1x \ { 1101110x10, 1101010x11, 1101x10x10, 1101x10010, 1101x1011x, 1101110x1x}, x010xxx00x \ { x0101xx000, x0100xx001, x010x0x00x, x010x11001, x010x01001, x0101xx00x, 00101xx00x}, 1100xxx00x \ { 11001xx000, 11000xx001, 1100x0x00x, 1100x11001, 1100x01001, 11000xx00x}, x010101001 \ { x010101001, x010101001, 0010101001}, 110x1010x1 \ { 1101101001, 1100101011, 110x101001, 110x101011, 110x101011, 11011010x1}} {0x0x0 \ {01010, 00010, 0x010}, 000xx \ {00011, 00000, 0001x}, 1x100 \ {10100, 11100}} {x1x11 \ {01x11, x1011, 11011}, x111x \ {11110, x1111, 01111}} { x11100x010 \ { x111001010, x111000010, x11100x010, 111100x010}, x1x1100011 \ { x1x1100011, x1x1100011, 01x1100011, x101100011, 1101100011}, x111x0001x \ { x111100010, x111000011, x111x00011, x111x0001x, 111100001x, x11110001x, 011110001x}} {x1x1x \ {01110, x1110, x1011}} {x01x0 \ {10110, x0100, 10100}} { x0110x1x10 \ { x011001110, x0110x1110, 10110x1x10}} {} {} {} {1xxx0 \ {1x000, 10110, 10000}} {1xx10 \ {10x10, 10010, 10010}, x10x0 \ {01000, 110x0, 01010}, x1xx0 \ {111x0, 01000, x1000}} { 1xx101xx10 \ { 1xx1010110, 10x101xx10, 100101xx10, 100101xx10}, x10x01xxx0 \ { x10101xx00, x10001xx10, x10x01x000, x10x010110, x10x010000, 010001xxx0, 110x01xxx0, 010101xxx0}, x1xx01xxx0 \ { x1x101xx00, x1x001xx10, x1xx01x000, x1xx010110, x1xx010000, 111x01xxx0, 010001xxx0, x10001xxx0}} {x10xx \ {0101x, 11000, x1000}, 00xxx \ {000x0, 001x1, 001x1}} {0x1xx \ {00111, 0110x, 0x101}} { 0x1xxx10xx \ { 0x1x1x10x0, 0x1x0x10x1, 0x11xx100x, 0x10xx101x, 0x1xx0101x, 0x1xx11000, 0x1xxx1000, 00111x10xx, 0110xx10xx, 0x101x10xx}, 0x1xx00xxx \ { 0x1x100xx0, 0x1x000xx1, 0x11x00x0x, 0x10x00x1x, 0x1xx000x0, 0x1xx001x1, 0x1xx001x1, 0011100xxx, 0110x00xxx, 0x10100xxx}} {x0000 \ {10000, 00000, 00000}, 0x10x \ {01101, 0110x, 0110x}} {x1xxx \ {01111, 11x1x, 1110x}} { x1x00x0000 \ { x1x0010000, x1x0000000, x1x0000000, 11100x0000}, x1x0x0x10x \ { x1x010x100, x1x000x101, x1x0x01101, x1x0x0110x, x1x0x0110x, 1110x0x10x}} {01x1x \ {01x10, 01110, 01110}} {0100x \ {01000, 01001, 01001}, 1x000 \ {11000, 10000}, 0x110 \ {00110}} { 0x11001x10 \ { 0x11001x10, 0x11001110, 0x11001110, 0011001x10}} {x00x0 \ {100x0, 00000, x0010}, 1x110 \ {11110}} {001xx \ {00110, 001x0}, xxx01 \ {0xx01, 11x01, 11001}} { 001x0x00x0 \ { 00110x0000, 00100x0010, 001x0100x0, 001x000000, 001x0x0010, 00110x00x0, 001x0x00x0}, 001101x110 \ { 0011011110, 001101x110, 001101x110}} {xxx1x \ {1x11x, 1xx1x, 01010}, 0x0xx \ {00010, 0x00x, 00011}} {x1xx0 \ {01xx0, x1000, 111x0}} { x1x10xxx10 \ { x1x101x110, x1x101xx10, x1x1001010, 01x10xxx10, 11110xxx10}, x1xx00x0x0 \ { x1x100x000, x1x000x010, x1xx000010, x1xx00x000, 01xx00x0x0, x10000x0x0, 111x00x0x0}} {xxx01 \ {x0001, 0xx01, 1x101}, 00x10 \ {00110, 00010}} {1x1x1 \ {10101, 101x1, 10111}} { 1x101xxx01 \ { 1x101x0001, 1x1010xx01, 1x1011x101, 10101xxx01, 10101xxx01}} {1x1x1 \ {10111, 10101, 11111}} {0xx01 \ {01001, 0x001, 01x01}} { 0xx011x101 \ { 0xx0110101, 010011x101, 0x0011x101, 01x011x101}} {1x1x1 \ {10101, 10111, 10111}, x0xx1 \ {00101, 00x11, 10111}} {x11x1 \ {x1111, 01111, 01101}} { x11x11x1x1 \ { x11111x101, x11011x111, x11x110101, x11x110111, x11x110111, x11111x1x1, 011111x1x1, 011011x1x1}, x11x1x0xx1 \ { x1111x0x01, x1101x0x11, x11x100101, x11x100x11, x11x110111, x1111x0xx1, 01111x0xx1, 01101x0xx1}} {10x1x \ {10010, 10x11, 10x10}, xxxx1 \ {0xxx1, 10xx1, 1x011}} {110xx \ {11010, 11001}} { 1101x10x1x \ { 1101110x10, 1101010x11, 1101x10010, 1101x10x11, 1101x10x10, 1101010x1x}, 110x1xxxx1 \ { 11011xxx01, 11001xxx11, 110x10xxx1, 110x110xx1, 110x11x011, 11001xxxx1}} {} {10xx0 \ {10000, 10110}, xxx11 \ {01x11, 01011, x0011}, 0xxx0 \ {01xx0, 0xx10, 0x1x0}} {} {00xx1 \ {001x1, 00x01, 000x1}, 0x00x \ {0000x, 01000, 0100x}} {00x0x \ {00001, 00100}, 01xx1 \ {01101, 01x11, 01x11}} { 00x0100x01 \ { 00x0100101, 00x0100x01, 00x0100001, 0000100x01}, 01xx100xx1 \ { 01x1100x01, 01x0100x11, 01xx1001x1, 01xx100x01, 01xx1000x1, 0110100xx1, 01x1100xx1, 01x1100xx1}, 00x0x0x00x \ { 00x010x000, 00x000x001, 00x0x0000x, 00x0x01000, 00x0x0100x, 000010x00x, 001000x00x}, 01x010x001 \ { 01x0100001, 01x0101001, 011010x001}} {x1x0x \ {01x01, 11x0x, 11x0x}, x1001 \ {01001}} {00xx1 \ {00111, 00001, 00011}} { 00x01x1x01 \ { 00x0101x01, 00x0111x01, 00x0111x01, 00001x1x01}, 00x01x1001 \ { 00x0101001, 00001x1001}} {x1101 \ {01101, 11101}, 101xx \ {101x0, 10110, 10100}} {001x0 \ {00100}} { 001x0101x0 \ { 0011010100, 0010010110, 001x0101x0, 001x010110, 001x010100, 00100101x0}} {xx101 \ {11101, x0101, 00101}} {1011x \ {10111}, x0x10 \ {x0110, x0010, 10x10}} {} {0xx10 \ {01110, 00x10, 01010}} {100xx \ {1000x, 1001x, 10000}, 0x0x1 \ {00001, 010x1, 00011}, 00xxx \ {0010x, 00xx0, 00001}} { 100100xx10 \ { 1001001110, 1001000x10, 1001001010, 100100xx10}, 00x100xx10 \ { 00x1001110, 00x1000x10, 00x1001010, 00x100xx10}} {x01x1 \ {101x1, 001x1, 001x1}} {xx01x \ {x101x, 1x011, 10011}, 0001x \ {00010, 00011, 00011}} { xx011x0111 \ { xx01110111, xx01100111, xx01100111, x1011x0111, 1x011x0111, 10011x0111}, 00011x0111 \ { 0001110111, 0001100111, 0001100111, 00011x0111, 00011x0111}} {xx011 \ {11011, 0x011, 01011}} {x10xx \ {110x1, 01010}} { x1011xx011 \ { x101111011, x10110x011, x101101011, 11011xx011}} {x0x01 \ {00001, 00101, 10101}, 1x011 \ {11011, 10011, 10011}, 11xxx \ {11x1x, 11100, 11011}} {} {} {11x0x \ {1110x, 11x00, 11x01}} {11x00 \ {11100}} { 11x0011x00 \ { 11x0011100, 11x0011x00, 1110011x00}} {x0xx0 \ {x00x0, x0010, 00000}} {xx111 \ {01111, 10111, 00111}} {} {xxx10 \ {11110, 1x110, 01010}} {} {} {010xx \ {01010, 0101x}, xxxx0 \ {x1010, 10x10, 01x10}} {} {} {1x1x0 \ {11110, 111x0, 10110}, 000xx \ {000x0, 00001}, x0xx0 \ {10110, 10x10, 101x0}} {1xxx0 \ {11000, 100x0, 11110}} { 1xxx01x1x0 \ { 1xx101x100, 1xx001x110, 1xxx011110, 1xxx0111x0, 1xxx010110, 110001x1x0, 100x01x1x0, 111101x1x0}, 1xxx0000x0 \ { 1xx1000000, 1xx0000010, 1xxx0000x0, 11000000x0, 100x0000x0, 11110000x0}, 1xxx0x0xx0 \ { 1xx10x0x00, 1xx00x0x10, 1xxx010110, 1xxx010x10, 1xxx0101x0, 11000x0xx0, 100x0x0xx0, 11110x0xx0}} {} {x10xx \ {x10x1, 110x0, 010x1}, x001x \ {x0011, 10010, 10010}} {} {xxx1x \ {x111x, 10111, 1x11x}, 01x11 \ {01011}} {xxx10 \ {0x010, xx110, xx010}, 010x0 \ {01000, 01010}} { xxx10xxx10 \ { xxx10x1110, xxx101x110, 0x010xxx10, xx110xxx10, xx010xxx10}, 01010xxx10 \ { 01010x1110, 010101x110, 01010xxx10}} {1xx01 \ {10x01, 10101}} {1011x \ {10110, 10111, 10111}, x1x1x \ {1101x, x111x, 01x10}} {} {} {0x1x0 \ {001x0, 01110, 0x100}, 0xx11 \ {00x11, 00111, 0x011}} {} {xxx1x \ {1011x, 1xx1x, 0x110}, x0x11 \ {x0111, 10x11, 00111}} {0x10x \ {0010x, 01100, 00101}} {} {1xx00 \ {10100, 1x100, 11100}} {1x0xx \ {10010, 100xx, 110xx}, x00x1 \ {x0011, 00001, 00011}} { 1x0001xx00 \ { 1x00010100, 1x0001x100, 1x00011100, 100001xx00, 110001xx00}} {001x0 \ {00110, 00100, 00100}} {0xx11 \ {00x11, 01111, 00111}, xx01x \ {x101x, 10011, 1001x}} { xx01000110 \ { xx01000110, x101000110, 1001000110}} {xxx00 \ {1xx00, 00x00, 00100}} {111xx \ {111x0, 11101, 11101}, 01x0x \ {01000, 0110x, 0100x}} { 11100xxx00 \ { 111001xx00, 1110000x00, 1110000100, 11100xxx00}, 01x00xxx00 \ { 01x001xx00, 01x0000x00, 01x0000100, 01000xxx00, 01100xxx00, 01000xxx00}} {xx10x \ {x010x, x0101, 0010x}} {1x0xx \ {1101x, 10001, 10010}, x1xx1 \ {01x11, 01xx1, 11101}} { 1x00xxx10x \ { 1x001xx100, 1x000xx101, 1x00xx010x, 1x00xx0101, 1x00x0010x, 10001xx10x}, x1x01xx101 \ { x1x01x0101, x1x01x0101, x1x0100101, 01x01xx101, 11101xx101}} {1x11x \ {10111, 11111, 1x110}} {1x011 \ {10011, 11011}, 1xxxx \ {10xx0, 101x0, 10011}} { 1x0111x111 \ { 1x01110111, 1x01111111, 100111x111, 110111x111}, 1xx1x1x11x \ { 1xx111x110, 1xx101x111, 1xx1x10111, 1xx1x11111, 1xx1x1x110, 10x101x11x, 101101x11x, 100111x11x}} {01xx0 \ {011x0, 01x00, 01100}, x00x1 \ {00001, 10011}} {0x10x \ {0010x, 0x100, 00100}, 1000x \ {10000, 10001, 10001}} { 0x10001x00 \ { 0x10001100, 0x10001x00, 0x10001100, 0010001x00, 0x10001x00, 0010001x00}, 1000001x00 \ { 1000001100, 1000001x00, 1000001100, 1000001x00}, 0x101x0001 \ { 0x10100001, 00101x0001}, 10001x0001 \ { 1000100001, 10001x0001, 10001x0001}} {00x0x \ {00101, 00x00, 0000x}, 10x01 \ {10101, 10001}} {1xx01 \ {11101, 1x001}} { 1xx0100x01 \ { 1xx0100101, 1xx0100001, 1110100x01, 1x00100x01}, 1xx0110x01 \ { 1xx0110101, 1xx0110001, 1110110x01, 1x00110x01}} {} {xx00x \ {xx001, x000x, 1000x}} {} {111x1 \ {11111}, 1x010 \ {11010, 10010}} {x1x00 \ {01000, 11100, x1000}, 100xx \ {1001x, 10001, 10001}} { 100x1111x1 \ { 1001111101, 1000111111, 100x111111, 10011111x1, 10001111x1, 10001111x1}, 100101x010 \ { 1001011010, 1001010010, 100101x010}} {111xx \ {1110x, 11110, 111x1}, 0xx11 \ {00111, 01011, 00011}, xx00x \ {0x001, x0001, 0100x}} {x10xx \ {0101x, 1100x}} { x10xx111xx \ { x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx1110x, x10xx11110, x10xx111x1, 0101x111xx, 1100x111xx}, x10110xx11 \ { x101100111, x101101011, x101100011, 010110xx11}, x100xxx00x \ { x1001xx000, x1000xx001, x100x0x001, x100xx0001, x100x0100x, 1100xxx00x}} {xxx10 \ {10x10, 0xx10, 00010}} {x1101 \ {01101, 11101}} {} { 11000110000000000001} { 00000000000100011011} { 00000000000100011011} { 11000110000000000001} { 00000000000100011011} { 11000000000001000110} empty { } false full { xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} true { xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx \ { xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxx, xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx, xxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxx, xxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxx, xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx, xxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx, xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxx, xxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxx, xxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxx, xxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxx, xxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxx, xxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxx}} { } { } project { xxxxxxxxxxxxxxxxxx} { } { 000000111000000110000000000001, 000000100000010000000000001000, 000000000100010000000000100000} { 000000111000000110, 000000100000010000, 000000000100010000} t1 before:{ 000000000100010000000000100000} t1 after:{ 000000000100010000000000100000, 000000111000000110000000000001, 000000100000010000000000001000} delta:{ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} { 001001001000001001, 010001001000001001} { 001001001000001001} filter: (= (:var 0) (:var 1)) {xxx \ {x01, x10}} filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}} filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}} filter interpreted filter: true { xxxxxxxxxxxxxxxxxx} filter: false { } filter: (= (:var 0) (:var 2)) { xxxxxxxxxxxxxxxxxx \ { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx}} filter: (not (= (:var 0) (:var 2))) { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx} filter: (= (:var 0) #b010) { xxxxxxxxxxxxxxx010} filter: (= ((_ extract 2 1) (:var 0)) #b11) { xxxxxxxxxxxxxxx11x} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xxxxxxxxxxxx, xx1xx0xxxxxxxxxxxx, x0xx1xxxxxxxxxxxxx, x1xx0xxxxxxxxxxxxx, 0xx1xxxxxxxxxxxxxx, 1xx0xxxxxxxxxxxxxx}, 1xx0xxxxxxxxxxx11x \ { 1x00x1xxxxxxxxx11x, 1x10x0xxxxxxxxx11x, 10x01xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 0xx1xxxxxxxxxxx11x \ { 0x01x1xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 01x10xxxxxxxxxx11x}, x1xx0xxxxxxxxxx11x \ { x10x01xxxxxxxxx11x, x11x00xxxxxxxxx11x, 01x10xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 11x00xxxxxxxxxx11x \ { 110001xxxxxxxxx11x, 111000xxxxxxxxx11x}, 01x10xxxxxxxxxx11x \ { 010101xxxxxxxxx11x, 011100xxxxxxxxx11x}, x0xx1xxxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x01x10xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 10x01xxxxxxxxxx11x}, 10x01xxxxxxxxxx11x \ { 100011xxxxxxxxx11x, 101010xxxxxxxxx11x}, 00x11xxxxxxxxxx11x \ { 000111xxxxxxxxx11x, 001110xxxxxxxxx11x}, xx1xx0xxxxxxxxx11x \ { x01x10xxxxxxxxx11x, x11x00xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 1x10x0xxxxxxxxx11x}, 1x10x0xxxxxxxxx11x \ { 101010xxxxxxxxx11x, 111000xxxxxxxxx11x}, 0x11x0xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 011100xxxxxxxxx11x}, x11x00xxxxxxxxx11x \ { 011100xxxxxxxxx11x, 111000xxxxxxxxx11x}, 111000xxxxxxxxx11x, 011100xxxxxxxxx11x, x01x10xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 101010xxxxxxxxx11x}, 101010xxxxxxxxx11x, 001110xxxxxxxxx11x, xx0xx1xxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x10x01xxxxxxxxx11x, 0x01x1xxxxxxxxx11x, 1x00x1xxxxxxxxx11x}, 1x00x1xxxxxxxxx11x \ { 100011xxxxxxxxx11x, 110001xxxxxxxxx11x}, 0x01x1xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 010101xxxxxxxxx11x}, x10x01xxxxxxxxx11x \ { 010101xxxxxxxxx11x, 110001xxxxxxxxx11x}, 110001xxxxxxxxx11x, 010101xxxxxxxxx11x, x00x11xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 100011xxxxxxxxx11x}, 100011xxxxxxxxx11x, 000111xxxxxxxxx11x} filter: (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0x1xxxxxxxxxxxxx, xx1x0xxxxxxxxxxxxx, x0x1xxxxxxxxxxxxxx, x1x0xxxxxxxxxxxxxx}} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4)))) { xxxxxxxxxxxxxxxxxx \ { xx0x1xxxxxxxxxxxxx, xx1x0xxxxxxxxxxxxx, x0x1xxxxxxxxxxxxxx, x1x0xxxxxxxxxxxxxx}, x1x0xxxxxxxxxxx11x \ { x1001xxxxxxxxxx11x, x1100xxxxxxxxxx11x}, x0x1xxxxxxxxxxx11x \ { x0011xxxxxxxxxx11x, x0110xxxxxxxxxx11x}, xx1x0xxxxxxxxxx11x \ { x0110xxxxxxxxxx11x, x1100xxxxxxxxxx11x}, x1100xxxxxxxxxx11x, x0110xxxxxxxxxx11x, xx0x1xxxxxxxxxx11x \ { x0011xxxxxxxxxx11x, x1001xxxxxxxxxx11x}, x1001xxxxxxxxxx11x, x0011xxxxxxxxxx11x} filter: (or (= (:var 0) (:var 2)) (= (:var 0) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xxxxx0xxxxxxxx1, x0xxxxxx0xxxxxxx11, x1xxxxxx0xxxxxxx01, 0xxxxxxx0xxxxxx1x1, 1xxxxxxx0xxxxxx0x1, xx1xxxxx1xxxxxxxx0, x0xxxxxx1xxxxxxx10, x1xxxxxx1xxxxxxx00, 0xxxxxxx1xxxxxx1x0, 1xxxxxxx1xxxxxx0x0, xx0xxxx0xxxxxxxx11, xx1xxxx0xxxxxxxx10, x0xxxxx0xxxxxxxx1x, 0xxxxxx0xxxxxxx11x, 1xxxxxx0xxxxxxx01x, xx0xxxx1xxxxxxxx01, xx1xxxx1xxxxxxxx00, x1xxxxx1xxxxxxxx0x, 0xxxxxx1xxxxxxx10x, 1xxxxxx1xxxxxxx00x, xx0xxx0xxxxxxxx1x1, xx1xxx0xxxxxxxx1x0, x0xxxx0xxxxxxxx11x, x1xxxx0xxxxxxxx10x, 0xxxxx0xxxxxxxx1xx, xx0xxx1xxxxxxxx0x1, xx1xxx1xxxxxxxx0x0, x0xxxx1xxxxxxxx01x, x1xxxx1xxxxxxxx00x, 1xxxxx1xxxxxxxx0xx}} filter: (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xx0xxxxxxxx1, xx1xx0xx0xxxxxxxx1, x0xx1xxx0xxxxxxxx1, x1xx0xxx0xxxxxxxx1, 0xx1xxxx0xxxxxxxx1, 1xx0xxxx0xxxxxxxx1, xx0xx1xx1xxxxxxxx0, xx1xx0xx1xxxxxxxx0, x0xx1xxx1xxxxxxxx0, x1xx0xxx1xxxxxxxx0, 0xx1xxxx1xxxxxxxx0, 1xx0xxxx1xxxxxxxx0, xx0xx1x0xxxxxxxx1x, xx1xx0x0xxxxxxxx1x, x0xx1xx0xxxxxxxx1x, x1xx0xx0xxxxxxxx1x, 0xx1xxx0xxxxxxxx1x, 1xx0xxx0xxxxxxxx1x, xx0xx1x1xxxxxxxx0x, xx1xx0x1xxxxxxxx0x, x0xx1xx1xxxxxxxx0x, x1xx0xx1xxxxxxxx0x, 0xx1xxx1xxxxxxxx0x, 1xx0xxx1xxxxxxxx0x, xx0xx10xxxxxxxx1xx, xx1xx00xxxxxxxx1xx, x0xx1x0xxxxxxxx1xx, x1xx0x0xxxxxxxx1xx, 0xx1xx0xxxxxxxx1xx, 1xx0xx0xxxxxxxx1xx, xx0xx11xxxxxxxx0xx, xx1xx01xxxxxxxx0xx, x0xx1x1xxxxxxxx0xx, x1xx0x1xxxxxxxx0xx, 0xx1xx1xxxxxxxx0xx, 1xx0xx1xxxxxxxx0xx}} filter: (or (= ((_ extract 2 1) (:var 0)) ((_ extract 1 0) (:var 2))) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xx0xxxxxxx1x, xx1xx0xx0xxxxxxx1x, x0xx1xxx0xxxxxxx1x, x1xx0xxx0xxxxxxx1x, 0xx1xxxx0xxxxxxx1x, 1xx0xxxx0xxxxxxx1x, xx0xx1xx1xxxxxxx0x, xx1xx0xx1xxxxxxx0x, x0xx1xxx1xxxxxxx0x, x1xx0xxx1xxxxxxx0x, 0xx1xxxx1xxxxxxx0x, 1xx0xxxx1xxxxxxx0x, xx0xx1x0xxxxxxx1xx, xx1xx0x0xxxxxxx1xx, x0xx1xx0xxxxxxx1xx, x1xx0xx0xxxxxxx1xx, 0xx1xxx0xxxxxxx1xx, 1xx0xxx0xxxxxxx1xx, xx0xx1x1xxxxxxx0xx, xx1xx0x1xxxxxxx0xx, x0xx1xx1xxxxxxx0xx, x1xx0xx1xxxxxxx0xx, 0xx1xxx1xxxxxxx0xx, 1xx0xxx1xxxxxxx0xx}} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) { xxxxxxxxxxxxxxxxxx \ { xx0xx1xxxxxxxxxxxx, xx1xx0xxxxxxxxxxxx, x0xx1xxxxxxxxxxxxx, x1xx0xxxxxxxxxxxxx, 0xx1xxxxxxxxxxxxxx, 1xx0xxxxxxxxxxxxxx}, 1xx0xxxxxxxxxxx11x \ { 1x00x1xxxxxxxxx11x, 1x10x0xxxxxxxxx11x, 10x01xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 0xx1xxxxxxxxxxx11x \ { 0x01x1xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 01x10xxxxxxxxxx11x}, x1xx0xxxxxxxxxx11x \ { x10x01xxxxxxxxx11x, x11x00xxxxxxxxx11x, 01x10xxxxxxxxxx11x, 11x00xxxxxxxxxx11x}, 11x00xxxxxxxxxx11x \ { 110001xxxxxxxxx11x, 111000xxxxxxxxx11x}, 01x10xxxxxxxxxx11x \ { 010101xxxxxxxxx11x, 011100xxxxxxxxx11x}, x0xx1xxxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x01x10xxxxxxxxx11x, 00x11xxxxxxxxxx11x, 10x01xxxxxxxxxx11x}, 10x01xxxxxxxxxx11x \ { 100011xxxxxxxxx11x, 101010xxxxxxxxx11x}, 00x11xxxxxxxxxx11x \ { 000111xxxxxxxxx11x, 001110xxxxxxxxx11x}, xx1xx0xxxxxxxxx11x \ { x01x10xxxxxxxxx11x, x11x00xxxxxxxxx11x, 0x11x0xxxxxxxxx11x, 1x10x0xxxxxxxxx11x}, 1x10x0xxxxxxxxx11x \ { 101010xxxxxxxxx11x, 111000xxxxxxxxx11x}, 0x11x0xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 011100xxxxxxxxx11x}, x11x00xxxxxxxxx11x \ { 011100xxxxxxxxx11x, 111000xxxxxxxxx11x}, 111000xxxxxxxxx11x, 011100xxxxxxxxx11x, x01x10xxxxxxxxx11x \ { 001110xxxxxxxxx11x, 101010xxxxxxxxx11x}, 101010xxxxxxxxx11x, 001110xxxxxxxxx11x, xx0xx1xxxxxxxxx11x \ { x00x11xxxxxxxxx11x, x10x01xxxxxxxxx11x, 0x01x1xxxxxxxxx11x, 1x00x1xxxxxxxxx11x}, 1x00x1xxxxxxxxx11x \ { 100011xxxxxxxxx11x, 110001xxxxxxxxx11x}, 0x01x1xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 010101xxxxxxxxx11x}, x10x01xxxxxxxxx11x \ { 010101xxxxxxxxx11x, 110001xxxxxxxxx11x}, 110001xxxxxxxxx11x, 010101xxxxxxxxx11x, x00x11xxxxxxxxx11x \ { 000111xxxxxxxxx11x, 100011xxxxxxxxx11x}, 100011xxxxxxxxx11x, 000111xxxxxxxxx11x} filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) #b011)) { xxxxxxxxxxxxxxx11x, xxx011xxxxxxxxxxxx} filter: (or (= (:var 0) #b101) (= (:var 3) #b101)) { xxxxxxxxxxxxxxx101, xxx101xxxxxxxxxxxx} filter: (or (= (:var 0) #b111) (= (:var 3) #b111)) { xxxxxxxxxxxxxxx111, xxx111xxxxxxxxxxxx} filter: (not (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4)))) { xx0xx1xx0xxxxxxxx1, xx0xx1xx1xxxxxxxx0, xx0xx1x0xxxxxxxx1x, xx0xx1x1xxxxxxxx0x, xx0xx10xxxxxxxx1xx, xx0xx11xxxxxxxx0xx, xx1xx0xx0xxxxxxxx1, xx1xx0xx1xxxxxxxx0, xx1xx0x0xxxxxxxx1x, xx1xx0x1xxxxxxxx0x, xx1xx00xxxxxxxx1xx, xx1xx01xxxxxxxx0xx, x0xx1xxx0xxxxxxxx1, x0xx1xxx1xxxxxxxx0, x0xx1xx0xxxxxxxx1x, x0xx1xx1xxxxxxxx0x, x0xx1x0xxxxxxxx1xx, x0xx1x1xxxxxxxx0xx, x1xx0xxx0xxxxxxxx1, x1xx0xxx1xxxxxxxx0, x1xx0xx0xxxxxxxx1x, x1xx0xx1xxxxxxxx0x, x1xx0x0xxxxxxxx1xx, x1xx0x1xxxxxxxx0xx, 0xx1xxxx0xxxxxxxx1, 0xx1xxxx1xxxxxxxx0, 0xx1xxx0xxxxxxxx1x, 0xx1xxx1xxxxxxxx0x, 0xx1xx0xxxxxxxx1xx, 0xx1xx1xxxxxxxx0xx, 1xx0xxxx0xxxxxxxx1, 1xx0xxxx1xxxxxxxx0, 1xx0xxx0xxxxxxxx1x, 1xx0xxx1xxxxxxxx0x, 1xx0xx0xxxxxxxx1xx, 1xx0xx1xxxxxxxx0xx} filter: (= (:var 0) (:var 2)) { xxxxxxxxxxxxxxxxxx \ { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx}} filter: (not (= (:var 0) (:var 2))) { xxxxxxxx0xxxxxxxx1, xxxxxxxx1xxxxxxxx0, xxxxxxx0xxxxxxxx1x, xxxxxxx1xxxxxxxx0x, xxxxxx0xxxxxxxx1xx, xxxxxx1xxxxxxxx0xx} PASS (test udoc_relation :time 2.10 :before-memory 1.08 :after-memory 1.08) PASS (test string_buffer :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test string_buffer :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test map :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test map :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test diff_logic :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test diff_logic :time 0.00 :before-memory 1.08 :after-memory 1.08) 0 2 6 8198 {1, 2, 44} : 1 {1, 2, 4, 44} : 3 PASS (test uint_set :time 0.04 :before-memory 1.08 :after-memory 1.08) 0 2 6 8198 {1, 2, 44} : 1 {1, 2, 4, 44} : 3 PASS (test uint_set :time 0.04 :before-memory 1.08 :after-memory 1.08) PASS (test list :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test list :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test small_object_allocator :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test small_object_allocator :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test timeout :time 0.00 :before-memory 1.08 :after-memory 1.08) PASS (test timeout :time 0.00 :before-memory 1.08 :after-memory 1.08) [hypothesis]: a #5 := (not a) [hypothesis]: #5 #5 := (not a) #6 := [hypothesis]: #5 #4 := [hypothesis]: a #7 := [unit-resolution #4 #6]: false [lemma #7]: a #5 := (not a) #10 := (or a #5) #6 := [hypothesis]: #5 #4 := [hypothesis]: a #7 := [unit-resolution #4 #6]: false [lemma #7]: #10 PASS (test proof_checker :time 0.00 :before-memory 1.08 :after-memory 1.08) [hypothesis]: a #5 := (not a) [hypothesis]: #5 #5 := (not a) #6 := [hypothesis]: #5 #4 := [hypothesis]: a #7 := [unit-resolution #4 #6]: false [lemma #7]: a #5 := (not a) #10 := (or a #5) #6 := [hypothesis]: #5 #4 := [hypothesis]: a #7 := [unit-resolution #4 #6]: false [lemma #7]: #10 PASS (test proof_checker :time 0.00 :before-memory 1.08 :after-memory 1.08) (exists ((x Real)) (! (and (= (+ x 1.0) xp) (>= (+ x y) 0.0)) :weight 0)) (exists ((x Real)) (! (and (= x (+ (- 1.0) xp)) (>= (+ x y) 0.0)) :weight 0)) PASS (test simplifier :time 0.02 :before-memory 1.08 :after-memory 9.27) (exists ((x Real)) (! (and (= (+ x 1.0) xp) (>= (+ x y) 0.0)) :weight 0)) (exists ((x Real)) (! (and (= x (+ (- 1.0) xp)) (>= (+ x y) 0.0)) :weight 0)) PASS (test simplifier :time 0.02 :before-memory 9.27 :after-memory 17.56) PASS (test bit_blaster :time 0.00 :before-memory 17.56 :after-memory 17.66) PASS (test bit_blaster :time 0.00 :before-memory 17.66 :after-memory 17.66) (forall ((y S)) (! (and (p y (:var 1)) (p (:var 2) (:var 3))) :weight 0)) (forall ((y S)) (! (and (p y (:var 2)) (p (:var 1) (:var 3))) :weight 0)) (forall ((y S)) (! (and (p y (:var 2)) (p (:var 1) (:var 3))) :weight 0)) (forall ((y S) (x S)) (! (and (p x y) (p (:var 2) (:var 3))) :weight 0)) (forall ((y S) (x S)) (! (and (p x y) (p (:var 3) (:var 2))) :weight 0)) (forall ((y S) (x S)) (! (and (p x y) (p (:var 3) (:var 2))) :weight 0)) PASS (test var_subst :time 0.00 :before-memory 17.66 :after-memory 17.68) (forall ((y S)) (! (and (p y (:var 1)) (p (:var 2) (:var 3))) :weight 0)) (forall ((y S)) (! (and (p y (:var 2)) (p (:var 1) (:var 3))) :weight 0)) (forall ((y S)) (! (and (p y (:var 2)) (p (:var 1) (:var 3))) :weight 0)) (forall ((y S) (x S)) (! (and (p x y) (p (:var 2) (:var 3))) :weight 0)) (forall ((y S) (x S)) (! (and (p x y) (p (:var 3) (:var 2))) :weight 0)) (forall ((y S) (x S)) (! (and (p x y) (p (:var 3) (:var 2))) :weight 0)) PASS (test var_subst :time 0.00 :before-memory 17.68 :after-memory 17.68) WARNING: parser error WARNING: parser error WARNING: parser error PASS (test simple_parser :time 0.00 :before-memory 17.68 :after-memory 17.66) WARNING: parser error WARNING: parser error WARNING: parser error PASS (test simple_parser :time 0.00 :before-memory 17.66 :after-memory 17.66) 1 1 1 1 PASS (test api :time 0.05 :before-memory 17.66 :after-memory 17.68) 1 1 1 1 PASS (test api :time 0.04 :before-memory 17.68 :after-memory 17.68) l_true l_true l_true l_false a l_false a c l_false a c e l_true PASS (test cube_clause :time 0.00 :before-memory 17.68 :after-memory 17.69) l_true l_true l_true l_false a l_false a c l_false a c e l_true PASS (test cube_clause :time 0.00 :before-memory 17.69 :after-memory 17.69) x: (1, 2), y: (-2, 3), z: (-1, 5) x: (1, 2), y: (-2, 3), z: (-4, 6) [10, 10] (-oo, oo) [-10, oo) (-oo, 10] (-10, oo) (-oo, 10) [2, 10] [-2, -1) * [-3, 0] = [0, 6] (1, 2] * [0, 3] = [0, 6] (1, 2) * [-3, 0] = (-6, 0] [10, 20] / (0, 1] = [10, oo) [5, oo) PASS (test old_interval :time 0.00 :before-memory 17.69 :after-memory 17.69) x: (1, 2), y: (-2, 3), z: (-1, 5) x: (1, 2), y: (-2, 3), z: (-4, 6) [10, 10] (-oo, oo) [-10, oo) (-oo, 10] (-10, oo) (-oo, 10) [2, 10] [-2, -1) * [-3, 0] = [0, 6] (1, 2] * [0, 3] = [0, 6] (1, 2) * [-3, 0] = (-6, 0] [10, 20] / (0, 1] = [10, oo) [5, oo) PASS (test old_interval :time 0.00 :before-memory 17.69 :after-memory 17.69) Class a |-> 0 Class b |-> 0 Class c |-> 2 Class d |-> 0 Class (f a) |-> 4 Class (f b) |-> 4 Class (f c) |-> 6 asserting b <= f(a) Class a |-> 0 Class b |-> 0 Class c |-> 2 Class d |-> 0 Class (f a) |-> 0 Class (f b) |-> 0 Class (f c) |-> 0 Class ((as const (Array Int Int)) 1) |-> 0 Class (store ((as const (Array Int Int)) 1) 1 a) |-> 1 Class (store (store ((as const (Array Int Int)) 1) 1 a) 2 b) |-> 2 Class (store ((as const (Array Int Int)) 1) 2 b) |-> 3 Class (store (store ((as const (Array Int Int)) 1) 2 b) 1 a) |-> 2 PASS (test get_implied_equalities :time 0.01 :before-memory 17.69 :after-memory 17.70) Class a |-> 0 Class b |-> 0 Class c |-> 2 Class d |-> 0 Class (f a) |-> 4 Class (f b) |-> 4 Class (f c) |-> 6 asserting b <= f(a) Class a |-> 0 Class b |-> 0 Class c |-> 2 Class d |-> 0 Class (f a) |-> 0 Class (f b) |-> 0 Class (f c) |-> 0 Class ((as const (Array Int Int)) 1) |-> 0 Class (store ((as const (Array Int Int)) 1) 1 a) |-> 1 Class (store (store ((as const (Array Int Int)) 1) 1 a) 2 b) |-> 2 Class (store ((as const (Array Int Int)) 1) 2 b) |-> 3 Class (store (store ((as const (Array Int Int)) 1) 2 b) 1 a) |-> 2 PASS (test get_implied_equalities :time 0.01 :before-memory 17.70 :after-memory 17.70) not solved 1 3 0 0 PASS (test arith_simplifier_plugin :time 0.00 :before-memory 17.70 :after-memory 17.66) not solved 1 3 0 0 PASS (test arith_simplifier_plugin :time 0.00 :before-memory 17.66 :after-memory 17.66) Is (f (g (h a)) (h a)) an instance of (f (g (:var 0)) (:var 0)) yes VAR 0:0 --> 1 (h a) Are the arguments of (f (g (h a)) (h a)) an instance of the arguments of (f (g (:var 0)) (:var 0)) yes VAR 0:0 --> 1 (h a) applying substitution to (r (:var 0) (:var 1) (:var 2)) result: (r (h a) (:var 1) (:var 2)) Is (f (g (h a)) (g (h a))) an instance of (f (g (:var 0)) (:var 0)) no Are the arguments of (f (g (h a)) (g (h a))) an instance of the arguments of (f (g (:var 0)) (:var 0)) no Is (f (:var 1) (:var 0)) an instance of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (:var 0) Are the arguments of (f (:var 1) (:var 0)) an instance of the arguments of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (:var 0) applying substitution to (r (:var 0) (:var 1) (:var 2)) result: (r (:var 1) (:var 0) (:var 2)) Is (f (:var 1) (g (:var 0))) an instance of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (g (:var 0)) Are the arguments of (f (:var 1) (g (:var 0))) an instance of the arguments of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (g (:var 0)) applying substitution to (r (:var 0) (:var 1) (:var 2)) result: (r (:var 1) (g (:var 0)) (:var 2)) Is (f (:var 0) (:var 1)) an instance of (f (:var 1) (g (:var 0))) no Are the arguments of (f (:var 0) (:var 1)) an instance of the arguments of (f (:var 1) (g (:var 0))) no PASS (test matcher :time 0.00 :before-memory 17.66 :after-memory 17.67) Is (f (g (h a)) (h a)) an instance of (f (g (:var 0)) (:var 0)) yes VAR 0:0 --> 1 (h a) Are the arguments of (f (g (h a)) (h a)) an instance of the arguments of (f (g (:var 0)) (:var 0)) yes VAR 0:0 --> 1 (h a) applying substitution to (r (:var 0) (:var 1) (:var 2)) result: (r (h a) (:var 1) (:var 2)) Is (f (g (h a)) (g (h a))) an instance of (f (g (:var 0)) (:var 0)) no Are the arguments of (f (g (h a)) (g (h a))) an instance of the arguments of (f (g (:var 0)) (:var 0)) no Is (f (:var 1) (:var 0)) an instance of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (:var 0) Are the arguments of (f (:var 1) (:var 0)) an instance of the arguments of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (:var 0) applying substitution to (r (:var 0) (:var 1) (:var 2)) result: (r (:var 1) (:var 0) (:var 2)) Is (f (:var 1) (g (:var 0))) an instance of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (g (:var 0)) Are the arguments of (f (:var 1) (g (:var 0))) an instance of the arguments of (f (:var 0) (:var 1)) yes VAR 0:0 --> 1 (:var 1) VAR 1:0 --> 1 (g (:var 0)) applying substitution to (r (:var 0) (:var 1) (:var 2)) result: (r (:var 1) (g (:var 0)) (:var 2)) Is (f (:var 0) (:var 1)) an instance of (f (:var 1) (g (:var 0))) no Are the arguments of (f (:var 0) (:var 1)) an instance of the arguments of (f (:var 1) (g (:var 0))) no PASS (test matcher :time 0.00 :before-memory 17.67 :after-memory 17.67) PASS (test object_allocator :time 0.04 :before-memory 17.67 :after-memory 17.67) PASS (test object_allocator :time 0.03 :before-memory 17.67 :after-memory 17.67) i: 0, a: 1 i: 1, a: 2 i: 2, a: 4 i: 3, a: 8 i: 4, a: 16 i: 5, a: 32 i: 6, a: 64 i: 7, a: 128 i: 8, a: 256 i: 9, a: 512 i: 10, a: 1024 i: 11, a: 2048 i: 12, a: 4096 i: 13, a: 8192 i: 14, a: 16384 i: 15, a: 32768 i: 16, a: 65536 i: 17, a: 131072 i: 18, a: 262144 i: 19, a: 524288 i: 20, a: 1048576 i: 21, a: 2097152 i: 22, a: 4194304 i: 23, a: 8388608 i: 24, a: 16777216 i: 25, a: 33554432 i: 26, a: 67108864 i: 27, a: 134217728 i: 28, a: 268435456 i: 29, a: 536870912 i: 30, a: 1073741824 i: 31, a: 2147483648 i: 32, a: 4294967296 i: 33, a: 8589934592 i: 34, a: 17179869184 i: 35, a: 34359738368 i: 36, a: 68719476736 i: 37, a: 137438953472 i: 38, a: 274877906944 i: 39, a: 549755813888 i: 40, a: 1099511627776 i: 41, a: 2199023255552 i: 42, a: 4398046511104 i: 43, a: 8796093022208 i: 44, a: 17592186044416 i: 45, a: 35184372088832 i: 46, a: 70368744177664 i: 47, a: 140737488355328 i: 48, a: 281474976710656 i: 49, a: 562949953421312 i: 50, a: 1125899906842624 i: 51, a: 2251799813685248 i: 52, a: 4503599627370496 i: 53, a: 9007199254740992 i: 54, a: 18014398509481984 i: 55, a: 36028797018963968 i: 56, a: 72057594037927936 i: 57, a: 144115188075855872 i: 58, a: 288230376151711744 i: 59, a: 576460752303423488 i: 60, a: 1152921504606846976 i: 61, a: 2305843009213693952 i: 62, a: 4611686018427387904 i: 63, a: 9223372036854775808 i: 64, a: 18446744073709551616 i: 65, a: 36893488147419103232 i: 66, a: 73786976294838206464 i: 67, a: 147573952589676412928 i: 68, a: 295147905179352825856 i: 69, a: 590295810358705651712 i: 70, a: 1180591620717411303424 i: 71, a: 2361183241434822606848 i: 72, a: 4722366482869645213696 i: 73, a: 9444732965739290427392 i: 74, a: 18889465931478580854784 i: 75, a: 37778931862957161709568 i: 76, a: 75557863725914323419136 i: 77, a: 151115727451828646838272 i: 78, a: 302231454903657293676544 i: 79, a: 604462909807314587353088 i: 80, a: 1208925819614629174706176 i: 81, a: 2417851639229258349412352 i: 82, a: 4835703278458516698824704 i: 83, a: 9671406556917033397649408 i: 84, a: 19342813113834066795298816 i: 85, a: 38685626227668133590597632 i: 86, a: 77371252455336267181195264 i: 87, a: 154742504910672534362390528 i: 88, a: 309485009821345068724781056 i: 89, a: 618970019642690137449562112 i: 90, a: 1237940039285380274899124224 i: 91, a: 2475880078570760549798248448 i: 92, a: 4951760157141521099596496896 i: 93, a: 9903520314283042199192993792 i: 94, a: 19807040628566084398385987584 i: 95, a: 39614081257132168796771975168 i: 96, a: 79228162514264337593543950336 i: 97, a: 158456325028528675187087900672 i: 98, a: 316912650057057350374175801344 i: 99, a: 633825300114114700748351602688 i: 100, a: 1267650600228229401496703205376 i: 101, a: 2535301200456458802993406410752 i: 102, a: 5070602400912917605986812821504 i: 103, a: 10141204801825835211973625643008 i: 104, a: 20282409603651670423947251286016 i: 105, a: 40564819207303340847894502572032 i: 106, a: 81129638414606681695789005144064 i: 107, a: 162259276829213363391578010288128 i: 108, a: 324518553658426726783156020576256 i: 109, a: 649037107316853453566312041152512 i: 110, a: 1298074214633706907132624082305024 i: 111, a: 2596148429267413814265248164610048 i: 112, a: 5192296858534827628530496329220096 i: 113, a: 10384593717069655257060992658440192 i: 114, a: 20769187434139310514121985316880384 i: 115, a: 41538374868278621028243970633760768 i: 116, a: 83076749736557242056487941267521536 i: 117, a: 166153499473114484112975882535043072 i: 118, a: 332306998946228968225951765070086144 i: 119, a: 664613997892457936451903530140172288 i: 120, a: 1329227995784915872903807060280344576 i: 121, a: 2658455991569831745807614120560689152 i: 122, a: 5316911983139663491615228241121378304 i: 123, a: 10633823966279326983230456482242756608 i: 124, a: 21267647932558653966460912964485513216 i: 125, a: 42535295865117307932921825928971026432 i: 126, a: 85070591730234615865843651857942052864 i: 127, a: 170141183460469231731687303715884105728 1 -> 0 5 -> 2 16 -> 4 INT_MAX -> 30 INT_MAX/4 -> 28 a: 4294967295, b: 0 a: -680660223306131613213192544273440676520871583498294228139387512309735532799950445324041469626190465441873942099292324797223354121280953753707098271948956721434351271580512930905301134730018471342090536788633289149032525296855471377001657699 b: -682557700684732548039342024200773710588218949141218691154067161618641287360292871269919141306159355240958245937920167668186351369649972673099532187512209437468431267605694674882711764950369211038954071869719474517452995310173227648159470325863 g1: 49649644626651300092884651060987641470500280086452636531104852243948991 g2: 49649644626651300092884651060987641470500280086452636531104852243948991 a: -17499323010985042085586327428218208334653136509030093235459394874357720029340406973303034916677463064839671236886669789973081805241918719992478269377544872961218258328273917686943637947258902687572152463660930184575 b: -133432075435566011986959170911010472186135002129375397042576869632951178674906790743936623386021121057603336419692003633642380212458974599730867776358520357085194445288975233419371498096444744172665515347571899294558123689360199 g1: 2497499680327896069807603657119426584880836072902637544050597393737 g2: 2497499680327896069807603657119426584880836072902637544050597393737 a: 39113423262878832875131333089536988640764782550226241804786537704942151895821793187007842366396104741104385843080744461952682501674288802594706892138240649825087115208077330576673598474747228864994500336360188937863230220146850 b: -1765569063565803668375374705220797217057300393161835162431581314131923452464244600067877564856446605468898661150025060815891336886958795460529092513718393747297706139250867 g1: 7919947722782957648492607815811369947 g2: 7919947722782957648492607815811369947 a: -259082432797695303946832584466739341661929350909504110326417863830092449977668553347432190995139696556927703377216663173550876934178683315179725418949157385067971560526172420020389963102694766318093511 b: -7149927707047435541265948688005727149088158648018738939346951187915874726675181789030840037369121532491256555852857204830740221534211678465835983103618376894858577318041696030459219904887313431754727 g1: 33943295011849542192623592023942329943 g2: 33943295011849542192623592023942329943 a: -5349429815721386202862512499297446296910160471287813515686900268460926961640504951617799155949693426279383714416262565994566730721422257500308406227370191002531 b: 17350752022159474427889970754858414545213527871785249586572937703905139693573353602172970707229806801900527607058112013826172382333785312287592510049781506426083695201726132578290436338855382354133 g1: 21048939982128104214413654493682183 g2: 21048939982128104214413654493682183 a: 36282805834375965511874794114519273066056962474921851783118761861076504083303513806260477076167076492999402665175055987501069831345856219766042626225049407075337819369439831407665101425344269 b: 6830938008458981320772716798469512466665806794523943847456749436028880131678993972141938190641875844315813970529459718366362826612188283573199687259001801351891153954963399320630168345558 g1: 2406428905888610820754671481854134048220499087570908741245119 g2: 2406428905888610820754671481854134048220499087570908741245119 a: -2356089468206749788618909035751466028532105750828592485129693766861756401745751624846753172198567673777529611034132565999351665985085023986228963174868447502135587736689346860365773153198 b: -356750152242572594751931911142507771866631364489728624045430180937452790101274109392290911965958250356670468151182846686042057173527102895644510615173176649542851402978116559932408361475746 g1: 88392761891449117414720327568048890182986855019605329552989022 g2: 88392761891449117414720327568048890182986855019605329552989022 a: -7964970134492427615930506936487089831299439103679308419239921238451298048296851703684096058316596556088136076948896317685438270692428958568926039656042434188478057633559097069644411032692830254072727118972355706192391594987309268450 b: -171468154952977165328149734953346441201294042507007947682287589181281009953361115362892800314896866870489539905344248628547599603444685923399132033955829644052555524122947833188612472636655115350 g1: 2871722355160035699432229355323117912761832417921093455676406790035650 g2: 2871722355160035699432229355323117912761832417921093455676406790035650 a: -18607176365812761272468426002057301478558538121267079678276843276231647036336138068497117812262754064553521429440825945109953662959948322588416451547630091539021946181883844307979031863685616779767185050328351713342350294166282955 b: -1008270597500358591316873897640145498003121419915936300423192747437016074241338413763024705922071167344778970434070198221419949318622107034878138861817343617368938034947560374683535493772098930936333755819460803758137810045 g1: 23389131179927830885588878986290738560879410251465610442409827055765 g2: 23389131179927830885588878986290738560879410251465610442409827055765 a: 14733086099007218036911073941336986221964296557608793204764319792704032723417034619343921694834203176967651155674539160366232811582888888928089758250628865560098617831274928047070558124778511207871480231738 b: 2249727554705692307875064880720871478704230473669851547926763717534430503728234276257837144913313060815842217565984694478809804165960028568781661373477064738622206999012223677140651996039199614570548307290387019859257503894313279851137 g1: 51139473123411934510948493562661850694783391102170793 g2: 51139473123411934510948493562661850694783391102170793 a: 848495006544973523116062134622951590305107589989911250660869775434553034293342279939347732272729469563501240102160218860017329091985465492824804611329406730281697282193528751295312021781264879356238851523521855163817057325578458394075437525 b: -1031421704576200453093894291063613006113076965690820519086612218365610456328297079317735166409553126523766846837187006863912676627556724521288021446417891952391105196903717948074663963567689939984957218306699144613757222732466192331157085892133213423362654551371004 g1: 1326010949955402562174626049225273255223068764087057613334054754715483484233024942108065263 g2: 1326010949955402562174626049225273255223068764087057613334054754715483484233024942108065263 a: -59145812431584812664508524742122040225292128510809738051436434462643651365699712945476164533432772850153191650222377973827848480739448595643425101349818158490978572385297800845611141080808263727598047775866325 b: 1756431244724256618067709550887146717403002814269561706208675931882204695573836204797379457590740945974696811042323356208856884023001317037436577670022107718640899224332862394394966475964271579330406805637433360662881975734384300511765 g1: 8831484406284780454227732896806988361199930088982583820333610077749105 g2: 8831484406284780454227732896806988361199930088982583820333610077749105 a: 10397442617907361082499929703622270905498524048350907003083513660443009775226506602862159316412032639007459558930326997984529062854843555332086445185042388997634487122536536124615285106853852021368066821077700 b: 891481306261042838103604068895359500902791696462050816541153238909049443733931324713902974302549591834822839850905759080847923650943595601545880977212777623763177382456624221663703886324469408709329930420613664865 g1: 30050562271963581044372720914482549663973704080798575359965 g2: 30050562271963581044372720914482549663973704080798575359965 a: 141624705329311207244164700432928201425820946975105539774230774519593239399929280755810778975477246303059558738402363018207930884310905544424892194603888075851704271119258900709915 b: 5204295333281908973121492652755633953379660472088431729856578842169866414826066579754917165089275049358905938239622766433150062286973638136031441829096808254461727011929361570587397760937634371222195877087518993088585469620685963537704040972974689481426479258768788472216144370 g1: 4329183407509700132228981929735091872840221690258845488018170560326705 g2: 4329183407509700132228981929735091872840221690258845488018170560326705 a: -323458008939378113403533605639583360924303142510593392849397843512782670260278896167157932869242492754755569781298027870523525948810702492959163418798290393402220265607129056624944366980005118753003 b: 3066596043579879919283400920806473481724975818522056017680632206375636669488840110701770452947229873997204685822477461519652297407457607952280035476207626294057640364389769651544986438972033169635068291428283552997 g1: 8023861012364902877280460249238765417882559582212110800872050643 g2: 8023861012364902877280460249238765417882559582212110800872050643 a: 269726811331039273296812014736513116406560255767366867821249290274129431792034917822951065804327740147174773525637657737481729193989593129042101461625800736574081210406560619814280178752821912433009680030866792086469308075 b: 9973211086277545006895266912128852646947030538457017905986820230427119644575723073499661558642647899199263599585267494635556694792904069436808554230931354284029861831507390620735929 g1: 3479823434685161958438645429919009157537768435741524928317661 g2: 3479823434685161958438645429919009157537768435741524928317661 a: 5827541102599833873349299891483036507073970541814975808354892950427190290579950325921576012477164640308426685731604807507054178137890442362863555396637227095411101248211345297009640037 b: -4425447375949813760755413677780109527226742489897990212344149431792258403240247629007359467446547145505604550671334818179950881069786628663025240675566426276292527771838050627618379 g1: 70573396050068755599794997889425772642912069 g2: 70573396050068755599794997889425772642912069 a: -4502443412284385841443187498855205798440373188815848339921704734110086969115904034319504463875833607133800310923073130012870440924861192715448023724596331387766780564902528682096361129315629250858123483816333243541239636732901577014881364833011351 b: 3756925578466414036348252938391953062180623586160395072308564479901310503570822935981238764130581331011667050304964548398333796371013921097678323969077571525614853641643335565781790107017623944014761617 g1: 219024890343358396877268757665838547923349197 g2: 219024890343358396877268757665838547923349197 a: 1779609533139840091583115267051406455527467520738340889665542080261235929063518556416761421781852691539227727636576622101595484416571227737525120995339889423850405068634430918134478709600789306027392629721277846284463094029041274572677803688454665992132337 b: 99799240836129894533797228932959430233855145018097957125027027823794365714859613427648977874795350354523891984899994185325128173652790747432482518413463275611471941901743945559958242656815565406258831825 g1: 5658781804590321743402812783568427044082042996021426089876039 g2: 5658781804590321743402812783568427044082042996021426089876039 a: -98315115192491569279762920344383735833595638835347728062761176496366440904834962080425992380717882701482367872156348260339593210429656362643780642331545310153421977778226053548480611146086506925097088317377708939393920901 b: 447996432581529058790545922196843777506475169140032177130788385424405305167096627235140586102371242953428753937698431967134872104546681552715762201433341652218377338773447955295937361246544971351978930 g1: 28545152624438937678003589026069895571323466750738444573 g2: 28545152624438937678003589026069895571323466750738444573 a: -76331846164854751322055186529734511113259545153432535445630411243717435528460308891518444905709364920816798644596372646879307577034412476817011395423009985781640450994302823100854824770787505194892093405492019 b: 179730702578328567005305188139982897504860758435278461249214848566580232936242415456444323093128313016931784778484657698474259958533018260183938650976990019148669890370752997975115500862799691524104074 g1: 3265582934721662442191587731895282856847230648710387 g2: 3265582934721662442191587731895282856847230648710387 a: 11108830341183498862143873236130005156686630554875121247958193797546310638366486877958718543743993051089635120731490747522750810173812212595057696971350230670534145383121398916747774201561426169982950 b: 645272899179200480136773145302024823224720253140375842377046832947465063303189985327589833506649581356867318397625529314057323057899332369071246931724473410022875714137997910525106360023713684873466068 g1: 117166697738047244232956628348548331576963665440794046183649871454 g2: 117166697738047244232956628348548331576963665440794046183649871454 a: 332596325304407296776016684066955517337999830523442608884377763511281675583643144018588818499191446250474735353255008334455124070181922207934182065805931166828674511585374271901262 b: -1643033053906096600044290632687958229354464829893142305715368658587620387341001893495378474900324736013593361040891684653194456209494889257755499692938742224168151673669035626611359462582933123258601065 g1: 65792212700583951853084435815934886688496854368819 g2: 65792212700583951853084435815934886688496854368819 a: 39506024875232010090388152581565237043087044674435817951922861964053744714149123916567050008651016253942454341551637867881083143498778402299605286819055472210971049660912406702378898902421241538185471547916730658837316899665102655 b: 4425420769714777534848439478711011763838392472940395088142375936048635251784694047593963236258113501504337251162190514331606518624935213644415402102914587340456294177018304179322293965594409721047192895194466 g1: 198289150029096487066446285410427673100768265395758932757 g2: 198289150029096487066446285410427673100768265395758932757 a: -527547303178319670024009571022688045415883932571504053216043520084520374489547972666001401935488273736641882403131716364336788140172916491 b: 954252176391941164601274478465310197346781744114885028796457221149078323997907833228039439022051354623571293208199206642232496350716008606859681499862448012083353494500471367582785758921346834391447670197081796865511480627925624979 g1: 1389483831915326440534772516982078417724661 g2: 1389483831915326440534772516982078417724661 a: 17578302133632138661737209420695372335269528305058631804622542205061606164038538592066836695506047069717618595059805742933923286517134089025452863045595096497591716821058797633233680474460542422424407350 b: 354170884323717211880690851097160766684305130480828918658997693365428126695860432276339362555046754360672447532264660997112128453701553428485841172665967660430531234359251224764572398122062892958941237105676135374452679709579662391355447825219290313799351147 g1: 2333496913793369372847129082014774940464351072814398236122301509 g2: 2333496913793369372847129082014774940464351072814398236122301509 a: 63911037896586277747664047089933522060410703383396715137157926028297052702610283351332180061134836752294544931462382020280449161180041510946202344778658630266901744221039626092127399583722098637895595330328474957183093745675 b: 330841012621845231486143483344301256032463675943191240604387514282785528499519461452334984808900502932839584268697573905263836918084801456016263733480661636653631431981005080136530538617692462454897763 g1: 535090250244150130095142548935316665261878078539449996564390853859 g2: 535090250244150130095142548935316665261878078539449996564390853859 a: 48140909494605131296320355008531183107914901950403934176986260476700469145604453418724797942780640040693189492778491857756299205650223666337453810343548934840616888445545018434702442773 b: -8418318516265077145765708500887357903377538098870035228273608755506698903307060600788385541289737318834163457741538115721073036824355192143392824710632261677 g1: 1417800658853095720781015242789046569 g2: 1417800658853095720781015242789046569 a: 372868008412903625418290729247388102665450149714607406772765145269489776621009975351605299045830680293694073403073812899605314057920385268198501655757215309092967725755650 b: -9625337673898031053287375409570203945227508042166163437146569238804813032188326022459507749971813214214532272809624071165524493900092779543482020207719148 g1: 162000108156446041871689074886 g2: 162000108156446041871689074886 a: 31475758506635823092356112122564471403732776154292134536970235932491624794060813867758402724653938726627979708994566021826589279666432850898142263668912308796094956488461798179181247005494949432100714277549044605609348090439179121382300 b: -4326063379798750291048645871255473950215601137024148961006212415878178198979301371144758747031855972599101778614238067905534243659306027848737198488411172124998008097732736039983236327812092264008438563283765 g1: 4629976749102424486960288294190155465603440156299515551248627164308870565715 g2: 4629976749102424486960288294190155465603440156299515551248627164308870565715 a: 25116551781371811395105713341687156176164092551515835294991262786319707512671787421456139308985832791225231666643311849873706876557127826961538195500700472062579537227343801953269846930 b: -19958130074525405822721097559403355369311973130271956001773207531098490280687096420055711606568932675003969605709631689137832772924170834716117022714181467053904015078188448867242711247995219766376897492021551991276562314256621273 g1: 2667233471117590666445233382968531183089257116453272002767366975430973629 g2: 2667233471117590666445233382968531183089257116453272002767366975430973629 a: 39387927817403824063055321135461099612128566144056016632246776020790635628383337583580812454211270217142007340743319422384789253047362118816784649231332559181075672310425735950 b: 156250878101049350333082268785070384304135657167047712470985408415083791371783852744835596191236521865199766439395271837128953768695827573167317173717640670938080590673533405154171259142567238112925671604392450311835472132202250314640504175 g1: 196868475682449049481501854953008857533718188130175 g2: 196868475682449049481501854953008857533718188130175 a: 578591490938071761998554457045107496686972367826094923150423181945073153282748355971266794145137966781961573126352594030937744018058951602687842959871989544237279685331171588414215528595622035843579053778032524225 b: 21128547623976027348256099464870045141075500509272044958332887524944391446331613472510210028519786600001442220003535924568122205746688727364906507314546658256150632398860223986202565211347390007824308826135185520677049909853554228957 g1: 19390759634345771133242223176764828956193141147821363799008336263230582152853 g2: 19390759634345771133242223176764828956193141147821363799008336263230582152853 a: 67610927734387538915799772852046629632543177928826771656341619931403399203668099045928071748119843522495058312264667632765793853854868318834675550915426934469865566722271743584776728281393412985702989512941671115579032134547534 b: 250278742029920791529026291838539368679342213767730129400915533684773981387442870787528602149566756300036458433770007940508437540481241925682377333564030393190483496687121678238291 g1: 458620513253098807501915226650419891613549825233553 g2: 458620513253098807501915226650419891613549825233553 a: -821675563419073517841852700836568536713467718058081153344046327791137706780538598315560643549514380745518965295989912186204125683586037191644504891658548779068308726292461888823628726582045 b: -70808949714809144818336244998753665427333889183317942841851658830580277235765355450283176450129555836984658192639058105464695302046648855402340116894380727671664636463978729713844905105675 g1: 4184181208817807038896245522377289061772480796790917245 g2: 4184181208817807038896245522377289061772480796790917245 a: -2862317713093899238977848928447141596205100785553660116218771154450334923397007992359897897981015767160537230625446533340484423305011205035178990303953401939542958460496708556818289124231136870623329070008984447349784158419073732354210114646435811779965 b: 1860437529537250161751205961816377578693822395091855103425701889308636924426247897889398937496768267705920982919504681111257672827979514260071972090302335016934014237503045645507937582149181339073 g1: 4298689999312753648232420906183275433020518681781286484569165980546163888779 g2: 4298689999312753648232420906183275433020518681781286484569165980546163888779 a: 586664092849515551895095004768221618558533849263465306934594512835361323323551246172711194062301574908262916504444337898993204256323845826913665706795028090802627461747464109278722027359965064201 b: -115041200791923836504038327900651355773452348152716921189487324231624006993983099048574910632792521379481402379168098408019804787388991465271774801403002617435483800961492037146135906896927356128672346 g1: 1030259804818387859440495090160984447329760959090741 g2: 1030259804818387859440495090160984447329760959090741 a: -17411633823832937427815382725832463494396028326946294692754210620609221253664817277805491439268014522538344817769218757218602668194905514856022502508330513841322658255559665720384508516292249460049887802083015 b: 2177804778249236879314512605651012579467851896526973881892852697843044435303475046756671036366750805337122497313933621484454492319727434548701445205511022578902917397420213864199322554411193626136769331584940 g1: 1667160903001682587394899284340322600894839775179026115 g2: 1667160903001682587394899284340322600894839775179026115 a: 4137812171780661248696382853833350786469129697814849179344013864511529700936001870127195554057516507087197001393039934450772448221023348197428860753541589406499309302767428161405168744496746563004 b: -134240414358782964038501448122419073768377662572001485025934231931262946066939952711010863542069496075425061626692908675179207614428109907263237025128787560277329835580649807691748211831 g1: 19754209803331536767878926922266987297921 g2: 19754209803331536767878926922266987297921 a: 11897942756438809886392358298775304831252063526242324480226120979218422807843927872826250103750635001446406299339485070753130403106305279652439485398208713639391571960035348642452460112714808996700170296340691044 b: 909484728451746217243969314212969150225854830346849797002730323237689239138146536876559393401502153470776453344930512409035547133702105690826370417025508199418904887074981621292146098172688235429944317627952311174517186418577550 g1: 52181661744575574033513739134200952615717243281181209786 g2: 52181661744575574033513739134200952615717243281181209786 a: -2592970643329766275673245970668264847235751350932072422853731112360107324549329162249082721007672364127316756572382456125394287452064561977204011303885182927925680397545916033070498714093164945979956606488710994469393852823769319700686828983 b: 43647207022303579593494394767487138334939376004771821751751352188368462966114408827809705662391516491748653526986006400994616165907912875626673598223847089068291393767076463959323824782840372192966076896467047805562611404618911671062051 g1: 16712793260774852027741748211265341283739683627427976896220230641 g2: 16712793260774852027741748211265341283739683627427976896220230641 a: 76435827171138949300261195644725618990905489752543487525925763262527210965234865825347002886291581496266695535852928554786238941001796421955326528132219285512640423217340385946581345677487621860 b: 2639296371426827144698031606983856504855128867050670585564988047184262853458153818715779562438468358866720675939343716052328327226444419033128898424704664889293348659915064854441672811843771854233619336689159955719230983583732650 g1: 205365913869694460467766810 g2: 205365913869694460467766810 a: 923119069804780216796552029892124478390960797942243394171956789822282344687645652119172618303735367027365637215496369366061599837645216122149416710064067924283775595255214611273797336435432593230114096576442876698748 b: 29720766457479436283533816798839871162810853242531499507789005930017340891136879160791944262139137668160031813124692583062895370981391190876448425688094637248322556101695200334694461463681161581796801233523017170001414869906869766498175 g1: 3801158644086599851398431567744104007049047420453 g2: 3801158644086599851398431567744104007049047420453 a: 3888376774144471699283601824317407830960476124953534415603052891754352605878659912243001097837606295223587772259330929775776763178742682729840991729178385989819833377216137171 b: 392649338060849454987645144510621476191118920545958069201405219978554443415252870034360856383937217319738172116997946458928889808788007654864389039084657535508844377063693167469263 g1: 222867873342771801101521123224531066180215087922595859035839405523 g2: 222867873342771801101521123224531066180215087922595859035839405523 a: -400855736976206391308327375759553264035358089384640467491657503341320677503475704234968895375097269153554342940321606925133032726728663268820184892502474614191155220867416381859366450800179547924650500876643966 b: 883378627547864278105935827751802533036984705123489973836195355821748781061911868355038664381401112802719960101239669900173684985779946138585320303027888914600190616552272894439933508425 g1: 2976457105610171254576055148965491872293789321 g2: 2976457105610171254576055148965491872293789321 a: 4215423934118852007855284570145291313776332937167280738098599374951880095731834265679406563136426380532600387087319364955732899744822255715645848612302226704924667578345337542177607931362460690704145785228569115083491007502798454515989967366052876925 b: -274707470665788157355398782420961830420889105347785104220444602142522118872384516255763309045027039495536705224366669932666460774240466479866376060295103026765305734134899754591603611094830979269925043524146532114342 g1: 3138417304120319365120929288167744985240931346921409974415318407477493843811 g2: 3138417304120319365120929288167744985240931346921409974415318407477493843811 a: -18560048627997544694531769894522382802207033514034808534881020211963837581614315770397198687126805130500612575320657238675169491827449248918802001034305940585447354057583125073793017756817011609494353 b: -10745687586446096904089358335632029803557022099171858974527024859768346318371869721413535345281864387973145370509673050529698258237000672532053110224180373404972445096885400829688940896678263082347425 g1: 1448023331479118309470847422599510004189351600887265967227619 g2: 1448023331479118309470847422599510004189351600887265967227619 a: -473489849244278472297995636477090160544362668168800403269486156107678979394554703207674114738217531557954266381668766973330181404160764386872843652907107585316368683490894534698088762570562834877296724251132132455784733706061548 b: 6686288945781415324514610099042526048222726366445409977931260178862784391968016669762409648174934356367767696700413492886953093590753011325479041172444999138366370639523453018551987614494951357202788563097026680979308 g1: 7342595977172841954341686963002141214051517946269743595429678242595859081468293693101436 g2: 7342595977172841954341686963002141214051517946269743595429678242595859081468293693101436 a: -24049720045468514125355449558181848846680232699685252507471399900477362428340838172082795134736854158604208180313185930546796191351324839478368070182987951146742507 b: -1719847514636458520278551998774251663164133072556075412310813580341454085399169619366786891175374433267860050712087908025124271611613440638962706996014574582566894145130538267748563575 g1: 6106468176620771800294206491046550963778895519 g2: 6106468176620771800294206491046550963778895519 a: -880283722467453796927254358616910166856556360778805095917330731526741622475048729701710588021495810448077232907642712970182297190776326439369315097300696562677490422957272632781063100768309 b: -4848442231350717724970736163430352809096058112473406413693788804938399641513472210950645724909017051917317556029812805196215326830872438839623239317269289182199397537661621389541695781299471066916258817 g1: 6098424026665780669155839922989376244609127715734323 g2: 6098424026665780669155839922989376244609127715734323 g: 2147483648 213^{1/5}: 3 -213^{1/5}: -2 log2(0): 0 log2(1): 0 log2(2): 1 log2(3): 1 log2(4): 2 log2(5): 2 log2(6): 2 log2(7): 2 log2(8): 3 log2(9): 3 log2(10): 3 log2(11): 3 log2(12): 3 log2(13): 3 log2(14): 3 log2(15): 3 log2(16): 4 log2(17): 4 log2(18): 4 log2(19): 4 log2(20): 4 log2(21): 4 log2(22): 4 log2(23): 4 log2(24): 4 log2(25): 4 log2(26): 4 log2(27): 4 log2(28): 4 log2(29): 4 log2(30): 4 log2(31): 4 log2(32): 5 log2(33): 5 log2(34): 5 log2(35): 5 log2(36): 5 log2(37): 5 log2(38): 5 log2(39): 5 log2(40): 5 log2(41): 5 log2(42): 5 log2(43): 5 log2(44): 5 log2(45): 5 log2(46): 5 log2(47): 5 log2(48): 5 log2(49): 5 log2(50): 5 log2(51): 5 log2(52): 5 log2(53): 5 log2(54): 5 log2(55): 5 log2(56): 5 log2(57): 5 log2(58): 5 log2(59): 5 log2(60): 5 log2(61): 5 log2(62): 5 log2(63): 5 log2(64): 6 a: 1000231 b: 102928187172727273 b: 102951963583964173000063 r: 18446744075857035263 expected: 18446744075857035263 minint: -9223372036854775808 4294967295 4294967295 1002034040050606089383838288182 1002034040050606089383838288182 *-2 = -2004068080101212178767676576364 v2: 4294967296 v2*v2: 18446744073709551616 v2: 4294967296 v2*v2: 18446744073709551616 v2: 115792089237316195423570985008687907853269984665640564039457584007913129639936 PASS (test mpz :time 0.05 :before-memory 17.67 :after-memory 17.63) i: 0, a: 1 i: 1, a: 2 i: 2, a: 4 i: 3, a: 8 i: 4, a: 16 i: 5, a: 32 i: 6, a: 64 i: 7, a: 128 i: 8, a: 256 i: 9, a: 512 i: 10, a: 1024 i: 11, a: 2048 i: 12, a: 4096 i: 13, a: 8192 i: 14, a: 16384 i: 15, a: 32768 i: 16, a: 65536 i: 17, a: 131072 i: 18, a: 262144 i: 19, a: 524288 i: 20, a: 1048576 i: 21, a: 2097152 i: 22, a: 4194304 i: 23, a: 8388608 i: 24, a: 16777216 i: 25, a: 33554432 i: 26, a: 67108864 i: 27, a: 134217728 i: 28, a: 268435456 i: 29, a: 536870912 i: 30, a: 1073741824 i: 31, a: 2147483648 i: 32, a: 4294967296 i: 33, a: 8589934592 i: 34, a: 17179869184 i: 35, a: 34359738368 i: 36, a: 68719476736 i: 37, a: 137438953472 i: 38, a: 274877906944 i: 39, a: 549755813888 i: 40, a: 1099511627776 i: 41, a: 2199023255552 i: 42, a: 4398046511104 i: 43, a: 8796093022208 i: 44, a: 17592186044416 i: 45, a: 35184372088832 i: 46, a: 70368744177664 i: 47, a: 140737488355328 i: 48, a: 281474976710656 i: 49, a: 562949953421312 i: 50, a: 1125899906842624 i: 51, a: 2251799813685248 i: 52, a: 4503599627370496 i: 53, a: 9007199254740992 i: 54, a: 18014398509481984 i: 55, a: 36028797018963968 i: 56, a: 72057594037927936 i: 57, a: 144115188075855872 i: 58, a: 288230376151711744 i: 59, a: 576460752303423488 i: 60, a: 1152921504606846976 i: 61, a: 2305843009213693952 i: 62, a: 4611686018427387904 i: 63, a: 9223372036854775808 i: 64, a: 18446744073709551616 i: 65, a: 36893488147419103232 i: 66, a: 73786976294838206464 i: 67, a: 147573952589676412928 i: 68, a: 295147905179352825856 i: 69, a: 590295810358705651712 i: 70, a: 1180591620717411303424 i: 71, a: 2361183241434822606848 i: 72, a: 4722366482869645213696 i: 73, a: 9444732965739290427392 i: 74, a: 18889465931478580854784 i: 75, a: 37778931862957161709568 i: 76, a: 75557863725914323419136 i: 77, a: 151115727451828646838272 i: 78, a: 302231454903657293676544 i: 79, a: 604462909807314587353088 i: 80, a: 1208925819614629174706176 i: 81, a: 2417851639229258349412352 i: 82, a: 4835703278458516698824704 i: 83, a: 9671406556917033397649408 i: 84, a: 19342813113834066795298816 i: 85, a: 38685626227668133590597632 i: 86, a: 77371252455336267181195264 i: 87, a: 154742504910672534362390528 i: 88, a: 309485009821345068724781056 i: 89, a: 618970019642690137449562112 i: 90, a: 1237940039285380274899124224 i: 91, a: 2475880078570760549798248448 i: 92, a: 4951760157141521099596496896 i: 93, a: 9903520314283042199192993792 i: 94, a: 19807040628566084398385987584 i: 95, a: 39614081257132168796771975168 i: 96, a: 79228162514264337593543950336 i: 97, a: 158456325028528675187087900672 i: 98, a: 316912650057057350374175801344 i: 99, a: 633825300114114700748351602688 i: 100, a: 1267650600228229401496703205376 i: 101, a: 2535301200456458802993406410752 i: 102, a: 5070602400912917605986812821504 i: 103, a: 10141204801825835211973625643008 i: 104, a: 20282409603651670423947251286016 i: 105, a: 40564819207303340847894502572032 i: 106, a: 81129638414606681695789005144064 i: 107, a: 162259276829213363391578010288128 i: 108, a: 324518553658426726783156020576256 i: 109, a: 649037107316853453566312041152512 i: 110, a: 1298074214633706907132624082305024 i: 111, a: 2596148429267413814265248164610048 i: 112, a: 5192296858534827628530496329220096 i: 113, a: 10384593717069655257060992658440192 i: 114, a: 20769187434139310514121985316880384 i: 115, a: 41538374868278621028243970633760768 i: 116, a: 83076749736557242056487941267521536 i: 117, a: 166153499473114484112975882535043072 i: 118, a: 332306998946228968225951765070086144 i: 119, a: 664613997892457936451903530140172288 i: 120, a: 1329227995784915872903807060280344576 i: 121, a: 2658455991569831745807614120560689152 i: 122, a: 5316911983139663491615228241121378304 i: 123, a: 10633823966279326983230456482242756608 i: 124, a: 21267647932558653966460912964485513216 i: 125, a: 42535295865117307932921825928971026432 i: 126, a: 85070591730234615865843651857942052864 i: 127, a: 170141183460469231731687303715884105728 1 -> 0 5 -> 2 16 -> 4 INT_MAX -> 30 INT_MAX/4 -> 28 a: 4294967295, b: 0 a: 2420288676497180915100134000425999149532243216947365513113321741654957790614573190520071039014830690538499087617068301011628956906421817341179724989114941481075179521280642341356277945589499187244660663954236620098533274090971264751954666142291455496508012740 b: 106167866768592621413597027804921154110684259575416348638085089293126095936731611627640905762008485773762887480778991000969288864404377384617745152026337325779192318226012450180644688667396961794335723849 g1: 56671853665473477921483209633214320367737248804733063220201669439 g2: 56671853665473477921483209633214320367737248804733063220201669439 a: -26819284664366432146082476578799313881247864126347751372135975751319142605676189208796692906873261952865504325604580084537695058952225411865730061607628138251563672253724803232024156642763813456545 b: -3251100657247342068716132274879623050484525226623137104061429228025846795887192395909988219276678790472113329059879402982268232550021075942858402405616981781300580343549516591065288092200333066786477848231 g1: 14820431846710832404577670293430746788416900203974828789858721620777 g2: 14820431846710832404577670293430746788416900203974828789858721620777 a: -1026574073284062414605606075476377125168427140434337909689503426214528754763393199006613949173613484966240460784448711498333956162396677617327563926339001313004339262391720714601987804441339280700623496200671 b: 194071792750362408378103704982618997406219157539472188859162729104928472901589150855727958156637211990180773434685742395817599471753971417452777037633911655895633103663939789494 g1: 5336318526946166732962249236137028784824288790303 g2: 5336318526946166732962249236137028784824288790303 a: -9426477387473369766998611149241232296297512538820923540093970435434862596498607871133153063123957778200681103356292999203120439626475385595173922610435084235202590902925126554245549012718350805975176322532072765303960841765783 b: -35147017935184318120413401641510048155534205687578421859526047854310386216537525541690262266144175096036287713311365484540807685584826685139289060384494835603855785273259998446791957410508631090310740149469228605542095252640441242743738759237755417 g1: 19991605654571864499882034129882316238360194079133253714094486295393 g2: 19991605654571864499882034129882316238360194079133253714094486295393 a: -11646516919015412047567836834855190683357615620577547209052286351434244068494747732473851118016025970242536725106184461226664297386320238332405932864137708044109745123667724746967670483909 b: 9581398817516283874024109236674801878540737406025860440319393840011409495120341797260771491482975222723325544886825991566846022397509627967044181377596972580054837047098843765483900695592560687987 g1: 2944511342005605107665348863824442355476371768976497852800127 g2: 2944511342005605107665348863824442355476371768976497852800127 a: -234967760370880263088655409313344020535251617394185970473344593610651575361714494460410075518201590360743926408436937421268402740906640583649180952265918561342617560678820950667918217866667912852406169591720318028986166702886413 b: 724243150445569709592467380835005145136627921869129025423966542524518373727154130127512271732710896416770014474066831270857362774681020624447916499420555688307937690737636009844659559083751 g1: 591860513566287245390844610485595828720256077254251592721639 g2: 591860513566287245390844610485595828720256077254251592721639 a: 4631459249480350670223081833626606545522198164408157156449894371098934729374821614719155156920377548454450179317705480988522647326738677198786691094765448028722096175688451731092956137522794284233 b: -276114779895498309721402817963265299351173760495213572358022372532148278951461703759953411403099018304011338101296548956607225043903782254837077122925274265724067464753829758550605666932705881156220502572356683676398025943112254959 g1: 295070970698233641062808237223437207862206276978112077149 g2: 295070970698233641062808237223437207862206276978112077149 a: 98282200448215372063446530386101926543686539248885734984882974422195609176155218653337183172252433022245762863535666050779550108094422238890449820978008773950669793620281870265798756523760902141692569559060128713 b: 23908942514531351846611978844693738328585970682083988267584284551934267535457918388773941386754274997785610017071331885046025804464116826406158249277305635797897835835615333519766860243007771773290723366252536646845166718055 g1: 2187298006126712895619957251425582495268749757152848781 g2: 2187298006126712895619957251425582495268749757152848781 a: -354627181895449504318984943865559854735462213994427064632975998329993423457891552971748922039467859116490714468358107939487195605998772711808833606064273850865305055573536497648485075001393120519791728349893567288939570 b: 52490446829622527013751372336092586235776615323190413910050371678577420449977927247750014298565605337507493338599365203872760484554808322467284620440185423918849511710670732097381759142069012415328784712660404647479824381839145999227 g1: 10068719152721105435793461970303649362517571612361048655811479553 g2: 10068719152721105435793461970303649362517571612361048655811479553 a: -5752968906612014347961553190280624409727407232580147305395623218748222496373396877899798815608190245007486024677303375749767355309149401326812950957326408189426756612473917624316231013129551324894705 b: -77344985663001001217562794589082916303639406136051061689086702199867676876064262283154203088015421240627041538286882084231225543586396983057394588203495289002117893863005600987262069562607151404696592367685458061662611830662 g1: 562598298295217907203211438650863514142512139680858644080859 g2: 562598298295217907203211438650863514142512139680858644080859 a: 295742359078610444818597638801675207431318137571634464365017393013871037017619095236736074626946859030966599895894581483920714137231413536028845606819447636085133571132135545290544684886723629768427608636462234150820169968121 b: -1785192105185761559687272779408055507818637703158605638225349829175939041712419940908065803677932390886382255816817302238563297739055090066163303002014829141337912212509252318845395147605409780 g1: 7415718443930809614704090133317061330925947269592969511 g2: 7415718443930809614704090133317061330925947269592969511 a: -127364620489244879997368312971530572549289189378189359431142289479338786851706988565547076156802075688143577305950806569910789749683894902139038571526114477639545681801486566503248137978629897424009355017700921887359433134346949449960501323729417398389144663267947560034 b: -819318662914872642501407705376504625927471892830589494444369657862683745746950808277227909564773694897365770906038245988049222909647804224649525284968606670432520995683426671871645203626654538303873906771059969565945509 g1: 6968984248962280938632259633261118337967168159561499661181471 g2: 6968984248962280938632259633261118337967168159561499661181471 a: -95242956702482489053993568821175617608238877268621156786833677174952763037792968452403005887765201947689554716166448111263678558518630136196938770348192118270612389312130881270215 b: -11266507856372868317122033746383652064006677538990338306960644381294011594737555217091922255254541105379900494444601590160044632953070873423183246136623900856009666511734277459054756322961751197747188656484462824163572387019779791815 g1: 9629401153497007549316578175166314658731487877852971093928457593066038842816468352815 g2: 9629401153497007549316578175166314658731487877852971093928457593066038842816468352815 a: 4070335140701848551107315593699752107571558764956765365257865712423998754274591330929252443242331067153082377066004536395344435505872718461950785713952361 b: 2466865183718388297437478220297302760087218434175484938109108731644125426080546418103069062213854789602646455888623380901422931053556915411493472859248043155082936179166080996281707062477530277687850180 g1: 1340537032367420648239876303 g2: 1340537032367420648239876303 a: 153217910092578642752212841146187585164464038261183155667785098001006646606683277041053820538860721150884235389790183725861410230043740548601484588813582685549533002411746289875381000093227537961550115213250810381837734379115 b: 1071539019238471651112649551703218835222156555908183954438539454732381509285014644433054151915989049635350816748901867337317612449857607840877821085475586583699655901372235936739964844910751891881197974378720131708163154644117546910160797024345775 g1: 39360345240345375012694674556562884415593552336233222636608885 g2: 39360345240345375012694674556562884415593552336233222636608885 a: 96643285347240886303984445322253381640841567175442869289820376419655596962057864049951932951345162044851443711858156881714511979903754348921630628801217467589867435095126701333466900224121310565326207972225 b: -2262080211317911702863932541057320357088271812909375065237165785221370824162793051707215386471169153921308714968205991088955877671412639488910400138900898363134468243627028783698875956047780416746 g1: 33319306015776454615166228622305688197142931 g2: 33319306015776454615166228622305688197142931 a: 4537238334379077172765761689314860809164559414878273682295561679696158489719299736702319638027105922373399586435466751270102380072833435116712415157509138769167699303511326663081267213581459493572934 b: -3727035051208944590513757413599946245368916398074635185931922969901648130385200089610389437897044935409374324536474430079520076166021527854030489118038440613359090639985964089991935645551982495515 g1: 6760308110423105553168934247551676762742834835924705379 g2: 6760308110423105553168934247551676762742834835924705379 a: -663433553859179753534852486120176192179208952453419237099419516073895345960642535157097767360764814681233125052285546848221806753488524222455097164828378666616755659450425558555031884490456175514373 b: -283879610553617934124834580274827564330287773493553660599109910817569775319860538095258074355547370330624963299468479171427573986612824574267945617263875907538168724776286312267042332287350 g1: 10156945136160136495090664037998134561647611 g2: 10156945136160136495090664037998134561647611 a: 1053012482795013781683454134061240319709158714851347051012356108502791270207227705367930074388476957700705863871735284596420791967770260835134685013343306170435528016160770943648132593505154 b: 6541271043461425604299095563530400057645338413524321216805070605516110943123818320313367367115072561427030825884854201351541248089290738981783944615577256552305865124204698670602960138440617967049046768300237573916388820616270408629986332861025 g1: 37493777958301574595530072521589637326377798671 g2: 37493777958301574595530072521589637326377798671 a: 20159932574260227740924008312994891695235023738674903455834690573887450692467777831183418699521690732850894217806049312514390471241545405537464685219401474372597627151071956423427258576218099443301322660338 b: -6550036101690311500063168462493881617737626341174571836874729301266308778136538785600911237801632612251024693290157028468866438687631031489210839081780709004540576861343787784847053628447422090525699238799156362511854833732500786752453074330980 g1: 1175871530028365861019529994753886534428699514788334800919176576419044145622 g2: 1175871530028365861019529994753886534428699514788334800919176576419044145622 a: -804469217186249935804419530485574533344622358790918276817165501571475442786564330162537139963556920626902447676643800568309317245005063246515381492966743426309274690931534312254912290556679514434313743523800081 b: -22735967398538198144281379974659305803122556348651642475231719961607569257691891303334926917541809187957741249476942741242469368632175885344467371418726910614503120655839630834656913600188905565751336419117263443 g1: 612014890420522023663494700178671115013671430896937918412570223 g2: 612014890420522023663494700178671115013671430896937918412570223 a: 5458288792283671477924405155024538275222784982140878601469626204444238547560776019929240344280293300386406958415868419228528570828658774477747003383329146702266927099211345135867868514817645 b: -68735575661463225729143459334680079305242184890457720203994633386132259176967290919209916114542592824595515493763402633405470113436707532253802875176019819201525790533695390599617794845042063324247905 g1: 60005712106277483088070396980648372962879434447855 g2: 60005712106277483088070396980648372962879434447855 a: -4459140552732153843481546517039131500405296090180649225859422890153366023328109229609672901891766355621911490121827486369662319654361962792726066178848960304289422030619904239703490221264599928401126773243356197771241617122574230826385700 b: 52697362297005845048730826841375769470523083076954429292888606965485211479899122830452014734594756353970716883457043166273787569964569817729100536093049213857708183963493401459792193680803 g1: 10449174213359325808278046591898540038090755259 g2: 10449174213359325808278046591898540038090755259 a: 702205711525559708300029919727700906513602773908513677967315187463044860648151254549888183518441247499806980467482495593508847615608589654355311695642164960241385545 b: 4419649888180919991820067583149809516753422615511411716133687104467690977796636907157750338676474794002922641356337235576652982761541491465015912941571429479791107390911988367031131981893537 g1: 942512384467856458432773032996880901 g2: 942512384467856458432773032996880901 a: 470686595626952015756796824406736164855311494669105504705982264189211288421588447857495268957393791317658951557201277546646096504550898673718644018718933950150583817759180065029006356419903042 b: -26252035158040660847403827593006599310572682440632073909891982263383986609114016298323276529595977372356193227723436839806098390486026661601339150059699291433090139475415638699111365807248302556759461001247839045304560697765710 g1: 3372318750110036662108473442019305434503943499592875712942 g2: 3372318750110036662108473442019305434503943499592875712942 a: -295443951173575314458902702151924026197814128358305165773917067954360305162911727601750839909580748838389343770057496622405721453524460170289123582555732989959754404429277193686029834473470755513749507666935821980546840792123 b: 12352612631847593614795598194237572300237273240513162173210572621367363428033985708201897916070379517123781224312680473351323318584006473616250536109520325554495408813032350530856425813407374423377753702293123390702975709339310121892728945825 g1: 860026444315273720345440759047415351363280393743786276641878068719117013439821265596399021 g2: 860026444315273720345440759047415351363280393743786276641878068719117013439821265596399021 a: 145518269656821380103920428485570864746357423449913426660161256901814903841765024582823068822477616746804690966089109977171066493096767959039015924870453745997432849891007620711667639880432503519107849784980364896855448030280500543 b: 132693498050004154714488890785974851148878870127808902085915357253164494617332269891020288371224174317924247151609322192470436652596944955745729059910465549921065503904234178742194 g1: 14098239797066276214955042580368781605604187 g2: 14098239797066276214955042580368781605604187 a: -324437408615235372242400803934505752193882850257561888982566105865643112070792488884782696648069177425081077204743648189648463678656573098572547030812914207341513946849962597324814868154546696062119148201057 b: 170756148332004316633260564068525475233522483465254212114968774582501700071067935580000127495881034046020202947527713961352317136882960562986375798278402873939734851714044289682655180069480122459465145489776544425 g1: 60377064168105156641549922272598445869685509145964435252660593 g2: 60377064168105156641549922272598445869685509145964435252660593 a: 25251478572432727593011568245621675799520696187325461593058565443927950932619219992854779011525610745547561415641171942702808412535755427513224628115077838520043697429956400167158930130482151969638313529817960625010567228840255188540261262691922258080858817761603820389 b: -17180519269317126707962986339329148777210858686470765233144363268806609147512237903838701078979960936856346658837067606562829771575088166377720917997099651074629373272971300404771860597337510912203217601660360995 g1: 6868250978239791603876453902051505082146132562100780869379271734552447 g2: 6868250978239791603876453902051505082146132562100780869379271734552447 a: -3275690711869664531724939876718116844471656871345725547640681231899243103144720770172428009121187932660586063600049613774504255555650851617797929278272789573355495066845257913513487233623887130393576123901445179121232132206 b: 237051086506792739111474879390841948992247654641401448772335154022228090577344385058442076275495153499656147389060271268701184690857856218812212675706316746904454143628926054991091861821063830223747977003 g1: 282840183415919581330945325860429095052314496260531170767913506853 g2: 282840183415919581330945325860429095052314496260531170767913506853 a: 350021883380224366321931367051060431375191383903610218473359344293885388540872792104910011180304701927661898656344741364420891134925398190567655620292875011035702690198935198163726017072463486921710374237619045606808540 b: 2547629477411764707825972907524598995450413993804572992238817507768658009648952157997333478225952101901844386363202606386245868652593835896909133579413306919457640520440056703636158049759355804441702269847481504839624224859814639194427 g1: 76939809670070624964200222972832860119146555685603681739203 g2: 76939809670070624964200222972832860119146555685603681739203 a: -11102393879522332305322935358532975469686039191286490138519906896076900592320780468163302707700823833835931257274236864592007691731510452642967582221972614173749803716403885347525559715387969150375280179040059737317580659785817 b: -1043740706976869061884649448304222650503691599034715270053891465607084808815729310217351780083972731915134034205286159680296116311257173022104265831214212039045277614849981036379867176227791251155717425 g1: 976289115482152556747129243535401774555893303868134014802703256676827 g2: 976289115482152556747129243535401774555893303868134014802703256676827 a: 13852123656861049281679363214427261363175417281587015903388414119257831542184638817766268234004117573825295170919363909739493559254578634334199335821146168853734557002383574302702671253694805286864301053 b: -442709750887284655643710457633381352899073577163068237662311997293507333529139864286535537873091613711378309352615100440893320903250439743221975149695503625996790791307630724708888621467212001 g1: 84126292057561113420228333499833513184261473 g2: 84126292057561113420228333499833513184261473 a: 56130766200091561231639530195126982152289790339116026881715176156523624759505639977860369308580103599956838002210531701335760779984049728091048430114883496788661619217631647959768028561855159 b: 4293102566033835666678341568639877763733419412994110126058934413943587068510958695839139949531948971230823873914914185136651942704666024156093362301095060376414086159201490622500553916598 g1: 66016093152659563378717581322195729170962341980324337 g2: 66016093152659563378717581322195729170962341980324337 a: -1066800597808289367287035492749207874898621005676390139536936469751504280410549559232712343519195034044186931713938328927391346141256981751544573324315405824399380240940002935766815512671140588493946745968721887681331588321786175 b: 186224306551007698614854093119750195535422794513018516695911221570835253684374667429635509168461766227576270899598597200950526117956158618379072560784303380614281926496515363794870812779522475 g1: 6407582542729759375080585217166133829346960047580145297220610675 g2: 6407582542729759375080585217166133829346960047580145297220610675 a: -11678131181277065734741488267155125510397921995473078585632429331109255436026588368079095704053554226375566007590838512519787547568603359867970006243883182343409297409637103701256803646282178965831675133617644823421583003616428 b: -29080515348253044427970990499797492939694019083907492553350351307527167261205053717742221067450475017528937387753372091084080852301840793858896802970797867793585001937539042063485825378709377594020155674092782 g1: 307910020074661436514999180146952600590348109419813282144206 g2: 307910020074661436514999180146952600590348109419813282144206 a: 11158472739734335414091675467978643902505122044098222371336281849523589185383132484005120677401580676428915540754402631261955439519257324639949247224573863166378899797288930170601413243186497629031705313019037258767 b: -7016742911202699576078078758914978585512730516163528945324077104681732537143142292400938943731057779904978846468824710434118301757825890410861192326000236310097033157635175 g1: 48005234880231946705246056533008645720356899 g2: 48005234880231946705246056533008645720356899 a: 319149120276871106014329577487187477063163922319310613616790578511304940004687575849270563680918695166467825430699927942071317844880980404011034196631372219324792472621562572615825075193831848412780682223592603364196093 b: 13863716569253763789735481237025577290976627577626554583547638730051505368069106261859985524204042147579559677964579255408322900224906908976048968804887725811378789660197282514579779583516114118 g1: 506862799841671832571569984136211399669911127802767514280786047 g2: 506862799841671832571569984136211399669911127802767514280786047 a: 582501466401407704789872729420445648562270479547732659126204411551036148191359574616501028197887893530565294980756301489320861847031800517036432531379727338935481554698696511572036490111903253621313344965718490093743944834433064411466216609313041100 b: 719593366966847045699954702777764648412894767196214911177841135874030462101891774784658295769557385150325254819275786293485116601352140048940185617679064770484532558810372324754641598256121083727570727834035854613 g1: 4855533277199519844114478070395658095217916948629 g2: 4855533277199519844114478070395658095217916948629 a: -142687477516960081239073371395691331585521861325214520088080996854913545015370168436323733393495307040266652324592382418635224670266006684310858705109145895864992552819021941009 b: -434964259209231136312085581101011518191944278300088595859038655041696269334091429947465940618113535247556613614352974196956354163607315883658091581593581477942642012419178586888168015512026252379138395 g1: 37438005552657035578801907790787871159057 g2: 37438005552657035578801907790787871159057 a: 261467864743684308553903295033211687771692653347776815320755414444449506628654972040896348456772404589590046222534520272986116268998050680913605351851591098566073015105715958706636470653710260842255448982847734185034309447892142269920558507597425 b: -565150709052193472473545205815264316650011343684045764188431027608424892550161963636641328480308592795742919089965283494132764061583304611262373426894248285252675 g1: 292526723727831019020524690620683547596034589275 g2: 292526723727831019020524690620683547596034589275 a: 1548387349257971702965887203227120488989717735995312369158702966824272160049629788462385679779279463899583294232772136859136717530213459084496450728828190418021951449544945122373 b: 57024167048676168279878453501151935992151088064569163239273246923660896880949720175452276875830861629429008303997267528288129882497521509557 g1: 5922694240080961513 g2: 5922694240080961513 a: -5217496022913290614924387739699000227402016318780850081893148817462597431894308248483196265557049233213912364840513087663394540816739388701377944244922131941462168270371411354103761190860619688205527700 b: 17321825197788411138127166208156235051159859391069906412417867991764781634144089408826593075781533977982623975469200081454471757265150389844383647710585945651792619896833105477384178921070925 g1: 14551892370651952659338572198953720426123810061840419775 g2: 14551892370651952659338572198953720426123810061840419775 a: -180024439817618271932606957439338924634276635069118748774200853179097305477972467748666829722451638228501735741620518584925920663221565819774828017273694325015318936309015394581621706439692566511922154779585629615489815 b: 4079142435376147430690198812660226235313759187423599392522315702686680752820404839272158732721680803451592768993961510176736632473353599562359203985410114039055533442512432717277306774634122393116081881 g1: 70305153885836728249502405227058016481606585818173 g2: 70305153885836728249502405227058016481606585818173 a: 2228838697307189640293464568483026105224010715799128794947895975209593346771942751481345600969689994789599543260466859339292612262513045371470698861734283112099224203686009045774748159173289644419871147233804365991789523310 b: 2088838880676818026035839601280200018672998644077708397451755336994745074972320095240255550530889811458638141887049346480138280812298980421218959366836562689394284060354128265196433085996021632684422717771366110538230976191637334767300361089332361 g1: 382657812652122775217649245019871927548539693501849137555799991787371 g2: 382657812652122775217649245019871927548539693501849137555799991787371 a: -57403560897700937446954915819902193503768255939468754404822142043389268300477868653392022445163186739960899132558221134167099213066588097427996490963446898889688595073945236299548986051099442776090113047206530139026852316775365792662213 b: -2614794999317912100089260261956868220621495444146394469060770243301754981302968659793770983730637267961783101894364080377079679403223633212981995334002445966251634510350476971715123241665381686512278029365071594250869011475 g1: 34928962046301125796960755670238651948565870141118668165218320523 g2: 34928962046301125796960755670238651948565870141118668165218320523 a: -314831484276718510630849882504086110727434512405101221327419980566251219157695229014847117218213345786474023918911008366646488402785066980214257084431974420275967856245339388501793685657176978917421122577272982967 b: -113691346892015967288759341450248832162566575800129814123078578786907916527777790931894614578999489844995619363789081081488132799864816992942926091508422294117639060532499736553135481279580 g1: 5502547703242059456375271104061538926811871 g2: 5502547703242059456375271104061538926811871 a: -24837447229152666588520670212279727374785356822571090715343870445598399165640619971163037744976303607980812848683150360628740691441653613886953260170460083297443630838115234045906242288284373788446438644689605386212014975 b: -3257967667994426904060729073214194016245723104953369436928297088169832578258060435745802875547111563426270221550213199115818136810447738265237851651716377043769547937155334391316893568731437946136817398862 g1: 518362272711031747986289784967780938773552465635697646374803614953 g2: 518362272711031747986289784967780938773552465635697646374803614953 a: 20579739456740126339184943195116776895073589467386221396655261409089839922809875247051394055658425247744147068068488803591387139282446490426370519731928472696211689135096930650345601468394523622055711043391301003734684 b: 83769930967645686881862574031436275330559820893262814170531888989478213717678504230867238488851412504589878501831783136958720697567167613873290340986410817970855743431975568543835764032272009652336685141176457346592373508776809012041890407575 g1: 486506094370913957346732082486321619269913996886836500651591 g2: 486506094370913957346732082486321619269913996886836500651591 a: 424858397716146508675736839797519331646693427139163587228580558210255607444424336944949112988511464132281695988680321916601592718189121982478484776001816813419051611847751467406132869347177994880464062649949200026554129806542 b: -742257156013834378090816596125089113683953412506319335942100027096465114434650704846536430505105042744040745970713602444922972412978428675645115041981491169118727048716937443914414094181 g1: 671633936528847255861959308078713894701606428741479281 g2: 671633936528847255861959308078713894701606428741479281 g: 2147483648 213^{1/5}: 3 -213^{1/5}: -2 log2(0): 0 log2(1): 0 log2(2): 1 log2(3): 1 log2(4): 2 log2(5): 2 log2(6): 2 log2(7): 2 log2(8): 3 log2(9): 3 log2(10): 3 log2(11): 3 log2(12): 3 log2(13): 3 log2(14): 3 log2(15): 3 log2(16): 4 log2(17): 4 log2(18): 4 log2(19): 4 log2(20): 4 log2(21): 4 log2(22): 4 log2(23): 4 log2(24): 4 log2(25): 4 log2(26): 4 log2(27): 4 log2(28): 4 log2(29): 4 log2(30): 4 log2(31): 4 log2(32): 5 log2(33): 5 log2(34): 5 log2(35): 5 log2(36): 5 log2(37): 5 log2(38): 5 log2(39): 5 log2(40): 5 log2(41): 5 log2(42): 5 log2(43): 5 log2(44): 5 log2(45): 5 log2(46): 5 log2(47): 5 log2(48): 5 log2(49): 5 log2(50): 5 log2(51): 5 log2(52): 5 log2(53): 5 log2(54): 5 log2(55): 5 log2(56): 5 log2(57): 5 log2(58): 5 log2(59): 5 log2(60): 5 log2(61): 5 log2(62): 5 log2(63): 5 log2(64): 6 a: 1000231 b: 102928187172727273 b: 102951963583964173000063 r: 18446744075857035263 expected: 18446744075857035263 minint: -9223372036854775808 4294967295 4294967295 1002034040050606089383838288182 1002034040050606089383838288182 *-2 = -2004068080101212178767676576364 v2: 4294967296 v2*v2: 18446744073709551616 v2: 4294967296 v2*v2: 18446744073709551616 v2: 115792089237316195423570985008687907853269984665640564039457584007913129639936 PASS (test mpz :time 0.05 :before-memory 17.63 :after-memory 17.63) 1 11/10 1/3 1002034040050606089383838288182 1002034040050606089383838288182 *-2 = -2004068080101212178767676576364 1/3: 0.3333333333? 1/4: 0.25 PASS (test mpq :time 0.00 :before-memory 17.63 :after-memory 17.63) 1 11/10 1/3 1002034040050606089383838288182 1002034040050606089383838288182 *-2 = -2004068080101212178767676576364 1/3: 0.3333333333? 1/4: 0.25 PASS (test mpq :time 0.00 :before-memory 17.63 :after-memory 17.63) PASS (test mpf :time 0.00 :before-memory 17.63 :after-memory 17.63) PASS (test mpf :time 0.00 :before-memory 17.63 :after-memory 17.63) **************************************************************************************************** 1 3 2 **************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** **************************************************************************************************** **************************************************************************************************** **************************************************************************************************** **************************************************************************************************** **************************************************************************************************** PASS (test total_order :time 0.83 :before-memory 17.63 :after-memory 17.63) **************************************************************************************************** 1 3 2 **************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** **************************************************************************************************** **************************************************************************************************** **************************************************************************************************** **************************************************************************************************** **************************************************************************************************** PASS (test total_order :time 0.83 :before-memory 17.63 :after-memory 17.63) table with signature (2,4,8,4): (1,3,7,2) (1,3,7,3) 1 3 7 2 1 3 7 3 table with signature (2,4,8,4,2,4,8,4): (0,3,7,1,1,3,7,3) (1,3,7,3,1,3,7,3) table with signature (2,4,8,4,2,4,8,4): (0,3,7,1,1,3,7,2) (1,3,7,3,1,3,7,2) (0,3,7,1,1,3,7,3) (1,3,7,3,1,3,7,3) PASS (test dl_table :time 0.11 :before-memory 17.63 :after-memory 17.67) table with signature (2,4,8,4): (1,3,7,2) (1,3,7,3) 1 3 7 2 1 3 7 3 table with signature (2,4,8,4,2,4,8,4): (0,3,7,1,1,3,7,3) (1,3,7,3,1,3,7,3) table with signature (2,4,8,4,2,4,8,4): (0,3,7,1,1,3,7,2) (1,3,7,3,1,3,7,2) (0,3,7,1,1,3,7,3) (1,3,7,3,1,3,7,3) PASS (test dl_table :time 0.11 :before-memory 17.67 :after-memory 17.67) PASS (test dl_context :time 0.00 :before-memory 17.67 :after-memory 17.67) PASS (test dl_context :time 0.00 :before-memory 17.67 :after-memory 17.67) PASS (test dl_util :time 0.00 :before-memory 17.67 :after-memory 17.67) PASS (test dl_util :time 0.00 :before-memory 17.67 :after-memory 17.67) PASS (test dl_product_relation :time 0.00 :before-memory 17.67 :after-memory 17.67) PASS (test dl_product_relation :time 0.00 :before-memory 17.67 :after-memory 17.67) empty 0 in (-oo, oo) 1 in (-oo, oo) 2 in (-oo, oo) 3 in (-oo, oo) 0 in (-oo, 0] 1 in (-oo, oo) 2 in (-oo, oo) 3 in (-oo, oo) 0 in (-oo, 0] 1 = 6 2 = 7 3 in (-oo, oo) 4 in (-oo, 0] 5 in (-oo, oo) 6 in (-oo, oo) 7 in (-oo, oo) 0 in (-oo, 0] 1 in (-oo, oo) 2 in [4, 4] 3 in (-oo, oo) 0 in (-oo, 0] 1 = 2 2 in [4, 4] 3 in (-oo, oo) Orig 0 in (-oo, 0] 1 = 2 2 in [4, 4] 3 in (-oo, oo) renamed 2 |-> 3 |-> 2 0 in (-oo, 0] 1 = 3 2 in (-oo, oo) 3 in [4, 4] empty 0 in (-oo, 0] 1 = 4 2 in (-oo, 0] 3 in (-oo, oo) 4 in (-oo, oo) 5 in (-oo, oo) bound relation empty: empty full: #0 < oo #1 < oo #2 < oo #3 < oo #0 < oo 1 = 6 2 = 7 #3 < oo #4 < oo #5 < oo #6 < oo #7 < oo no-op still full #0 < oo #1 < oo #2 < oo #3 < oo x2 < x3 #0 < oo #1 < oo #2 < 3 #3 < oo id #0 < oo 1 = 2 #2 < 3 #3 < oo Orig #0 < oo 1 = 2 #2 < 3 #3 < oo renamed 0 2 3 #0 < oo 1 = 3 #2 < oo #3 < 0 #0 < oo 1 = 4 #2 < oo #3 < oo #4 < oo #5 < oo b2: #0 < oo #1 < oo #2 < oo #3 < oo b2: #0 < oo #1 < oo 2 = 3 #3 < oo b2: #0 < 3 #1 < oo 2 = 3 #3 < oo b1: #0 < 3 1 = 3 #2 < oo #3 < 2 b2: #0 < 3 #1 < oo 2 = 3 #3 < oo b1 u b2: #0 < 3 #1 < oo #2 < oo #3 < oo b1: #0 < 3 1 = 3 2 = 3 #3 < oo b2: #0 < 2 3 1 = 3 #2 < oo #3 < oo b1 u b2: #0 < 1 2 #1 < oo #2 < oo 3 = 1 PASS (test dl_relation :time 0.01 :before-memory 17.67 :after-memory 17.67) empty 0 in (-oo, oo) 1 in (-oo, oo) 2 in (-oo, oo) 3 in (-oo, oo) 0 in (-oo, 0] 1 in (-oo, oo) 2 in (-oo, oo) 3 in (-oo, oo) 0 in (-oo, 0] 1 = 6 2 = 7 3 in (-oo, oo) 4 in (-oo, 0] 5 in (-oo, oo) 6 in (-oo, oo) 7 in (-oo, oo) 0 in (-oo, 0] 1 in (-oo, oo) 2 in [4, 4] 3 in (-oo, oo) 0 in (-oo, 0] 1 = 2 2 in [4, 4] 3 in (-oo, oo) Orig 0 in (-oo, 0] 1 = 2 2 in [4, 4] 3 in (-oo, oo) renamed 2 |-> 3 |-> 2 0 in (-oo, 0] 1 = 3 2 in (-oo, oo) 3 in [4, 4] empty 0 in (-oo, 0] 1 = 4 2 in (-oo, 0] 3 in (-oo, oo) 4 in (-oo, oo) 5 in (-oo, oo) bound relation empty: empty full: #0 < oo #1 < oo #2 < oo #3 < oo #0 < oo 1 = 6 2 = 7 #3 < oo #4 < oo #5 < oo #6 < oo #7 < oo no-op still full #0 < oo #1 < oo #2 < oo #3 < oo x2 < x3 #0 < oo #1 < oo #2 < 3 #3 < oo id #0 < oo 1 = 2 #2 < 3 #3 < oo Orig #0 < oo 1 = 2 #2 < 3 #3 < oo renamed 0 2 3 #0 < oo 1 = 3 #2 < oo #3 < 0 #0 < oo 1 = 4 #2 < oo #3 < oo #4 < oo #5 < oo b2: #0 < oo #1 < oo #2 < oo #3 < oo b2: #0 < oo #1 < oo 2 = 3 #3 < oo b2: #0 < 3 #1 < oo 2 = 3 #3 < oo b1: #0 < 3 1 = 3 #2 < oo #3 < 2 b2: #0 < 3 #1 < oo 2 = 3 #3 < oo b1 u b2: #0 < 3 #1 < oo #2 < oo #3 < oo b1: #0 < 3 1 = 3 2 = 3 #3 < oo b2: #0 < 2 3 1 = 3 #2 < oo #3 < oo b1 u b2: #0 < 1 2 #1 < oo #2 < oo 3 = 1 PASS (test dl_relation :time 0.01 :before-memory 17.67 :after-memory 17.67) max. heap size: 65.1069 Mbytes max. heap size: 65.1069 Mbytes PASS (test parray :time 0.09 :before-memory 17.67 :after-memory 17.71) max. heap size: 65.1069 Mbytes max. heap size: 65.1069 Mbytes PASS (test parray :time 0.09 :before-memory 17.71 :after-memory 17.71) PASS (test stack :time 0.39 :before-memory 17.71 :after-memory 17.63) PASS (test stack :time 0.39 :before-memory 17.63 :after-memory 17.63) [\"hello\"\"world\" ] [\"hello\" world\"] [\"hello\" world\"] [\"hello\" world\"] [\"hello\" \"world\" ] [] [ ] [] [ ] [] [] [] [] PASS (test escaped :time 0.00 :before-memory 17.63 :after-memory 17.63) [\"hello\"\"world\" ] [\"hello\" world\"] [\"hello\" world\"] [\"hello\" world\"] [\"hello\" \"world\" ] [] [ ] [] [ ] [] [] [] [] PASS (test escaped :time 0.00 :before-memory 17.63 :after-memory 17.63) PASS (test buffer :time 0.00 :before-memory 17.63 :after-memory 17.63) PASS (test buffer :time 0.00 :before-memory 17.63 :after-memory 17.63) 10 20 30 12 10 12 10 13 14 12 10 13 18 10 14 16 13 18 14 16 13 size: 8 8 size: 4 4 size: 678 678 PASS (test chashtable :time 0.03 :before-memory 17.63 :after-memory 17.63) 10 20 30 12 10 12 10 13 14 12 10 13 18 10 14 16 13 18 14 16 13 size: 5 5 size: 8 8 size: 680 680 PASS (test chashtable :time 0.03 :before-memory 17.63 :after-memory 17.63) updates 15 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (Int) Int): un 11 #7 := x [r 9] [p 11] #8 := y [r 9] [p 12] #9 := z [p 11] #10 := u [r 9] #5 := 0 #6 := 1 #11 := (f x) [r 5] #12 := (f y) [r 6] updates 16 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (Int) Int): un 11 #7 := x [r 9] [p 11] #8 := y [r 9] [p 12] #9 := z [p 11] #10 := u [r 9] #5 := 0 #6 := 1 #11 := (f x) [r 5] #12 := (f y) [r 6] conflict: 1 conflict: 2 conflict: 5 updates 7 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (S) S): un 6 7 8 #5 := a [p 6] #6 := (f a) [p 7] #7 := (f #6) [p 8] #8 := (f #7) updates 9 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (S) S): un 7 8 #5 := a [r 7] [p 6] #6 := (f a) [p 7] #7 := (f #6) [p 8] #8 := (f #7) [r 7] updates 10 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (S) S): un 8 #5 := a [r 7] [p 6] #6 := (f a) [r 7] [p 7] #7 := (f #6) [p 8] #8 := (f #7) [r 7] merge merged 0 propagated 0.002 PASS (test egraph :time 0.02 :before-memory 17.63 :after-memory 17.67) updates 15 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (Int) Int): un 11 #7 := x [r 9] [p 11] #8 := y [r 9] [p 12] #9 := z [p 11] #10 := u [r 9] #5 := 0 #6 := 1 #11 := (f x) [r 5] #12 := (f y) [r 6] updates 16 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (Int) Int): un 11 #7 := x [r 9] [p 11] #8 := y [r 9] [p 12] #9 := z [p 11] #10 := u [r 9] #5 := 0 #6 := 1 #11 := (f x) [r 5] #12 := (f y) [r 6] conflict: 1 conflict: 2 conflict: 5 updates 7 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (S) S): un 6 7 8 #5 := a [p 6] #6 := (f a) [p 7] #7 := (f #6) [p 8] #8 := (f #7) updates 9 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (S) S): un 7 8 #5 := a [r 7] [p 6] #6 := (f a) [p 7] #7 := (f #6) [p 8] #8 := (f #7) [r 7] updates 10 newlits 0 qhead: 0 neweqs 0 qhead: 0 (declare-fun f (S) S): un 8 #5 := a [r 7] [p 6] #6 := (f a) [r 7] [p 7] #7 := (f #6) [p 8] #8 := (f #7) [r 7] merge merged 0 propagated 0.001 PASS (test egraph :time 0.02 :before-memory 17.67 :after-memory 17.67) testing exception Format 12 twelve PASS (test ex :time 0.00 :before-memory 17.67 :after-memory 17.67) testing exception Format 12 twelve PASS (test ex :time 0.00 :before-memory 17.67 :after-memory 17.67) PASS (test nlarith_util :time 0.00 :before-memory 17.67 :after-memory 17.68) PASS (test nlarith_util :time 0.00 :before-memory 17.68 :after-memory 17.68) Using Z3 Version 4.11 (build 2, revision 0) result 1 model : mySet -> (store (store ((as const (Array Int Bool)) false) 42 true) 43 true) PASS (test api_bug :time 0.01 :before-memory 17.68 :after-memory 17.71) Using Z3 Version 4.11 (build 2, revision 0) result 1 model : mySet -> (store (store ((as const (Array Int Bool)) false) 42 true) 43 true) PASS (test api_bug :time 0.01 :before-memory 17.71 :after-memory 17.71) 0.0 (<= (+ (* (/ 13.0 10.0) x y) (* (/ 23.0 10.0) y y) (* (- 2.0) x)) (/ 11.0 10.0)) (= (+ (* 3.0 x x) (* (- 4.0) y)) (- 7.0)) PASS (test arith_rewriter :time 0.00 :before-memory 17.71 :after-memory 17.68) 0.0 (<= (+ (* (/ 13.0 10.0) x y) (* (/ 23.0 10.0) y y) (* (- 2.0) x)) (/ 11.0 10.0)) (= (+ (* 3.0 x x) (* (- 4.0) y)) (- 7.0)) PASS (test arith_rewriter :time 0.00 :before-memory 17.68 :after-memory 17.68) PASS (test check_assumptions :time 0.00 :before-memory 17.68 :after-memory 17.68) PASS (test check_assumptions :time 0.00 :before-memory 17.68 :after-memory 17.68) PASS (test smt_context :time 0.00 :before-memory 17.68 :after-memory 17.68) PASS (test smt_context :time 0.00 :before-memory 17.68 :after-memory 17.68) b -> 15 a -> 0 b -> 13 a -> 0 c -> 15 l_false PASS (test theory_dl :time 0.01 :before-memory 17.68 :after-memory 17.72) b -> 15 a -> 0 b -> 13 a -> 0 c -> 15 l_false PASS (test theory_dl :time 0.01 :before-memory 17.72 :after-memory 17.72) satisfiable a1 -> (_ as-array k!0) k!0 -> { true -> true else -> true } -------------------------- Logical context: scope-lvl: 0 base-lvl: 0 search-lvl: 0 inconsistent(): 0 m_asserted_formulas.inconsistent(): 0 #1 := true #5 := a1 #7 := (select a1 true) #2 := false #26 := 1 #27 := 1.0 #28 := 0 #29 := 0.0 #30 := as-array[k!0] #6 := a2 #31 := (= a2 as-array[k!0]) asserted formulas: #7 #31 current assignment: 1 #7: (select a1 true) equivalence classes: 8 #1: true #2: false #26: 1 #27: 1.0 #28: 0 #29: 0.0 #5: a1 #7: (select a1 true) expression -> bool_var: (#1 -> 0) (#7 -> 1) relevant exprs: #7 #1 #5 Theory arithmetic: number of constraints = 8 (0) j0 >= 1 (1) j0 <= 1 (2) j1 >= 1 (3) j1 <= 1 (4) j2 >= 0 (5) j2 <= 0 (6) j3 >= 0 (7) j3 <= 0 [0] := (1, 0) [(1, 0), (1, 0)] [1] := (1, 0) [(1, 0), (1, 0)] [2] := (0, 0) [(0, 0), (0, 0)] [3] := (0, 0) [(0, 0), (0, 0)] irr: v0 j0 = 1, int := 26: 1 irr: v1 j1 = 1 := 27: 1.0 irr: v2 j2 = 0, int := 28: 0 irr: v3 j3 = 0 := 29: 0.0 Theory array: v0 #5 -> #5 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7} maps: {} p_parent_maps: {} p_const: {} v1 #7 -> #7 is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} recfun disabled guards: enabled guards: decl2enodes: id 127 -> #7 hot bool vars: -------------------------- Logical context: scope-lvl: 0 base-lvl: 0 search-lvl: 0 inconsistent(): 0 m_asserted_formulas.inconsistent(): 0 #1 := true #5 := a1 #7 := (select a1 true) #30 := as-array[k!0] #6 := a2 #31 := (= a2 as-array[k!0]) #2 := false #26 := 1 #27 := 1.0 #28 := 0 #29 := 0.0 asserted formulas: #7 #31 current assignment: 1 #7: (select a1 true) 2 #31: (= a2 as-array[k!0]) equivalence classes: 10 #1: true #2: false #26: 1 #27: 1.0 #28: 0 #29: 0.0 #5: a1 #7: (select a1 true) #30: as-array[k!0] #6: a2 #31: (= a2 as-array[k!0]) expression -> bool_var: (#1 -> 0) (#7 -> 1) (#31 -> 2) relevant exprs: #7 #1 #5 #31 #30 #6 Theory arithmetic: number of constraints = 8 (0) j0 >= 1 (1) j0 <= 1 (2) j1 >= 1 (3) j1 <= 1 (4) j2 >= 0 (5) j2 <= 0 (6) j3 >= 0 (7) j3 <= 0 [0] := (1, 0) [(1, 0), (1, 0)] [1] := (1, 0) [(1, 0), (1, 0)] [2] := (0, 0) [(0, 0), (0, 0)] [3] := (0, 0) [(0, 0), (0, 0)] irr: v0 j0, int := 26: 1 irr: v1 j1 := 27: 1.0 irr: v2 j2, int := 28: 0 irr: v3 j3 := 29: 0.0 Theory array: v0 #5 -> #5 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7} maps: {} p_parent_maps: {} p_const: {} v1 #7 -> #7 is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} v2 #6 -> #6 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} v3 #30 -> #6 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} recfun disabled guards: enabled guards: decl2enodes: id 127 -> #7 hot bool vars: -------------------------- unknown PASS (test model_retrieval :time 0.00 :before-memory 17.72 :after-memory 17.68) satisfiable a1 -> (_ as-array k!0) k!0 -> { true -> true else -> true } -------------------------- Logical context: scope-lvl: 0 base-lvl: 0 search-lvl: 0 inconsistent(): 0 m_asserted_formulas.inconsistent(): 0 #1 := true #5 := a1 #7 := (select a1 true) #2 := false #26 := 1 #27 := 1.0 #28 := 0 #29 := 0.0 #30 := as-array[k!0] #6 := a2 #31 := (= a2 as-array[k!0]) asserted formulas: #7 #31 current assignment: 1 #7: (select a1 true) equivalence classes: 8 #1: true #2: false #26: 1 #27: 1.0 #28: 0 #29: 0.0 #5: a1 #7: (select a1 true) expression -> bool_var: (#1 -> 0) (#7 -> 1) relevant exprs: #7 #1 #5 Theory arithmetic: number of constraints = 8 (0) j0 >= 1 (1) j0 <= 1 (2) j1 >= 1 (3) j1 <= 1 (4) j2 >= 0 (5) j2 <= 0 (6) j3 >= 0 (7) j3 <= 0 [0] := (1, 0) [(1, 0), (1, 0)] [1] := (1, 0) [(1, 0), (1, 0)] [2] := (0, 0) [(0, 0), (0, 0)] [3] := (0, 0) [(0, 0), (0, 0)] irr: v0 j0 = 1, int := 26: 1 irr: v1 j1 = 1 := 27: 1.0 irr: v2 j2 = 0, int := 28: 0 irr: v3 j3 = 0 := 29: 0.0 Theory array: v0 #5 -> #5 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7} maps: {} p_parent_maps: {} p_const: {} v1 #7 -> #7 is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} recfun disabled guards: enabled guards: decl2enodes: id 127 -> #7 hot bool vars: -------------------------- Logical context: scope-lvl: 0 base-lvl: 0 search-lvl: 0 inconsistent(): 0 m_asserted_formulas.inconsistent(): 0 #1 := true #5 := a1 #7 := (select a1 true) #30 := as-array[k!0] #6 := a2 #31 := (= a2 as-array[k!0]) #2 := false #26 := 1 #27 := 1.0 #28 := 0 #29 := 0.0 asserted formulas: #7 #31 current assignment: 1 #7: (select a1 true) 2 #31: (= a2 as-array[k!0]) equivalence classes: 10 #1: true #2: false #26: 1 #27: 1.0 #28: 0 #29: 0.0 #5: a1 #7: (select a1 true) #30: as-array[k!0] #6: a2 #31: (= a2 as-array[k!0]) expression -> bool_var: (#1 -> 0) (#7 -> 1) (#31 -> 2) relevant exprs: #7 #1 #5 #31 #30 #6 Theory arithmetic: number of constraints = 8 (0) j0 >= 1 (1) j0 <= 1 (2) j1 >= 1 (3) j1 <= 1 (4) j2 >= 0 (5) j2 <= 0 (6) j3 >= 0 (7) j3 <= 0 [0] := (1, 0) [(1, 0), (1, 0)] [1] := (1, 0) [(1, 0), (1, 0)] [2] := (0, 0) [(0, 0), (0, 0)] [3] := (0, 0) [(0, 0), (0, 0)] irr: v0 j0, int := 26: 1 irr: v1 j1 := 27: 1.0 irr: v2 j2, int := 28: 0 irr: v3 j3 := 29: 0.0 Theory array: v0 #5 -> #5 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7} maps: {} p_parent_maps: {} p_const: {} v1 #7 -> #7 is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} v2 #6 -> #6 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} v3 #30 -> #6 is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {} maps: {} p_parent_maps: {} p_const: {} recfun disabled guards: enabled guards: decl2enodes: id 127 -> #7 hot bool vars: -------------------------- unknown PASS (test model_retrieval :time 0.00 :before-memory 17.68 :after-memory 17.68) d <= 0; value: 0 a v0 -2*v2 <= 0; value: -4 a v1 -2*v2 + 1 <= 0; value: -4 a 3*v2 -4*v4 <= 0; value: -11 a 3*v2 -5*v3 + 1 <= 0; value: -10 a 3*v2 -6*v5 + 1 <= 0; value: -26 0: 1 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v0 + 1 / 2 d <= 0; value: 0 d v0 -2*v2 <= 0; value: -4 a -1*v0 + v1 + 1 <= 0; value: 0 a 3*v0 -8*v4 + 2 <= 0; value: -32 a 3*v0 -10*v3 + 4 <= 0; value: -30 a 3*v0 -12*v5 + 4 <= 0; value: -62 0: 1 3 4 5 2 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v1 + 1 d <= 0; value: 0 a 3*v1 -8*v4 + 5 <= 0; value: -32 a 3*v1 -12*v5 + 7 <= 0; value: -62 d 3*v0 -8*v4 + 2 <= 0; value: -32 d 3*v0 -10*v3 + 4 <= 0; value: -30 d 3*v0 -12*v5 + 4 <= 0; value: -62 a 3*v1 -10*v3 + 7 <= 0; value: -30 0: 1 3 4 5 2 1 6 1: 2 1 6 2: 1 2 3 4 5 3: 4 6 4: 3 1 5: 5 2 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 + 5*v2 -31 < 0; value: -1 a -1*v1 + 4*v2 + 2*v3 -45 <= 0; value: -26 a 5*v1 + v3 -42 <= 0; value: -13 a -1*v2 -3 < 0; value: -7 a v3 -4 = 0; value: 0 0: 1: 1 2 3 2: 1 2 4 3: 2 3 5 optimal: oo a 2*v0 + 98 < 0; value: 108 a -144 < 0; value: -144 d -1*v1 + 4*v2 + 2*v3 -45 <= 0; value: 0 a -283 < 0; value: -283 d -1*v2 -3 < 0; value: -1 d v3 -4 = 0; value: 0 0: 1: 1 2 3 2: 1 2 4 3 3: 2 3 5 1 0: 5 -> 5 1: 5 -> -45 2: 4 -> -2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -3*v2 -4*v3 + 11 <= 0; value: -2 a 3*v0 + 5*v2 -43 <= 0; value: -16 a -3*v1 + 2*v3 + 7 = 0; value: 0 a 3*v0 + 2*v3 -25 <= 0; value: -11 a 4*v2 -19 < 0; value: -7 0: 2 4 1: 3 2: 1 2 5 3: 1 3 4 optimal: (37/4 -e*1) a + 37/4 < 0; value: 37/4 d -3*v2 -4*v3 + 11 <= 0; value: 0 d 3*v0 -77/4 <= 0; value: 0 d -3*v1 + 2*v3 + 7 = 0; value: 0 a -59/8 < 0; value: -59/8 d 4*v2 -19 < 0; value: -7/2 0: 2 4 1: 3 2: 1 2 5 4 3: 1 3 4 0: 4 -> 77/12 1: 3 -> 107/48 2: 3 -> 31/8 3: 1 -> -5/32 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 -1*v1 <= 0; value: 0 a 5*v2 -1*v3 -27 <= 0; value: -14 a v2 -8 <= 0; value: -5 a -1*v1 <= 0; value: 0 0: 1 1: 1 4 2: 2 3 3: 2 optimal: 0 a <= 0; value: 0 d -1*v0 -1*v1 <= 0; value: 0 a 5*v2 -1*v3 -27 <= 0; value: -14 a v2 -8 <= 0; value: -5 d v0 <= 0; value: 0 0: 1 4 1: 1 4 2: 2 3 3: 2 0: 0 -> 0 1: 0 -> 0 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 6*v1 + 5*v2 -77 <= 0; value: -40 a -2*v1 + 3*v2 + 2*v3 -28 <= 0; value: -17 a -5*v0 -6*v1 + 2*v2 -4 <= 0; value: -11 a -4*v0 + v2 -1 <= 0; value: 0 a -1*v2 -3*v3 -3 <= 0; value: -8 0: 3 4 1: 1 2 3 2: 1 2 3 4 5 3: 2 5 optimal: oo a 11/3*v0 + 2*v3 + 10/3 <= 0; value: 7 a -5*v0 -21*v3 -102 <= 0; value: -107 a 5/3*v0 -5*v3 -101/3 <= 0; value: -32 d -5*v0 -6*v1 + 2*v2 -4 <= 0; value: 0 a -4*v0 -3*v3 -4 <= 0; value: -8 d -1*v2 -3*v3 -3 <= 0; value: 0 0: 3 4 2 1 1: 1 2 3 2: 1 2 3 4 5 3: 2 5 1 4 0: 1 -> 1 1: 2 -> -5/2 2: 5 -> -3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + 3 = 0; value: 0 a 2*v1 -3*v3 -2 <= 0; value: -1 a v0 -3 = 0; value: 0 a -1*v1 + 2 = 0; value: 0 a 2*v2 -4*v3 -17 < 0; value: -11 0: 1 3 1: 2 4 2: 5 3: 2 5 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 + 3 = 0; value: 0 a -3*v3 + 2 <= 0; value: -1 a = 0; value: 0 d -1*v1 + 2 = 0; value: 0 a 2*v2 -4*v3 -17 < 0; value: -11 0: 1 3 1: 2 4 2: 5 3: 2 5 0: 3 -> 3 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v0 -3*v2 + 2 <= 0; value: -3 a v1 + 2*v2 -4*v3 -2 <= 0; value: 0 a -1*v0 + 1 <= 0; value: -3 a -2*v1 + v3 + 4 <= 0; value: -2 a -3*v0 + 4*v1 -5 <= 0; value: -1 0: 1 3 5 1: 2 4 5 2: 1 2 3: 2 4 optimal: oo a 38/21*v0 -92/21 <= 0; value: 20/7 d v0 -3*v2 + 2 <= 0; value: 0 d 2*v2 -7/2*v3 <= 0; value: 0 a -1*v0 + 1 <= 0; value: -3 d -2*v1 + v3 + 4 <= 0; value: 0 a -55/21*v0 + 79/21 <= 0; value: -47/7 0: 1 3 5 1: 2 4 5 2: 1 2 5 3: 2 4 5 0: 4 -> 4 1: 4 -> 18/7 2: 3 -> 2 3: 2 -> 8/7 a 2*v0 -2*v1 <= 0; value: -2 a v1 -3 = 0; value: 0 a -1*v2 + 4*v3 + 3 <= 0; value: -1 a 2*v1 -9 < 0; value: -3 a -5*v1 -6*v2 -15 <= 0; value: -54 0: 1: 1 3 4 2: 2 4 3: 2 optimal: oo a 2*v0 -6 <= 0; value: -2 d v1 -3 = 0; value: 0 a -1*v2 + 4*v3 + 3 <= 0; value: -1 a -3 < 0; value: -3 a -6*v2 -30 <= 0; value: -54 0: 1: 1 3 4 2: 2 4 3: 2 0: 2 -> 2 1: 3 -> 3 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 -3*v2 + 4 < 0; value: -1 a v0 + v2 + 5*v3 -19 <= 0; value: -12 a -5*v1 + v2 -5 < 0; value: -25 a 4*v0 + 4*v1 -3*v3 -28 = 0; value: 0 a v3 <= 0; value: 0 0: 1 2 4 1: 3 4 2: 1 2 3 3: 2 4 5 optimal: (46/5 -e*1) a + 46/5 < 0; value: 46/5 d 5*v0 -3*v2 + 4 < 0; value: -3 a -11/5 <= 0; value: -11/5 d 5*v0 + v2 -15/4*v3 -40 < 0; value: -17/6 d 4*v0 + 4*v1 -3*v3 -28 = 0; value: 0 d 16/9*v0 -464/45 < 0; value: -16/9 0: 1 2 4 3 5 1: 3 4 2: 1 2 3 5 3: 2 4 5 3 0: 2 -> 24/5 1: 5 -> 49/30 2: 5 -> 31/3 3: 0 -> -34/45 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 + 4*v1 -21 < 0; value: -7 a -1*v0 -1*v3 + 5 = 0; value: 0 a -6*v1 + 3*v2 + v3 -7 = 0; value: 0 a 4*v2 -2*v3 -19 <= 0; value: -7 a -5*v0 + 1 <= 0; value: -4 0: 1 2 5 1: 1 3 2: 3 4 3: 2 3 4 optimal: oo a 7/3*v0 -1*v2 + 2/3 <= 0; value: -2 a 16/3*v0 + 2*v2 -67/3 < 0; value: -7 d -1*v0 -1*v3 + 5 = 0; value: 0 d -6*v1 + 3*v2 + v3 -7 = 0; value: 0 a 2*v0 + 4*v2 -29 <= 0; value: -7 a -5*v0 + 1 <= 0; value: -4 0: 1 2 5 4 1: 1 3 2: 3 4 1 3: 2 3 4 1 0: 1 -> 1 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 2*v2 -22 <= 0; value: -12 a 4*v2 + v3 -18 <= 0; value: 0 a 6*v0 -4*v2 + 3*v3 + 2 < 0; value: -2 a v3 -5 <= 0; value: -3 a -3*v1 + 2 <= 0; value: -4 0: 3 1: 1 5 2: 1 2 3 3: 2 3 4 optimal: oo a 4/3*v2 -1*v3 -2 < 0; value: 4/3 a 2*v2 -64/3 <= 0; value: -40/3 a 4*v2 + v3 -18 <= 0; value: 0 d 6*v0 -4*v2 + 3*v3 + 2 < 0; value: -1 a v3 -5 <= 0; value: -3 d -3*v1 + 2 <= 0; value: 0 0: 3 1: 1 5 2: 1 2 3 3: 2 3 4 0: 1 -> 7/6 1: 2 -> 2/3 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v3 -3 = 0; value: 0 a -2*v1 -1*v2 -2 < 0; value: -7 a 2*v0 -5*v1 -6*v2 + 14 <= 0; value: -1 a 3*v0 -4*v3 <= 0; value: 0 0: 3 4 1: 2 3 2: 2 3 3: 1 4 optimal: (124/7 -e*1) a + 124/7 < 0; value: 124/7 d v3 -3 = 0; value: 0 d -4/5*v0 + 7/5*v2 -38/5 < 0; value: -7/5 d 2*v0 -5*v1 -6*v2 + 14 <= 0; value: 0 d 3*v0 -4*v3 <= 0; value: 0 0: 3 4 2 1: 2 3 2: 2 3 3: 1 4 0: 4 -> 4 1: 1 -> -128/35 2: 3 -> 47/7 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -1*v2 -6*v3 + 18 = 0; value: 0 a -6*v1 + 7 <= 0; value: -5 a -1*v0 + v1 + 4*v2 -3 <= 0; value: -1 a -1*v3 + 1 <= 0; value: -2 a 4*v2 -5*v3 + 10 <= 0; value: -5 0: 1 3 1: 2 3 2: 1 3 5 3: 1 4 5 optimal: 131/12 a + 131/12 <= 0; value: 131/12 d -2*v0 -1*v2 -6*v3 + 18 = 0; value: 0 d -6*v1 + 7 <= 0; value: 0 a -323/24 <= 0; value: -323/24 d -4/5*v2 -1 <= 0; value: 0 d 4*v2 -5*v3 + 10 <= 0; value: 0 0: 1 3 1: 2 3 2: 1 3 5 4 3: 1 4 5 3 0: 0 -> 53/8 1: 2 -> 7/6 2: 0 -> -5/4 3: 3 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 6*v1 + v3 -1 <= 0; value: 0 a 5*v0 + 4*v1 -10 = 0; value: 0 a -2*v1 + 3*v3 -3 <= 0; value: 0 a 3*v0 -2*v2 -2 = 0; value: 0 a -1*v2 -2*v3 + 4 = 0; value: 0 0: 2 4 1: 1 2 3 2: 4 5 3: 1 3 5 optimal: 4 a + 4 <= 0; value: 4 a <= 0; value: 0 d 5*v0 + 4*v1 -10 = 0; value: 0 d -1/3*v3 + 1/3 <= 0; value: 0 d 3*v0 -2*v2 -2 = 0; value: 0 d -1*v2 -2*v3 + 4 = 0; value: 0 0: 2 4 3 1 1: 1 2 3 2: 4 5 3 1 3: 1 3 5 0: 2 -> 2 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 + v2 + 6 = 0; value: 0 a 3*v0 -6*v1 -6*v2 + 14 < 0; value: -28 a -4*v0 -1*v3 + 19 = 0; value: 0 a -5*v1 -3*v3 + 34 = 0; value: 0 a v0 + 3*v3 -13 = 0; value: 0 0: 2 3 5 1: 1 2 4 2: 1 2 3: 3 4 5 optimal: -2 a -2 <= 0; value: -2 d -2*v1 + v2 + 6 = 0; value: 0 a -28 < 0; value: -28 d -4*v0 -1*v3 + 19 = 0; value: 0 d -5/2*v2 -3*v3 + 19 = 0; value: 0 d -11*v0 + 44 = 0; value: 0 0: 2 3 5 1: 1 2 4 2: 1 2 4 3: 3 4 5 2 0: 4 -> 4 1: 5 -> 5 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v1 + 5*v3 -30 <= 0; value: -10 a 5*v1 -3*v2 + 5*v3 -20 = 0; value: 0 a -5*v2 + 2*v3 -8 <= 0; value: 0 a 3*v0 -1*v1 -3 <= 0; value: 0 a -1*v1 = 0; value: 0 0: 4 1: 1 2 4 5 2: 2 3 3: 1 2 3 optimal: 2 a + 2 <= 0; value: 2 a -10 <= 0; value: -10 d 5*v1 -3*v2 + 5*v3 -20 = 0; value: 0 d -5*v2 + 2*v3 -8 <= 0; value: 0 d 3*v0 + 19/10*v2 -3 <= 0; value: 0 d -3*v0 + 3 = 0; value: 0 0: 4 5 1 1: 1 2 4 5 2: 2 3 4 5 1 3: 1 2 3 4 5 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 -1*v2 + 2*v3 -22 < 0; value: -13 a -4*v0 -1*v1 + 6*v3 = 0; value: 0 a 5*v1 -2*v3 + 4 <= 0; value: 0 a 4*v0 -17 < 0; value: -5 a 5*v0 + 3*v3 -45 <= 0; value: -24 0: 1 2 4 5 1: 2 3 2: 1 3: 1 2 3 5 optimal: oo a 10*v0 -12*v3 <= 0; value: 6 a 2*v0 -1*v2 + 2*v3 -22 < 0; value: -13 d -4*v0 -1*v1 + 6*v3 = 0; value: 0 a -20*v0 + 28*v3 + 4 <= 0; value: 0 a 4*v0 -17 < 0; value: -5 a 5*v0 + 3*v3 -45 <= 0; value: -24 0: 1 2 4 5 3 1: 2 3 2: 1 3: 1 2 3 5 0: 3 -> 3 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -1*v2 + v3 -17 <= 0; value: -9 a -3*v0 -2*v2 -9 < 0; value: -26 a -1*v1 <= 0; value: -4 a 3*v1 + 2*v2 -20 = 0; value: 0 a 3*v0 -5*v2 -1*v3 -3 <= 0; value: -17 0: 1 2 5 1: 3 4 2: 1 2 4 5 3: 1 5 optimal: 80/3 a + 80/3 <= 0; value: 80/3 d 3*v0 + v3 -27 <= 0; value: 0 a -69 < 0; value: -69 d 2/3*v2 -20/3 <= 0; value: 0 d 3*v1 + 2*v2 -20 = 0; value: 0 d -2*v3 -26 <= 0; value: 0 0: 1 2 5 1: 3 4 2: 1 2 4 5 3 3: 1 5 2 0: 3 -> 40/3 1: 4 -> 0 2: 4 -> 10 3: 3 -> -13 a 2*v0 -2*v1 <= 0; value: 8 a 5*v0 + v2 -50 <= 0; value: -26 a v0 -6*v1 -4 = 0; value: 0 a 3*v0 -5*v2 -4 < 0; value: -12 a -1*v0 -6*v1 <= 0; value: -4 a v2 -2*v3 + 1 < 0; value: -3 0: 1 2 3 4 1: 2 4 2: 1 3 5 3: 5 optimal: (691/42 -e*1) a + 691/42 < 0; value: 691/42 d 28/3*v2 -130/3 <= 0; value: 0 d v0 -6*v1 -4 = 0; value: 0 d 3*v0 -5*v2 -4 < 0; value: -3 a -99/7 < 0; value: -99/7 a -2*v3 + 79/14 < 0; value: -33/14 0: 1 2 3 4 1: 2 4 2: 1 3 5 4 3: 5 0: 4 -> 113/14 1: 0 -> 19/28 2: 4 -> 65/14 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -1*v2 -5 <= 0; value: -13 a -2*v1 -3*v3 -5 < 0; value: -18 a -4*v0 + 3*v3 -5 = 0; value: 0 a 5*v0 + 4*v1 -1*v2 -18 <= 0; value: -7 a -3*v0 -4*v1 + 2*v3 -3 <= 0; value: -8 0: 3 4 5 1: 1 2 4 5 2: 1 4 3: 2 3 5 optimal: oo a 13/28*v2 + 225/28 <= 0; value: 251/28 a -53/56*v2 -241/56 <= 0; value: -347/56 a -23/28*v2 -691/28 < 0; value: -737/28 d -4*v0 + 3*v3 -5 = 0; value: 0 d 14/3*v0 -1*v2 -53/3 <= 0; value: 0 d -3*v0 -4*v1 + 2*v3 -3 <= 0; value: 0 0: 3 4 5 2 1 1: 1 2 4 5 2: 1 4 2 3: 2 3 5 1 4 0: 1 -> 59/14 1: 2 -> -15/56 2: 2 -> 2 3: 3 -> 51/7 a 2*v0 -2*v1 <= 0; value: 6 a 5*v0 + 2*v3 -47 <= 0; value: -19 a 5*v0 -5*v2 -3*v3 -1 < 0; value: -8 a 4*v1 -3*v3 + 8 <= 0; value: 0 a 2*v0 + v3 -27 <= 0; value: -15 a -1*v0 -2*v1 -3*v3 -1 < 0; value: -19 0: 1 2 4 5 1: 3 5 2: 2 3: 1 2 3 4 5 optimal: (103 -e*1) a + 103 < 0; value: 103 d 5*v0 + 2*v3 -47 <= 0; value: 0 a -5*v2 -159 < 0; value: -174 a -349 < 0; value: -349 d -1/2*v0 -7/2 <= 0; value: 0 d -1*v0 -2*v1 -3*v3 -1 < 0; value: -2 0: 1 2 4 5 3 1: 3 5 2: 2 3: 1 2 3 4 5 0: 4 -> -7 1: 1 -> -115/2 2: 3 -> 3 3: 4 -> 41 a 2*v0 -2*v1 <= 0; value: -8 a v0 + 2*v2 -1*v3 + 4 = 0; value: 0 a -2*v0 + 3*v2 = 0; value: 0 a v2 -2*v3 + 8 = 0; value: 0 a 5*v2 -2*v3 -3 <= 0; value: -11 a 3*v1 -16 <= 0; value: -4 0: 1 2 1: 5 2: 1 2 3 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a v0 + 2*v2 -1*v3 + 4 = 0; value: 0 a -2*v0 + 3*v2 = 0; value: 0 a v2 -2*v3 + 8 = 0; value: 0 a 5*v2 -2*v3 -3 <= 0; value: -11 a 3*v1 -16 <= 0; value: -4 0: 1 2 1: 5 2: 1 2 3 4 3: 1 3 4 0: 0 -> 0 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 3*v3 -11 = 0; value: 0 a v0 + 4*v3 -9 = 0; value: 0 a 5*v0 -2*v1 -4*v2 -8 <= 0; value: -25 a -6*v0 -3*v2 + 16 < 0; value: -2 a 4*v0 + 6*v2 -4*v3 -55 < 0; value: -35 0: 1 2 3 4 5 1: 3 2: 3 4 5 3: 1 2 5 optimal: (133/3 -e*1) a + 133/3 < 0; value: 133/3 d 5*v0 + 3*v3 -11 = 0; value: 0 d -17/3*v0 + 17/3 = 0; value: 0 d 5*v0 -2*v1 -4*v2 -8 <= 0; value: 0 a -39/2 < 0; value: -39/2 d 4*v0 + 6*v2 -4*v3 -55 < 0; value: -6 0: 1 2 3 4 5 1: 3 2: 3 4 5 3: 1 2 5 4 0: 1 -> 1 1: 3 -> -115/6 2: 4 -> 53/6 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 6*v0 -4*v1 + 1 < 0; value: -3 a v2 <= 0; value: 0 a 2*v1 -11 <= 0; value: -3 a -6*v0 + 2*v2 + 7 <= 0; value: -5 a 5*v0 + v1 -38 <= 0; value: -24 0: 1 4 5 1: 1 3 5 2: 2 4 3: optimal: oo a -1/3*v2 -5/3 < 0; value: -5/3 d 6*v0 -4*v1 + 1 < 0; value: -4 a v2 <= 0; value: 0 a v2 -7 < 0; value: -7 d -6*v0 + 2*v2 + 7 <= 0; value: 0 a 13/6*v2 -181/6 < 0; value: -181/6 0: 1 4 5 3 1: 1 3 5 2: 2 4 5 3 3: 0: 2 -> 7/6 1: 4 -> 3 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 1 = 0; value: 0 a -3*v0 -5*v2 + 10 < 0; value: -4 a v0 -7 <= 0; value: -4 a 6*v2 + 5*v3 -60 <= 0; value: -39 a 4*v0 + 6*v2 + v3 -52 < 0; value: -31 0: 2 3 5 1: 1 2: 2 4 5 3: 4 5 optimal: 12 a + 12 <= 0; value: 12 d -1*v1 + 1 = 0; value: 0 a -5*v2 -11 < 0; value: -16 d v0 -7 <= 0; value: 0 a 6*v2 + 5*v3 -60 <= 0; value: -39 a 6*v2 + v3 -24 < 0; value: -15 0: 2 3 5 1: 1 2: 2 4 5 3: 4 5 0: 3 -> 7 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -5*v3 + 9 = 0; value: 0 a 3*v2 -4*v3 <= 0; value: 0 a -1*v0 + v2 + 3 = 0; value: 0 a v0 -3*v3 -4 <= 0; value: -1 a 4*v0 + 6*v2 -3*v3 -34 < 0; value: -22 0: 1 3 4 5 1: 2: 2 3 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -5*v3 + 9 = 0; value: 0 a 3*v2 -4*v3 <= 0; value: 0 a -1*v0 + v2 + 3 = 0; value: 0 a v0 -3*v3 -4 <= 0; value: -1 a 4*v0 + 6*v2 -3*v3 -34 < 0; value: -22 0: 1 3 4 5 1: 2: 2 3 5 3: 1 2 4 5 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -1*v1 + 2*v2 -17 <= 0; value: -8 a -3*v0 -1*v2 -4 < 0; value: -14 a 4*v0 + 3*v1 -3*v2 -7 <= 0; value: -2 a -2*v1 + 6*v2 -3*v3 -43 <= 0; value: -25 a v1 -4 <= 0; value: -1 0: 1 2 3 1: 1 3 4 5 2: 1 2 3 4 3: 4 optimal: (750 -e*1) a + 750 < 0; value: 750 d 2*v0 -1*v1 + 2*v2 -17 <= 0; value: 0 d -3*v0 -1*v2 -4 < 0; value: -1 d v0 -70 < 0; value: -1 a -3*v3 -717 < 0; value: -717 a -309 < 0; value: -309 0: 1 2 3 4 5 1: 1 3 4 5 2: 1 2 3 4 5 3: 4 0: 2 -> 69 1: 3 -> -299 2: 4 -> -210 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 + 2*v3 -71 <= 0; value: -40 a v2 + 2*v3 -11 = 0; value: 0 a -3*v0 -4*v1 -3*v2 + 20 < 0; value: -2 a -3*v2 -3*v3 -19 <= 0; value: -43 a 3*v0 + 2*v1 + 5*v3 -20 <= 0; value: 0 0: 3 5 1: 3 5 2: 1 2 3 4 3: 1 2 4 5 optimal: (335/3 -e*1) a + 335/3 < 0; value: 335/3 d -8*v3 -16 <= 0; value: 0 d v2 + 2*v3 -11 = 0; value: 0 d -3*v0 -4*v1 -3*v2 + 20 < 0; value: -4 a -58 <= 0; value: -58 d 3/2*v0 -85/2 < 0; value: -3/2 0: 3 5 1: 3 5 2: 1 2 3 4 5 3: 1 2 4 5 0: 1 -> 82/3 1: 1 -> -103/4 2: 5 -> 15 3: 3 -> -2 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 3*v1 + 1 <= 0; value: 0 a 6*v0 -3*v1 + 5*v3 -35 < 0; value: -9 a 2*v0 + v1 + 6*v3 -15 <= 0; value: 0 a -5*v0 + 5*v1 + 2*v2 -6 < 0; value: -13 a 5*v0 + 6*v3 -55 <= 0; value: -29 0: 1 2 3 4 5 1: 1 2 3 4 2: 4 3: 2 3 5 optimal: oo a -2*v0 -10/3*v3 + 70/3 < 0; value: 12 a 5*v0 + 5*v3 -34 < 0; value: -9 d 6*v0 -3*v1 + 5*v3 -35 < 0; value: -3 a 4*v0 + 23/3*v3 -80/3 < 0; value: -3 a 5*v0 + 2*v2 + 25/3*v3 -193/3 < 0; value: -28 a 5*v0 + 6*v3 -55 <= 0; value: -29 0: 1 2 3 4 5 1: 1 2 3 4 2: 4 3: 2 3 5 1 4 0: 4 -> 4 1: 1 -> -1 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 + 4*v2 -3*v3 -39 <= 0; value: -22 a v2 -3*v3 -3 <= 0; value: 0 a 6*v0 -2*v3 -39 < 0; value: -15 a -2*v2 + 5*v3 + 3 < 0; value: -3 a -5*v1 + v2 + 2 <= 0; value: 0 0: 3 1: 1 5 2: 1 2 4 5 3: 1 2 3 4 optimal: (63/5 -e*1) a + 63/5 < 0; value: 63/5 a -58 < 0; value: -58 d -1/2*v3 -3/2 < 0; value: -1/2 d 6*v0 -33 <= 0; value: 0 d -2*v2 + 5*v3 + 3 < 0; value: -2 d -5*v1 + v2 + 2 <= 0; value: 0 0: 3 1: 1 5 2: 1 2 4 5 3: 1 2 3 4 0: 4 -> 11/2 1: 1 -> -1/10 2: 3 -> -5/2 3: 0 -> -2 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 + 3*v1 -4 <= 0; value: -2 a 5*v0 + v1 -6*v3 -13 <= 0; value: -8 a -1*v1 = 0; value: 0 a v1 = 0; value: 0 a -1*v0 -4*v2 + 2*v3 + 1 = 0; value: 0 0: 1 2 5 1: 1 2 3 4 2: 5 3: 2 5 optimal: 4 a + 4 <= 0; value: 4 d -8*v2 + 4*v3 -2 <= 0; value: 0 a -12*v2 -6 <= 0; value: -6 d -1*v1 = 0; value: 0 a = 0; value: 0 d -1*v0 -4*v2 + 2*v3 + 1 = 0; value: 0 0: 1 2 5 1: 1 2 3 4 2: 5 2 1 3: 2 5 1 0: 1 -> 2 1: 0 -> 0 2: 0 -> 0 3: 0 -> 1/2 a 2*v0 -2*v1 <= 0; value: 10 a -1*v0 -1*v1 + 5 = 0; value: 0 a 5*v0 -5*v2 -6*v3 -22 <= 0; value: -7 a -4*v0 -1*v2 + 17 < 0; value: -5 a -5*v0 -2*v1 + v2 + 21 <= 0; value: -2 a v0 + 5*v1 + v2 -9 <= 0; value: -2 0: 1 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 2 optimal: oo a 4*v2 + 24/5*v3 + 38/5 <= 0; value: 78/5 d -1*v0 -1*v1 + 5 = 0; value: 0 d 5*v0 -5*v2 -6*v3 -22 <= 0; value: 0 a -5*v2 -24/5*v3 -3/5 < 0; value: -53/5 a -2*v2 -18/5*v3 -11/5 <= 0; value: -31/5 a -3*v2 -24/5*v3 -8/5 <= 0; value: -38/5 0: 1 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 2 3 4 5 0: 5 -> 32/5 1: 0 -> -7/5 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -2*v2 + v3 + 1 <= 0; value: 0 a 4*v0 + 3*v1 -2*v2 -18 < 0; value: -11 a v0 -2*v2 + 4 <= 0; value: -1 a -3*v0 + 6*v3 -59 <= 0; value: -32 a 5*v0 -2*v2 + v3 -6 <= 0; value: -2 0: 2 3 4 5 1: 2 2: 1 2 3 5 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -2*v2 + v3 + 1 <= 0; value: 0 a 4*v0 + 3*v1 -2*v2 -18 < 0; value: -11 a v0 -2*v2 + 4 <= 0; value: -1 a -3*v0 + 6*v3 -59 <= 0; value: -32 a 5*v0 -2*v2 + v3 -6 <= 0; value: -2 0: 2 3 4 5 1: 2 2: 1 2 3 5 3: 1 4 5 0: 1 -> 1 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + 5*v1 -27 <= 0; value: -15 a -1*v0 -1*v2 + 6 = 0; value: 0 a 6*v0 + v1 + 6*v3 -104 <= 0; value: -65 a v2 + v3 -10 <= 0; value: 0 a -1*v1 + 3*v2 -19 < 0; value: -7 0: 1 2 3 1: 1 3 5 2: 2 4 5 3: 3 4 optimal: oo a -16*v3 + 282 < 0; value: 202 a 36*v3 -662 < 0; value: -482 d -1*v0 -1*v2 + 6 = 0; value: 0 d 3*v0 + 6*v3 -105 < 0; value: -3 a 3*v3 -39 < 0; value: -24 d -1*v1 + 3*v2 -19 < 0; value: -1 0: 1 2 3 4 1: 1 3 5 2: 2 4 5 1 3 3: 3 4 1 0: 1 -> 24 1: 3 -> -72 2: 5 -> -18 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 + 2*v3 -4 = 0; value: 0 a -1*v0 -1*v2 + 2*v3 -2 <= 0; value: 0 a 3*v0 + 3*v2 -4*v3 + 1 <= 0; value: -1 a 2*v1 + 5*v2 -6*v3 <= 0; value: -2 a v1 -1*v3 -1 < 0; value: -3 0: 2 3 1: 1 4 5 2: 2 3 4 3: 1 2 3 4 5 optimal: oo a 2*v0 + 2/3 <= 0; value: 2/3 d 3*v1 + 2*v3 -4 = 0; value: 0 d -1*v0 -1*v2 + 2*v3 -2 <= 0; value: 0 d v0 + v2 -3 <= 0; value: 0 a -5*v0 -2/3 <= 0; value: -2/3 a -23/6 < 0; value: -23/6 0: 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 1 2 3 4 5 0: 0 -> 0 1: 0 -> -1/3 2: 2 -> 3 3: 2 -> 5/2 a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v3 -65 <= 0; value: -38 a -5*v0 + 4*v1 -1 <= 0; value: 0 a 5*v3 -34 <= 0; value: -9 a -1*v0 -3*v2 + 18 = 0; value: 0 a -1*v3 + 3 < 0; value: -2 0: 1 2 4 1: 1 2 2: 4 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v3 -65 <= 0; value: -38 a -5*v0 + 4*v1 -1 <= 0; value: 0 a 5*v3 -34 <= 0; value: -9 a -1*v0 -3*v2 + 18 = 0; value: 0 a -1*v3 + 3 < 0; value: -2 0: 1 2 4 1: 1 2 2: 4 3: 1 3 5 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 + 3*v1 + 3*v2 -38 < 0; value: -23 a -3*v0 -2*v1 -3*v2 + 13 <= 0; value: -1 a -3*v3 + 1 <= 0; value: -2 a -1*v3 + 1 = 0; value: 0 a 6*v0 + 5*v1 -3*v2 -6 <= 0; value: -13 0: 1 2 5 1: 1 2 5 2: 1 2 5 3: 3 4 optimal: oo a 5*v0 + 3*v2 -13 <= 0; value: -1 a 3/2*v0 -3/2*v2 -37/2 < 0; value: -49/2 d -3*v0 -2*v1 -3*v2 + 13 <= 0; value: 0 a -3*v3 + 1 <= 0; value: -2 a -1*v3 + 1 = 0; value: 0 a -3/2*v0 -21/2*v2 + 53/2 <= 0; value: -31/2 0: 1 2 5 1: 1 2 5 2: 1 2 5 3: 3 4 0: 0 -> 0 1: 1 -> 1/2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + 6*v1 -6*v3 -13 <= 0; value: -43 a -1*v0 + 2 = 0; value: 0 a -6*v1 -5*v3 + 1 <= 0; value: -30 a 3*v2 -4*v3 -10 < 0; value: -27 a 3*v2 + v3 -12 <= 0; value: -4 0: 1 2 1: 1 3 2: 4 5 3: 1 3 4 5 optimal: oo a 2*v0 -5*v2 + 59/3 <= 0; value: 56/3 a -3*v0 + 33*v2 -144 <= 0; value: -117 a -1*v0 + 2 = 0; value: 0 d -6*v1 -5*v3 + 1 <= 0; value: 0 a 15*v2 -58 < 0; value: -43 d 3*v2 + v3 -12 <= 0; value: 0 0: 1 2 1: 1 3 2: 4 5 1 3: 1 3 4 5 0: 2 -> 2 1: 1 -> -22/3 2: 1 -> 1 3: 5 -> 9 a 2*v0 -2*v1 <= 0; value: 0 a -4*v1 -2*v2 -4*v3 -5 <= 0; value: -25 a 2*v0 + 4*v2 -17 <= 0; value: -11 a -3*v0 -4*v1 -6*v3 + 32 < 0; value: -1 a -4*v1 -4*v2 -3 < 0; value: -15 a 5*v0 + 5*v2 + 4*v3 -23 = 0; value: 0 0: 2 3 5 1: 1 3 4 2: 1 2 4 5 3: 1 3 5 optimal: (391/26 -e*1) a + 391/26 < 0; value: 391/26 d 52/23*v0 -582/23 <= 0; value: 0 a -160/13 <= 0; value: -160/13 d -3*v0 -4*v1 -6*v3 + 32 < 0; value: -35/26 d -9/2*v0 -23/2*v2 -1/2 <= 0; value: 0 d 5*v0 + 5*v2 + 4*v3 -23 = 0; value: 0 0: 2 3 5 1 4 1: 1 3 4 2: 1 2 4 5 3: 1 3 5 4 0: 3 -> 291/26 1: 3 -> 417/104 2: 0 -> -115/26 3: 2 -> -141/52 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 <= 0; value: 0 a 3*v1 -2*v2 -8 <= 0; value: -5 a -2*v0 -1*v3 + 4 <= 0; value: 0 a -1*v0 + 2*v2 = 0; value: 0 a 3*v1 -4*v3 + 8 < 0; value: -5 0: 3 4 1: 2 5 2: 1 2 4 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 <= 0; value: 0 a 3*v1 -2*v2 -8 <= 0; value: -5 a -2*v0 -1*v3 + 4 <= 0; value: 0 a -1*v0 + 2*v2 = 0; value: 0 a 3*v1 -4*v3 + 8 < 0; value: -5 0: 3 4 1: 2 5 2: 1 2 4 3: 3 5 0: 0 -> 0 1: 1 -> 1 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + 2 <= 0; value: -4 a v1 + v3 -25 <= 0; value: -15 a -5*v1 -12 <= 0; value: -37 a -3*v1 -4*v3 + 35 = 0; value: 0 a -5*v0 -1*v3 -6 <= 0; value: -21 0: 1 5 1: 2 3 4 2: 3: 2 4 5 optimal: oo a 2*v0 + 24/5 <= 0; value: 44/5 a -3*v0 + 2 <= 0; value: -4 a -337/20 <= 0; value: -337/20 d 20/3*v3 -211/3 <= 0; value: 0 d -3*v1 -4*v3 + 35 = 0; value: 0 a -5*v0 -331/20 <= 0; value: -531/20 0: 1 5 1: 2 3 4 2: 3: 2 4 5 3 0: 2 -> 2 1: 5 -> -12/5 2: 4 -> 4 3: 5 -> 211/20 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -5*v2 -1*v3 -11 < 0; value: -3 a 3*v0 + 5*v1 -4*v3 -25 <= 0; value: -3 a -1*v0 + 4*v2 + 2 <= 0; value: -2 a -6*v0 + v2 -1*v3 -6 <= 0; value: -30 a -1*v3 <= 0; value: 0 0: 2 3 4 1: 1 2 2: 1 3 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -5*v2 -1*v3 -11 < 0; value: -3 a 3*v0 + 5*v1 -4*v3 -25 <= 0; value: -3 a -1*v0 + 4*v2 + 2 <= 0; value: -2 a -6*v0 + v2 -1*v3 -6 <= 0; value: -30 a -1*v3 <= 0; value: 0 0: 2 3 4 1: 1 2 2: 1 3 4 3: 1 2 4 5 0: 4 -> 4 1: 2 -> 2 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 2*v1 + 2 <= 0; value: -1 a v3 -4 = 0; value: 0 a -3*v0 + 4*v1 -2*v3 + 9 <= 0; value: -8 a 4*v1 -1*v2 -4*v3 -8 < 0; value: -27 a -5*v0 -4*v1 + 2 < 0; value: -13 0: 1 3 5 1: 1 3 4 5 2: 4 3: 2 3 4 optimal: oo a 9/2*v0 -1 < 0; value: 25/2 a -7/2*v0 + 3 < 0; value: -15/2 a v3 -4 = 0; value: 0 a -8*v0 -2*v3 + 11 < 0; value: -21 a -5*v0 -1*v2 -4*v3 -6 < 0; value: -40 d -5*v0 -4*v1 + 2 < 0; value: -4 0: 1 3 5 4 1: 1 3 4 5 2: 4 3: 2 3 4 0: 3 -> 3 1: 0 -> -9/4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a 4*v0 -4*v2 -4*v3 -1 <= 0; value: -21 a -5*v0 -3*v1 + 2*v2 -4 <= 0; value: -16 a v0 + 6*v1 -40 < 0; value: -16 a -2*v2 + 3*v3 -37 <= 0; value: -22 0: 1 2 3 1: 2 3 2: 1 2 4 3: 1 4 optimal: oo a 68/15*v0 + 191/15 <= 0; value: 191/15 d 4*v0 -4*v2 -4*v3 -1 <= 0; value: 0 d -5*v0 -3*v1 + 2*v2 -4 <= 0; value: 0 a -33/5*v0 -391/5 < 0; value: -391/5 d -2*v0 + 5*v3 -73/2 <= 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 2 4 3 3: 1 4 3 0: 0 -> 0 1: 4 -> -191/30 2: 0 -> -151/20 3: 5 -> 73/10 a 2*v0 -2*v1 <= 0; value: -4 a v0 -1*v2 + 2*v3 -13 <= 0; value: -8 a -2*v0 -5*v2 -1*v3 + 16 <= 0; value: -2 a 2*v0 + 4*v1 -75 <= 0; value: -49 a v1 -4*v2 -2*v3 -1 <= 0; value: -8 a -5*v0 + 3*v1 -4*v3 + 6 <= 0; value: -2 0: 1 2 3 5 1: 3 4 5 2: 1 2 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v0 -1*v2 + 2*v3 -13 <= 0; value: -8 a -2*v0 -5*v2 -1*v3 + 16 <= 0; value: -2 a 2*v0 + 4*v1 -75 <= 0; value: -49 a v1 -4*v2 -2*v3 -1 <= 0; value: -8 a -5*v0 + 3*v1 -4*v3 + 6 <= 0; value: -2 0: 1 2 3 5 1: 3 4 5 2: 1 2 4 3: 1 2 4 5 0: 3 -> 3 1: 5 -> 5 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -4*v0 + 6*v1 -7 <= 0; value: -19 a -1*v1 -6*v2 + 2 <= 0; value: -16 a -4*v2 + 3*v3 -2 <= 0; value: -5 a -6*v1 -5*v2 -5*v3 + 3 < 0; value: -27 a 3*v0 + 4*v2 -43 < 0; value: -22 0: 1 5 1: 1 2 4 2: 2 3 4 5 3: 3 4 optimal: oo a -11/12*v0 + 503/12 < 0; value: 235/6 a 19/4*v0 -531/4 < 0; value: -237/2 a 73/24*v0 -997/24 < 0; value: -389/12 d -4*v2 + 3*v3 -2 <= 0; value: 0 d -6*v1 -5*v2 -5*v3 + 3 < 0; value: -6 d 3*v0 + 4*v2 -43 < 0; value: -4 0: 1 5 2 1: 1 2 4 2: 2 3 4 5 1 3: 3 4 2 1 0: 3 -> 3 1: 0 -> -491/36 2: 3 -> 15/2 3: 3 -> 32/3 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 + v3 <= 0; value: 0 a -2*v0 + 3*v2 -14 <= 0; value: -8 a -5*v1 -5*v2 -13 <= 0; value: -33 a -1*v1 <= 0; value: 0 a v2 -4 <= 0; value: 0 0: 2 1: 3 4 2: 1 2 3 5 3: 1 optimal: oo a 2*v0 <= 0; value: 6 a -1*v2 + v3 <= 0; value: 0 a -2*v0 + 3*v2 -14 <= 0; value: -8 a -5*v2 -13 <= 0; value: -33 d -1*v1 <= 0; value: 0 a v2 -4 <= 0; value: 0 0: 2 1: 3 4 2: 1 2 3 5 3: 1 0: 3 -> 3 1: 0 -> 0 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 5*v1 -5 <= 0; value: -3 a -4*v0 -3*v1 -1*v3 + 16 = 0; value: 0 a 3*v0 + v3 -24 <= 0; value: -14 a 2*v2 + 2*v3 -11 < 0; value: -7 a 3*v0 -4*v1 -5*v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2 5 2: 4 3: 2 3 4 5 optimal: (592/29 -e*1) a + 592/29 < 0; value: 592/29 a -969/29 < 0; value: -969/29 d -4*v0 -3*v1 -1*v3 + 16 = 0; value: 0 d 3*v0 -1*v2 -37/2 <= 0; value: 0 d 2*v2 + 2*v3 -11 < 0; value: -2 d 58/3*v0 -328/3 < 0; value: -58/3 0: 1 2 3 5 1: 1 2 5 2: 4 3 5 1 3: 2 3 4 5 1 0: 3 -> 135/29 1: 1 -> -338/87 2: 1 -> -263/58 3: 1 -> 262/29 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -2*v2 <= 0; value: 0 a v2 + 3*v3 <= 0; value: 0 a -1*v0 -1*v2 <= 0; value: 0 a -1*v1 = 0; value: 0 a -1*v1 <= 0; value: 0 0: 1 3 1: 4 5 2: 1 2 3 3: 2 optimal: oo a 2*v0 <= 0; value: 0 a -3*v0 -2*v2 <= 0; value: 0 a v2 + 3*v3 <= 0; value: 0 a -1*v0 -1*v2 <= 0; value: 0 d -1*v1 = 0; value: 0 a <= 0; value: 0 0: 1 3 1: 4 5 2: 1 2 3 3: 2 0: 0 -> 0 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -1*v2 + 1 <= 0; value: 0 a -1*v1 -1*v3 + 9 = 0; value: 0 a 2*v2 -5 <= 0; value: -3 a -4*v2 -5*v3 + 9 <= 0; value: -15 a 3*v0 + 2*v1 -12 <= 0; value: -2 0: 5 1: 2 5 2: 1 3 4 3: 2 4 optimal: oo a 2*v0 + 2*v3 -18 <= 0; value: -10 a -1*v2 + 1 <= 0; value: 0 d -1*v1 -1*v3 + 9 = 0; value: 0 a 2*v2 -5 <= 0; value: -3 a -4*v2 -5*v3 + 9 <= 0; value: -15 a 3*v0 -2*v3 + 6 <= 0; value: -2 0: 5 1: 2 5 2: 1 3 4 3: 2 4 5 0: 0 -> 0 1: 5 -> 5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 6*v1 -10 <= 0; value: -1 a 4*v0 + v1 -4*v3 + 1 = 0; value: 0 a -4*v0 -1*v1 + 5*v3 -13 <= 0; value: -8 a -2*v0 -4*v1 + 15 <= 0; value: -3 a -1*v1 -6*v3 + 27 = 0; value: 0 0: 1 2 3 4 1: 1 2 3 4 5 2: 3: 2 3 5 optimal: 51/19 a + 51/19 <= 0; value: 51/19 a -299/38 <= 0; value: -299/38 d 4*v0 + v1 -4*v3 + 1 = 0; value: 0 a -149/19 <= 0; value: -149/19 d 38/5*v0 -129/5 <= 0; value: 0 d 4*v0 -10*v3 + 28 = 0; value: 0 0: 1 2 3 4 5 3 1: 1 2 3 4 5 2: 3: 2 3 5 4 1 0: 3 -> 129/38 1: 3 -> 39/19 2: 5 -> 5 3: 4 -> 79/19 a 2*v0 -2*v1 <= 0; value: -10 a v0 <= 0; value: 0 a 2*v0 + 2*v1 -2*v2 -21 < 0; value: -13 a -2*v0 -3*v1 -7 <= 0; value: -22 a 2*v1 -3*v2 -18 < 0; value: -11 a 5*v1 + 4*v2 -29 = 0; value: 0 0: 1 2 3 1: 2 3 4 5 2: 2 4 5 3: optimal: 14/3 a + 14/3 <= 0; value: 14/3 d v0 <= 0; value: 0 a -46 < 0; value: -46 d -2*v0 + 12/5*v2 -122/5 <= 0; value: 0 a -319/6 < 0; value: -319/6 d 5*v1 + 4*v2 -29 = 0; value: 0 0: 1 2 3 4 1: 2 3 4 5 2: 2 4 5 3 3: 0: 0 -> 0 1: 5 -> -7/3 2: 1 -> 61/6 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a v0 + 2*v2 + 3*v3 -11 = 0; value: 0 a 2*v0 + v3 -16 <= 0; value: -10 a 5*v1 + 4*v2 -21 = 0; value: 0 a 3*v1 -7 < 0; value: -4 a -1*v1 + 5*v2 -56 <= 0; value: -37 0: 1 2 1: 3 4 5 2: 1 3 5 3: 1 2 optimal: 908/29 a + 908/29 <= 0; value: 908/29 d v0 + 2*v2 + 3*v3 -11 = 0; value: 0 d 5/3*v0 -1675/87 <= 0; value: 0 d 5*v1 + 4*v2 -21 = 0; value: 0 a -560/29 < 0; value: -560/29 d -29/10*v0 -87/10*v3 -283/10 <= 0; value: 0 0: 1 2 5 4 1: 3 4 5 2: 1 3 5 4 3: 1 2 5 4 0: 3 -> 335/29 1: 1 -> -119/29 2: 4 -> 301/29 3: 0 -> -206/29 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + 4*v3 -15 <= 0; value: -7 a -4*v1 + 6*v2 -1*v3 -16 = 0; value: 0 a -5*v0 + 2*v1 -1*v2 + 8 = 0; value: 0 a -2*v0 -4*v3 -3 < 0; value: -13 a 6*v0 + 2*v2 -3*v3 -17 <= 0; value: -11 0: 3 4 5 1: 1 2 3 2: 2 3 5 3: 1 2 4 5 optimal: (1941/91 -e*1) a + 1941/91 < 0; value: 1941/91 d -91/16*v0 -445/32 < 0; value: -91/16 d -4*v1 + 6*v2 -1*v3 -16 = 0; value: 0 d -5*v0 + 2*v2 -1/2*v3 = 0; value: 0 d 38*v0 -16*v2 -3 < 0; value: -16 a -586/13 < 0; value: -586/13 0: 3 4 5 1 1: 1 2 3 2: 2 3 5 1 4 3: 1 2 4 5 3 0: 1 -> -263/182 1: 0 -> -12991/1456 2: 3 -> -1907/728 3: 2 -> 723/182 a 2*v0 -2*v1 <= 0; value: -2 a v1 -1*v3 -3 = 0; value: 0 a -1*v0 -3*v2 + 14 <= 0; value: -5 a -1*v3 + 1 <= 0; value: -1 a 4*v0 -5*v1 -4*v3 + 17 = 0; value: 0 a 6*v0 -4*v1 + 3*v2 -54 <= 0; value: -35 0: 2 4 5 1: 1 4 5 2: 2 5 3: 1 3 4 optimal: 342/29 a + 342/29 <= 0; value: 342/29 d v1 -1*v3 -3 = 0; value: 0 d -87/38*v2 -35/19 <= 0; value: 0 a -189/29 <= 0; value: -189/29 d 4*v0 -9*v3 + 2 = 0; value: 0 d 38/9*v0 + 3*v2 -602/9 <= 0; value: 0 0: 2 4 5 3 1: 1 4 5 2: 2 5 3 3: 1 3 4 5 0: 4 -> 476/29 1: 5 -> 305/29 2: 5 -> -70/87 3: 2 -> 218/29 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + 2*v2 + 2*v3 -29 = 0; value: 0 a 3*v0 -1*v2 -11 = 0; value: 0 a -2*v1 -3*v3 -7 <= 0; value: -26 a 2*v2 -19 <= 0; value: -11 a -5*v2 + 8 <= 0; value: -12 0: 1 2 1: 3 2: 1 2 4 5 3: 1 3 optimal: 176/5 a + 176/5 <= 0; value: 176/5 d 3*v0 + 2*v2 + 2*v3 -29 = 0; value: 0 d 3*v0 -1*v2 -11 = 0; value: 0 d -2*v1 -3*v3 -7 <= 0; value: 0 a -79/5 <= 0; value: -79/5 d -15*v0 + 63 <= 0; value: 0 0: 1 2 5 4 1: 3 2: 1 2 4 5 3: 1 3 0: 5 -> 21/5 1: 5 -> -67/5 2: 4 -> 8/5 3: 3 -> 33/5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -15 <= 0; value: -9 a 6*v0 -6*v2 + 1 <= 0; value: -5 a -5*v1 + 2*v3 -2 < 0; value: -7 a 4*v1 -5*v2 -6 < 0; value: -19 a -1*v0 -1*v1 + 7 = 0; value: 0 0: 2 5 1: 1 3 4 5 2: 2 4 3: 3 optimal: oo a -8/5*v3 + 78/5 < 0; value: 38/5 a 4/5*v3 -79/5 < 0; value: -59/5 d 6*v0 -6*v2 + 1 <= 0; value: 0 d 5*v2 + 2*v3 -227/6 < 0; value: -17/12 a 18/5*v3 -1363/30 < 0; value: -823/30 d -1*v0 -1*v1 + 7 = 0; value: 0 0: 2 5 3 1 4 1: 1 3 4 5 2: 2 4 3 1 3: 3 4 1 0: 4 -> 307/60 1: 3 -> 113/60 2: 5 -> 317/60 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v1 -1 = 0; value: 0 a -1*v3 + 2 <= 0; value: 0 a -4*v0 -5*v2 -4 <= 0; value: -14 a 2*v0 -6*v1 -5*v3 + 3 <= 0; value: -13 a -1*v1 + 1 = 0; value: 0 0: 1 3 4 1: 1 4 5 2: 3 3: 2 4 optimal: -2 a -2 <= 0; value: -2 d -2*v0 + v1 -1 = 0; value: 0 a -1*v3 + 2 <= 0; value: 0 a -5*v2 -4 <= 0; value: -14 a -5*v3 -3 <= 0; value: -13 d -2*v0 = 0; value: 0 0: 1 3 4 5 1: 1 4 5 2: 3 3: 2 4 0: 0 -> 0 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v2 + 3 < 0; value: -1 a -1*v1 -1*v3 -1 <= 0; value: -5 a v1 + 3*v3 -19 <= 0; value: -7 a -5*v0 + 4*v2 -44 <= 0; value: -28 a -1*v1 + 3*v2 -12 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 4 5 3: 2 3 optimal: oo a 2*v0 + 22 <= 0; value: 22 a -58/3 < 0; value: -58/3 d -3*v2 -1*v3 + 11 <= 0; value: 0 d 2*v3 -20 <= 0; value: 0 a -5*v0 -128/3 <= 0; value: -128/3 d -1*v1 + 3*v2 -12 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 4 5 2 3 3: 2 3 1 4 0: 0 -> 0 1: 0 -> -11 2: 4 -> 1/3 3: 4 -> 10 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 -4*v2 -6*v3 -55 < 0; value: -113 a 6*v0 + 5*v1 -40 <= 0; value: -16 a 3*v0 -2*v3 -4 <= 0; value: -2 a 6*v1 -1*v3 -4 <= 0; value: -9 a -3*v1 + v3 -5 = 0; value: 0 0: 1 2 3 1: 2 4 5 2: 1 3: 1 3 4 5 optimal: 548/51 a + 548/51 <= 0; value: 548/51 a -4*v2 -5603/51 < 0; value: -6623/51 d 17/2*v0 -155/3 <= 0; value: 0 d 3*v0 -2*v3 -4 <= 0; value: 0 a -117/17 <= 0; value: -117/17 d -3*v1 + v3 -5 = 0; value: 0 0: 1 2 3 4 1: 2 4 5 2: 1 3: 1 3 4 5 2 0: 4 -> 310/51 1: 0 -> 12/17 2: 5 -> 5 3: 5 -> 121/17 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -2*v2 + 2*v3 -17 = 0; value: 0 a 3*v0 + 2*v3 -49 <= 0; value: -30 a 2*v0 + 5*v1 -1*v2 -25 = 0; value: 0 a 4*v2 + 5*v3 -48 <= 0; value: -19 a v0 -6*v1 -5*v2 -7 <= 0; value: -33 0: 1 2 3 5 1: 3 5 2: 1 3 4 5 3: 1 2 4 optimal: 1628/17 a + 1628/17 <= 0; value: 1628/17 d 3*v0 -2*v2 + 2*v3 -17 = 0; value: 0 d 34/31*v0 -1362/31 <= 0; value: 0 d 2*v0 + 5*v1 -1*v2 -25 = 0; value: 0 a -2753/17 <= 0; value: -2753/17 d -59/10*v0 -31/5*v3 + 157/10 <= 0; value: 0 0: 1 2 3 5 4 1: 3 5 2: 1 3 4 5 3: 1 2 4 5 0: 3 -> 681/17 1: 4 -> -133/17 2: 1 -> 16 3: 5 -> -605/17 a 2*v0 -2*v1 <= 0; value: 10 a -2*v0 -1*v3 -3 <= 0; value: -14 a -1*v0 + 4 < 0; value: -1 a -5*v0 -5*v1 -2*v3 + 27 = 0; value: 0 a 6*v0 + v2 -60 < 0; value: -25 a 6*v0 + 3*v2 -85 <= 0; value: -40 0: 1 2 3 4 5 1: 3 2: 4 5 3: 1 3 optimal: oo a 4*v0 + 4/5*v3 -54/5 <= 0; value: 10 a -2*v0 -1*v3 -3 <= 0; value: -14 a -1*v0 + 4 < 0; value: -1 d -5*v0 -5*v1 -2*v3 + 27 = 0; value: 0 a 6*v0 + v2 -60 < 0; value: -25 a 6*v0 + 3*v2 -85 <= 0; value: -40 0: 1 2 3 4 5 1: 3 2: 4 5 3: 1 3 0: 5 -> 5 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 -4*v3 -7 <= 0; value: -22 a -1*v0 -4*v2 + 13 = 0; value: 0 a 6*v1 -5*v2 + 4*v3 -8 <= 0; value: -5 a -1*v1 -2*v2 + 9 = 0; value: 0 0: 2 1: 1 3 4 2: 2 3 4 3: 1 3 optimal: 80/7 a + 80/7 <= 0; value: 80/7 d -28/17*v3 -424/17 <= 0; value: 0 d -1*v0 -4*v2 + 13 = 0; value: 0 d 17/4*v0 + 4*v3 -37/4 <= 0; value: 0 d -1*v1 -2*v2 + 9 = 0; value: 0 0: 2 1 3 1: 1 3 4 2: 2 3 4 1 3: 1 3 0: 1 -> 115/7 1: 3 -> 75/7 2: 3 -> -6/7 3: 0 -> -106/7 a 2*v0 -2*v1 <= 0; value: -8 a v0 -4*v2 -5*v3 -15 <= 0; value: -39 a 5*v2 + 2*v3 -67 <= 0; value: -40 a 5*v0 -1*v1 + 2*v3 -2 <= 0; value: 0 a -3*v0 -2*v1 + 13 = 0; value: 0 a -1*v1 -6*v2 -6*v3 + 38 < 0; value: -3 0: 1 3 4 1: 3 4 5 2: 1 2 5 3: 1 2 3 5 optimal: (249/22 -e*1) a + 249/22 < 0; value: 249/22 a -2151/88 <= 0; value: -2151/88 d 22/7*v2 -793/14 < 0; value: -22/7 d 5*v0 -1*v1 + 2*v3 -2 <= 0; value: 0 d -13*v0 -4*v3 + 17 = 0; value: 0 d 21*v0 -6*v2 + 6 < 0; value: -21 0: 1 3 4 5 2 1: 3 4 5 2: 1 2 5 3: 1 2 3 5 4 0: 1 -> 551/154 1: 5 -> 349/308 2: 5 -> 749/44 3: 1 -> -4545/616 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -5*v1 -1 < 0; value: -11 a 2*v2 -13 <= 0; value: -3 a 5*v0 + 3*v2 -21 <= 0; value: -6 a 6*v3 -41 <= 0; value: -11 a -1*v1 <= 0; value: -2 0: 1 3 1: 1 5 2: 2 3 3: 4 optimal: oo a -6/5*v2 + 42/5 <= 0; value: 12/5 a 6/5*v2 -47/5 < 0; value: -17/5 a 2*v2 -13 <= 0; value: -3 d 5*v0 + 3*v2 -21 <= 0; value: 0 a 6*v3 -41 <= 0; value: -11 d -1*v1 <= 0; value: 0 0: 1 3 1: 1 5 2: 2 3 1 3: 4 0: 0 -> 6/5 1: 2 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 3*v2 + 3 < 0; value: -1 a 2*v0 + 3*v3 -2 <= 0; value: 0 a v3 <= 0; value: 0 a v0 -3*v2 -1 <= 0; value: 0 a 3*v1 -26 < 0; value: -14 0: 1 2 4 1: 5 2: 1 4 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 3*v2 + 3 < 0; value: -1 a 2*v0 + 3*v3 -2 <= 0; value: 0 a v3 <= 0; value: 0 a v0 -3*v2 -1 <= 0; value: 0 a 3*v1 -26 < 0; value: -14 0: 1 2 4 1: 5 2: 1 4 3: 2 3 0: 1 -> 1 1: 4 -> 4 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 -1*v3 -1 <= 0; value: -4 a 5*v1 + 2*v2 -47 < 0; value: -16 a v0 -3*v1 + 12 = 0; value: 0 a 2*v0 + v1 -22 <= 0; value: -11 a -5*v1 + 3*v3 + 2 <= 0; value: -23 0: 1 3 4 1: 2 3 4 5 2: 2 3: 1 5 optimal: 16/7 a + 16/7 <= 0; value: 16/7 a -1*v3 -61/7 <= 0; value: -61/7 a 2*v2 -99/7 < 0; value: -57/7 d v0 -3*v1 + 12 = 0; value: 0 d 7/3*v0 -18 <= 0; value: 0 a 3*v3 -216/7 <= 0; value: -216/7 0: 1 3 4 5 2 1: 2 3 4 5 2: 2 3: 1 5 0: 3 -> 54/7 1: 5 -> 46/7 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -2*v2 + v3 + 4 <= 0; value: -3 a v1 -3 = 0; value: 0 a -5*v0 + v3 -6 < 0; value: -15 a 3*v1 + 2*v3 -11 = 0; value: 0 a 5*v2 -36 <= 0; value: -16 0: 3 1: 2 4 2: 1 5 3: 1 3 4 optimal: oo a 2*v0 -6 <= 0; value: -2 a -2*v2 + v3 + 4 <= 0; value: -3 d v1 -3 = 0; value: 0 a -5*v0 + v3 -6 < 0; value: -15 a 2*v3 -2 = 0; value: 0 a 5*v2 -36 <= 0; value: -16 0: 3 1: 2 4 2: 1 5 3: 1 3 4 0: 2 -> 2 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v1 = 0; value: 0 a -2*v0 -1*v2 + 7 = 0; value: 0 a 2*v0 + v2 -7 <= 0; value: 0 a v0 -3*v2 -4*v3 + 15 < 0; value: -3 a -2*v0 + 5*v1 + 2 = 0; value: 0 0: 2 3 4 5 1: 1 5 2: 2 3 4 3: 4 optimal: 2 a + 2 <= 0; value: 2 d v1 = 0; value: 0 d -2*v0 -1*v2 + 7 = 0; value: 0 a <= 0; value: 0 a -4*v3 + 1 < 0; value: -3 d v2 -5 = 0; value: 0 0: 2 3 4 5 1: 1 5 2: 2 3 4 5 3: 4 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + v1 + 2 = 0; value: 0 a -1*v2 -1*v3 + 3 <= 0; value: 0 a -2*v0 + 2*v2 + 3*v3 <= 0; value: -2 a 3*v0 -6*v1 -5*v2 + 7 <= 0; value: -1 a v2 + 3*v3 -13 <= 0; value: -6 0: 1 3 4 1: 1 4 2: 2 3 4 5 3: 2 3 5 optimal: 4 a + 4 <= 0; value: 4 d -1*v0 + v1 + 2 = 0; value: 0 a -1*v2 -1*v3 + 3 <= 0; value: 0 a -2*v0 + 2*v2 + 3*v3 <= 0; value: -2 a -3*v0 -5*v2 + 19 <= 0; value: -1 a v2 + 3*v3 -13 <= 0; value: -6 0: 1 3 4 1: 1 4 2: 2 3 4 5 3: 2 3 5 0: 5 -> 5 1: 3 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -3*v2 + 3*v3 -25 <= 0; value: -15 a v1 -6 <= 0; value: -3 a 6*v0 -1*v2 -11 = 0; value: 0 a v1 -2*v2 -2 <= 0; value: -1 a -2*v1 -3*v2 + 5 <= 0; value: -4 0: 1 3 1: 2 4 5 2: 1 3 4 5 3: 1 optimal: oo a 20*v0 -38 <= 0; value: 2 a -13*v0 + 3*v3 + 8 <= 0; value: -15 a -9*v0 + 13 <= 0; value: -5 d 6*v0 -1*v2 -11 = 0; value: 0 a -21*v0 + 39 <= 0; value: -3 d -2*v1 -3*v2 + 5 <= 0; value: 0 0: 1 3 4 2 1: 2 4 5 2: 1 3 4 5 2 3: 1 0: 2 -> 2 1: 3 -> 1 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 10 a v0 -1*v1 + 6*v3 -11 = 0; value: 0 a v1 -5*v2 -5*v3 + 11 < 0; value: -4 a v1 <= 0; value: 0 a -3*v0 -2*v2 + 19 = 0; value: 0 a v1 -2*v2 -1 < 0; value: -5 0: 1 4 1: 1 2 3 5 2: 2 4 5 3: 1 2 optimal: oo a -12*v3 + 22 <= 0; value: 10 d v0 -1*v1 + 6*v3 -11 = 0; value: 0 a v0 -5*v2 + v3 < 0; value: -4 a v0 + 6*v3 -11 <= 0; value: 0 a -3*v0 -2*v2 + 19 = 0; value: 0 a v0 -2*v2 + 6*v3 -12 < 0; value: -5 0: 1 4 2 3 5 1: 1 2 3 5 2: 2 4 5 3: 1 2 3 5 0: 5 -> 5 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -10 a v1 -5 = 0; value: 0 a -3*v0 -2*v2 + 8 = 0; value: 0 a 2*v0 + v1 -13 < 0; value: -8 a -4*v0 + 3*v3 -3 = 0; value: 0 a -2*v0 + 2*v2 -3*v3 -12 <= 0; value: -7 0: 2 3 4 5 1: 1 3 2: 2 5 3: 4 5 optimal: (-2 -e*1) a -2 < 0; value: -2 d v1 -5 = 0; value: 0 d -3*v0 -2*v2 + 8 = 0; value: 0 d 3/2*v3 -19/2 < 0; value: -3/2 d 8/3*v2 + 3*v3 -41/3 = 0; value: 0 a -43 < 0; value: -43 0: 2 3 4 5 1: 1 3 2: 2 5 3 4 3: 4 5 3 0: 0 -> 13/4 1: 5 -> 5 2: 4 -> -7/8 3: 1 -> 16/3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 5*v2 + 6*v3 -105 <= 0; value: -64 a 5*v2 -3*v3 + 4 <= 0; value: 0 a 6*v0 + 6*v1 -5*v2 -25 = 0; value: 0 a 6*v0 -2*v3 -23 <= 0; value: -11 a -1*v2 + 4*v3 -24 < 0; value: -13 0: 1 3 4 1: 3 2: 1 2 3 5 3: 1 2 4 5 optimal: oo a -16*v0 + 325/3 < 0; value: 181/3 a 84*v0 -524 < 0; value: -272 a 51*v0 -623/2 < 0; value: -317/2 d 6*v0 + 6*v1 -5*v2 -25 = 0; value: 0 d 6*v0 -2*v3 -23 <= 0; value: 0 d -1*v2 + 4*v3 -24 < 0; value: -1 0: 1 3 4 2 1: 3 2: 1 2 3 5 3: 1 2 4 5 0: 3 -> 3 1: 2 -> -79/3 2: 1 -> -33 3: 3 -> -5/2 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 -1*v2 -1*v3 <= 0; value: -8 a 3*v0 -4*v1 + 5*v2 -21 <= 0; value: -7 a -3*v0 -3*v1 + v2 <= 0; value: -3 a 5*v1 + 2*v2 + 2*v3 -40 <= 0; value: -21 a -5*v0 -4*v1 -3*v2 -17 <= 0; value: -35 0: 2 3 5 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 1 4 optimal: 53/2 a + 53/2 <= 0; value: 53/2 d v0 -4/3*v2 -1*v3 <= 0; value: 0 d 80/13*v0 -460/13 <= 0; value: 0 d -3*v0 -3*v1 + v2 <= 0; value: 0 a -125/2 <= 0; value: -125/2 d -17/4*v0 + 13/4*v3 -17 <= 0; value: 0 0: 2 3 5 1 4 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 1 4 5 2 0: 1 -> 23/4 1: 1 -> -15/2 2: 3 -> -21/4 3: 4 -> 51/4 a 2*v0 -2*v1 <= 0; value: -10 a 2*v0 + 3*v1 -3*v2 -7 < 0; value: -1 a 6*v0 + 5*v2 -26 <= 0; value: -11 a 4*v0 + v3 <= 0; value: 0 a -4*v1 + v3 + 20 = 0; value: 0 a 2*v1 + v3 -22 <= 0; value: -12 0: 1 2 3 1: 1 4 5 2: 1 2 3: 3 4 5 optimal: oo a 2*v0 -1/2*v3 -10 <= 0; value: -10 a 2*v0 -3*v2 + 3/4*v3 + 8 < 0; value: -1 a 6*v0 + 5*v2 -26 <= 0; value: -11 a 4*v0 + v3 <= 0; value: 0 d -4*v1 + v3 + 20 = 0; value: 0 a 3/2*v3 -12 <= 0; value: -12 0: 1 2 3 1: 1 4 5 2: 1 2 3: 3 4 5 1 0: 0 -> 0 1: 5 -> 5 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + v2 <= 0; value: 0 a 3*v0 -25 <= 0; value: -13 a -4*v0 + v1 + 1 <= 0; value: -12 a -3*v0 + 6*v2 -10 <= 0; value: -4 0: 2 3 4 1: 1 3 2: 1 4 3: optimal: oo a 2*v0 -2*v2 <= 0; value: 2 d -1*v1 + v2 <= 0; value: 0 a 3*v0 -25 <= 0; value: -13 a -4*v0 + v2 + 1 <= 0; value: -12 a -3*v0 + 6*v2 -10 <= 0; value: -4 0: 2 3 4 1: 1 3 2: 1 4 3 3: 0: 4 -> 4 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 <= 0; value: 0 a -5*v0 + v3 -21 <= 0; value: -46 a -5*v1 -1*v2 -2*v3 + 5 <= 0; value: -10 a -1*v1 -2*v2 + 3 = 0; value: 0 a -6*v0 -4*v1 + 2*v2 + 7 <= 0; value: -35 0: 2 5 1: 3 4 5 2: 1 3 4 5 3: 2 3 optimal: oo a 22/5*v0 -4 <= 0; value: 18 a -3/5*v0 -1/2 <= 0; value: -7/2 a -23/10*v0 -95/4 <= 0; value: -141/4 d 9*v2 -2*v3 -10 <= 0; value: 0 d -1*v1 -2*v2 + 3 = 0; value: 0 d -6*v0 + 20/9*v3 + 55/9 <= 0; value: 0 0: 2 5 1 1: 3 4 5 2: 1 3 4 5 3: 2 3 5 1 0: 5 -> 5 1: 3 -> -4 2: 0 -> 7/2 3: 0 -> 43/4 a 2*v0 -2*v1 <= 0; value: 8 a 3*v1 + 6*v2 -40 <= 0; value: -16 a -1*v0 + 4*v2 -12 = 0; value: 0 a -2*v1 -5*v2 -2*v3 + 20 <= 0; value: -4 a -2*v0 -1 <= 0; value: -9 a 4*v0 + 2*v3 -53 < 0; value: -33 0: 2 4 5 1: 1 3 2: 1 2 3 3: 3 5 optimal: (387/8 -e*1) a + 387/8 < 0; value: 387/8 a -1549/16 < 0; value: -1549/16 d -1*v0 + 4*v2 -12 = 0; value: 0 d -2*v1 -5*v2 -2*v3 + 20 <= 0; value: 0 d -2*v0 -1 <= 0; value: 0 d 4*v0 + 2*v3 -53 < 0; value: -2 0: 2 4 5 1 1: 1 3 2: 1 2 3 3: 3 5 1 0: 4 -> -1/2 1: 0 -> -379/16 2: 4 -> 23/8 3: 2 -> 53/2 a 2*v0 -2*v1 <= 0; value: 0 a -6*v0 -3*v3 + 19 < 0; value: -17 a v0 -2*v2 -2 <= 0; value: -7 a 4*v1 + 4*v3 -45 <= 0; value: -17 a -5*v1 -2*v3 -11 < 0; value: -40 a -3*v0 + 2*v2 + 5 = 0; value: 0 0: 1 2 5 1: 3 4 2: 2 5 3: 1 3 4 optimal: oo a 4/3*v2 + 77/3 < 0; value: 97/3 a -4*v2 -233/4 < 0; value: -313/4 a -4/3*v2 -1/3 <= 0; value: -7 d 12/5*v3 -269/5 < 0; value: -12/5 d -5*v1 -2*v3 -11 < 0; value: -5 d -3*v0 + 2*v2 + 5 = 0; value: 0 0: 1 2 5 1: 3 4 2: 2 5 1 3: 1 3 4 0: 5 -> 5 1: 5 -> -293/30 2: 5 -> 5 3: 2 -> 257/12 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -6*v2 + 3 < 0; value: -5 a -2*v1 + 3*v2 -1*v3 -3 = 0; value: 0 a 5*v0 + v3 -8 <= 0; value: -2 a -5*v2 -3*v3 + 13 = 0; value: 0 a -2*v0 -1*v3 + 3 = 0; value: 0 0: 1 3 5 1: 2 2: 1 2 4 3: 2 3 4 5 optimal: (45/8 -e*1) a + 45/8 < 0; value: 45/8 d -16/5*v0 -9/5 < 0; value: -5/2 d -2*v1 + 3*v2 -1*v3 -3 = 0; value: 0 a -107/16 < 0; value: -107/16 d -5*v2 -3*v3 + 13 = 0; value: 0 d -2*v0 + 5/3*v2 -4/3 = 0; value: 0 0: 1 3 5 1: 2 2: 1 2 4 3 5 3: 2 3 4 5 0: 1 -> 7/32 1: 1 -> -19/16 2: 2 -> 17/16 3: 1 -> 41/16 a 2*v0 -2*v1 <= 0; value: 8 a 6*v0 + 2*v3 -67 <= 0; value: -35 a -5*v0 + v2 + 19 = 0; value: 0 a -1*v0 + 1 < 0; value: -3 a 3*v0 + v1 + 4*v3 -67 <= 0; value: -39 a v1 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 2 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a 6*v0 + 2*v3 -67 <= 0; value: -35 a -5*v0 + v2 + 19 = 0; value: 0 a -1*v0 + 1 < 0; value: -3 a 3*v0 + v1 + 4*v3 -67 <= 0; value: -39 a v1 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 2 3: 1 4 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a v1 <= 0; value: 0 a 5*v1 -6*v3 + 11 <= 0; value: -7 a 2*v0 -3*v1 + 3*v2 -4 = 0; value: 0 a 3*v2 + 2*v3 -14 <= 0; value: -8 a 3*v0 -4*v1 -4*v2 -6 = 0; value: 0 0: 3 5 1: 1 2 3 5 2: 3 4 5 3: 2 4 optimal: 4 a + 4 <= 0; value: 4 d 17/24*v0 -17/12 <= 0; value: 0 a -6*v3 + 11 <= 0; value: -7 d 2*v0 -3*v1 + 3*v2 -4 = 0; value: 0 a 2*v3 -14 <= 0; value: -8 d 1/3*v0 -8*v2 -2/3 = 0; value: 0 0: 3 5 1 2 4 1: 1 2 3 5 2: 3 4 5 1 2 3: 2 4 0: 2 -> 2 1: 0 -> 0 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v3 -31 <= 0; value: -19 a v0 + 2*v3 -15 <= 0; value: -7 a -4*v0 + 3*v2 <= 0; value: -4 a v1 + v2 -19 < 0; value: -12 a -3*v2 + 4*v3 -3 <= 0; value: -7 0: 2 3 1: 4 2: 3 4 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v3 -31 <= 0; value: -19 a v0 + 2*v3 -15 <= 0; value: -7 a -4*v0 + 3*v2 <= 0; value: -4 a v1 + v2 -19 < 0; value: -12 a -3*v2 + 4*v3 -3 <= 0; value: -7 0: 2 3 1: 4 2: 3 4 5 3: 1 2 5 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 -5*v2 -16 <= 0; value: -66 a -1*v3 + 2 = 0; value: 0 a -1*v0 + 2*v2 -7 < 0; value: -2 a -5*v1 -2*v2 + 7 <= 0; value: -13 a -2*v2 -5 <= 0; value: -15 0: 1 3 1: 4 2: 1 3 4 5 3: 2 optimal: oo a 12/5*v0 < 0; value: 12 a -15/2*v0 -67/2 < 0; value: -71 a -1*v3 + 2 = 0; value: 0 d -1*v0 + 2*v2 -7 < 0; value: -1 d -5*v1 -2*v2 + 7 <= 0; value: 0 a -1*v0 -12 < 0; value: -17 0: 1 3 5 1: 4 2: 1 3 4 5 3: 2 0: 5 -> 5 1: 2 -> -4/5 2: 5 -> 11/2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 + 6*v3 -7 < 0; value: -1 a -2*v3 -1 <= 0; value: -3 a 4*v1 + 3*v3 -37 < 0; value: -18 a 6*v0 -3*v1 -4*v3 + 8 <= 0; value: -8 a -5*v0 -6*v2 + 5*v3 + 12 <= 0; value: -1 0: 1 4 5 1: 3 4 2: 5 3: 1 2 3 4 5 optimal: (-5/3 -e*1) a -5/3 < 0; value: -5/3 d -4*v0 + 6*v3 -7 < 0; value: -21/10 d 24/5*v2 -88/5 < 0; value: -8/5 a -271/6 < 0; value: -271/6 d 6*v0 -3*v1 -4*v3 + 8 <= 0; value: 0 d -5/3*v0 -6*v2 + 107/6 <= 0; value: 0 0: 1 4 5 3 2 1: 3 4 2: 5 2 3 3: 1 2 3 4 5 0: 0 -> -13/10 1: 4 -> 2/15 2: 3 -> 10/3 3: 1 -> -1/20 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 5*v2 -1*v3 -18 = 0; value: 0 a v2 -4 = 0; value: 0 a -3*v0 + 2 <= 0; value: -1 a -1*v2 + 4 = 0; value: 0 a -5*v1 + 6*v2 -3*v3 + 1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 4 5 3: 1 5 optimal: oo a 28/5*v0 -38/5 <= 0; value: -2 d 3*v0 + 5*v2 -1*v3 -18 = 0; value: 0 d v2 -4 = 0; value: 0 a -3*v0 + 2 <= 0; value: -1 a = 0; value: 0 d -5*v1 + 6*v2 -3*v3 + 1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 4 5 3: 1 5 0: 1 -> 1 1: 2 -> 2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -2*v0 + 3*v3 -22 <= 0; value: -14 a 6*v0 + 3*v3 -56 <= 0; value: -32 a 6*v0 + 3*v2 -37 < 0; value: -13 a -6*v0 -4*v1 -4*v2 -11 <= 0; value: -39 a v0 + 3*v2 -14 <= 0; value: 0 0: 1 2 3 4 5 1: 4 2: 3 4 5 3: 1 2 optimal: (1043/30 -e*1) a + 1043/30 < 0; value: 1043/30 a 3*v3 -156/5 < 0; value: -96/5 a 3*v3 -142/5 <= 0; value: -82/5 d 5*v0 -23 < 0; value: -5 d -6*v0 -4*v1 -4*v2 -11 <= 0; value: 0 d v0 + 3*v2 -14 <= 0; value: 0 0: 1 2 3 4 5 1: 4 2: 3 4 5 3: 1 2 0: 2 -> 18/5 1: 0 -> -697/60 2: 4 -> 52/15 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a v0 -5*v2 + 25 = 0; value: 0 a 2*v1 + 5*v2 -35 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a -5*v0 -1*v3 <= 0; value: -2 a -1*v1 + 5 = 0; value: 0 0: 1 4 1: 2 5 2: 1 2 3: 3 4 optimal: -10 a -10 <= 0; value: -10 d v0 -5*v2 + 25 = 0; value: 0 d 2*v1 + 5*v2 -35 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a -1*v3 <= 0; value: -2 d 1/2*v0 = 0; value: 0 0: 1 4 5 1: 2 5 2: 1 2 5 3: 3 4 0: 0 -> 0 1: 5 -> 5 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v0 -1*v2 -2 <= 0; value: 0 a v1 + 5*v2 -17 = 0; value: 0 a -5*v1 + 6*v3 -42 <= 0; value: -22 a -1*v1 + 6*v2 -22 <= 0; value: -6 a -3*v0 -3*v1 -3*v3 + 4 <= 0; value: -32 0: 1 5 1: 2 3 4 5 2: 1 2 4 3: 3 5 optimal: 138/11 a + 138/11 <= 0; value: 138/11 d v0 -61/11 <= 0; value: 0 d v1 + 5*v2 -17 = 0; value: 0 a 6*v3 -422/11 <= 0; value: -92/11 d 11*v2 -39 <= 0; value: 0 a -3*v3 -115/11 <= 0; value: -280/11 0: 1 5 1: 2 3 4 5 2: 1 2 4 3 5 3: 3 5 0: 5 -> 61/11 1: 2 -> -8/11 2: 3 -> 39/11 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 8 a -4*v0 + v1 -1*v3 + 21 = 0; value: 0 a v0 + v1 -6 = 0; value: 0 a 4*v0 -5*v1 -5*v2 -15 = 0; value: 0 a 5*v0 + 4*v1 -31 < 0; value: -2 a -3*v0 + 3*v1 -6*v2 + 1 <= 0; value: -11 0: 1 2 3 4 5 1: 1 2 3 4 5 2: 3 5 3: 1 optimal: (16 -e*1) a + 16 < 0; value: 16 d -4*v0 + v1 -1*v3 + 21 = 0; value: 0 d 5*v0 + v3 -27 = 0; value: 0 d 9*v0 -5*v2 -45 = 0; value: 0 d 5/9*v2 -2 < 0; value: -5/9 a -223/5 < 0; value: -223/5 0: 1 2 3 4 5 1: 1 2 3 4 5 2: 3 5 4 3: 1 2 3 4 5 0: 5 -> 58/9 1: 1 -> -4/9 2: 0 -> 13/5 3: 2 -> -47/9 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 -1*v3 + 6 = 0; value: 0 a v3 -2 = 0; value: 0 a -2*v0 + 3*v2 <= 0; value: 0 d <= 0; value: 0 0: 3 1: 1 2: 3 3: 1 2 optimal: oo a 2*v0 -4 <= 0; value: 2 d -2*v1 -1*v3 + 6 = 0; value: 0 d v3 -2 = 0; value: 0 a -2*v0 + 3*v2 <= 0; value: 0 d <= 0; value: 0 0: 3 1: 1 2: 3 3: 1 2 0: 3 -> 3 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 6*v2 -7 < 0; value: -1 a 2*v1 -7 <= 0; value: -3 a v2 -1*v3 + 1 = 0; value: 0 a -1*v0 + 3*v3 -6 = 0; value: 0 a -5*v0 + 2*v1 -4 = 0; value: 0 0: 1 4 5 1: 2 5 2: 1 3 3: 3 4 optimal: oo a -9*v2 + 5 <= 0; value: -4 a 9*v2 -10 < 0; value: -1 a 15*v2 -18 <= 0; value: -3 d v2 -1*v3 + 1 = 0; value: 0 d -1*v0 + 3*v3 -6 = 0; value: 0 d -5*v0 + 2*v1 -4 = 0; value: 0 0: 1 4 5 2 1: 2 5 2: 1 3 2 3: 3 4 1 2 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + v1 + 3*v3 -55 <= 0; value: -14 a -6*v0 + 3*v1 -1*v2 + 16 < 0; value: -3 a -6*v0 -1*v1 -5*v2 + 25 < 0; value: -6 a -1*v1 + 2 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 1 2 3 4 2: 2 3 3: 1 optimal: oo a -1*v3 + 41/3 <= 0; value: 26/3 d 6*v0 + 3*v3 -53 <= 0; value: 0 a -1*v2 + 3*v3 -31 < 0; value: -17 a -5*v2 + 3*v3 -30 < 0; value: -20 d -1*v1 + 2 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 1 2 3 4 2: 2 3 3: 1 2 3 0: 4 -> 19/3 1: 2 -> 2 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 2 <= 0; value: 0 a 4*v0 -6*v1 + 6*v2 -7 < 0; value: -1 a -6*v0 -2*v1 -1*v2 + 1 < 0; value: -3 a 2*v2 -1*v3 -2 = 0; value: 0 a -2*v0 -3*v3 -1 <= 0; value: -7 0: 2 3 5 1: 2 3 2: 1 2 3 4 3: 4 5 optimal: oo a 2/3*v0 -5/3 < 0; value: -5/3 d -1*v2 + 2 <= 0; value: 0 d 4*v0 -6*v1 + 6*v2 -7 < 0; value: -1/2 a -22/3*v0 -8/3 <= 0; value: -8/3 a -1*v3 + 2 = 0; value: 0 a -2*v0 -3*v3 -1 <= 0; value: -7 0: 2 3 5 1: 2 3 2: 1 2 3 4 3: 4 5 0: 0 -> 0 1: 1 -> 11/12 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -5*v1 + 2*v2 -4 < 0; value: -1 a -5*v1 -4*v2 + 14 <= 0; value: -7 a 6*v1 + v2 -19 < 0; value: -9 a -2*v0 -1*v1 + 5*v3 -19 < 0; value: -10 a -5*v0 + v3 -4 < 0; value: -2 0: 4 5 1: 1 2 3 4 2: 1 2 3 3: 4 5 optimal: oo a 2*v0 -4/5 < 0; value: -4/5 d -5*v1 + 2*v2 -4 < 0; value: -3/2 d -6*v2 + 18 <= 0; value: 0 a -68/5 < 0; value: -68/5 a -2*v0 + 5*v3 -97/5 <= 0; value: -47/5 a -5*v0 + v3 -4 < 0; value: -2 0: 4 5 1: 1 2 3 4 2: 1 2 3 4 3: 4 5 0: 0 -> 0 1: 1 -> 7/10 2: 4 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a v2 <= 0; value: 0 a 3*v0 + 6*v3 -58 <= 0; value: -31 a 5*v1 + 2*v2 -6*v3 -8 = 0; value: 0 a 5*v0 + 5*v1 + 4*v2 -72 < 0; value: -27 a 5*v0 -4*v1 -14 < 0; value: -5 0: 2 4 5 1: 3 4 5 2: 1 3 4 3: 2 3 optimal: oo a -1/2*v0 + 7 < 0; value: 9/2 a v2 <= 0; value: 0 a 37/4*v0 + 2*v2 -167/2 < 0; value: -149/4 d 5*v1 + 2*v2 -6*v3 -8 = 0; value: 0 a 45/4*v0 + 4*v2 -179/2 < 0; value: -133/4 d 5*v0 + 8/5*v2 -24/5*v3 -102/5 < 0; value: -5/2 0: 2 4 5 1: 3 4 5 2: 1 3 4 5 2 3: 2 3 5 4 0: 5 -> 5 1: 4 -> 27/8 2: 0 -> 0 3: 2 -> 71/48 a 2*v0 -2*v1 <= 0; value: -4 a 2*v1 + 5*v3 -75 <= 0; value: -40 a -6*v0 -1*v1 -2*v3 -24 <= 0; value: -57 a -3*v0 -5*v1 -4*v3 -46 <= 0; value: -100 a 3*v0 -3*v1 -2 < 0; value: -8 a -1*v0 -1*v2 + 6 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 2: 5 3: 1 2 3 optimal: (4/3 -e*1) a + 4/3 < 0; value: 4/3 a 2*v0 + 5*v3 -229/3 < 0; value: -136/3 a -7*v0 -2*v3 -70/3 <= 0; value: -163/3 a -8*v0 -4*v3 -128/3 <= 0; value: -260/3 d 3*v0 -3*v1 -2 < 0; value: -3 a -1*v0 -1*v2 + 6 = 0; value: 0 0: 2 3 4 5 1 1: 1 2 3 4 2: 5 3: 1 2 3 0: 3 -> 3 1: 5 -> 10/3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a -6*v0 -3*v3 + 4 <= 0; value: -2 a -4*v0 + 5*v2 = 0; value: 0 a v0 <= 0; value: 0 a -3*v1 + 3*v2 + 4*v3 + 2 < 0; value: -2 a v0 -6*v2 = 0; value: 0 0: 1 2 3 5 1: 4 2: 2 4 5 3: 1 4 optimal: (-44/9 -e*1) a -44/9 < 0; value: -44/9 d -6*v0 -3*v3 + 4 <= 0; value: 0 d -4*v0 + 5*v2 = 0; value: 0 d v0 <= 0; value: 0 d -3*v1 + 3*v2 + 4*v3 + 2 < 0; value: -7/3 a = 0; value: 0 0: 1 2 3 5 1: 4 2: 2 4 5 3: 1 4 0: 0 -> 0 1: 4 -> 29/9 2: 0 -> 0 3: 2 -> 4/3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + 2*v3 <= 0; value: 0 a -5*v0 + 4*v1 + 5 = 0; value: 0 a v0 -2*v2 -1 = 0; value: 0 a 2*v1 -1*v3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 3 3: 1 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v1 + 2*v3 <= 0; value: 0 d -5*v0 + 5 = 0; value: 0 a -2*v2 = 0; value: 0 d 3*v3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 3 3: 1 4 2 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -1*v0 + 3*v2 -12 <= 0; value: 0 a 2*v0 + 4*v2 -37 <= 0; value: -21 a -6*v1 + 4*v2 -1*v3 -16 = 0; value: 0 a v0 -3*v1 <= 0; value: 0 0: 2 3 5 1: 4 5 2: 2 3 4 3: 1 4 optimal: 0 a <= 0; value: 0 d 2*v0 -4*v2 + 16 <= 0; value: 0 d v2 -4 <= 0; value: 0 a -21 <= 0; value: -21 d -6*v1 + 4*v2 -1*v3 -16 = 0; value: 0 d v0 -2*v2 + 1/2*v3 + 8 <= 0; value: 0 0: 2 3 5 1 1: 4 5 2: 2 3 4 5 1 3: 1 4 5 0: 0 -> 0 1: 0 -> 0 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a -1*v3 + 4 = 0; value: 0 a 4*v0 -6*v1 + 2*v3 -69 <= 0; value: -45 a v2 -6*v3 + 19 = 0; value: 0 a -1*v0 + v1 -2*v2 -13 <= 0; value: -27 a 6*v1 -5*v2 -4*v3 -29 <= 0; value: -70 0: 2 4 1: 2 4 5 2: 3 4 5 3: 1 2 3 5 optimal: 253/6 a + 253/6 <= 0; value: 253/6 d -1*v3 + 4 = 0; value: 0 d 4*v0 -6*v1 + 2*v3 -69 <= 0; value: 0 d v2 -5 = 0; value: 0 a -529/12 <= 0; value: -529/12 d 4*v0 -5*v2 -106 <= 0; value: 0 0: 2 4 5 1: 2 4 5 2: 3 4 5 3: 1 2 3 5 4 0: 4 -> 131/4 1: 0 -> 35/3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a 3*v2 -1*v3 -26 < 0; value: -14 a v2 -11 <= 0; value: -6 a -4*v0 -1*v2 + 3*v3 -8 <= 0; value: -4 a 5*v0 -2*v2 + 8 <= 0; value: -2 a 3*v1 + 5*v2 -2*v3 -57 < 0; value: -23 0: 3 4 1: 5 2: 1 2 3 4 5 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a 3*v2 -1*v3 -26 < 0; value: -14 a v2 -11 <= 0; value: -6 a -4*v0 -1*v2 + 3*v3 -8 <= 0; value: -4 a 5*v0 -2*v2 + 8 <= 0; value: -2 a 3*v1 + 5*v2 -2*v3 -57 < 0; value: -23 0: 3 4 1: 5 2: 1 2 3 4 5 3: 1 3 5 0: 0 -> 0 1: 5 -> 5 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 + 2 <= 0; value: -1 a 4*v1 -31 <= 0; value: -19 a -3*v2 -1*v3 + 8 = 0; value: 0 a -3*v2 + 2*v3 <= 0; value: -2 a -1*v2 + 2 <= 0; value: 0 0: 1: 1 2 2: 3 4 5 3: 3 4 optimal: oo a 2*v0 -4 <= 0; value: 0 d -1*v1 + 2 <= 0; value: 0 a -23 <= 0; value: -23 a -3*v2 -1*v3 + 8 = 0; value: 0 a -3*v2 + 2*v3 <= 0; value: -2 a -1*v2 + 2 <= 0; value: 0 0: 1: 1 2 2: 3 4 5 3: 3 4 0: 2 -> 2 1: 3 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 + 2*v2 + 6*v3 -36 <= 0; value: -11 a 2*v2 -1*v3 <= 0; value: 0 a -3*v1 + 5*v2 -1 <= 0; value: 0 a -3*v1 -1*v2 <= 0; value: -11 a -1*v0 + 2 = 0; value: 0 0: 5 1: 1 3 4 2: 1 2 3 4 3: 1 2 optimal: 37/9 a + 37/9 <= 0; value: 37/9 a 6*v3 -641/18 <= 0; value: -209/18 a -1*v3 + 1/3 <= 0; value: -11/3 d -3*v1 + 5*v2 -1 <= 0; value: 0 d -6*v2 + 1 <= 0; value: 0 d -1*v0 + 2 = 0; value: 0 0: 5 1: 1 3 4 2: 1 2 3 4 3: 1 2 0: 2 -> 2 1: 3 -> -1/18 2: 2 -> 1/6 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 4*v3 -4 = 0; value: 0 a -3*v0 -1*v3 + 4 < 0; value: -4 a 2*v1 -2*v2 -9 <= 0; value: -5 a -3*v0 + 4 <= 0; value: -2 a -1*v1 + 4*v3 -8 <= 0; value: -4 0: 2 4 1: 1 3 5 2: 3 3: 1 2 5 optimal: oo a 26*v0 -24 < 0; value: 28 d -1*v1 + 4*v3 -4 = 0; value: 0 d -3*v0 -1*v3 + 4 < 0; value: -1 a -24*v0 -2*v2 + 15 < 0; value: -37 a -3*v0 + 4 <= 0; value: -2 a -4 <= 0; value: -4 0: 2 4 3 1: 1 3 5 2: 3 3: 1 2 5 3 0: 2 -> 2 1: 4 -> -8 2: 2 -> 2 3: 2 -> -1 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -4*v1 + 5*v2 -5 < 0; value: -1 a 3*v0 + v1 + 2*v3 -51 <= 0; value: -30 a -1*v0 -1*v3 + 7 = 0; value: 0 a 2*v0 + v2 -8 = 0; value: 0 a -1*v1 -2*v3 + 15 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 1 4 3: 2 3 5 optimal: (-47/8 -e*1) a -47/8 < 0; value: -47/8 d 8*v2 -33 < 0; value: -1/2 a -483/16 < 0; value: -483/16 d -1*v0 -1*v3 + 7 = 0; value: 0 d 2*v0 + v2 -8 = 0; value: 0 d -1*v1 -2*v3 + 15 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 1 4 2 3: 2 3 5 1 0: 2 -> 63/32 1: 5 -> 79/16 2: 4 -> 65/16 3: 5 -> 161/32 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -3*v1 + 2*v3 + 1 = 0; value: 0 a v0 -4 = 0; value: 0 a -3*v1 -6*v2 -4*v3 -2 < 0; value: -17 a -2*v1 + 3 < 0; value: -3 a 3*v0 -1*v1 + 3*v2 -25 <= 0; value: -13 0: 1 2 5 1: 1 3 4 5 2: 3 5 3: 1 3 optimal: (5 -e*1) a + 5 < 0; value: 5 d 2*v0 -3*v1 + 2*v3 + 1 = 0; value: 0 d v0 -4 = 0; value: 0 a -6*v2 + 5/2 <= 0; value: -7/2 d -4/3*v0 -4/3*v3 + 7/3 < 0; value: -4/3 a 3*v2 -29/2 <= 0; value: -23/2 0: 1 2 5 3 4 1: 1 3 4 5 2: 3 5 3: 1 3 4 5 0: 4 -> 4 1: 3 -> 13/6 2: 1 -> 1 3: 0 -> -5/4 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -3*v2 -2*v3 + 17 <= 0; value: -11 a 3*v0 + 5*v2 -36 <= 0; value: -13 a v1 -3*v2 -5 <= 0; value: -15 a -1*v0 + v1 -2*v3 + 9 <= 0; value: 0 a 2*v0 + 2*v1 -7 <= 0; value: -1 0: 1 2 4 5 1: 3 4 5 2: 1 2 3 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -3*v2 -2*v3 + 17 <= 0; value: -11 a 3*v0 + 5*v2 -36 <= 0; value: -13 a v1 -3*v2 -5 <= 0; value: -15 a -1*v0 + v1 -2*v3 + 9 <= 0; value: 0 a 2*v0 + 2*v1 -7 <= 0; value: -1 0: 1 2 4 5 1: 3 4 5 2: 1 2 3 3: 1 4 0: 1 -> 1 1: 2 -> 2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -5*v1 + v2 + 7 <= 0; value: -2 a 5*v1 + 3*v3 -26 <= 0; value: -16 a -3*v1 -4*v2 -5*v3 -1 <= 0; value: -11 a 4*v1 -5*v2 -2*v3 -3 <= 0; value: 0 a v0 + v2 -2*v3 -9 <= 0; value: -3 0: 5 1: 1 2 3 4 2: 1 3 4 5 3: 2 3 4 5 optimal: 2712/53 a + 2712/53 <= 0; value: 2712/53 d -5*v1 + v2 + 7 <= 0; value: 0 d 53/21*v3 -386/21 <= 0; value: 0 a -1511/53 <= 0; value: -1511/53 d -21/5*v2 -2*v3 + 13/5 <= 0; value: 0 d v0 -1400/53 <= 0; value: 0 0: 5 1: 1 2 3 4 2: 1 3 4 5 2 3: 2 3 4 5 0: 5 -> 1400/53 1: 2 -> 44/53 2: 1 -> -151/53 3: 0 -> 386/53 a 2*v0 -2*v1 <= 0; value: 6 a 3*v1 -10 <= 0; value: -4 a -5*v0 + 6*v3 + 19 = 0; value: 0 a 6*v1 -1*v2 -32 <= 0; value: -21 a -6*v0 + v1 + 3*v3 -2 <= 0; value: -27 a 5*v0 + v3 -43 <= 0; value: -17 0: 2 4 5 1: 1 3 4 2: 3 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 3*v1 -10 <= 0; value: -4 a -5*v0 + 6*v3 + 19 = 0; value: 0 a 6*v1 -1*v2 -32 <= 0; value: -21 a -6*v0 + v1 + 3*v3 -2 <= 0; value: -27 a 5*v0 + v3 -43 <= 0; value: -17 0: 2 4 5 1: 1 3 4 2: 3 3: 2 4 5 0: 5 -> 5 1: 2 -> 2 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v1 + 4*v2 -4 <= 0; value: -9 a 5*v0 -1*v1 + 3 <= 0; value: 0 a -5*v0 + 4*v3 -16 <= 0; value: -4 a -3*v0 + 5*v1 -4*v2 -31 <= 0; value: -20 a -1*v0 + 4*v1 -33 < 0; value: -21 0: 2 3 4 5 1: 1 2 4 5 2: 1 4 3: 3 optimal: oo a -32/5*v3 + 98/5 <= 0; value: 2/5 d -15*v0 + 4*v2 -13 <= 0; value: 0 d 5*v0 -1*v1 + 3 <= 0; value: 0 d -4/3*v2 + 4*v3 -35/3 <= 0; value: 0 a 28/5*v3 -257/5 <= 0; value: -173/5 a 76/5*v3 -409/5 < 0; value: -181/5 0: 2 3 4 5 1 1: 1 2 4 5 2: 1 4 3 5 3: 3 4 5 0: 0 -> -4/5 1: 3 -> -1 2: 1 -> 1/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -5*v0 + 1 <= 0; value: -19 a -1*v0 + 2*v2 -6 = 0; value: 0 a -5*v0 + 6*v1 + 19 <= 0; value: -1 a -1*v1 <= 0; value: 0 a -5*v1 + 6*v2 -30 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 2 5 3: optimal: 8 a + 8 <= 0; value: 8 a -19 <= 0; value: -19 d -1*v0 + 2*v2 -6 = 0; value: 0 a -1 <= 0; value: -1 d -1*v1 <= 0; value: 0 d 6*v2 -30 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 2 5 1 3 3: 0: 4 -> 4 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a -5*v2 -19 <= 0; value: -39 a -2*v0 -3*v2 + 4*v3 -3 <= 0; value: -7 a -3*v0 + v1 + 2 = 0; value: 0 a 5*v1 -6*v2 -2 <= 0; value: -6 a -1*v0 -5*v1 -3*v2 <= 0; value: -34 0: 2 3 5 1: 3 4 5 2: 1 2 4 5 3: 2 optimal: oo a 3/4*v2 + 3/2 <= 0; value: 9/2 a -5*v2 -19 <= 0; value: -39 a -21/8*v2 + 4*v3 -17/4 <= 0; value: -11/4 d -3*v0 + v1 + 2 = 0; value: 0 a -141/16*v2 -21/8 <= 0; value: -303/8 d -16*v0 -3*v2 + 10 <= 0; value: 0 0: 2 3 5 4 1: 3 4 5 2: 1 2 4 5 3: 2 0: 2 -> -1/8 1: 4 -> -19/8 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 -6*v2 -9 <= 0; value: -19 a -1*v3 + 5 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -4*v0 -5*v2 + 1 <= 0; value: -7 a -2*v1 + v2 -1 <= 0; value: -5 0: 3 4 1: 1 5 2: 1 4 5 3: 2 optimal: 98/17 a + 98/17 <= 0; value: 98/17 d -17/2*v2 -13/2 <= 0; value: 0 a -1*v3 + 5 = 0; value: 0 d -1*v0 + 2 = 0; value: 0 a -54/17 <= 0; value: -54/17 d -2*v1 + v2 -1 <= 0; value: 0 0: 3 4 1: 1 5 2: 1 4 5 3: 2 0: 2 -> 2 1: 2 -> -15/17 2: 0 -> -13/17 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 + 4*v1 + 5*v2 -114 <= 0; value: -69 a -1*v0 + 6*v2 -1*v3 -56 < 0; value: -34 a -3*v1 -5*v2 + 3*v3 -13 <= 0; value: -29 a -1*v0 -1*v1 -4*v3 -16 < 0; value: -41 a -1*v0 + 2*v2 -17 < 0; value: -10 0: 1 2 4 5 1: 1 3 4 2: 1 2 3 5 3: 2 3 4 optimal: (11071/67 -e*1) a + 11071/67 < 0; value: 11071/67 d 268/85*v0 -2445/17 < 0; value: -268/85 d -4/5*v0 + 17/3*v2 -161/3 <= 0; value: 0 d -3*v1 -5*v2 + 3*v3 -13 <= 0; value: 0 d -1*v0 + 5/3*v2 -5*v3 -35/3 < 0; value: -5 a -8253/268 < 0; value: -8253/268 0: 1 2 4 5 1: 1 3 4 2: 1 2 3 5 4 3: 2 3 4 1 0: 3 -> 11957/268 1: 2 -> -811321/22780 2: 5 -> 89806/5695 3: 5 -> -113901/22780 a 2*v0 -2*v1 <= 0; value: -6 a 3*v0 + 3*v1 -32 <= 0; value: -11 a -3*v0 -5*v2 + 6 = 0; value: 0 a -1*v1 + 4*v2 + 2 < 0; value: -3 a -1*v0 -1*v1 < 0; value: -7 a -2*v0 + 5*v3 -11 <= 0; value: -5 0: 1 2 4 5 1: 1 3 4 2: 2 3 3: 5 optimal: (136/7 -e*1) a + 136/7 < 0; value: 136/7 a -32 < 0; value: -32 d -3*v0 -5*v2 + 6 = 0; value: 0 d -1*v1 + 4*v2 + 2 < 0; value: -1 d 7/5*v0 -34/5 <= 0; value: 0 a 5*v3 -145/7 <= 0; value: -75/7 0: 1 2 4 5 1: 1 3 4 2: 2 3 4 1 3: 5 0: 2 -> 34/7 1: 5 -> -27/7 2: 0 -> -12/7 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -2*v3 -3 <= 0; value: -1 a 3*v0 -2*v1 -12 <= 0; value: -7 a -1*v0 + 3*v1 -3*v2 -6 <= 0; value: -3 a -1*v2 <= 0; value: 0 a -4*v1 -5*v3 -4 <= 0; value: -17 0: 2 3 1: 1 2 3 5 2: 3 4 3: 1 5 optimal: oo a 5/6*v3 + 26/3 <= 0; value: 19/2 a -9/2*v3 -5 <= 0; value: -19/2 d 3*v0 -2*v1 -12 <= 0; value: 0 a -3*v2 -35/12*v3 -37/3 <= 0; value: -61/4 a -1*v2 <= 0; value: 0 d -6*v0 -5*v3 + 20 <= 0; value: 0 0: 2 3 5 1 1: 1 2 3 5 2: 3 4 3: 1 5 3 0: 3 -> 5/2 1: 2 -> -9/4 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 <= 0; value: -3 a -4*v0 -5*v1 + v3 + 27 = 0; value: 0 a v0 -3*v2 + 6*v3 -18 <= 0; value: 0 a -6*v2 -5*v3 + 55 = 0; value: 0 a -6*v0 -5*v2 + 43 = 0; value: 0 0: 1 2 3 5 1: 2 2: 3 4 5 3: 2 3 4 optimal: -2 a -2 <= 0; value: -2 a -3 <= 0; value: -3 d -4*v0 -5*v1 + v3 + 27 = 0; value: 0 d 331/25*v0 -993/25 <= 0; value: 0 d -6*v2 -5*v3 + 55 = 0; value: 0 d -6*v0 -5*v2 + 43 = 0; value: 0 0: 1 2 3 5 1: 2 2: 3 4 5 3: 2 3 4 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a 4*v0 + 3*v1 -22 = 0; value: 0 a 2*v0 -1*v1 -2*v3 -10 <= 0; value: -6 a 2*v0 -6*v1 -5*v3 + 9 = 0; value: 0 a v0 + 6*v1 -1*v3 -15 <= 0; value: 0 a -5*v0 -6*v2 + 24 < 0; value: -8 0: 1 2 3 4 5 1: 1 2 3 4 2: 5 3: 2 3 4 optimal: oo a 7/3*v3 + 5/3 <= 0; value: 4 d 4*v0 + 3*v1 -22 = 0; value: 0 a -1/3*v3 -17/3 <= 0; value: -6 d 10*v0 -5*v3 -35 = 0; value: 0 a -9/2*v3 + 9/2 <= 0; value: 0 a -6*v2 -5/2*v3 + 13/2 < 0; value: -8 0: 1 2 3 4 5 1: 1 2 3 4 2: 5 3: 2 3 4 5 0: 4 -> 4 1: 2 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 2*v3 -12 <= 0; value: 0 a v0 + 6*v3 -32 = 0; value: 0 a -4*v1 -6*v2 + 15 <= 0; value: -31 a -6*v0 -4*v2 + 3*v3 + 17 = 0; value: 0 a -1*v0 -2*v1 -3*v2 + 12 < 0; value: -13 0: 1 2 4 5 1: 3 5 2: 3 4 5 3: 1 2 4 optimal: (9 -e*1) a + 9 < 0; value: 9 d v0 + 2*v3 -12 <= 0; value: 0 d -2*v0 + 4 = 0; value: 0 a -5 <= 0; value: -5 d -6*v0 -4*v2 + 3*v3 + 17 = 0; value: 0 d -1*v0 -2*v1 -3*v2 + 12 < 0; value: -2 0: 1 2 4 5 3 1: 3 5 2: 3 4 5 3: 1 2 4 0: 2 -> 2 1: 4 -> -3/2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a -1*v2 -6*v3 + 2 < 0; value: -2 a -1*v2 -2*v3 + 4 <= 0; value: 0 a 3*v0 -5*v2 + 7 <= 0; value: -13 a -3*v0 -3*v1 + 2*v2 + 4 <= 0; value: 0 a v1 + 6*v3 -10 <= 0; value: -6 0: 3 4 1: 4 5 2: 1 2 3 4 3: 1 2 5 optimal: -40/9 a -40/9 <= 0; value: -40/9 a -43/6 < 0; value: -43/6 d -1*v2 -2*v3 + 4 <= 0; value: 0 d 36/7*v0 -1/7 <= 0; value: 0 d -3*v0 -3*v1 + 2*v2 + 4 <= 0; value: 0 d -1*v0 + 14/3*v3 -6 <= 0; value: 0 0: 3 4 5 1 1: 4 5 2: 1 2 3 4 5 3: 1 2 5 3 0: 0 -> 1/36 1: 4 -> 9/4 2: 4 -> 17/12 3: 0 -> 31/24 a 2*v0 -2*v1 <= 0; value: -4 a -3*v2 -4*v3 <= 0; value: 0 a -5*v0 -2*v1 + v2 -19 <= 0; value: -44 a v3 <= 0; value: 0 a 4*v0 -5*v2 -16 <= 0; value: -4 a -1*v1 + 2*v3 -2 <= 0; value: -7 0: 2 4 1: 2 5 2: 1 2 4 3: 1 3 5 optimal: oo a 23/4*v0 + 61/4 <= 0; value: 65/2 d -3*v2 -4*v3 <= 0; value: 0 d -5*v0 + 4*v2 -15 <= 0; value: 0 a -15/16*v0 -45/16 <= 0; value: -45/8 a -9/4*v0 -139/4 <= 0; value: -83/2 d -1*v1 + 2*v3 -2 <= 0; value: 0 0: 2 4 3 1: 2 5 2: 1 2 4 3 3: 1 3 5 2 0: 3 -> 3 1: 5 -> -53/4 2: 0 -> 15/2 3: 0 -> -45/8 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 + 2*v2 -5*v3 -2 < 0; value: -1 a -3*v2 -1*v3 + 2 <= 0; value: -8 a -4*v0 -5*v1 -3*v3 + 2 < 0; value: -6 a v0 + 3*v3 -3 = 0; value: 0 a v0 = 0; value: 0 0: 1 3 4 5 1: 3 2: 1 2 3: 1 2 3 4 optimal: (2/5 -e*1) a + 2/5 < 0; value: 2/5 a 2*v2 -7 < 0; value: -1 a -3*v2 + 1 <= 0; value: -8 d -4*v0 -5*v1 -3*v3 + 2 < 0; value: -3 d v0 + 3*v3 -3 = 0; value: 0 d v0 = 0; value: 0 0: 1 3 4 5 2 1: 3 2: 1 2 3: 1 2 3 4 0: 0 -> 0 1: 1 -> 2/5 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 + v1 + 2*v2 -38 <= 0; value: -24 a 2*v2 -1*v3 -8 < 0; value: -2 a -5*v0 -6*v2 -7 <= 0; value: -42 a -3*v2 + 11 <= 0; value: -4 a 2*v0 -3*v1 -3 <= 0; value: -1 0: 1 3 5 1: 1 5 2: 1 2 3 4 3: 2 optimal: 137/21 a + 137/21 <= 0; value: 137/21 d 14/3*v0 + 2*v2 -39 <= 0; value: 0 a -1*v3 -2/3 < 0; value: -14/3 a -881/14 <= 0; value: -881/14 d -3*v2 + 11 <= 0; value: 0 d 2*v0 -3*v1 -3 <= 0; value: 0 0: 1 3 5 1: 1 5 2: 1 2 3 4 3: 2 0: 1 -> 95/14 1: 0 -> 74/21 2: 5 -> 11/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -1*v2 + 4 = 0; value: 0 a v0 + 2*v1 -1*v3 -6 <= 0; value: -1 a -4*v1 -3*v2 -18 <= 0; value: -46 a -1*v0 + 6*v1 -3*v3 -43 <= 0; value: -28 a -5*v0 + 3*v3 -9 = 0; value: 0 0: 1 2 4 5 1: 2 3 4 2: 1 3 3: 2 4 5 optimal: oo a -3/2*v3 + 39/2 <= 0; value: 15 d -3*v0 -1*v2 + 4 = 0; value: 0 a 23/10*v3 -309/10 <= 0; value: -24 d -4*v1 -3*v2 -18 <= 0; value: 0 a 9/2*v3 -221/2 <= 0; value: -97 d -5*v0 + 3*v3 -9 = 0; value: 0 0: 1 2 4 5 1: 2 3 4 2: 1 3 2 4 3: 2 4 5 0: 0 -> 0 1: 4 -> -15/2 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 + 2*v2 + 5*v3 -78 < 0; value: -46 a 3*v0 -5*v1 + v2 < 0; value: -7 a -3*v1 -2*v2 + 14 = 0; value: 0 a -4*v0 + 5*v1 + 4*v3 -21 <= 0; value: -9 a -3*v0 + 4*v1 -5*v3 + 1 <= 0; value: -5 0: 2 4 5 1: 1 2 3 4 5 2: 1 2 3 3: 1 4 5 optimal: oo a -35/6*v3 + 70 < 0; value: 175/3 d 12/13*v0 + 5*v3 -804/13 < 0; value: -12/13 d 3*v0 + 13/3*v2 -70/3 < 0; value: -13/3 d -3*v1 -2*v2 + 14 = 0; value: 0 a 79/6*v3 -129 < 0; value: -308/3 a 5/4*v3 -72 < 0; value: -139/2 0: 2 4 5 1 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 1 4 5 0: 4 -> 331/6 1: 4 -> 1061/39 2: 1 -> -879/26 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a 2*v1 + 3*v2 -3*v3 -17 = 0; value: 0 a -1*v1 + 4*v3 -4 = 0; value: 0 a 6*v2 -1*v3 -28 = 0; value: 0 a -6*v0 + 4*v1 -6*v2 + 9 <= 0; value: -11 a -1*v3 + 2 = 0; value: 0 0: 4 1: 1 2 4 2: 1 3 4 3: 1 2 3 5 optimal: oo a 2*v0 -8 <= 0; value: -6 d 2*v1 + 3*v2 -3*v3 -17 = 0; value: 0 d 3/2*v2 + 5/2*v3 -25/2 = 0; value: 0 d 33/5*v2 -33 = 0; value: 0 a -6*v0 -5 <= 0; value: -11 a = 0; value: 0 0: 4 1: 1 2 4 2: 1 3 4 2 5 3: 1 2 3 5 4 0: 1 -> 1 1: 4 -> 4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 -4*v2 -3*v3 + 29 < 0; value: -3 a v1 = 0; value: 0 a 6*v1 + 3*v2 -25 <= 0; value: -10 a 6*v1 + 3*v2 -41 <= 0; value: -26 0: 1: 1 2 3 4 2: 1 3 4 3: 1 optimal: oo a 2*v0 <= 0; value: 0 a -4*v2 -3*v3 + 29 < 0; value: -3 d v1 = 0; value: 0 a 3*v2 -25 <= 0; value: -10 a 3*v2 -41 <= 0; value: -26 0: 1: 1 2 3 4 2: 1 3 4 3: 1 0: 0 -> 0 1: 0 -> 0 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -6*v0 -5*v3 -11 < 0; value: -29 a -2*v0 + 3*v1 + 2 < 0; value: -1 a -1*v2 + v3 <= 0; value: 0 a -3*v2 -2*v3 <= 0; value: 0 a v0 -1*v1 -5 < 0; value: -3 0: 1 2 5 1: 2 5 2: 3 4 3: 1 3 4 optimal: (10 -e*1) a + 10 < 0; value: 10 a -6*v0 -5*v3 -11 < 0; value: -29 a v0 -13 < 0; value: -10 a -1*v2 + v3 <= 0; value: 0 a -3*v2 -2*v3 <= 0; value: 0 d v0 -1*v1 -5 < 0; value: -1 0: 1 2 5 1: 2 5 2: 3 4 3: 1 3 4 0: 3 -> 3 1: 1 -> -1 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 <= 0; value: 0 a -4*v3 + 9 < 0; value: -3 a v1 <= 0; value: 0 a -6*v0 + v1 + 4 <= 0; value: -2 a 5*v1 + 6*v3 -37 < 0; value: -19 0: 4 1: 1 3 4 5 2: 3: 2 5 optimal: oo a 2*v0 <= 0; value: 2 d -1*v1 <= 0; value: 0 a -4*v3 + 9 < 0; value: -3 a <= 0; value: 0 a -6*v0 + 4 <= 0; value: -2 a 6*v3 -37 < 0; value: -19 0: 4 1: 1 3 4 5 2: 3: 2 5 0: 1 -> 1 1: 0 -> 0 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + v2 -14 < 0; value: -4 a -6*v2 + 6*v3 + 17 <= 0; value: -7 a v1 -4*v3 <= 0; value: -2 a -1*v0 + 1 = 0; value: 0 a 6*v1 -1*v3 -14 < 0; value: -3 0: 1 4 1: 3 5 2: 1 2 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + v2 -14 < 0; value: -4 a -6*v2 + 6*v3 + 17 <= 0; value: -7 a v1 -4*v3 <= 0; value: -2 a -1*v0 + 1 = 0; value: 0 a 6*v1 -1*v3 -14 < 0; value: -3 0: 1 4 1: 3 5 2: 1 2 3: 2 3 5 0: 1 -> 1 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 5*v3 -47 < 0; value: -27 a 5*v0 -4*v1 -5 < 0; value: -1 a 3*v0 + 2*v2 -54 < 0; value: -34 a -1*v1 -2*v2 -3*v3 + 24 = 0; value: 0 0: 2 3 1: 2 4 2: 3 4 3: 1 4 optimal: oo a 4/5*v2 + 92/25 < 0; value: 172/25 d -25/12*v0 -10/3*v2 -59/12 <= 0; value: 0 d 5*v0 + 8*v2 + 12*v3 -101 < 0; value: -12 a -14/5*v2 -1527/25 < 0; value: -1807/25 d -1*v1 -2*v2 -3*v3 + 24 = 0; value: 0 0: 2 3 1 1: 2 4 2: 3 4 2 1 3: 1 4 2 0: 4 -> -219/25 1: 4 -> -46/5 2: 4 -> 4 3: 4 -> 42/5 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 + v3 + 2 <= 0; value: 0 a 2*v0 -1*v1 -3*v2 + 6 < 0; value: -6 a 3*v1 + 3*v2 -26 <= 0; value: -2 a -6*v0 + 3*v2 -1*v3 -2 < 0; value: -1 a -1*v0 + 6*v3 -25 <= 0; value: -14 0: 1 2 4 5 1: 2 3 2: 2 3 4 3: 1 4 5 optimal: (390/23 -e*1) a + 390/23 < 0; value: 390/23 d -4*v0 + v3 + 2 <= 0; value: 0 d 2*v0 -1*v1 -3*v2 + 6 < 0; value: -1 a -702/23 < 0; value: -702/23 d -6*v0 + 3*v2 -1*v3 -2 < 0; value: -3 d 23*v0 -37 <= 0; value: 0 0: 1 2 4 5 3 1: 2 3 2: 2 3 4 3: 1 4 5 3 0: 1 -> 37/23 1: 5 -> -66/23 2: 3 -> 301/69 3: 2 -> 102/23 a 2*v0 -2*v1 <= 0; value: 6 a -2*v0 -2*v3 -7 < 0; value: -19 a v0 -1*v1 -3*v2 -1 <= 0; value: -10 a -1*v0 -1*v1 + 7 = 0; value: 0 a -1*v1 -1*v3 + 2 <= 0; value: -1 a -3*v0 + v3 -13 < 0; value: -27 0: 1 2 3 5 1: 2 3 4 2: 2 3: 1 4 5 optimal: oo a 6*v2 + 2 <= 0; value: 26 a -6*v2 -13 < 0; value: -37 d -3*v2 + 2*v3 + 2 <= 0; value: 0 d -1*v0 -1*v1 + 7 = 0; value: 0 d v0 -1*v3 -5 <= 0; value: 0 a -3*v2 -26 < 0; value: -38 0: 1 2 3 5 4 1: 2 3 4 2: 2 1 5 3: 1 4 5 2 0: 5 -> 10 1: 2 -> -3 2: 4 -> 4 3: 1 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + 3*v1 <= 0; value: 0 a -1*v1 <= 0; value: 0 a -4*v2 -3 <= 0; value: -7 a 3*v0 + 3*v2 -7 <= 0; value: -4 a -1*v1 <= 0; value: 0 0: 1 4 1: 1 2 5 2: 3 4 3: optimal: 37/6 a + 37/6 <= 0; value: 37/6 a -37/6 <= 0; value: -37/6 d -1*v1 <= 0; value: 0 d -4*v2 -3 <= 0; value: 0 d 3*v0 + 3*v2 -7 <= 0; value: 0 a <= 0; value: 0 0: 1 4 1: 1 2 5 2: 3 4 1 3: 0: 0 -> 37/12 1: 0 -> 0 2: 1 -> -3/4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -1*v3 + 4 <= 0; value: -6 a -1*v0 + 3 = 0; value: 0 a 5*v0 -1*v2 -6*v3 -18 <= 0; value: -10 a -3*v0 -6*v1 -4*v2 + 32 <= 0; value: -5 a -3*v0 -4*v3 + 5 <= 0; value: -8 0: 1 2 3 4 5 1: 4 2: 3 4 3: 1 3 5 optimal: oo a 3*v0 + 4/3*v2 -32/3 <= 0; value: -1/3 a -3*v0 -1*v3 + 4 <= 0; value: -6 a -1*v0 + 3 = 0; value: 0 a 5*v0 -1*v2 -6*v3 -18 <= 0; value: -10 d -3*v0 -6*v1 -4*v2 + 32 <= 0; value: 0 a -3*v0 -4*v3 + 5 <= 0; value: -8 0: 1 2 3 4 5 1: 4 2: 3 4 3: 1 3 5 0: 3 -> 3 1: 4 -> 19/6 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 -3*v3 -2 <= 0; value: -11 a -1*v1 -4*v2 -5 < 0; value: -23 a -1*v2 + 1 <= 0; value: -3 a -2*v0 + 5*v1 -4 = 0; value: 0 a -1*v0 -1*v2 + 7 = 0; value: 0 0: 4 5 1: 1 2 4 2: 2 3 5 3: 1 optimal: 28/5 a + 28/5 <= 0; value: 28/5 a -3*v3 + 38/5 <= 0; value: -37/5 a -61/5 < 0; value: -61/5 d -1*v2 + 1 <= 0; value: 0 d -2*v0 + 5*v1 -4 = 0; value: 0 d -1*v0 -1*v2 + 7 = 0; value: 0 0: 4 5 2 1 1: 1 2 4 2: 2 3 5 1 3: 1 0: 3 -> 6 1: 2 -> 16/5 2: 4 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 5*v3 -19 < 0; value: -9 a 2*v0 -1*v1 -5 = 0; value: 0 a -5*v1 -6*v3 + 9 <= 0; value: -18 a 4*v0 -1*v3 -16 <= 0; value: -2 a -6*v0 + v2 + 18 < 0; value: -6 0: 2 4 5 1: 2 3 2: 5 3: 1 3 4 optimal: (194/25 -e*1) a + 194/25 < 0; value: 194/25 d 5*v3 -19 < 0; value: -9/2 d 2*v0 -1*v1 -5 = 0; value: 0 d -5/3*v2 -6*v3 + 4 <= 0; value: 0 a -383/25 < 0; value: -383/25 d -6*v0 + v2 + 18 < 0; value: -6 0: 2 4 5 3 1: 2 3 2: 5 3 4 3: 1 3 4 0: 4 -> 133/50 1: 3 -> 8/25 2: 0 -> -201/25 3: 2 -> 29/10 a 2*v0 -2*v1 <= 0; value: 4 a -5*v0 -5*v1 + 32 < 0; value: -8 a -1*v3 + 4 = 0; value: 0 a v0 -9 <= 0; value: -4 a 5*v0 -3*v1 -16 = 0; value: 0 a -1*v0 + 3*v1 + 5*v3 -66 < 0; value: -42 0: 1 3 4 5 1: 1 4 5 2: 3: 2 5 optimal: (24/5 -e*1) a + 24/5 < 0; value: 24/5 d -40/3*v0 + 176/3 < 0; value: -4 a -1*v3 + 4 = 0; value: 0 a -23/5 < 0; value: -23/5 d 5*v0 -3*v1 -16 = 0; value: 0 a 5*v3 -322/5 < 0; value: -222/5 0: 1 3 4 5 1: 1 4 5 2: 3: 2 5 0: 5 -> 47/10 1: 3 -> 5/2 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 6*v0 + 3*v1 -95 <= 0; value: -59 a -1*v2 + 1 = 0; value: 0 a 5*v2 + 4*v3 -33 < 0; value: -16 a v0 -5*v3 + 10 <= 0; value: 0 a v0 -5 = 0; value: 0 0: 1 4 5 1: 1 2: 2 3 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 6*v0 + 3*v1 -95 <= 0; value: -59 a -1*v2 + 1 = 0; value: 0 a 5*v2 + 4*v3 -33 < 0; value: -16 a v0 -5*v3 + 10 <= 0; value: 0 a v0 -5 = 0; value: 0 0: 1 4 5 1: 1 2: 2 3 3: 3 4 0: 5 -> 5 1: 2 -> 2 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v2 + v3 -10 < 0; value: -2 a -3*v0 + 2*v1 + 5*v3 -6 = 0; value: 0 a v0 -1*v3 <= 0; value: 0 a 4*v0 + 4*v1 -5*v3 -3 <= 0; value: -1 a -1*v1 -6*v3 + 8 <= 0; value: -5 0: 2 3 4 1: 2 4 5 2: 1 3: 1 2 3 4 5 optimal: oo a -1*v0 -30*v2 + 44 < 0; value: 12 d 6*v2 + v3 -10 < 0; value: -1 d -3*v0 + 2*v1 + 5*v3 -6 = 0; value: 0 a v0 + 6*v2 -10 < 0; value: -2 a 10*v0 + 90*v2 -141 < 0; value: -31 a -3/2*v0 + 21*v2 -30 < 0; value: -12 0: 2 3 4 5 1: 2 4 5 2: 1 3 4 5 3: 1 2 3 4 5 0: 2 -> 2 1: 1 -> -3/2 2: 1 -> 1 3: 2 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a 4*v1 -6*v2 -7 <= 0; value: -37 a v1 + v2 -3*v3 -8 <= 0; value: -3 a v0 + 3*v1 -4*v3 -5 = 0; value: 0 a -5*v2 + 6*v3 + 3 <= 0; value: -22 a -1*v1 -6*v2 -19 <= 0; value: -49 0: 3 1: 1 2 3 5 2: 1 2 4 5 3: 2 3 4 optimal: oo a 52/17*v0 + 178/17 <= 0; value: 438/17 a -45/17*v0 -241/17 <= 0; value: -466/17 d -1/3*v0 + v2 -5/3*v3 -19/3 <= 0; value: 0 d v0 + 3*v1 -4*v3 -5 = 0; value: 0 a -45/34*v0 -282/17 <= 0; value: -789/34 d 3/5*v0 -34/5*v2 -78/5 <= 0; value: 0 0: 3 5 1 2 4 1: 1 2 3 5 2: 1 2 4 5 3: 2 3 4 5 1 0: 5 -> 5 1: 0 -> -134/17 2: 5 -> -63/34 3: 0 -> -201/34 a 2*v0 -2*v1 <= 0; value: 6 a v0 -4*v2 -2*v3 + 1 <= 0; value: -10 a 6*v0 + 6*v1 + 3*v2 -71 <= 0; value: -44 a -3*v0 + 4 <= 0; value: -5 a 4*v0 + 2*v3 -39 <= 0; value: -25 d = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 2 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a v0 -4*v2 -2*v3 + 1 <= 0; value: -10 a 6*v0 + 6*v1 + 3*v2 -71 <= 0; value: -44 a -3*v0 + 4 <= 0; value: -5 a 4*v0 + 2*v3 -39 <= 0; value: -25 d = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 2 3: 1 4 0: 3 -> 3 1: 0 -> 0 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -4*v1 -6*v2 + 3*v3 + 24 < 0; value: -13 a -6*v2 -19 <= 0; value: -49 a -3*v0 + 4*v1 + 3*v2 -76 <= 0; value: -48 a -3*v0 + 1 < 0; value: -2 a v2 -5 <= 0; value: 0 0: 3 4 1: 1 3 2: 1 2 3 5 3: 1 optimal: oo a 2*v0 + 3*v2 -3/2*v3 -12 < 0; value: 1/2 d -4*v1 -6*v2 + 3*v3 + 24 < 0; value: -4 a -6*v2 -19 <= 0; value: -49 a -3*v0 -3*v2 + 3*v3 -52 < 0; value: -61 a -3*v0 + 1 < 0; value: -2 a v2 -5 <= 0; value: 0 0: 3 4 1: 1 3 2: 1 2 3 5 3: 1 3 0: 1 -> 1 1: 4 -> 7/4 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 + 5*v1 -25 = 0; value: 0 a -1*v2 + 4 = 0; value: 0 a v0 -1*v2 -1 = 0; value: 0 a -2*v0 -3*v3 + 9 <= 0; value: -10 a v3 -8 <= 0; value: -5 0: 1 3 4 1: 1 2: 2 3 3: 4 5 optimal: 6 a + 6 <= 0; value: 6 d 3*v0 + 5*v1 -25 = 0; value: 0 d -1*v2 + 4 = 0; value: 0 d v0 -1*v2 -1 = 0; value: 0 a -3*v3 -1 <= 0; value: -10 a v3 -8 <= 0; value: -5 0: 1 3 4 1: 1 2: 2 3 4 3: 4 5 0: 5 -> 5 1: 2 -> 2 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + v1 <= 0; value: 0 a -1*v0 -1*v2 + 4 <= 0; value: 0 a 6*v0 -5*v1 -1 <= 0; value: 0 a -2*v1 -1 <= 0; value: -3 a 4*v2 + 5*v3 -12 = 0; value: 0 0: 1 2 3 1: 1 3 4 2: 2 5 3: 5 optimal: 1/2 a + 1/2 <= 0; value: 1/2 a -1/4 <= 0; value: -1/4 d -1*v0 -1*v2 + 4 <= 0; value: 0 d 6*v0 -5*v1 -1 <= 0; value: 0 d -3*v3 -3 <= 0; value: 0 d 4*v2 + 5*v3 -12 = 0; value: 0 0: 1 2 3 4 1: 1 3 4 2: 2 5 4 1 3: 5 4 1 0: 1 -> -1/4 1: 1 -> -1/2 2: 3 -> 17/4 3: 0 -> -1 a 2*v0 -2*v1 <= 0; value: 8 a -1*v1 -3*v3 + 7 = 0; value: 0 a -2*v1 -4*v3 -9 <= 0; value: -19 a 4*v2 + 5*v3 -22 = 0; value: 0 a -2*v0 -5*v2 + 25 = 0; value: 0 a 4*v1 -9 < 0; value: -5 0: 4 1: 1 2 5 2: 3 4 3: 1 2 3 optimal: 995/8 a + 995/8 <= 0; value: 995/8 d -1*v1 -3*v3 + 7 = 0; value: 0 d 16/25*v0 -111/5 <= 0; value: 0 d 4*v2 + 5*v3 -22 = 0; value: 0 d -2*v0 -5*v2 + 25 = 0; value: 0 a -119 < 0; value: -119 0: 4 2 5 1: 1 2 5 2: 3 4 2 5 3: 1 2 3 5 0: 5 -> 555/16 1: 1 -> -55/2 2: 3 -> -71/8 3: 2 -> 23/2 a 2*v0 -2*v1 <= 0; value: 8 a v2 -1 <= 0; value: 0 a -1*v2 -1*v3 + 1 <= 0; value: -1 a -1*v0 + 6*v2 -5 <= 0; value: -3 a v3 -1 = 0; value: 0 a -6*v0 + v2 -5*v3 + 28 = 0; value: 0 0: 3 5 1: 2: 1 2 3 5 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v2 -1 <= 0; value: 0 a -1*v2 -1*v3 + 1 <= 0; value: -1 a -1*v0 + 6*v2 -5 <= 0; value: -3 a v3 -1 = 0; value: 0 a -6*v0 + v2 -5*v3 + 28 = 0; value: 0 0: 3 5 1: 2: 1 2 3 5 3: 2 4 5 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 4*v1 + 4*v2 -45 <= 0; value: -9 a -3*v0 -4*v3 -4 <= 0; value: -10 a -1*v0 + 6*v2 -55 <= 0; value: -33 a v0 + 6*v3 -2 = 0; value: 0 a 6*v0 + v2 -39 <= 0; value: -23 0: 2 3 4 5 1: 1 2: 1 3 5 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a 4*v1 + 4*v2 -45 <= 0; value: -9 a -3*v0 -4*v3 -4 <= 0; value: -10 a -1*v0 + 6*v2 -55 <= 0; value: -33 a v0 + 6*v3 -2 = 0; value: 0 a 6*v0 + v2 -39 <= 0; value: -23 0: 2 3 4 5 1: 1 2: 1 3 5 3: 2 4 0: 2 -> 2 1: 5 -> 5 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 6*v1 + 5*v3 -98 < 0; value: -43 a -5*v0 -3*v3 + 28 <= 0; value: -2 a -4*v0 -5*v1 -13 < 0; value: -35 a -3*v0 + v3 + 4 = 0; value: 0 a v2 <= 0; value: 0 0: 1 2 3 4 1: 1 3 2: 5 3: 1 2 4 optimal: (314/9 -e*1) a + 314/9 < 0; value: 314/9 d 27/5*v3 -112 < 0; value: -27/5 a -6112/81 < 0; value: -6112/81 d -4*v0 -5*v1 -13 < 0; value: -5 d -3*v0 + v3 + 4 = 0; value: 0 a v2 <= 0; value: 0 0: 1 2 3 4 1: 1 3 2: 5 3: 1 2 4 0: 3 -> 641/81 1: 2 -> -3212/405 2: 0 -> 0 3: 5 -> 533/27 a 2*v0 -2*v1 <= 0; value: -2 a v0 -1*v1 + 6*v2 -20 <= 0; value: -3 a -1*v1 -2*v2 + 3*v3 + 6 <= 0; value: -1 a v0 -3 = 0; value: 0 a 5*v1 -1*v2 -18 < 0; value: -1 a 4*v1 -1*v3 -30 < 0; value: -15 0: 1 3 1: 1 2 4 5 2: 1 2 4 3: 2 5 optimal: oo a -12*v2 + 40 <= 0; value: 4 d v0 + 8*v2 -3*v3 -26 <= 0; value: 0 d -1*v1 -2*v2 + 3*v3 + 6 <= 0; value: 0 a v0 -3 = 0; value: 0 a 5*v0 + 29*v2 -118 < 0; value: -16 a 11/3*v0 + 64/3*v2 -304/3 < 0; value: -79/3 0: 1 3 5 4 1: 1 2 4 5 2: 1 2 4 5 3: 2 5 1 4 0: 3 -> 3 1: 4 -> 1 2: 3 -> 3 3: 1 -> 1/3 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -1 <= 0; value: -4 a -3*v1 + 4*v2 -2 < 0; value: -1 a 5*v0 + 4*v1 + v2 -34 <= 0; value: -5 a v1 -14 <= 0; value: -9 0: 1 3 1: 2 3 4 2: 2 3 3: optimal: oo a 2*v0 -8/3*v2 + 4/3 < 0; value: -22/3 a -3*v0 -1 <= 0; value: -4 d -3*v1 + 4*v2 -2 < 0; value: -1/2 a 5*v0 + 19/3*v2 -110/3 < 0; value: -19/3 a 4/3*v2 -44/3 < 0; value: -28/3 0: 1 3 1: 2 3 4 2: 2 3 4 3: 0: 1 -> 1 1: 5 -> 29/6 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a v3 -4 <= 0; value: -2 a -2*v2 + 3*v3 + 1 <= 0; value: -3 a -2*v2 + 9 < 0; value: -1 a -4*v2 -3*v3 -9 < 0; value: -35 a -4*v0 + 6*v2 -21 <= 0; value: -11 0: 5 1: 2: 2 3 4 5 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a v3 -4 <= 0; value: -2 a -2*v2 + 3*v3 + 1 <= 0; value: -3 a -2*v2 + 9 < 0; value: -1 a -4*v2 -3*v3 -9 < 0; value: -35 a -4*v0 + 6*v2 -21 <= 0; value: -11 0: 5 1: 2: 2 3 4 5 3: 1 2 4 0: 5 -> 5 1: 0 -> 0 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a v0 = 0; value: 0 a -1*v1 + 3*v3 -9 <= 0; value: -3 a -6*v2 -5*v3 -35 < 0; value: -80 a 4*v0 + 3*v1 + 3*v3 -51 <= 0; value: -33 a -3*v0 -2*v2 -8 <= 0; value: -18 0: 1 4 5 1: 2 4 2: 3 5 3: 2 3 4 optimal: oo a 2*v0 + 36/5*v2 + 60 < 0; value: 96 a v0 = 0; value: 0 d -1*v1 + 3*v3 -9 <= 0; value: 0 d -6*v2 -5*v3 -35 < 0; value: -5 a 4*v0 -72/5*v2 -162 < 0; value: -234 a -3*v0 -2*v2 -8 <= 0; value: -18 0: 1 4 5 1: 2 4 2: 3 5 4 3: 2 3 4 0: 0 -> 0 1: 3 -> -45 2: 5 -> 5 3: 3 -> -12 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 + v3 <= 0; value: 0 a -1*v1 + 4*v3 + 3 = 0; value: 0 a -3*v2 + 2*v3 <= 0; value: 0 a 3*v1 -1*v3 -9 = 0; value: 0 a -3*v1 -2*v2 + 9 = 0; value: 0 0: 1: 2 4 5 2: 1 3 5 3: 1 2 3 4 optimal: oo a 2*v0 -6 <= 0; value: 4 a -1*v2 <= 0; value: 0 d -1*v1 + 4*v3 + 3 = 0; value: 0 a -3*v2 <= 0; value: 0 d 11*v3 = 0; value: 0 a -2*v2 = 0; value: 0 0: 1: 2 4 5 2: 1 3 5 3: 1 2 3 4 5 0: 5 -> 5 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 3*v2 -22 < 0; value: -13 a v0 + 3*v2 -21 < 0; value: -11 a 3*v0 + 5*v2 -3*v3 -45 <= 0; value: -27 a -1*v0 + 3*v2 -11 < 0; value: -3 a -3*v0 + v1 + 3*v2 -13 < 0; value: -5 0: 2 3 4 5 1: 5 2: 1 2 3 4 5 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 3*v2 -22 < 0; value: -13 a v0 + 3*v2 -21 < 0; value: -11 a 3*v0 + 5*v2 -3*v3 -45 <= 0; value: -27 a -1*v0 + 3*v2 -11 < 0; value: -3 a -3*v0 + v1 + 3*v2 -13 < 0; value: -5 0: 2 3 4 5 1: 5 2: 1 2 3 4 5 3: 3 0: 1 -> 1 1: 2 -> 2 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a v0 -2*v3 -4 = 0; value: 0 a v0 + v1 + 2*v3 -21 <= 0; value: -13 a 2*v1 + 4*v2 -5*v3 -45 <= 0; value: -29 a 2*v0 + v2 -19 < 0; value: -9 a v3 <= 0; value: 0 0: 1 2 4 1: 2 3 2: 3 4 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a v0 -2*v3 -4 = 0; value: 0 a v0 + v1 + 2*v3 -21 <= 0; value: -13 a 2*v1 + 4*v2 -5*v3 -45 <= 0; value: -29 a 2*v0 + v2 -19 < 0; value: -9 a v3 <= 0; value: 0 0: 1 2 4 1: 2 3 2: 3 4 3: 1 2 3 5 0: 4 -> 4 1: 4 -> 4 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 + 3*v2 -6*v3 + 1 < 0; value: -26 a -3*v1 + 4*v3 -18 <= 0; value: -11 a -1*v2 + 1 = 0; value: 0 a v1 + 6*v3 -64 < 0; value: -37 a 3*v0 + v1 -5*v3 + 5 = 0; value: 0 0: 5 1: 1 2 4 5 2: 1 3 3: 1 2 4 5 optimal: (478/39 -e*1) a + 478/39 < 0; value: 478/39 d -78/11*v0 + 3*v2 + 169/11 < 0; value: -5 d 9*v0 -11*v3 -3 <= 0; value: 0 d -1*v2 + 1 = 0; value: 0 a -734/13 < 0; value: -734/13 d 3*v0 + v1 -5*v3 + 5 = 0; value: 0 0: 5 1 2 4 1: 1 2 4 5 2: 1 3 4 3: 1 2 4 5 0: 4 -> 257/78 1: 3 -> -36/13 2: 1 -> 1 3: 4 -> 63/26 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -2*v2 + 9 = 0; value: 0 a 2*v1 -3*v3 + 3 = 0; value: 0 a -3*v0 + 2*v1 + 6*v3 -50 <= 0; value: -32 a 2*v1 -5*v2 -6 = 0; value: 0 a 2*v0 + 4*v1 -1*v2 -47 <= 0; value: -31 0: 3 5 1: 1 2 3 4 5 2: 1 4 5 3: 2 3 optimal: 29 a + 29 <= 0; value: 29 d -3*v1 -2*v2 + 9 = 0; value: 0 a -3*v3 + 9 = 0; value: 0 a 6*v3 -193/2 <= 0; value: -157/2 d -19/3*v2 = 0; value: 0 d 2*v0 -35 <= 0; value: 0 0: 3 5 1: 1 2 3 4 5 2: 1 4 5 2 3 3: 2 3 0: 2 -> 35/2 1: 3 -> 3 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -2*v2 -3*v3 + 4 < 0; value: -4 a -3*v2 -1*v3 + 10 < 0; value: -2 a v1 -1 = 0; value: 0 a -3*v0 + 5*v2 -39 <= 0; value: -22 0: 5 1: 4 2: 2 3 5 3: 1 2 3 optimal: oo a 2*v0 -2 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -2*v2 -3*v3 + 4 < 0; value: -4 a -3*v2 -1*v3 + 10 < 0; value: -2 d v1 -1 = 0; value: 0 a -3*v0 + 5*v2 -39 <= 0; value: -22 0: 5 1: 4 2: 2 3 5 3: 1 2 3 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -4*v1 -5 < 0; value: -1 a 5*v1 -5*v3 -6 <= 0; value: -31 a 3*v0 -2*v2 -2 <= 0; value: -1 a v3 -7 <= 0; value: -2 a -2*v2 -1*v3 -2 <= 0; value: -9 0: 1 3 1: 1 2 2: 3 5 3: 2 4 5 optimal: (5/2 -e*1) a + 5/2 < 0; value: 5/2 d 4*v0 -4*v1 -5 < 0; value: -1/2 a 5*v0 -5*v3 -49/4 < 0; value: -129/4 a 3*v0 -2*v2 -2 <= 0; value: -1 a v3 -7 <= 0; value: -2 a -2*v2 -1*v3 -2 <= 0; value: -9 0: 1 3 2 1: 1 2 2: 3 5 3: 2 4 5 0: 1 -> 1 1: 0 -> -1/8 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 -8 = 0; value: 0 a -1*v0 + 4*v1 + 3*v2 -24 <= 0; value: -11 a -2*v0 + 5*v1 + 3*v3 -47 <= 0; value: -27 a 2*v0 -1*v2 -3 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 2 4 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 -8 = 0; value: 0 a -1*v0 + 4*v1 + 3*v2 -24 <= 0; value: -11 a -2*v0 + 5*v1 + 3*v3 -47 <= 0; value: -27 a 2*v0 -1*v2 -3 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 2 4 3: 3 0: 2 -> 2 1: 3 -> 3 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a v3 -4 = 0; value: 0 a 3*v0 + 2*v2 -19 <= 0; value: -7 a -3*v1 + 5*v2 -6 <= 0; value: -18 a -6*v1 + v3 -18 < 0; value: -38 a -1*v2 = 0; value: 0 0: 2 1: 3 4 2: 2 3 5 3: 1 4 optimal: 50/3 a + 50/3 <= 0; value: 50/3 a v3 -4 = 0; value: 0 d 3*v0 -19 <= 0; value: 0 d -3*v1 + 5*v2 -6 <= 0; value: 0 a v3 -6 < 0; value: -2 d -1*v2 = 0; value: 0 0: 2 1: 3 4 2: 2 3 5 4 3: 1 4 0: 4 -> 19/3 1: 4 -> -2 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 -4*v3 -19 <= 0; value: -11 a 6*v1 -1*v2 + 2*v3 -37 <= 0; value: -22 a 4*v0 + 5*v3 -24 <= 0; value: -11 a 5*v2 + v3 -31 < 0; value: -5 a 6*v0 -1*v2 -6*v3 -2 <= 0; value: -1 0: 1 3 5 1: 2 2: 2 4 5 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 -4*v3 -19 <= 0; value: -11 a 6*v1 -1*v2 + 2*v3 -37 <= 0; value: -22 a 4*v0 + 5*v3 -24 <= 0; value: -11 a 5*v2 + v3 -31 < 0; value: -5 a 6*v0 -1*v2 -6*v3 -2 <= 0; value: -1 0: 1 3 5 1: 2 2: 2 4 5 3: 1 2 3 4 5 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -4*v1 + v2 + 2 <= 0; value: -8 a -2*v0 + 3*v2 -4*v3 -2 <= 0; value: -12 a v0 -1*v3 + 4 = 0; value: 0 a -1*v1 + 1 < 0; value: -1 a v0 -1*v1 + 3*v3 -39 <= 0; value: -25 0: 1 2 3 5 1: 1 4 5 2: 1 2 3: 2 3 5 optimal: (12 -e*1) a + 12 < 0; value: 12 a v2 -44 <= 0; value: -40 a 3*v2 -60 <= 0; value: -48 d v0 -1*v3 + 4 = 0; value: 0 d -1*v1 + 1 < 0; value: -1/2 d 4*v3 -44 <= 0; value: 0 0: 1 2 3 5 1: 1 4 5 2: 1 2 3: 2 3 5 1 0: 1 -> 7 1: 2 -> 3/2 2: 4 -> 4 3: 5 -> 11 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 -1*v3 -14 <= 0; value: -3 a 4*v1 + 3*v2 -14 = 0; value: 0 a v0 + 5*v1 + 6*v3 -94 <= 0; value: -57 a 2*v0 + v1 -20 < 0; value: -12 a -1*v2 -1 <= 0; value: -3 0: 1 3 4 1: 2 3 4 2: 2 5 3: 1 3 optimal: oo a 2*v0 + 3/2*v2 -7 <= 0; value: 2 a 5*v0 -1*v3 -14 <= 0; value: -3 d 4*v1 + 3*v2 -14 = 0; value: 0 a v0 -15/4*v2 + 6*v3 -153/2 <= 0; value: -57 a 2*v0 -3/4*v2 -33/2 < 0; value: -12 a -1*v2 -1 <= 0; value: -3 0: 1 3 4 1: 2 3 4 2: 2 5 3 4 3: 1 3 0: 3 -> 3 1: 2 -> 2 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 -3*v2 + 1 = 0; value: 0 a v0 -3*v1 -3 <= 0; value: -9 a v0 -3*v2 + 3*v3 + 9 <= 0; value: 0 a v2 -3 = 0; value: 0 a v2 -3 = 0; value: 0 0: 2 3 1: 1 2 2: 1 3 4 5 3: 3 optimal: 14 a + 14 <= 0; value: 14 d 4*v1 -3*v2 + 1 = 0; value: 0 d v0 -9 <= 0; value: 0 d v0 -3*v2 + 3*v3 + 9 <= 0; value: 0 d 1/3*v0 + v3 = 0; value: 0 a = 0; value: 0 0: 2 3 4 5 1: 1 2 2: 1 3 4 5 2 3: 3 4 5 2 0: 0 -> 9 1: 2 -> 2 2: 3 -> 3 3: 0 -> -3 a 2*v0 -2*v1 <= 0; value: -6 a 6*v1 + 3*v2 -3*v3 -35 <= 0; value: -14 a v1 + 2*v2 -9 = 0; value: 0 a -6*v1 -5*v3 + 32 <= 0; value: -23 a -3*v0 -1*v1 -2*v3 + 21 = 0; value: 0 a -2*v0 + v3 -2 <= 0; value: -1 0: 4 5 1: 1 2 3 4 2: 1 2 3: 1 3 4 5 optimal: 6 a + 6 <= 0; value: 6 a -179/4 <= 0; value: -179/4 d v1 + 2*v2 -9 = 0; value: 0 d 32*v0 -80 <= 0; value: 0 d -3*v0 + 2*v2 -2*v3 + 12 = 0; value: 0 d -2*v0 + v3 -2 <= 0; value: 0 0: 4 5 3 1 1: 1 2 3 4 2: 1 2 3 4 3: 1 3 4 5 0: 2 -> 5/2 1: 5 -> -1/2 2: 2 -> 19/4 3: 5 -> 7 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 + 1 = 0; value: 0 a -6*v0 -4*v1 -7 < 0; value: -19 a -1*v1 <= 0; value: 0 a 2*v1 + 2*v2 -1*v3 + 2 = 0; value: 0 a v2 -2 < 0; value: -1 0: 2 1: 2 3 4 2: 1 4 5 3: 4 optimal: oo a 2*v0 <= 0; value: 4 a -1*v2 + 1 = 0; value: 0 a -6*v0 -7 < 0; value: -19 d -1*v1 <= 0; value: 0 a 2*v2 -1*v3 + 2 = 0; value: 0 a v2 -2 < 0; value: -1 0: 2 1: 2 3 4 2: 1 4 5 3: 4 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -3*v2 + 2*v3 + 7 = 0; value: 0 a -1*v1 -4*v2 + 15 = 0; value: 0 a -2*v0 -1*v1 + 2*v3 + 1 <= 0; value: -2 a -2*v1 + 3*v2 -7 <= 0; value: -4 a -4*v0 + 6*v3 -3 < 0; value: -1 0: 3 5 1: 2 3 4 2: 1 2 4 3: 1 3 5 optimal: (1/22 -e*1) a + 1/22 < 0; value: 1/22 d -3*v2 + 2*v3 + 7 = 0; value: 0 d -1*v1 -4*v2 + 15 = 0; value: 0 a -13/22 <= 0; value: -13/22 d 44/9*v0 -23/3 <= 0; value: 0 d -4*v0 + 6*v3 -3 < 0; value: -18/11 0: 3 5 4 1: 2 3 4 2: 1 2 4 3 3: 1 3 5 4 0: 1 -> 69/44 1: 3 -> 25/11 2: 3 -> 35/11 3: 1 -> 14/11 a 2*v0 -2*v1 <= 0; value: 0 a v0 -1*v1 <= 0; value: 0 a -4*v0 -6*v1 + v2 + 28 = 0; value: 0 a 2*v0 -4*v1 -5*v2 -15 <= 0; value: -31 a 3*v0 -2*v2 + 6*v3 -35 < 0; value: -18 a -1*v0 -5*v1 + 9 < 0; value: -9 0: 1 2 3 4 5 1: 1 2 3 5 2: 2 3 4 3: 4 optimal: 0 a <= 0; value: 0 d v0 -1*v1 <= 0; value: 0 a -10*v0 + v2 + 28 = 0; value: 0 a -2*v0 -5*v2 -15 <= 0; value: -31 a 3*v0 -2*v2 + 6*v3 -35 < 0; value: -18 a -6*v0 + 9 < 0; value: -9 0: 1 2 3 4 5 1: 1 2 3 5 2: 2 3 4 3: 4 0: 3 -> 3 1: 3 -> 3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a v1 + 5*v2 + 4*v3 -47 <= 0; value: -29 a v0 + v1 -3 = 0; value: 0 a -2*v0 -3*v3 <= 0; value: 0 a v1 -3 <= 0; value: 0 a -1*v0 + v1 -1*v2 <= 0; value: 0 0: 2 3 5 1: 1 2 4 5 2: 1 5 3: 1 3 optimal: oo a 4*v0 -6 <= 0; value: -6 a -1*v0 + 5*v2 + 4*v3 -44 <= 0; value: -29 d v0 + v1 -3 = 0; value: 0 a -2*v0 -3*v3 <= 0; value: 0 a -1*v0 <= 0; value: 0 a -2*v0 -1*v2 + 3 <= 0; value: 0 0: 2 3 5 1 4 1: 1 2 4 5 2: 1 5 3: 1 3 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a 3*v0 -3*v1 -1*v2 + 6 = 0; value: 0 a -6*v0 + 3*v1 -4*v3 + 13 = 0; value: 0 a v2 + v3 -6 <= 0; value: -2 a v0 -6*v1 + 5*v3 -3 = 0; value: 0 0: 1 2 4 1: 1 2 4 2: 1 3 3: 2 3 4 optimal: -37/18 a -37/18 <= 0; value: -37/18 d 3*v0 -3*v1 -1*v2 + 6 = 0; value: 0 d -3*v0 -1*v2 -4*v3 + 19 = 0; value: 0 d 8*v0 -10 <= 0; value: 0 d -11*v0 -3*v3 + 23 = 0; value: 0 0: 1 2 4 3 1: 1 2 4 2: 1 3 2 4 3: 2 3 4 0: 1 -> 5/4 1: 3 -> 41/18 2: 0 -> 35/12 3: 4 -> 37/12 a 2*v0 -2*v1 <= 0; value: -8 a v3 -8 <= 0; value: -5 a -3*v0 -6*v3 -2 <= 0; value: -20 a -2*v0 + 3*v3 -9 = 0; value: 0 a -3*v1 -2*v3 + 2 < 0; value: -16 a -1*v0 + 4*v1 + 4*v3 -29 <= 0; value: -1 0: 2 3 5 1: 4 5 2: 3: 1 2 3 4 5 optimal: (73/3 -e*1) a + 73/3 < 0; value: 73/3 d 2/3*v0 -5 <= 0; value: 0 a -145/2 <= 0; value: -145/2 d -2*v0 + 3*v3 -9 = 0; value: 0 d -3*v1 -2*v3 + 2 < 0; value: -3 a -139/6 < 0; value: -139/6 0: 2 3 5 1 1: 4 5 2: 3: 1 2 3 4 5 0: 0 -> 15/2 1: 4 -> -11/3 2: 2 -> 2 3: 3 -> 8 a 2*v0 -2*v1 <= 0; value: -6 a v0 + 6*v2 -50 <= 0; value: -24 a -3*v2 -1*v3 + 17 = 0; value: 0 a v1 -5 = 0; value: 0 0: 1 1: 3 2: 1 2 3: 2 optimal: oo a 4*v3 + 22 <= 0; value: 42 d v0 + 6*v2 -50 <= 0; value: 0 d -3*v2 -1*v3 + 17 = 0; value: 0 d v1 -5 = 0; value: 0 0: 1 1: 3 2: 1 2 3: 2 0: 2 -> 26 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 2*v3 -2 = 0; value: 0 a v0 + v3 -4 <= 0; value: -1 a -4*v0 -3*v3 -7 <= 0; value: -16 a 3*v1 -3*v3 -7 <= 0; value: -16 a v1 + 5*v3 -15 = 0; value: 0 0: 2 3 1: 4 5 2: 1 3: 1 2 3 4 5 optimal: 162 a + 162 <= 0; value: 162 d -1*v2 + 2*v3 -2 = 0; value: 0 d v0 + 1/2*v2 -3 <= 0; value: 0 d -1*v0 -19 <= 0; value: 0 a -376 <= 0; value: -376 d v1 + 5*v3 -15 = 0; value: 0 0: 2 3 4 1: 4 5 2: 1 2 3 4 3: 1 2 3 4 5 0: 0 -> -19 1: 0 -> -100 2: 4 -> 44 3: 3 -> 23 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -6*v3 -5 <= 0; value: -3 a -1*v0 + 5*v1 + v2 -10 <= 0; value: 0 a -5*v1 -6*v2 + v3 -12 < 0; value: -45 a -4*v1 + v2 -4*v3 -3 < 0; value: -11 a 2*v0 + v1 + 4*v2 -31 < 0; value: -5 0: 1 2 5 1: 2 3 4 5 2: 2 3 4 5 3: 1 3 4 optimal: (8695/247 -e*1) a + 8695/247 < 0; value: 8695/247 d 494/73*v0 -6731/73 < 0; value: -494/73 a -20537/494 <= 0; value: -20537/494 d -29/4*v2 + 6*v3 -33/4 <= 0; value: 0 d -4*v1 + v2 -4*v3 -3 < 0; value: -4 d 2*v0 + 73/24*v2 -265/8 < 0; value: -25447/11856 0: 1 2 5 1: 2 3 4 5 2: 2 3 4 5 1 3: 1 3 4 2 5 0: 4 -> 6237/494 1: 2 -> -2535535/865488 2: 4 -> 67907/36062 3: 1 -> 3159349/865488 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 1 = 0; value: 0 a -2*v1 + v3 -4 <= 0; value: -1 a 2*v0 -3*v1 -3*v2 -6 <= 0; value: -3 a -1*v0 + 3 = 0; value: 0 a -5*v0 -5*v1 -1*v2 + 18 <= 0; value: -2 0: 3 4 5 1: 1 2 3 5 2: 3 5 3: 2 optimal: 4 a + 4 <= 0; value: 4 d -1*v1 + 1 = 0; value: 0 a v3 -6 <= 0; value: -1 a -3*v2 -3 <= 0; value: -3 d -1*v0 + 3 = 0; value: 0 a -1*v2 -2 <= 0; value: -2 0: 3 4 5 1: 1 2 3 5 2: 3 5 3: 2 0: 3 -> 3 1: 1 -> 1 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -10 a -6*v1 + 5*v2 + 3*v3 -2 <= 0; value: -1 a v1 + v3 -7 = 0; value: 0 a -5*v1 -4*v2 + 45 = 0; value: 0 a -2*v0 + 5*v2 -62 < 0; value: -37 a -2*v0 + 3*v1 -4*v3 -17 <= 0; value: -10 0: 4 5 1: 1 2 3 5 2: 1 3 4 3: 1 2 5 optimal: oo a 2*v0 -602/61 <= 0; value: -602/61 d 61/5*v2 -62 <= 0; value: 0 d v1 + v3 -7 = 0; value: 0 d -4*v2 + 5*v3 + 10 = 0; value: 0 a -2*v0 -2232/61 < 0; value: -2232/61 a -2*v0 -638/61 <= 0; value: -638/61 0: 4 5 1: 1 2 3 5 2: 1 3 4 5 3: 1 2 5 3 0: 0 -> 0 1: 5 -> 301/61 2: 5 -> 310/61 3: 2 -> 126/61 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -3*v1 + 4*v3 + 26 < 0; value: -1 a -3*v1 + 1 <= 0; value: -14 a -2*v0 -1*v3 + 10 <= 0; value: -1 a -3*v1 -3*v2 + v3 -19 <= 0; value: -43 a 4*v2 -29 <= 0; value: -13 0: 1 3 1: 1 2 4 2: 4 5 3: 1 3 4 optimal: (181/21 -e*1) a + 181/21 < 0; value: 181/21 d -6*v0 -3*v1 + 4*v3 + 26 < 0; value: -3 d 14*v0 -65 <= 0; value: 0 d -2*v0 -1*v3 + 10 <= 0; value: 0 a -3*v2 -135/7 <= 0; value: -219/7 a 4*v2 -29 <= 0; value: -13 0: 1 3 2 4 1: 1 2 4 2: 4 5 3: 1 3 4 2 0: 4 -> 65/14 1: 5 -> 4/3 2: 4 -> 4 3: 3 -> 5/7 a 2*v0 -2*v1 <= 0; value: -4 a -3*v1 + 3*v3 + 5 <= 0; value: -10 a -4*v0 -1*v1 + 7 <= 0; value: -10 a 3*v0 + v3 -13 <= 0; value: -4 a -5*v1 -5*v2 -14 < 0; value: -44 a -3*v0 + 6*v1 -2*v2 -37 <= 0; value: -18 0: 2 3 5 1: 1 2 4 5 2: 4 5 3: 1 3 optimal: oo a 10*v0 -14 < 0; value: 16 d -3*v1 + 3*v3 + 5 <= 0; value: 0 d -4*v0 + v2 + 49/5 <= 0; value: 0 a -1*v0 -23/3 < 0; value: -32/3 d -5*v2 -5*v3 -67/3 < 0; value: -5 a -35*v0 + 123/5 < 0; value: -402/5 0: 2 3 5 1: 1 2 4 5 2: 4 5 2 3 3: 1 3 2 4 5 0: 3 -> 3 1: 5 -> -4 2: 1 -> 11/5 3: 0 -> -17/3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -4*v1 = 0; value: 0 a 5*v0 -3*v1 + 6*v3 -50 <= 0; value: -32 a -5*v0 -1*v3 -2 <= 0; value: -5 a -1*v0 + 4*v3 -27 <= 0; value: -15 a 2*v1 -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 3: 2 3 4 5 optimal: oo a -7/3*v3 + 7 <= 0; value: 0 d -3*v0 -4*v1 = 0; value: 0 a 7/6*v3 -71/2 <= 0; value: -32 a 7/3*v3 -12 <= 0; value: -5 a 14/3*v3 -29 <= 0; value: -15 d -3/2*v0 -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 5 2: 3: 2 3 4 5 0: 0 -> 0 1: 0 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a 4*v0 + v1 -2*v2 -11 = 0; value: 0 a -1*v0 -1*v3 + 1 < 0; value: -3 a v0 -1*v1 -4 <= 0; value: -1 a 5*v0 -6*v1 + 6*v3 -14 = 0; value: 0 a v2 -4 <= 0; value: -1 0: 1 2 3 4 1: 1 3 4 2: 1 5 3: 2 4 optimal: 8 a + 8 <= 0; value: 8 d 4*v0 + v1 -2*v2 -11 = 0; value: 0 a -7/6*v0 + 8/3 < 0; value: -2 d 1/6*v0 -1*v3 -5/3 <= 0; value: 0 d 29*v0 -12*v2 + 6*v3 -80 = 0; value: 0 a 5/2*v0 -23/2 <= 0; value: -3/2 0: 1 2 3 4 5 1: 1 3 4 2: 1 5 3 4 3: 2 4 3 5 0: 4 -> 4 1: 1 -> 0 2: 3 -> 5/2 3: 0 -> -1 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 2*v2 + 2*v3 -19 <= 0; value: -2 a v2 -1 = 0; value: 0 a 2*v0 -19 <= 0; value: -11 a 3*v1 + 3*v3 -32 <= 0; value: -2 a -1*v0 + v3 -1 <= 0; value: 0 0: 3 5 1: 1 4 2: 1 2 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v1 + 2*v2 + 2*v3 -19 <= 0; value: -2 a v2 -1 = 0; value: 0 a 2*v0 -19 <= 0; value: -11 a 3*v1 + 3*v3 -32 <= 0; value: -2 a -1*v0 + v3 -1 <= 0; value: 0 0: 3 5 1: 1 4 2: 1 2 3: 1 4 5 0: 4 -> 4 1: 5 -> 5 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 + 3*v2 -19 < 0; value: -10 a 3*v0 -22 < 0; value: -13 a 5*v1 -1*v3 -35 <= 0; value: -21 a -2*v0 + 2*v3 -1 <= 0; value: -5 a -1*v0 -5*v1 -1 <= 0; value: -19 0: 2 4 5 1: 1 3 5 2: 1 3: 3 4 optimal: (18 -e*1) a + 18 < 0; value: 18 a 3*v2 -47/3 <= 0; value: -2/3 d 3*v0 -22 < 0; value: -3 a -1*v3 -130/3 < 0; value: -133/3 a 2*v3 -47/3 < 0; value: -41/3 d -1*v0 -5*v1 -1 <= 0; value: 0 0: 2 4 5 1 3 1: 1 3 5 2: 1 3: 3 4 0: 3 -> 19/3 1: 3 -> -22/15 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 -1*v2 + 2 <= 0; value: -4 a -6*v3 -11 < 0; value: -23 a -6*v2 + 5*v3 + 5 < 0; value: -3 a -5*v2 + 11 <= 0; value: -4 a v0 + v2 -1*v3 -1 = 0; value: 0 0: 5 1: 1 2: 1 3 4 5 3: 2 3 5 optimal: oo a 2*v3 -2 <= 0; value: 2 d -1*v1 -1*v2 + 2 <= 0; value: 0 a -6*v3 -11 < 0; value: -23 a 6*v0 -1*v3 -1 < 0; value: -3 a 5*v0 -5*v3 + 6 <= 0; value: -4 d v0 + v2 -1*v3 -1 = 0; value: 0 0: 5 3 4 1: 1 2: 1 3 4 5 3: 2 3 5 4 0: 0 -> 0 1: 3 -> -1 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -1*v3 -4 < 0; value: -11 a 5*v2 + 4*v3 -27 < 0; value: -15 a -1*v0 + 4 = 0; value: 0 a -6*v0 + 5*v1 <= 0; value: -9 a 4*v1 -5*v2 + 5*v3 -62 <= 0; value: -35 0: 1 3 4 1: 4 5 2: 2 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -1*v3 -4 < 0; value: -11 a 5*v2 + 4*v3 -27 < 0; value: -15 a -1*v0 + 4 = 0; value: 0 a -6*v0 + 5*v1 <= 0; value: -9 a 4*v1 -5*v2 + 5*v3 -62 <= 0; value: -35 0: 1 3 4 1: 4 5 2: 2 5 3: 1 2 5 0: 4 -> 4 1: 3 -> 3 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + v1 -3*v3 -50 < 0; value: -30 a 4*v1 -5*v3 -17 <= 0; value: -9 a -5*v1 -1*v3 + 5 <= 0; value: -5 a 3*v1 + v2 -6*v3 -6 = 0; value: 0 a -1*v0 + 3*v2 -3*v3 -1 <= 0; value: -4 0: 1 5 1: 1 2 3 4 2: 4 5 3: 1 2 3 4 5 optimal: (3501/244 -e*1) a + 3501/244 < 0; value: 3501/244 d 122/21*v0 -997/21 < 0; value: -122/21 a -6373/488 < 0; value: -6373/488 d 5/3*v2 -11*v3 -5 <= 0; value: 0 d 3*v1 + v2 -6*v3 -6 = 0; value: 0 d -1*v0 + 28/11*v2 + 4/11 <= 0; value: 0 0: 1 5 2 1: 1 2 3 4 2: 4 5 3 1 2 3: 1 2 3 4 5 0: 3 -> 875/122 1: 2 -> 10349/10248 2: 0 -> 9137/3416 3: 0 -> -505/10248 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -1*v1 -1*v2 -34 <= 0; value: -22 a -3*v0 + 5*v3 -7 < 0; value: -2 a 5*v2 -5*v3 -2 <= 0; value: -17 a 6*v2 + 5*v3 -68 <= 0; value: -42 a -5*v1 + 5*v3 -22 <= 0; value: -12 0: 1 2 1: 1 5 2: 1 3 4 3: 2 3 4 5 optimal: oo a -1*v0 + 194/5 <= 0; value: 169/5 d 3*v0 -2*v2 -146/5 <= 0; value: 0 a 9/2*v0 -82 < 0; value: -119/2 d 5*v2 -5*v3 -2 <= 0; value: 0 a 33/2*v0 -1153/5 <= 0; value: -1481/10 d -5*v1 + 5*v3 -22 <= 0; value: 0 0: 1 2 4 1: 1 5 2: 1 3 4 2 3: 2 3 4 5 1 0: 5 -> 5 1: 2 -> -119/10 2: 1 -> -71/10 3: 4 -> -15/2 a 2*v0 -2*v1 <= 0; value: -6 a -6*v0 -3*v1 -2*v3 -7 < 0; value: -29 a 5*v0 + 5*v1 -39 <= 0; value: -14 a 4*v0 -1*v2 -5 <= 0; value: -3 a 2*v0 -1*v2 <= 0; value: 0 0: 1 2 3 4 1: 1 2 2: 3 4 3: 1 optimal: oo a 6*v0 + 4/3*v3 + 14/3 < 0; value: 40/3 d -6*v0 -3*v1 -2*v3 -7 < 0; value: -3 a -5*v0 -10/3*v3 -152/3 < 0; value: -187/3 a 4*v0 -1*v2 -5 <= 0; value: -3 a 2*v0 -1*v2 <= 0; value: 0 0: 1 2 3 4 1: 1 2 2: 3 4 3: 1 2 0: 1 -> 1 1: 4 -> -14/3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 -2 < 0; value: -5 a v0 -2*v1 + 2*v2 -6 < 0; value: -3 a 3*v0 -2*v2 -3 = 0; value: 0 a -1*v1 + 3*v3 = 0; value: 0 a 5*v2 -19 < 0; value: -4 0: 2 3 1: 2 4 2: 1 2 3 5 3: 4 optimal: (29/3 -e*1) a + 29/3 < 0; value: 29/3 d -3/2*v0 -1/2 < 0; value: -3/2 d v0 + 2*v2 -6*v3 -6 < 0; value: -6 d 3*v0 -2*v2 -3 = 0; value: 0 d -1*v1 + 3*v3 = 0; value: 0 a -29 < 0; value: -29 0: 2 3 1 5 1: 2 4 2: 1 2 3 5 3: 4 2 0: 3 -> 2/3 1: 3 -> -1/6 2: 3 -> -1/2 3: 1 -> -1/18 a 2*v0 -2*v1 <= 0; value: 8 a -2*v1 -5*v2 + 5*v3 + 3 <= 0; value: -2 a -2*v0 -6*v1 -2*v2 + 13 <= 0; value: -1 a 5*v1 -6*v2 + 14 < 0; value: -4 a -4*v0 -6*v1 + v3 + 12 < 0; value: -2 a 2*v3 -11 <= 0; value: -7 0: 2 4 1: 1 2 3 4 2: 1 2 3 3: 1 4 5 optimal: oo a 10/3*v0 -1/3*v3 -4 < 0; value: 26/3 a -11/3*v0 + 43/6*v3 -7/2 < 0; value: -23/6 d -2*v0 -6*v1 -2*v2 + 13 <= 0; value: 0 a -28/3*v0 + 23/6*v3 + 21 < 0; value: -26/3 d -2*v0 + 2*v2 + v3 -1 < 0; value: -1/2 a 2*v3 -11 <= 0; value: -7 0: 2 4 1 3 1: 1 2 3 4 2: 1 2 3 4 3: 1 4 5 3 0: 4 -> 4 1: 0 -> -1/4 2: 3 -> 13/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a v2 -3 = 0; value: 0 a 4*v0 -3*v3 -7 < 0; value: -1 a v0 + v1 -13 < 0; value: -5 a -3*v0 -4*v2 -17 < 0; value: -38 a 2*v0 + 2*v2 -2*v3 -21 <= 0; value: -13 0: 2 3 4 5 1: 3 2: 1 4 5 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v2 -3 = 0; value: 0 a 4*v0 -3*v3 -7 < 0; value: -1 a v0 + v1 -13 < 0; value: -5 a -3*v0 -4*v2 -17 < 0; value: -38 a 2*v0 + 2*v2 -2*v3 -21 <= 0; value: -13 0: 2 3 4 5 1: 3 2: 1 4 5 3: 2 5 0: 3 -> 3 1: 5 -> 5 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -1*v3 <= 0; value: 0 a -1*v1 -2*v2 <= 0; value: 0 a v0 + 4*v1 + v2 -3 <= 0; value: -1 a -3*v1 + v2 = 0; value: 0 a -2*v1 + 3*v2 + 5*v3 <= 0; value: 0 0: 3 1: 2 3 4 5 2: 2 3 4 5 3: 1 5 optimal: 6 a + 6 <= 0; value: 6 a -1*v3 <= 0; value: 0 d -1*v1 -2*v2 <= 0; value: 0 d v0 -3 <= 0; value: 0 d 7*v2 = 0; value: 0 a 5*v3 <= 0; value: 0 0: 3 1: 2 3 4 5 2: 2 3 4 5 3: 1 5 0: 2 -> 3 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a 2*v1 -1*v3 + 2 = 0; value: 0 a v0 + 2*v2 -6 = 0; value: 0 a -1*v1 <= 0; value: 0 a -2*v1 + 3*v3 -7 < 0; value: -1 0: 2 1: 1 3 4 2: 2 3: 1 4 optimal: oo a -4*v2 + 12 <= 0; value: 8 d 2*v1 -1*v3 + 2 = 0; value: 0 d v0 + 2*v2 -6 = 0; value: 0 d -1/2*v3 + 1 <= 0; value: 0 a -1 < 0; value: -1 0: 2 1: 1 3 4 2: 2 3: 1 4 3 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -69 <= 0; value: -44 a -3*v0 -5*v3 -8 <= 0; value: -38 a -5*v0 -2*v2 + 33 = 0; value: 0 a v0 + 4*v2 -27 < 0; value: -6 a -1*v0 + 5 = 0; value: 0 0: 1 2 3 4 5 1: 2: 3 4 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -69 <= 0; value: -44 a -3*v0 -5*v3 -8 <= 0; value: -38 a -5*v0 -2*v2 + 33 = 0; value: 0 a v0 + 4*v2 -27 < 0; value: -6 a -1*v0 + 5 = 0; value: 0 0: 1 2 3 4 5 1: 2: 3 4 3: 2 0: 5 -> 5 1: 3 -> 3 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -3*v1 = 0; value: 0 a 2*v0 -3*v3 <= 0; value: 0 a 4*v1 -21 <= 0; value: -13 a 5*v1 -1*v2 -5 = 0; value: 0 0: 1 2 1: 1 3 4 2: 4 3: 2 optimal: 21/4 a + 21/4 <= 0; value: 21/4 d 2*v0 -3*v1 = 0; value: 0 d 2*v0 -3*v3 <= 0; value: 0 d 4/5*v2 -17 <= 0; value: 0 d -1*v2 + 5*v3 -5 = 0; value: 0 0: 1 2 4 3 1: 1 3 4 2: 4 3 3: 2 4 3 0: 3 -> 63/8 1: 2 -> 21/4 2: 5 -> 85/4 3: 2 -> 21/4 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + v3 + 3 = 0; value: 0 a -1*v2 + 3*v3 + 2 = 0; value: 0 a 3*v1 -1*v2 -7 = 0; value: 0 a -3*v1 -3*v3 + 8 < 0; value: -7 a -2*v1 + 1 < 0; value: -7 0: 1: 1 3 4 5 2: 2 3 3: 1 2 4 optimal: oo a 2*v0 -17/3 < 0; value: 7/3 d -1*v1 + v3 + 3 = 0; value: 0 d -1*v2 + 3*v3 + 2 = 0; value: 0 a = 0; value: 0 d -2*v2 + 3 < 0; value: -2 a -14/3 <= 0; value: -14/3 0: 1: 1 3 4 5 2: 2 3 4 5 3: 1 2 4 3 5 0: 4 -> 4 1: 4 -> 19/6 2: 5 -> 5/2 3: 1 -> 1/6 a 2*v0 -2*v1 <= 0; value: -4 a 4*v0 -5*v1 -6 < 0; value: -18 a 5*v1 + 6*v2 -5*v3 -38 = 0; value: 0 a -4*v1 + 3*v3 -5 < 0; value: -21 a v1 + 4*v2 -2*v3 -38 < 0; value: -22 a -2*v0 -4*v1 -11 <= 0; value: -31 0: 1 5 1: 1 2 3 4 5 2: 2 4 3: 2 3 4 optimal: oo a 2/5*v0 + 12/5 < 0; value: 16/5 d 4*v0 + 6*v2 -5*v3 -44 < 0; value: -5 d 5*v1 + 6*v2 -5*v3 -38 = 0; value: 0 a -4/5*v0 + 18/5*v2 -133/5 <= 0; value: -87/5 a -4/5*v0 + 8/5*v2 -108/5 <= 0; value: -92/5 a -26/5*v0 -31/5 <= 0; value: -83/5 0: 1 5 4 3 1: 1 2 3 4 5 2: 2 4 1 3 5 3: 2 3 4 1 5 0: 2 -> 2 1: 4 -> 7/5 2: 3 -> 3 3: 0 -> -13/5 a 2*v0 -2*v1 <= 0; value: 8 a -1*v2 + 3 < 0; value: -1 a -5*v0 -2*v3 -11 <= 0; value: -42 a 2*v0 -1*v1 + v2 -18 <= 0; value: -5 a v1 -2 <= 0; value: -1 a v3 -3 = 0; value: 0 0: 2 3 1: 3 4 2: 1 3 3: 2 5 optimal: (184/5 -e*1) a + 184/5 < 0; value: 184/5 d -1*v2 + 3 < 0; value: -1/2 d -5*v0 -2*v3 -11 <= 0; value: 0 d 2*v0 -1*v1 + v2 -18 <= 0; value: 0 a -119/5 < 0; value: -119/5 d v3 -3 = 0; value: 0 0: 2 3 4 1: 3 4 2: 1 3 4 3: 2 5 4 0: 5 -> -17/5 1: 1 -> -213/10 2: 4 -> 7/2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 + 5*v3 -5 <= 0; value: -1 a v0 -4 = 0; value: 0 a v1 -1*v2 -1 <= 0; value: 0 a -4*v0 -5*v1 + 33 < 0; value: -3 a -3*v0 -4*v1 + 5*v2 + 6 < 0; value: -7 0: 1 2 4 5 1: 3 4 5 2: 3 5 3: 1 optimal: (6/5 -e*1) a + 6/5 < 0; value: 6/5 a 5*v3 -21 <= 0; value: -1 d v0 -4 = 0; value: 0 a -1*v2 + 12/5 < 0; value: -3/5 d -4*v0 -5*v1 + 33 < 0; value: -3/2 a 5*v2 -98/5 <= 0; value: -23/5 0: 1 2 4 5 3 1: 3 4 5 2: 3 5 3: 1 0: 4 -> 4 1: 4 -> 37/10 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v0 -5*v1 + 4 = 0; value: 0 a -1*v1 -1*v3 + 1 = 0; value: 0 a -4*v0 + 2*v2 -3 < 0; value: -1 a -1*v0 + v3 <= 0; value: -1 a -1*v3 <= 0; value: 0 0: 1 3 4 1: 1 2 2: 3 3: 2 4 5 optimal: 0 a <= 0; value: 0 d v0 -5*v1 + 4 = 0; value: 0 d -1/5*v0 -1*v3 + 1/5 = 0; value: 0 a 2*v2 -7 < 0; value: -1 a -1 <= 0; value: -1 d -1*v3 <= 0; value: 0 0: 1 3 4 2 1: 1 2 2: 3 3: 2 4 5 3 0: 1 -> 1 1: 1 -> 1 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -4*v1 + v2 + v3 + 3 <= 0; value: -9 a -1*v0 + v2 <= 0; value: 0 a v1 + v2 -16 <= 0; value: -10 a -4*v1 -6*v3 + 11 < 0; value: -17 a -6*v0 + v1 + 8 = 0; value: 0 0: 2 5 1: 1 3 4 5 2: 1 2 3 3: 1 4 optimal: (31/81 -e*1) a + 31/81 < 0; value: 31/81 d -23*v2 + v3 + 35 <= 0; value: 0 d -1*v0 + v2 <= 0; value: 0 a -2117/162 < 0; value: -2117/162 d -162/23*v3 + 149/23 < 0; value: -175/46 d -6*v0 + v1 + 8 = 0; value: 0 0: 2 5 4 1 3 1: 1 3 4 5 2: 1 2 3 4 3: 1 4 3 0: 2 -> 11813/7452 1: 4 -> 1877/1242 2: 2 -> 11813/7452 3: 2 -> 473/324 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 3*v2 -3 <= 0; value: -1 a -5*v0 -2*v2 -5*v3 -3 < 0; value: -28 a -1*v1 + 2*v2 + 2 = 0; value: 0 a 4*v0 -9 <= 0; value: -5 a -5*v0 + 4*v1 + 2*v3 -13 < 0; value: -2 0: 2 4 5 1: 1 3 5 2: 1 2 3 3: 2 5 optimal: oo a 12*v0 + 10*v3 + 2 < 0; value: 54 a -25/2*v0 -25/2*v3 -17/2 < 0; value: -71 d -5*v0 -2*v2 -5*v3 -3 < 0; value: -2 d -1*v1 + 2*v2 + 2 = 0; value: 0 a 4*v0 -9 <= 0; value: -5 a -25*v0 -18*v3 -17 < 0; value: -114 0: 2 4 5 1 1: 1 3 5 2: 1 2 3 5 3: 2 5 1 0: 1 -> 1 1: 2 -> -24 2: 0 -> -13 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -35 <= 0; value: -23 a -2*v0 + 2*v2 + 6*v3 -47 <= 0; value: -15 a -2*v0 + 5*v1 -11 <= 0; value: -7 a 4*v2 + v3 -21 = 0; value: 0 a -2*v0 + 3*v1 -5*v3 -14 < 0; value: -39 0: 1 2 3 5 1: 3 5 2: 2 4 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -35 <= 0; value: -23 a -2*v0 + 2*v2 + 6*v3 -47 <= 0; value: -15 a -2*v0 + 5*v1 -11 <= 0; value: -7 a 4*v2 + v3 -21 = 0; value: 0 a -2*v0 + 3*v1 -5*v3 -14 < 0; value: -39 0: 1 2 3 5 1: 3 5 2: 2 4 3: 2 4 5 0: 3 -> 3 1: 2 -> 2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 < 0; value: -4 a v0 + 3*v1 -15 = 0; value: 0 a v0 -3 <= 0; value: 0 a -1*v0 -3*v2 + v3 + 7 <= 0; value: -1 a -3*v1 + 4*v2 <= 0; value: 0 0: 2 3 4 1: 1 2 5 2: 4 5 3: 4 optimal: -2 a -2 <= 0; value: -2 a -4 < 0; value: -4 d v0 + 3*v1 -15 = 0; value: 0 d v0 -3 <= 0; value: 0 a -3*v2 + v3 + 4 <= 0; value: -1 a 4*v2 -12 <= 0; value: 0 0: 2 3 4 1 5 1: 1 2 5 2: 4 5 3: 4 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 -2*v1 -9 <= 0; value: -3 a -1*v0 -1*v2 + 3 < 0; value: -4 a -6*v2 -5*v3 + 19 <= 0; value: -14 a v1 -1 <= 0; value: 0 a 6*v1 + 2*v2 -5*v3 -1 <= 0; value: -4 0: 1 2 1: 1 4 5 2: 2 3 5 3: 3 5 optimal: 9 a + 9 <= 0; value: 9 d 2*v0 -2*v1 -9 <= 0; value: 0 a -1*v0 -1*v2 + 3 < 0; value: -4 a -6*v2 -5*v3 + 19 <= 0; value: -14 a v0 -11/2 <= 0; value: -3/2 a 6*v0 + 2*v2 -5*v3 -28 <= 0; value: -13 0: 1 2 4 5 1: 1 4 5 2: 2 3 5 3: 3 5 0: 4 -> 4 1: 1 -> -1/2 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v1 + v2 -20 <= 0; value: -13 a v0 + v1 -16 < 0; value: -9 a -2*v0 + 3*v2 -2*v3 -1 = 0; value: 0 a v1 -6*v2 -7 <= 0; value: -21 a -6*v0 + v1 -6 <= 0; value: -20 0: 2 3 5 1: 1 2 4 5 2: 1 3 4 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v1 + v2 -20 <= 0; value: -13 a v0 + v1 -16 < 0; value: -9 a -2*v0 + 3*v2 -2*v3 -1 = 0; value: 0 a v1 -6*v2 -7 <= 0; value: -21 a -6*v0 + v1 -6 <= 0; value: -20 0: 2 3 5 1: 1 2 4 5 2: 1 3 4 3: 3 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 + 6*v2 -75 <= 0; value: -44 a -3*v0 -5*v3 -25 < 0; value: -60 a -1*v3 + 3 < 0; value: -1 a 3*v1 -5*v2 -4 = 0; value: 0 a -1*v3 + 4 = 0; value: 0 0: 1 2 1: 4 2: 1 4 3: 2 3 5 optimal: oo a 2*v0 -10/3*v2 -8/3 <= 0; value: 4 a 5*v0 + 6*v2 -75 <= 0; value: -44 a -3*v0 -5*v3 -25 < 0; value: -60 a -1*v3 + 3 < 0; value: -1 d 3*v1 -5*v2 -4 = 0; value: 0 a -1*v3 + 4 = 0; value: 0 0: 1 2 1: 4 2: 1 4 3: 2 3 5 0: 5 -> 5 1: 3 -> 3 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 + v1 + 2*v3 -8 <= 0; value: -3 a 4*v0 -5*v2 -3*v3 -12 <= 0; value: -32 a 2*v1 + v3 -22 <= 0; value: -12 a v1 -1*v2 -2*v3 -1 <= 0; value: 0 a 5*v0 + 6*v1 + 6*v3 -33 <= 0; value: -3 0: 1 2 5 1: 1 3 4 5 2: 2 4 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 + v1 + 2*v3 -8 <= 0; value: -3 a 4*v0 -5*v2 -3*v3 -12 <= 0; value: -32 a 2*v1 + v3 -22 <= 0; value: -12 a v1 -1*v2 -2*v3 -1 <= 0; value: 0 a 5*v0 + 6*v1 + 6*v3 -33 <= 0; value: -3 0: 1 2 5 1: 1 3 4 5 2: 2 4 3: 1 2 3 4 5 0: 0 -> 0 1: 5 -> 5 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a v0 -5*v3 + 1 <= 0; value: -2 a -1*v0 -2*v1 + 6 = 0; value: 0 a 2*v0 -1*v3 -3 = 0; value: 0 a -3*v1 -5*v3 + 11 = 0; value: 0 a -5*v0 -4*v3 + 2 <= 0; value: -12 0: 1 2 3 5 1: 2 4 2: 3: 1 3 4 5 optimal: 0 a <= 0; value: 0 a -2 <= 0; value: -2 d -1*v0 -2*v1 + 6 = 0; value: 0 d 2*v0 -1*v3 -3 = 0; value: 0 d -17/4*v3 + 17/4 = 0; value: 0 a -12 <= 0; value: -12 0: 1 2 3 5 4 1: 2 4 2: 3: 1 3 4 5 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a -1*v2 + 3 = 0; value: 0 a 5*v1 + v3 -56 <= 0; value: -35 a v3 -1 = 0; value: 0 a 3*v2 -5*v3 -4 = 0; value: 0 a v0 + 3*v1 + 2*v2 -28 <= 0; value: -10 0: 5 1: 2 5 2: 1 4 5 3: 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -1*v2 + 3 = 0; value: 0 a 5*v1 + v3 -56 <= 0; value: -35 a v3 -1 = 0; value: 0 a 3*v2 -5*v3 -4 = 0; value: 0 a v0 + 3*v1 + 2*v2 -28 <= 0; value: -10 0: 5 1: 2 5 2: 1 4 5 3: 2 3 4 0: 0 -> 0 1: 4 -> 4 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 4*v2 + 8 = 0; value: 0 a -5*v0 + 4*v1 <= 0; value: 0 a -3*v2 + 5*v3 <= 0; value: -4 a -1*v1 + 4*v2 -6*v3 -2 <= 0; value: -1 d = 0; value: 0 0: 1 2 1: 2 4 2: 1 3 4 3: 3 4 optimal: oo a v0 + 28/5 <= 0; value: 48/5 d -5*v0 + 4*v2 + 8 = 0; value: 0 a -3*v0 -56/5 <= 0; value: -116/5 d -3*v2 + 5*v3 <= 0; value: 0 d -1*v1 + 4*v2 -6*v3 -2 <= 0; value: 0 d = 0; value: 0 0: 1 2 1: 2 4 2: 1 3 4 2 3: 3 4 2 0: 4 -> 4 1: 5 -> -4/5 2: 3 -> 3 3: 1 -> 9/5 a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 -6*v1 + 6*v2 -5 <= 0; value: -29 a 2*v2 -5 <= 0; value: -3 a -1*v1 -4*v2 + 6*v3 -1 <= 0; value: -10 a -5*v0 -4*v3 <= 0; value: 0 a -4*v1 + 2*v2 + 6*v3 + 9 < 0; value: -9 0: 1 4 1: 1 3 5 2: 1 2 3 5 3: 3 4 5 optimal: (10 -e*1) a + 10 < 0; value: 10 d 21/2*v0 -62/3 <= 0; value: 0 a -716/63 <= 0; value: -716/63 d -45/8*v0 -9/2*v2 -13/4 <= 0; value: 0 d -5*v0 -4*v3 <= 0; value: 0 d -4*v1 + 2*v2 + 6*v3 + 9 < 0; value: -4 0: 1 4 3 2 1: 1 3 5 2: 1 2 3 5 3: 3 4 5 1 0: 0 -> 124/63 1: 5 -> -128/63 2: 1 -> -401/126 3: 0 -> -155/63 a 2*v0 -2*v1 <= 0; value: -2 a v0 + 6*v2 -80 < 0; value: -49 a v0 -2*v1 < 0; value: -3 a v0 -1*v1 + 1 = 0; value: 0 a v2 -13 < 0; value: -8 a -3*v0 + 2*v1 + v3 -15 <= 0; value: -9 0: 1 2 3 5 1: 2 3 5 2: 1 4 3: 5 optimal: -2 a -2 <= 0; value: -2 a v0 + 6*v2 -80 < 0; value: -49 a -1*v0 -2 < 0; value: -3 d v0 -1*v1 + 1 = 0; value: 0 a v2 -13 < 0; value: -8 a -1*v0 + v3 -13 <= 0; value: -9 0: 1 2 3 5 1: 2 3 5 2: 1 4 3: 5 0: 1 -> 1 1: 2 -> 2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 -1*v2 -14 < 0; value: -7 a -6*v2 -5*v3 -36 < 0; value: -79 a 2*v0 + 4*v2 + 2*v3 -33 <= 0; value: -7 a v0 -5 <= 0; value: -3 a v3 -7 <= 0; value: -2 0: 3 4 1: 1 2: 1 2 3 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 -1*v2 -14 < 0; value: -7 a -6*v2 -5*v3 -36 < 0; value: -79 a 2*v0 + 4*v2 + 2*v3 -33 <= 0; value: -7 a v0 -5 <= 0; value: -3 a v3 -7 <= 0; value: -2 0: 3 4 1: 1 2: 1 2 3 3: 2 3 5 0: 2 -> 2 1: 2 -> 2 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -6*v1 + v2 + 3*v3 -7 < 0; value: -3 a -2*v1 -1*v3 + 4 = 0; value: 0 a -1*v0 + 4*v2 -34 <= 0; value: -20 a 5*v0 -27 <= 0; value: -17 d <= 0; value: 0 0: 3 4 1: 1 2 2: 1 3 3: 1 2 optimal: oo a 2*v0 -1/6*v2 -5/6 < 0; value: 5/2 d v2 + 6*v3 -19 < 0; value: -3/2 d -2*v1 -1*v3 + 4 = 0; value: 0 a -1*v0 + 4*v2 -34 <= 0; value: -20 a 5*v0 -27 <= 0; value: -17 d <= 0; value: 0 0: 3 4 1: 1 2 2: 1 3 3: 1 2 0: 2 -> 2 1: 1 -> 7/8 2: 4 -> 4 3: 2 -> 9/4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 + 4*v3 -7 < 0; value: -3 a 2*v2 + v3 -3 = 0; value: 0 a 6*v0 + 3*v1 + 2*v2 -16 < 0; value: -2 a v3 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 3 1: 1 3 5 2: 2 3 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 + 4*v3 -7 < 0; value: -3 a 2*v2 + v3 -3 = 0; value: 0 a 6*v0 + 3*v1 + 2*v2 -16 < 0; value: -2 a v3 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 3 1: 1 3 5 2: 2 3 3: 1 2 4 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 + 3*v2 -17 = 0; value: 0 a -5*v1 + 4*v2 + 2 <= 0; value: -2 a 5*v1 -1*v2 -16 = 0; value: 0 a 5*v0 -14 <= 0; value: -9 a -6*v1 + 5*v2 -5*v3 + 29 <= 0; value: 0 0: 1 4 1: 2 3 5 2: 1 2 3 5 3: 5 optimal: -6/5 a -6/5 <= 0; value: -6/5 d 5*v0 + 3*v2 -17 = 0; value: 0 a -11 <= 0; value: -11 d 5*v1 -1*v2 -16 = 0; value: 0 d 5*v0 -14 <= 0; value: 0 a -5*v3 + 68/5 <= 0; value: -57/5 0: 1 4 2 5 1: 2 3 5 2: 1 2 3 5 3: 5 0: 1 -> 14/5 1: 4 -> 17/5 2: 4 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -1*v1 -7 <= 0; value: -1 a -2*v0 + 3*v2 -3*v3 + 10 = 0; value: 0 a -5*v0 -6*v2 + 24 <= 0; value: -19 a 5*v1 -26 <= 0; value: -6 a -6*v1 + v2 + 2 < 0; value: -19 0: 1 2 3 1: 1 4 5 2: 2 3 5 3: 2 optimal: (502/77 -e*1) a + 502/77 < 0; value: 502/77 d 2*v0 -1*v1 -7 <= 0; value: 0 d -2*v0 + 3*v2 -3*v3 + 10 = 0; value: 0 d -77/12*v2 + 17/3 <= 0; value: 0 a -1817/77 < 0; value: -1817/77 d -17*v2 + 18*v3 -16 < 0; value: -885/77 0: 1 2 3 5 4 1: 1 4 5 2: 2 3 5 4 3: 2 3 5 4 0: 5 -> 1447/308 1: 4 -> 369/154 2: 3 -> 68/77 3: 3 -> 167/154 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -1*v1 + v2 + 4 <= 0; value: 0 a -5*v0 -4*v1 + 18 = 0; value: 0 a -6*v1 + 6*v3 -5 <= 0; value: -11 a -3*v0 -2*v2 + 2*v3 + 8 = 0; value: 0 a 3*v0 -6*v2 -1 < 0; value: -7 0: 1 2 4 5 1: 1 2 3 2: 1 4 5 3: 3 4 optimal: 33/14 a + 33/14 <= 0; value: 33/14 d -2*v0 -1*v1 + v2 + 4 <= 0; value: 0 d 9*v0 -4*v3 -14 = 0; value: 0 d 21*v0 -53 <= 0; value: 0 d -3*v0 -2*v2 + 2*v3 + 8 = 0; value: 0 a -109/14 < 0; value: -109/14 0: 1 2 4 5 3 1: 1 2 3 2: 1 4 5 2 3 3: 3 4 5 2 0: 2 -> 53/21 1: 2 -> 113/84 2: 2 -> 67/28 3: 1 -> 61/28 a 2*v0 -2*v1 <= 0; value: 8 a v1 -4*v2 + 12 = 0; value: 0 a -2*v0 + 5 < 0; value: -3 a -5*v0 -4*v2 + 2*v3 -5 < 0; value: -31 a v0 + v2 -20 < 0; value: -13 0: 2 3 4 1: 1 2: 1 3 4 3: 3 optimal: oo a 12*v0 -4*v3 + 34 < 0; value: 70 d v1 -4*v2 + 12 = 0; value: 0 a -2*v0 + 5 < 0; value: -3 d -5*v0 -4*v2 + 2*v3 -5 < 0; value: -4 a -1/4*v0 + 1/2*v3 -85/4 < 0; value: -83/4 0: 2 3 4 1: 1 2: 1 3 4 3: 3 4 0: 4 -> 4 1: 0 -> -27 2: 3 -> -15/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v3 + 1 <= 0; value: 0 a 6*v0 -4*v2 -19 < 0; value: -7 a -1*v1 + v2 -1 <= 0; value: -3 a -6*v0 + 3*v1 + 4*v2 -4 <= 0; value: -1 d <= 0; value: 0 0: 2 4 1: 3 4 2: 2 3 4 3: 1 optimal: oo a -1*v0 + 23/2 < 0; value: 15/2 a -1*v3 + 1 <= 0; value: 0 d 6*v0 -4*v2 -19 < 0; value: -7/2 d -1*v1 + v2 -1 <= 0; value: 0 a 9/2*v0 -161/4 < 0; value: -89/4 d <= 0; value: 0 0: 2 4 1: 3 4 2: 2 3 4 3: 1 0: 4 -> 4 1: 5 -> 9/8 2: 3 -> 17/8 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 5*v2 -2*v3 + 2 = 0; value: 0 a -5*v0 -4*v1 -6*v3 + 27 = 0; value: 0 a -6*v0 + 4*v1 -4*v3 -9 < 0; value: -3 a 2*v0 -5 <= 0; value: -3 0: 2 3 4 1: 2 3 2: 1 3: 1 2 3 optimal: oo a 9/2*v0 + 15/2*v2 -21/2 <= 0; value: -6 d 5*v2 -2*v3 + 2 = 0; value: 0 d -5*v0 -4*v1 -6*v3 + 27 = 0; value: 0 a -11*v0 -25*v2 + 8 < 0; value: -3 a 2*v0 -5 <= 0; value: -3 0: 2 3 4 1: 2 3 2: 1 3 3: 1 2 3 0: 1 -> 1 1: 4 -> 4 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v0 -3*v1 + v2 + 4 = 0; value: 0 a 5*v1 + 5*v2 -5*v3 -39 <= 0; value: -24 a -5*v1 -5*v2 + 33 <= 0; value: -2 a -4*v1 + v2 -4 <= 0; value: -17 a -2*v0 + 3*v2 + 5*v3 -32 <= 0; value: -13 0: 1 5 1: 1 2 3 4 2: 1 2 3 4 5 3: 2 5 optimal: oo a 3/2*v0 -53/10 <= 0; value: 11/5 d v0 -3*v1 + v2 + 4 = 0; value: 0 a -5*v3 -6 <= 0; value: -26 d -5/3*v0 -20/3*v2 + 79/3 <= 0; value: 0 a -5/4*v0 -213/20 <= 0; value: -169/10 a -11/4*v0 + 5*v3 -403/20 <= 0; value: -139/10 0: 1 5 3 4 2 1: 1 2 3 4 2: 1 2 3 4 5 3: 2 5 0: 5 -> 5 1: 4 -> 39/10 2: 3 -> 27/10 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + v2 -4 <= 0; value: -2 a 3*v0 -3*v3 + 5 <= 0; value: -4 a -1*v2 -1 <= 0; value: -3 a v2 -2*v3 + 4 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 5 1: 2: 1 3 4 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + v2 -4 <= 0; value: -2 a 3*v0 -3*v3 + 5 <= 0; value: -4 a -1*v2 -1 <= 0; value: -3 a v2 -2*v3 + 4 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 5 1: 2: 1 3 4 3: 2 4 0: 0 -> 0 1: 3 -> 3 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a 3*v0 + v2 -18 = 0; value: 0 a v1 -3*v3 -3 < 0; value: -8 a 6*v0 -37 <= 0; value: -7 a -4*v0 -6*v3 -27 <= 0; value: -59 a 3*v0 -3*v1 -22 <= 0; value: -10 0: 1 3 4 5 1: 2 5 2: 1 3: 2 4 optimal: 44/3 a + 44/3 <= 0; value: 44/3 a 3*v0 + v2 -18 = 0; value: 0 a v0 -3*v3 -31/3 < 0; value: -34/3 a 6*v0 -37 <= 0; value: -7 a -4*v0 -6*v3 -27 <= 0; value: -59 d 3*v0 -3*v1 -22 <= 0; value: 0 0: 1 3 4 5 2 1: 2 5 2: 1 3: 2 4 0: 5 -> 5 1: 1 -> -7/3 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -1*v1 + 2 = 0; value: 0 a 3*v1 + 3*v2 + 3*v3 -55 <= 0; value: -34 a -3*v0 + 2*v1 -3*v3 -6 <= 0; value: -20 a -2*v0 -2*v3 + 9 < 0; value: -3 0: 3 4 1: 1 2 3 2: 2 3: 2 3 4 optimal: oo a 2*v0 -4 <= 0; value: 6 d -1*v1 + 2 = 0; value: 0 a 3*v2 + 3*v3 -49 <= 0; value: -34 a -3*v0 -3*v3 -2 <= 0; value: -20 a -2*v0 -2*v3 + 9 < 0; value: -3 0: 3 4 1: 1 2 3 2: 2 3: 2 3 4 0: 5 -> 5 1: 2 -> 2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 + v3 -1 <= 0; value: -4 a v0 + 2*v2 -15 <= 0; value: -1 a -5*v0 -3*v3 <= 0; value: -26 a 3*v0 -1*v1 + 3*v2 -35 <= 0; value: -9 a -4*v2 + 3*v3 + 14 = 0; value: 0 0: 2 3 4 1: 4 2: 1 2 4 5 3: 1 3 5 optimal: oo a 7/2*v0 + 49 <= 0; value: 63 a -5/12*v0 -9/2 <= 0; value: -37/6 a -3/2*v0 -8 <= 0; value: -14 d -5*v0 -3*v3 <= 0; value: 0 d 3*v0 -1*v1 + 3*v2 -35 <= 0; value: 0 d -4*v2 + 3*v3 + 14 = 0; value: 0 0: 2 3 4 1 1: 4 2: 1 2 4 5 3: 1 3 5 2 0: 4 -> 4 1: 1 -> -55/2 2: 5 -> -3/2 3: 2 -> -20/3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 + 3*v2 + 3*v3 -35 <= 0; value: -19 a 4*v1 + v3 -54 < 0; value: -29 a -4*v0 -4*v3 -1 <= 0; value: -37 a v1 + 6*v3 -60 < 0; value: -25 a 3*v1 + 2*v3 -63 <= 0; value: -38 0: 3 1: 1 2 4 5 2: 1 3: 1 2 3 4 5 optimal: oo a 8*v0 -6*v2 + 143/2 <= 0; value: 183/2 d -1*v1 + 3*v2 + 3*v3 -35 <= 0; value: 0 a -13*v0 + 12*v2 -789/4 < 0; value: -901/4 d -4*v0 -4*v3 -1 <= 0; value: 0 a -9*v0 + 3*v2 -389/4 < 0; value: -509/4 a -11*v0 + 9*v2 -683/4 <= 0; value: -787/4 0: 3 2 4 5 1: 1 2 4 5 2: 1 2 4 5 3: 1 2 3 4 5 0: 4 -> 4 1: 5 -> -167/4 2: 2 -> 2 3: 5 -> -17/4 a 2*v0 -2*v1 <= 0; value: -4 a v0 + v2 -1 = 0; value: 0 a 4*v2 + 5*v3 -23 <= 0; value: -4 a 2*v2 -3*v3 + 7 = 0; value: 0 a 2*v1 + 2*v2 + 6*v3 -25 <= 0; value: -1 d <= 0; value: 0 0: 1 1: 4 2: 1 2 3 4 3: 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v0 + v2 -1 = 0; value: 0 a 4*v2 + 5*v3 -23 <= 0; value: -4 a 2*v2 -3*v3 + 7 = 0; value: 0 a 2*v1 + 2*v2 + 6*v3 -25 <= 0; value: -1 d <= 0; value: 0 0: 1 1: 4 2: 1 2 3 4 3: 2 3 4 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -5*v0 + 6*v3 -61 <= 0; value: -31 a v1 <= 0; value: 0 a v1 + v3 -5 = 0; value: 0 a -6*v0 + 5*v3 -54 < 0; value: -29 a -1*v0 -1*v1 <= 0; value: 0 0: 1 4 5 1: 2 3 5 2: 3: 1 3 4 optimal: 124 a + 124 <= 0; value: 124 d v0 -31 <= 0; value: 0 a -31 <= 0; value: -31 d v1 + v3 -5 = 0; value: 0 a -60 < 0; value: -60 d -1*v0 + v3 -5 <= 0; value: 0 0: 1 4 5 2 1: 2 3 5 2: 3: 1 3 4 5 2 0: 0 -> 31 1: 0 -> -31 2: 2 -> 2 3: 5 -> 36 a 2*v0 -2*v1 <= 0; value: 10 a -3*v0 -2*v1 + 4*v3 + 15 = 0; value: 0 a 6*v0 + 5*v2 -66 <= 0; value: -21 a 4*v2 -29 <= 0; value: -17 a 3*v0 -2*v3 -28 < 0; value: -13 a -1*v3 <= 0; value: 0 0: 1 2 4 1: 1 2: 2 3 3: 1 4 5 optimal: (95/3 -e*1) a + 95/3 < 0; value: 95/3 d -3*v0 -2*v1 + 4*v3 + 15 = 0; value: 0 d 6*v0 + 5*v2 -66 <= 0; value: 0 a -21 < 0; value: -21 d -5/2*v2 + 5 < 0; value: -5/4 d -1*v3 <= 0; value: 0 0: 1 2 4 1: 1 2: 2 3 4 3: 1 4 5 0: 5 -> 107/12 1: 0 -> -47/8 2: 3 -> 5/2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 -3*v1 + v3 + 1 <= 0; value: -3 a v0 <= 0; value: 0 a v0 -1*v1 + 3*v2 -13 <= 0; value: 0 a -1*v0 + 2*v1 + 3*v2 -19 = 0; value: 0 a -3*v0 + 4*v1 -10 <= 0; value: -2 0: 1 2 3 4 5 1: 1 3 4 5 2: 3 4 3: 1 optimal: -4 a -4 <= 0; value: -4 a v3 -5 <= 0; value: -3 d v0 <= 0; value: 0 d v0 -1*v1 + 3*v2 -13 <= 0; value: 0 d v0 + 9*v2 -45 = 0; value: 0 a -2 <= 0; value: -2 0: 1 2 3 4 5 1: 1 3 4 5 2: 3 4 1 5 3: 1 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -6*v3 + 13 <= 0; value: -17 a v0 + 3*v2 -5*v3 -2 <= 0; value: -7 a 5*v0 + v1 + 3*v3 -31 = 0; value: 0 a v3 -6 <= 0; value: -2 a 5*v3 -56 < 0; value: -36 0: 1 2 3 1: 3 2: 2 3: 1 2 3 4 5 optimal: oo a -36*v2 + 358 <= 0; value: 214 a 6*v2 -87 <= 0; value: -63 d v0 + 3*v2 -32 <= 0; value: 0 d 5*v0 + v1 + 3*v3 -31 = 0; value: 0 d v3 -6 <= 0; value: 0 a -26 < 0; value: -26 0: 1 2 3 1: 3 2: 2 1 3: 1 2 3 4 5 0: 3 -> 20 1: 4 -> -87 2: 4 -> 4 3: 4 -> 6 a 2*v0 -2*v1 <= 0; value: -10 a 3*v2 -4*v3 -10 <= 0; value: -23 a v2 + v3 -13 <= 0; value: -8 a -3*v0 -2*v1 -7 < 0; value: -17 a v1 -14 <= 0; value: -9 a v0 <= 0; value: 0 0: 3 5 1: 3 4 2: 1 2 3: 1 2 optimal: (7 -e*1) a + 7 < 0; value: 7 a 3*v2 -4*v3 -10 <= 0; value: -23 a v2 + v3 -13 <= 0; value: -8 d -3*v0 -2*v1 -7 < 0; value: -2 a -35/2 < 0; value: -35/2 d v0 <= 0; value: 0 0: 3 5 4 1: 3 4 2: 1 2 3: 1 2 0: 0 -> 0 1: 5 -> -5/2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v2 + 4*v3 + 1 < 0; value: -5 a v1 + v2 -17 <= 0; value: -9 a -3*v2 + 4*v3 -3 = 0; value: 0 a 5*v0 + 5*v1 -141 <= 0; value: -91 a 6*v0 -2*v3 -25 <= 0; value: -1 0: 4 5 1: 2 4 2: 1 2 3 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -6*v2 + 4*v3 + 1 < 0; value: -5 a v1 + v2 -17 <= 0; value: -9 a -3*v2 + 4*v3 -3 = 0; value: 0 a 5*v0 + 5*v1 -141 <= 0; value: -91 a 6*v0 -2*v3 -25 <= 0; value: -1 0: 4 5 1: 2 4 2: 1 2 3 3: 1 3 5 0: 5 -> 5 1: 5 -> 5 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a 5*v1 + 5*v2 + 2*v3 -62 < 0; value: -29 a -4*v1 -1*v2 + 4*v3 -8 <= 0; value: -3 a 5*v0 + 4*v1 -8 = 0; value: 0 a 3*v0 -6*v1 -2*v2 -4 <= 0; value: -22 a -3*v0 -1*v2 -3*v3 + 15 = 0; value: 0 0: 3 4 5 1: 1 2 3 4 2: 1 2 4 5 3: 1 2 5 optimal: (574/29 -e*1) a + 574/29 < 0; value: 574/29 d 58/21*v2 -382/7 < 0; value: -58/21 a -3203/87 < 0; value: -3203/87 d 5*v0 + 4*v1 -8 = 0; value: 0 d -11/2*v2 -21/2*v3 + 73/2 <= 0; value: 0 d -3*v0 -1*v2 -3*v3 + 15 = 0; value: 0 0: 3 4 5 2 1 1: 1 2 3 4 2: 1 2 4 5 3: 1 2 5 4 0: 0 -> 3104/609 1: 2 -> -2662/609 2: 3 -> 544/29 3: 4 -> -1289/203 a 2*v0 -2*v1 <= 0; value: 6 a v1 -2*v3 + 1 <= 0; value: -6 a v0 + 2*v1 + 4*v3 -53 <= 0; value: -31 a -3*v0 -7 <= 0; value: -19 a -1*v3 + 3 < 0; value: -1 a -3*v1 + 1 <= 0; value: -2 0: 2 3 1: 1 2 5 2: 3: 1 2 4 optimal: (80 -e*1) a + 80 < 0; value: 80 a -14/3 <= 0; value: -14/3 d v0 + 4*v3 -157/3 <= 0; value: 0 a -128 < 0; value: -128 d -1*v3 + 3 < 0; value: -1/2 d -3*v1 + 1 <= 0; value: 0 0: 2 3 1: 1 2 5 2: 3: 1 2 4 3 0: 4 -> 115/3 1: 1 -> 1/3 2: 1 -> 1 3: 4 -> 7/2 a 2*v0 -2*v1 <= 0; value: -4 a -4*v0 -1*v3 -3 <= 0; value: -11 a 3*v0 + 4*v1 + 5*v3 -53 < 0; value: -18 a v0 -2*v1 + 6*v3 -41 <= 0; value: -22 a 3*v0 + 2*v1 -1*v3 -8 <= 0; value: -3 a -3*v1 + 2*v3 <= 0; value: -1 0: 1 2 3 4 1: 2 3 4 5 2: 3: 1 2 3 4 5 optimal: 218/5 a + 218/5 <= 0; value: 218/5 d -4*v0 -1*v3 -3 <= 0; value: 0 a -1127/5 < 0; value: -1127/5 a -752/5 <= 0; value: -752/5 d 5/3*v0 -9 <= 0; value: 0 d -3*v1 + 2*v3 <= 0; value: 0 0: 1 2 3 4 1: 2 3 4 5 2: 3: 1 2 3 4 5 0: 1 -> 27/5 1: 3 -> -82/5 2: 5 -> 5 3: 4 -> -123/5 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 3*v1 -34 < 0; value: -15 a v1 + 4*v3 -13 < 0; value: -6 a -1*v3 + 1 <= 0; value: 0 a -2*v2 + 1 < 0; value: -9 a v0 + 2*v1 -23 <= 0; value: -15 0: 1 5 1: 1 2 5 2: 4 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 3*v1 -34 < 0; value: -15 a v1 + 4*v3 -13 < 0; value: -6 a -1*v3 + 1 <= 0; value: 0 a -2*v2 + 1 < 0; value: -9 a v0 + 2*v1 -23 <= 0; value: -15 0: 1 5 1: 1 2 5 2: 4 3: 2 3 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a v2 -2 <= 0; value: -1 a -3*v1 -2*v2 + 8 = 0; value: 0 a -3*v1 -2*v3 + 12 = 0; value: 0 a -3*v1 + v3 -2 < 0; value: -5 a -2*v3 -3 <= 0; value: -9 0: 1: 2 3 4 2: 1 2 3: 3 4 5 optimal: oo a 2*v0 -8/3 <= 0; value: -2/3 d v3 -4 <= 0; value: 0 d -3*v1 -2*v2 + 8 = 0; value: 0 d 2*v2 -2*v3 + 4 = 0; value: 0 a -2 < 0; value: -2 a -11 <= 0; value: -11 0: 1: 2 3 4 2: 1 2 3 4 3: 3 4 5 1 0: 1 -> 1 1: 2 -> 4/3 2: 1 -> 2 3: 3 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -5*v2 -4*v3 -34 < 0; value: -71 a -1*v0 -1*v2 + 7 = 0; value: 0 a -3*v1 + 2 < 0; value: -1 a v0 -2*v2 + 8 = 0; value: 0 a -1*v3 + 2 <= 0; value: -1 0: 2 4 1: 3 2: 1 2 4 3: 1 5 optimal: (8/3 -e*1) a + 8/3 < 0; value: 8/3 a -4*v3 -59 < 0; value: -71 d -1*v0 -1*v2 + 7 = 0; value: 0 d -3*v1 + 2 < 0; value: -1/2 d -3*v2 + 15 = 0; value: 0 a -1*v3 + 2 <= 0; value: -1 0: 2 4 1: 3 2: 1 2 4 3: 1 5 0: 2 -> 2 1: 1 -> 5/6 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + 2*v1 + v2 -28 <= 0; value: -8 a -1*v3 <= 0; value: 0 a -5*v1 + 4*v2 + 18 < 0; value: -2 a -4*v0 -1*v1 + 5*v3 + 20 = 0; value: 0 a 2*v0 -1*v2 -1*v3 -15 <= 0; value: -7 0: 1 4 5 1: 1 3 4 2: 1 3 5 3: 2 4 5 optimal: (75/7 -e*1) a + 75/7 < 0; value: 75/7 a -255/14 < 0; value: -255/14 d -1*v3 <= 0; value: 0 d 20*v0 + 4*v2 -82 < 0; value: -75/7 d -4*v0 -1*v1 + 5*v3 + 20 = 0; value: 0 d -7/5*v2 -34/5 <= 0; value: 0 0: 1 4 5 3 1: 1 3 4 2: 1 3 5 3: 2 4 5 3 1 0: 4 -> 127/28 1: 4 -> 13/7 2: 0 -> -34/7 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 2*v1 -11 <= 0; value: -7 a 2*v0 + 2*v1 -15 < 0; value: -5 a -1*v0 -6*v2 -3 < 0; value: -16 a -2*v0 -1*v2 -1*v3 <= 0; value: -4 a -5*v0 + 2*v1 -2*v2 <= 0; value: -1 0: 1 2 3 4 5 1: 1 2 5 2: 3 4 5 3: 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 2*v1 -11 <= 0; value: -7 a 2*v0 + 2*v1 -15 < 0; value: -5 a -1*v0 -6*v2 -3 < 0; value: -16 a -2*v0 -1*v2 -1*v3 <= 0; value: -4 a -5*v0 + 2*v1 -2*v2 <= 0; value: -1 0: 1 2 3 4 5 1: 1 2 5 2: 3 4 5 3: 4 0: 1 -> 1 1: 4 -> 4 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 + 2*v2 -14 = 0; value: 0 a -1*v3 <= 0; value: 0 a v0 -1*v1 -2 < 0; value: -1 a -1*v0 -1*v1 + 6 <= 0; value: -3 a -4*v0 -4*v1 + 3 < 0; value: -33 0: 3 4 5 1: 1 3 4 5 2: 1 3: 2 optimal: (4 -e*1) a + 4 < 0; value: 4 d 3*v1 + 2*v2 -14 = 0; value: 0 a -1*v3 <= 0; value: 0 d v0 + 2/3*v2 -20/3 < 0; value: -1/2 a -2*v0 + 8 <= 0; value: -2 a -8*v0 + 11 <= 0; value: -29 0: 3 4 5 1: 1 3 4 5 2: 1 3 4 5 3: 2 0: 5 -> 5 1: 4 -> 7/2 2: 1 -> 7/4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a v1 -6*v3 -1 = 0; value: 0 a -6*v0 + 3*v2 + 4 <= 0; value: -20 a -2*v0 -5*v1 -10 <= 0; value: -23 a -1*v3 <= 0; value: 0 d <= 0; value: 0 0: 2 3 1: 1 3 2: 2 3: 1 4 optimal: oo a 2*v0 -2 <= 0; value: 6 d v1 -6*v3 -1 = 0; value: 0 a -6*v0 + 3*v2 + 4 <= 0; value: -20 a -2*v0 -15 <= 0; value: -23 d -1*v3 <= 0; value: 0 d <= 0; value: 0 0: 2 3 1: 1 3 2: 2 3: 1 4 3 0: 4 -> 4 1: 1 -> 1 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 7 <= 0; value: -1 a -1*v2 + 4 <= 0; value: -1 a 3*v0 -1*v3 -11 <= 0; value: -4 a -3*v3 -14 <= 0; value: -29 d <= 0; value: 0 0: 1 3 1: 2: 2 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 7 <= 0; value: -1 a -1*v2 + 4 <= 0; value: -1 a 3*v0 -1*v3 -11 <= 0; value: -4 a -3*v3 -14 <= 0; value: -29 d <= 0; value: 0 0: 1 3 1: 2: 2 3: 3 4 0: 4 -> 4 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -6*v2 -2*v3 + 1 <= 0; value: -3 a -3*v0 -2*v1 + 13 = 0; value: 0 a -3*v1 -1*v2 -4 < 0; value: -10 a 6*v0 + 4*v3 -55 <= 0; value: -29 a -1*v1 + 4*v2 + 2 <= 0; value: 0 0: 2 4 1: 2 3 5 2: 1 3 5 3: 1 4 optimal: (478/39 -e*1) a + 478/39 < 0; value: 478/39 d -6*v2 -2*v3 + 1 <= 0; value: 0 d -3*v0 -2*v1 + 13 = 0; value: 0 d 13/3*v3 -73/6 < 0; value: -7/4 a -175/13 <= 0; value: -175/13 d 3/2*v0 + 4*v2 -9/2 <= 0; value: 0 0: 2 4 3 5 1: 2 3 5 2: 1 3 5 4 3: 1 4 3 0: 3 -> 61/13 1: 2 -> -7/13 2: 0 -> -33/52 3: 2 -> 125/52 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a -2*v2 + 3*v3 -22 <= 0; value: -10 a 2*v1 + 4*v2 -2*v3 -1 <= 0; value: -7 a 6*v0 + v2 + 6*v3 -106 < 0; value: -64 0: 5 1: 4 2: 1 2 3 4 5 3: 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a -2*v2 + 3*v3 -22 <= 0; value: -10 a 2*v1 + 4*v2 -2*v3 -1 <= 0; value: -7 a 6*v0 + v2 + 6*v3 -106 < 0; value: -64 0: 5 1: 4 2: 1 2 3 4 5 3: 3 4 5 0: 3 -> 3 1: 1 -> 1 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + 2*v3 -9 < 0; value: -3 a -4*v0 + v2 -1 <= 0; value: 0 a v0 -1 <= 0; value: 0 a 3*v2 -37 <= 0; value: -22 a -2*v0 -4*v1 + 5*v2 -66 <= 0; value: -43 0: 2 3 5 1: 1 5 2: 2 4 5 3: 1 optimal: oo a 3*v0 -5/2*v2 + 33 < 0; value: 47/2 d -1*v1 + 2*v3 -9 < 0; value: -1 a -4*v0 + v2 -1 <= 0; value: 0 a v0 -1 <= 0; value: 0 a 3*v2 -37 <= 0; value: -22 d -2*v0 + 5*v2 -8*v3 -30 <= 0; value: 0 0: 2 3 5 1: 1 5 2: 2 4 5 3: 1 5 0: 1 -> 1 1: 0 -> -39/4 2: 5 -> 5 3: 3 -> -7/8 a 2*v0 -2*v1 <= 0; value: 2 a 3*v2 -7 <= 0; value: -4 a 2*v0 -3*v3 -5 <= 0; value: -13 a -6*v0 + v3 -5 <= 0; value: -13 a -1*v0 -5*v1 + 3*v2 -2 <= 0; value: -6 a 2*v0 -5*v2 -2*v3 + 9 <= 0; value: 0 0: 2 3 4 5 1: 4 2: 1 4 5 3: 2 3 5 optimal: oo a 24/5*v0 + 26/25 <= 0; value: 266/25 a -6*v0 -38/5 <= 0; value: -98/5 a -16*v0 -20 <= 0; value: -52 d -6*v0 + v3 -5 <= 0; value: 0 d -1*v0 -5*v1 + 3*v2 -2 <= 0; value: 0 d 2*v0 -5*v2 -2*v3 + 9 <= 0; value: 0 0: 2 3 4 5 1 1: 4 2: 1 4 5 3: 2 3 5 1 0: 2 -> 2 1: 1 -> -83/25 2: 1 -> -21/5 3: 4 -> 17 a 2*v0 -2*v1 <= 0; value: 0 a v3 -4 = 0; value: 0 a -5*v0 -4*v1 -3*v3 -10 < 0; value: -40 a 4*v1 + 2*v2 -25 <= 0; value: -11 a v1 + 3*v2 + 5*v3 -66 <= 0; value: -35 a -5*v0 -1*v3 + 14 = 0; value: 0 0: 2 5 1: 2 3 4 2: 3 4 3: 1 2 4 5 optimal: (20 -e*1) a + 20 < 0; value: 20 d v3 -4 = 0; value: 0 d -5*v0 -4*v1 -3*v3 -10 < 0; value: -4 a 2*v2 -57 < 0; value: -51 a 3*v2 -54 < 0; value: -45 d -5*v0 + 10 = 0; value: 0 0: 2 5 3 4 1: 2 3 4 2: 3 4 3: 1 2 4 5 3 0: 2 -> 2 1: 2 -> -7 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 -2 <= 0; value: -5 a -3*v3 + 7 <= 0; value: -5 a -2*v1 -3*v2 -18 <= 0; value: -39 a -4*v2 -9 <= 0; value: -29 a v0 -1*v3 + 2 = 0; value: 0 0: 5 1: 1 3 2: 3 4 3: 2 5 optimal: oo a 2*v3 <= 0; value: 8 d -1*v1 -2 <= 0; value: 0 a -3*v3 + 7 <= 0; value: -5 a -3*v2 -14 <= 0; value: -29 a -4*v2 -9 <= 0; value: -29 d v0 -1*v3 + 2 = 0; value: 0 0: 5 1: 1 3 2: 3 4 3: 2 5 0: 2 -> 2 1: 3 -> -2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -3*v3 -15 <= 0; value: -38 a 6*v3 -47 < 0; value: -17 a -3*v0 + v2 + 4 <= 0; value: -4 a -5*v0 + 3 <= 0; value: -17 a v0 -1*v2 -2*v3 + 2 <= 0; value: -8 0: 1 3 4 5 1: 2: 3 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -3*v3 -15 <= 0; value: -38 a 6*v3 -47 < 0; value: -17 a -3*v0 + v2 + 4 <= 0; value: -4 a -5*v0 + 3 <= 0; value: -17 a v0 -1*v2 -2*v3 + 2 <= 0; value: -8 0: 1 3 4 5 1: 2: 3 5 3: 1 2 5 0: 4 -> 4 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 5*v0 + v1 + 6*v2 -23 <= 0; value: -1 a v2 -3 = 0; value: 0 a -1*v0 -1*v2 + 2*v3 -5 = 0; value: 0 a -5*v2 -1*v3 + 19 = 0; value: 0 a -1*v0 -1*v2 <= 0; value: -3 0: 1 3 5 1: 1 2: 1 2 3 4 5 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a 5*v0 + v1 + 6*v2 -23 <= 0; value: -1 a v2 -3 = 0; value: 0 a -1*v0 -1*v2 + 2*v3 -5 = 0; value: 0 a -5*v2 -1*v3 + 19 = 0; value: 0 a -1*v0 -1*v2 <= 0; value: -3 0: 1 3 5 1: 1 2: 1 2 3 4 5 3: 3 4 0: 0 -> 0 1: 4 -> 4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 <= 0; value: -4 a -3*v0 + 3*v2 + 1 < 0; value: -2 a -5*v0 -2*v1 + 23 = 0; value: 0 a -2*v0 + 5*v1 -37 <= 0; value: -23 a -5*v2 + 6*v3 + 2 <= 0; value: -2 0: 2 3 4 1: 1 3 4 2: 2 5 3: 5 optimal: 46/5 a + 46/5 <= 0; value: 46/5 d 5/2*v0 -23/2 <= 0; value: 0 a 3*v2 -64/5 < 0; value: -34/5 d -5*v0 -2*v1 + 23 = 0; value: 0 a -231/5 <= 0; value: -231/5 a -5*v2 + 6*v3 + 2 <= 0; value: -2 0: 2 3 4 1 1: 1 3 4 2: 2 5 3: 5 0: 3 -> 23/5 1: 4 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a -6*v1 + 5*v2 -4*v3 + 1 <= 0; value: -25 a 2*v2 -1*v3 -1 = 0; value: 0 a -1*v3 + 3 <= 0; value: 0 a 5*v0 + 3*v3 -17 <= 0; value: -8 a v0 + 6*v3 -27 <= 0; value: -9 0: 4 5 1: 1 2: 1 2 3: 1 2 3 4 5 optimal: 139/54 a + 139/54 <= 0; value: 139/54 d -6*v1 + 5*v2 -4*v3 + 1 <= 0; value: 0 d 2*v2 -1*v3 -1 = 0; value: 0 a -37/27 <= 0; value: -37/27 d 9/2*v0 -7/2 <= 0; value: 0 d v0 + 12*v2 -33 <= 0; value: 0 0: 4 5 3 1: 1 2: 1 2 4 5 3 3: 1 2 3 4 5 0: 0 -> 7/9 1: 4 -> -55/108 2: 2 -> 145/54 3: 3 -> 118/27 a 2*v0 -2*v1 <= 0; value: 0 a v2 -4 = 0; value: 0 a 3*v2 -32 < 0; value: -20 a 3*v0 -4*v2 + 3 <= 0; value: -4 a v1 + 3*v3 -13 <= 0; value: -4 a -2*v0 -1*v1 -3*v3 -5 <= 0; value: -20 0: 3 5 1: 4 5 2: 1 2 3 3: 4 5 optimal: oo a 6*v0 + 6*v3 + 10 <= 0; value: 40 a v2 -4 = 0; value: 0 a 3*v2 -32 < 0; value: -20 a 3*v0 -4*v2 + 3 <= 0; value: -4 a -2*v0 -18 <= 0; value: -24 d -2*v0 -1*v1 -3*v3 -5 <= 0; value: 0 0: 3 5 4 1: 4 5 2: 1 2 3 3: 4 5 0: 3 -> 3 1: 3 -> -17 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -5*v2 -1*v3 -5 < 0; value: -3 a -1*v1 -5*v3 + 4 = 0; value: 0 a 2*v1 -21 < 0; value: -13 a -4*v1 + 5*v3 -12 <= 0; value: -28 a -5*v0 + 5*v2 -3*v3 + 1 <= 0; value: -4 0: 1 5 1: 2 3 4 2: 1 5 3: 1 2 4 5 optimal: oo a 5*v2 + 233/25 < 0; value: 233/25 d 2*v0 -5*v2 -153/25 < 0; value: -2 d -1*v1 -5*v3 + 4 = 0; value: 0 a -121/5 < 0; value: -121/5 d 25*v3 -28 <= 0; value: 0 a -15/2*v2 -883/50 < 0; value: -883/50 0: 1 5 1: 2 3 4 2: 1 5 3: 1 2 4 5 3 0: 1 -> 103/50 1: 4 -> -8/5 2: 0 -> 0 3: 0 -> 28/25 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 -3 <= 0; value: -8 a v1 -5*v2 + 6*v3 -5 < 0; value: -19 a 4*v3 -5 <= 0; value: -1 a -1*v1 -4 < 0; value: -9 a 4*v0 + 3*v3 -34 <= 0; value: -11 0: 5 1: 1 2 4 2: 2 3: 2 3 5 optimal: oo a -3/2*v3 + 23 <= 0; value: 43/2 d -1*v1 -3 <= 0; value: 0 a -5*v2 + 6*v3 -8 < 0; value: -27 a 4*v3 -5 <= 0; value: -1 a -1 < 0; value: -1 d 4*v0 + 3*v3 -34 <= 0; value: 0 0: 5 1: 1 2 4 2: 2 3: 2 3 5 0: 5 -> 31/4 1: 5 -> -3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 5*v2 -14 <= 0; value: -8 a 2*v1 + 2*v2 -23 < 0; value: -11 a 5*v1 + 2*v2 + 2*v3 -60 < 0; value: -39 a v2 -5 <= 0; value: -2 a -1*v2 + 1 < 0; value: -2 0: 1 1: 2 3 2: 1 2 3 4 5 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 5*v2 -14 <= 0; value: -8 a 2*v1 + 2*v2 -23 < 0; value: -11 a 5*v1 + 2*v2 + 2*v3 -60 < 0; value: -39 a v2 -5 <= 0; value: -2 a -1*v2 + 1 < 0; value: -2 0: 1 1: 2 3 2: 1 2 3 4 5 3: 3 0: 3 -> 3 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + 2*v1 + 4*v2 -4 <= 0; value: -9 a 4*v1 -6*v3 + 1 <= 0; value: -3 a v1 + 2*v2 + 2*v3 -6 = 0; value: 0 a -3*v1 + 5 <= 0; value: -1 a -3*v2 + v3 -3 <= 0; value: -1 0: 1 1: 1 2 3 4 2: 1 3 5 3: 2 3 5 optimal: oo a 2*v0 -10/3 <= 0; value: 8/3 a -3*v0 + 4*v2 -2/3 <= 0; value: -29/3 a 6*v2 -16/3 <= 0; value: -16/3 d v1 + 2*v2 + 2*v3 -6 = 0; value: 0 d 6*v2 + 6*v3 -13 <= 0; value: 0 a -4*v2 -5/6 <= 0; value: -5/6 0: 1 1: 1 2 3 4 2: 1 3 5 4 2 1 3: 2 3 5 4 1 0: 3 -> 3 1: 2 -> 5/3 2: 0 -> 0 3: 2 -> 13/6 a 2*v0 -2*v1 <= 0; value: -2 a v1 -6*v2 -1*v3 -8 < 0; value: -5 a -2*v0 -3*v2 + 4 = 0; value: 0 a -6*v0 -1*v2 -3*v3 + 12 = 0; value: 0 a v0 -3*v1 + 5 < 0; value: -2 a 2*v0 + 5*v1 -19 = 0; value: 0 0: 2 3 4 5 1: 1 4 5 2: 1 2 3 3: 1 3 optimal: (6/11 -e*1) a + 6/11 < 0; value: 6/11 a -1/9 <= 0; value: -1/9 d -2*v0 -3*v2 + 4 = 0; value: 0 d 8*v2 -3*v3 = 0; value: 0 d -99/80*v3 -2 < 0; value: -1 d 2*v0 + 5*v1 -19 = 0; value: 0 0: 2 3 4 5 1 1: 1 4 5 2: 1 2 3 4 3: 1 3 4 0: 2 -> 27/11 1: 3 -> 31/11 2: 0 -> -10/33 3: 0 -> -80/99 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 3*v2 -9 < 0; value: -1 a -6*v0 + v1 -1 = 0; value: 0 a -3*v0 -1*v2 -3*v3 + 7 = 0; value: 0 a -2*v1 -1*v2 + 3 <= 0; value: 0 0: 2 3 1: 1 2 4 2: 1 3 4 3: 3 optimal: (-1/3 -e*1) a -1/3 < 0; value: -1/3 d 1/2*v2 -3/2 < 0; value: -1/2 d -6*v0 + v1 -1 = 0; value: 0 d -3*v0 -1*v2 -3*v3 + 7 = 0; value: 0 d 3*v2 + 12*v3 -27 <= 0; value: 0 0: 2 3 4 1 1: 1 2 4 2: 1 3 4 3: 3 4 1 0: 0 -> -1/12 1: 1 -> 1/2 2: 1 -> 2 3: 2 -> 7/4 a 2*v0 -2*v1 <= 0; value: -6 a v0 -6*v1 -4*v3 + 8 < 0; value: -27 a 2*v0 -4*v1 -4*v3 -17 <= 0; value: -43 a -3*v1 -2*v2 + 20 = 0; value: 0 a -1*v0 -6*v2 -4*v3 + 23 < 0; value: -14 a 4*v0 -5*v1 -4*v3 -21 < 0; value: -49 0: 1 2 4 5 1: 1 2 3 5 2: 3 4 3: 1 2 4 5 optimal: oo a 5/3*v0 + 4/3*v3 -8/3 < 0; value: 3 d v0 + 4*v2 -4*v3 -32 < 0; value: -4 a 4/3*v0 -4/3*v3 -67/3 <= 0; value: -25 d -3*v1 -2*v2 + 20 = 0; value: 0 a 1/2*v0 -10*v3 -25 < 0; value: -109/2 a 19/6*v0 -2/3*v3 -83/3 <= 0; value: -53/2 0: 1 2 4 5 1: 1 2 3 5 2: 3 4 2 1 5 3: 1 2 4 5 0: 1 -> 1 1: 4 -> 1/6 2: 4 -> 39/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 2*v2 + v3 -57 <= 0; value: -18 a -6*v0 -3*v2 -38 < 0; value: -77 a 4*v1 + v2 -34 <= 0; value: -17 a 4*v1 -4*v2 + 1 <= 0; value: -7 d <= 0; value: 0 0: 1 2 1: 3 4 2: 1 2 3 4 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 2*v2 + v3 -57 <= 0; value: -18 a -6*v0 -3*v2 -38 < 0; value: -77 a 4*v1 + v2 -34 <= 0; value: -17 a 4*v1 -4*v2 + 1 <= 0; value: -7 d <= 0; value: 0 0: 1 2 1: 3 4 2: 1 2 3 4 3: 1 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 a 5*v0 -1*v2 -1*v3 -4 <= 0; value: 0 a -2*v1 -3*v2 -14 <= 0; value: -33 a v3 -2 <= 0; value: -1 a 3*v1 -13 <= 0; value: -7 0: 1 2 1: 3 5 2: 2 3 3: 2 4 optimal: oo a 2*v0 + 3*v2 + 14 <= 0; value: 33 a -1*v0 + 2 = 0; value: 0 a 5*v0 -1*v2 -1*v3 -4 <= 0; value: 0 d -2*v1 -3*v2 -14 <= 0; value: 0 a v3 -2 <= 0; value: -1 a -9/2*v2 -34 <= 0; value: -113/2 0: 1 2 1: 3 5 2: 2 3 5 3: 2 4 0: 2 -> 2 1: 2 -> -29/2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 + 4*v2 + 3*v3 -90 <= 0; value: -48 a 4*v2 -35 <= 0; value: -15 a 4*v2 -5*v3 <= 0; value: 0 a v2 -3*v3 <= 0; value: -7 a v0 + 3*v3 -25 <= 0; value: -8 0: 5 1: 1 2: 1 2 3 4 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 + 4*v2 + 3*v3 -90 <= 0; value: -48 a 4*v2 -35 <= 0; value: -15 a 4*v2 -5*v3 <= 0; value: 0 a v2 -3*v3 <= 0; value: -7 a v0 + 3*v3 -25 <= 0; value: -8 0: 5 1: 1 2: 1 2 3 4 3: 1 3 4 5 0: 5 -> 5 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -2*v2 -1 <= 0; value: -3 a -3*v1 -1*v3 + 2 < 0; value: -8 a -3*v0 -4*v1 + 23 = 0; value: 0 a -2*v1 + 2*v3 -9 <= 0; value: -5 a -1*v3 -2 <= 0; value: -6 0: 3 1: 2 3 4 2: 1 3: 2 4 5 optimal: (73/4 -e*1) a + 73/4 < 0; value: 73/4 a -2*v2 -1 <= 0; value: -3 d -4*v3 + 31/2 < 0; value: -1/4 d -3*v0 -4*v1 + 23 = 0; value: 0 d 3/2*v0 + 2*v3 -41/2 <= 0; value: 0 a -47/8 <= 0; value: -47/8 0: 3 2 4 1: 2 3 4 2: 1 3: 2 4 5 0: 5 -> 101/12 1: 2 -> -9/16 2: 1 -> 1 3: 4 -> 63/16 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 <= 0; value: -1 a -1*v3 + 2 = 0; value: 0 a -3*v0 + 2*v2 -6 <= 0; value: -1 a -5*v0 + 5*v2 + 2*v3 -51 < 0; value: -32 a -1*v0 + 1 = 0; value: 0 0: 3 4 5 1: 1 2: 3 4 3: 2 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v1 <= 0; value: 0 a -1*v3 + 2 = 0; value: 0 a 2*v2 -9 <= 0; value: -1 a 5*v2 + 2*v3 -56 < 0; value: -32 d -1*v0 + 1 = 0; value: 0 0: 3 4 5 1: 1 2: 3 4 3: 2 4 0: 1 -> 1 1: 1 -> 0 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 10 a -4*v0 -2*v1 + 15 <= 0; value: -5 a -4*v2 -5*v3 + 25 = 0; value: 0 a 2*v0 -4*v1 + 6*v2 -41 < 0; value: -1 a -1*v1 <= 0; value: 0 a -3*v1 + 2*v2 -5*v3 -10 < 0; value: -5 0: 1 3 1: 1 3 4 5 2: 2 3 5 3: 2 5 optimal: oo a 15/2*v3 + 7/2 < 0; value: 11 a -15*v3 + 8 < 0; value: -7 d -4*v2 -5*v3 + 25 = 0; value: 0 d 2*v0 + 6*v2 -41 < 0; value: -1/2 d -1*v1 <= 0; value: 0 a -15/2*v3 + 5/2 < 0; value: -5 0: 1 3 1: 1 3 4 5 2: 2 3 5 1 3: 2 5 1 0: 5 -> 21/4 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 3 = 0; value: 0 a -1*v1 -1*v2 -1 < 0; value: -3 a -4*v0 -3*v3 -20 <= 0; value: -41 a 5*v0 -3*v2 -33 <= 0; value: -21 a 6*v1 + 2*v2 -3*v3 + 1 <= 0; value: 0 0: 1 3 4 1: 2 5 2: 2 4 5 3: 3 5 optimal: oo a 2*v0 + 2*v2 + 2 < 0; value: 10 a -1*v0 + 3 = 0; value: 0 d -1*v1 -1*v2 -1 < 0; value: -1 a -4*v0 -3*v3 -20 <= 0; value: -41 a 5*v0 -3*v2 -33 <= 0; value: -21 a -4*v2 -3*v3 -5 < 0; value: -18 0: 1 3 4 1: 2 5 2: 2 4 5 3: 3 5 0: 3 -> 3 1: 1 -> -1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 2*v3 -4 <= 0; value: -13 a -1*v1 -1*v2 + 2 = 0; value: 0 a -1*v1 + 1 = 0; value: 0 a 2*v0 -4*v2 -11 <= 0; value: -5 a -2*v1 + 1 <= 0; value: -1 0: 1 4 1: 2 3 5 2: 2 4 3: 1 optimal: 13 a + 13 <= 0; value: 13 a 2*v3 -53/2 <= 0; value: -41/2 d -1*v1 -1*v2 + 2 = 0; value: 0 d v2 -1 = 0; value: 0 d 2*v0 -15 <= 0; value: 0 a -1 <= 0; value: -1 0: 1 4 1: 2 3 5 2: 2 4 3 5 3: 1 0: 5 -> 15/2 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 5*v2 -17 <= 0; value: -3 a -3*v0 + 4*v1 + 4*v3 -7 <= 0; value: 0 a 4*v0 -6*v1 -1*v3 + 3 <= 0; value: -9 a v1 -3*v3 -4 = 0; value: 0 a -1*v0 -5*v3 + 3 = 0; value: 0 0: 2 3 5 1: 1 2 3 4 2: 1 3: 2 3 4 5 optimal: 22/13 a + 22/13 <= 0; value: 22/13 a 5*v2 -178/13 <= 0; value: -48/13 a -93/13 <= 0; value: -93/13 d 39/5*v0 -162/5 <= 0; value: 0 d v1 -3*v3 -4 = 0; value: 0 d -1*v0 -5*v3 + 3 = 0; value: 0 0: 2 3 5 1 1: 1 2 3 4 2: 1 3: 2 3 4 5 1 0: 3 -> 54/13 1: 4 -> 43/13 2: 2 -> 2 3: 0 -> -3/13 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 -5*v3 + 30 = 0; value: 0 a v2 -4 = 0; value: 0 a -5*v1 + v2 + 21 = 0; value: 0 a -3*v0 -5*v1 -2*v2 + 48 = 0; value: 0 a -1*v0 + v1 = 0; value: 0 0: 1 4 5 1: 3 4 5 2: 2 3 4 3: 1 optimal: 0 a <= 0; value: 0 d -1*v0 -5*v3 + 30 = 0; value: 0 d v2 -4 = 0; value: 0 d -5*v1 + v2 + 21 = 0; value: 0 d 15*v3 -75 = 0; value: 0 a = 0; value: 0 0: 1 4 5 1: 3 4 5 2: 2 3 4 5 3: 1 4 5 0: 5 -> 5 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 + v1 -1*v3 -13 = 0; value: 0 a -1*v0 + 5*v1 -9 <= 0; value: -4 a 6*v1 -31 <= 0; value: -19 a 2*v1 -3*v2 + 5 = 0; value: 0 0: 1 2 1: 1 2 3 4 2: 4 3: 1 optimal: oo a 2*v0 -3*v2 + 5 <= 0; value: 6 d 3*v0 + v1 -1*v3 -13 = 0; value: 0 a -1*v0 + 15/2*v2 -43/2 <= 0; value: -4 a 9*v2 -46 <= 0; value: -19 d -6*v0 -3*v2 + 2*v3 + 31 = 0; value: 0 0: 1 2 4 3 1: 1 2 3 4 2: 4 2 3 3: 1 4 2 3 0: 5 -> 5 1: 2 -> 2 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 -3*v3 <= 0; value: 0 a -5*v1 -4*v3 -1 < 0; value: -6 a -6*v0 + 6*v1 + v2 -18 <= 0; value: -7 a 4*v0 -3*v3 <= 0; value: 0 a 2*v0 -2*v1 -3*v2 + 2 < 0; value: -15 0: 1 3 4 5 1: 2 3 5 2: 3 5 3: 1 2 4 optimal: oo a 3*v2 -2 < 0; value: 13 a -5/4*v0 -45/8*v2 + 9/2 <= 0; value: -189/8 d -5*v1 -4*v3 -1 < 0; value: -5 a -8*v2 -12 < 0; value: -52 a 31/4*v0 -45/8*v2 + 9/2 <= 0; value: -189/8 d 2*v0 -3*v2 + 8/5*v3 + 12/5 <= 0; value: 0 0: 1 3 4 5 1: 2 3 5 2: 3 5 1 4 3: 1 2 4 5 3 0: 0 -> 0 1: 1 -> -11/2 2: 5 -> 5 3: 0 -> 63/8 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 <= 0; value: 0 a v2 -2 <= 0; value: -1 a -6*v1 + 5*v2 <= 0; value: -1 a 6*v0 -6*v2 + v3 <= 0; value: -2 a -3*v0 + 4*v1 -11 <= 0; value: -7 0: 1 4 5 1: 3 5 2: 2 3 4 3: 4 optimal: oo a 1/3*v0 -5/18*v3 <= 0; value: -10/9 a -1*v0 <= 0; value: 0 a v0 + 1/6*v3 -2 <= 0; value: -4/3 d -6*v1 + 5*v2 <= 0; value: 0 d 6*v0 -6*v2 + v3 <= 0; value: 0 a 1/3*v0 + 5/9*v3 -11 <= 0; value: -79/9 0: 1 4 5 2 1: 3 5 2: 2 3 4 5 3: 4 2 5 0: 0 -> 0 1: 1 -> 5/9 2: 1 -> 2/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 2*v1 + 5*v3 + 7 <= 0; value: 0 a -5*v0 + 6*v1 -9 = 0; value: 0 a -1*v0 + 5*v2 -46 < 0; value: -24 a -1*v0 + v1 -2 <= 0; value: -1 a v1 -4 = 0; value: 0 0: 1 2 3 4 1: 1 2 4 5 2: 3 3: 1 optimal: -2 a -2 <= 0; value: -2 a 5*v3 <= 0; value: 0 d -5*v0 + 6*v1 -9 = 0; value: 0 a 5*v2 -49 < 0; value: -24 a -1 <= 0; value: -1 d 5/6*v0 -5/2 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 4 5 2: 3 3: 1 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 2*v2 -6*v3 + 3 <= 0; value: -1 a -4*v2 -3 <= 0; value: -7 a v0 -1 <= 0; value: 0 a 6*v0 -5*v1 -8 < 0; value: -2 a -1*v2 + 1 <= 0; value: 0 0: 3 4 1: 4 2: 1 2 5 3: 1 optimal: oo a -2/5*v0 + 16/5 < 0; value: 14/5 a 2*v2 -6*v3 + 3 <= 0; value: -1 a -4*v2 -3 <= 0; value: -7 a v0 -1 <= 0; value: 0 d 6*v0 -5*v1 -8 < 0; value: -1 a -1*v2 + 1 <= 0; value: 0 0: 3 4 1: 4 2: 1 2 5 3: 1 0: 1 -> 1 1: 0 -> -1/5 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -2*v2 + 1 <= 0; value: -7 a -5*v0 + 6*v1 + 4*v3 -13 = 0; value: 0 a 2*v0 -1*v3 -5 = 0; value: 0 a 2*v0 + 4*v1 -51 <= 0; value: -29 a -1*v2 + 4 = 0; value: 0 0: 2 3 4 1: 2 4 2: 1 5 3: 2 3 optimal: oo a 3*v0 -11 <= 0; value: 4 a -2*v2 + 1 <= 0; value: -7 d -5*v0 + 6*v1 + 4*v3 -13 = 0; value: 0 d 2*v0 -1*v3 -5 = 0; value: 0 a -29 <= 0; value: -29 a -1*v2 + 4 = 0; value: 0 0: 2 3 4 1: 2 4 2: 1 5 3: 2 3 4 0: 5 -> 5 1: 3 -> 3 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -5*v0 + 4*v1 + v2 -43 < 0; value: -27 a v2 + 6*v3 -32 <= 0; value: -21 a -3*v0 -4*v1 + 19 = 0; value: 0 a 3*v0 + 4*v1 -38 < 0; value: -19 a v3 -1 = 0; value: 0 0: 1 3 4 1: 1 3 4 2: 1 2 3: 2 5 optimal: oo a 7/2*v0 -19/2 <= 0; value: -6 a -8*v0 + v2 -24 < 0; value: -27 a v2 + 6*v3 -32 <= 0; value: -21 d -3*v0 -4*v1 + 19 = 0; value: 0 a -19 < 0; value: -19 a v3 -1 = 0; value: 0 0: 1 3 4 1: 1 3 4 2: 1 2 3: 2 5 0: 1 -> 1 1: 4 -> 4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + v2 + v3 + 6 = 0; value: 0 a -3*v0 -2*v3 + 9 <= 0; value: -5 a 6*v1 -6*v2 -3*v3 -35 <= 0; value: -20 a v0 -3*v3 -1 <= 0; value: 0 a 5*v0 -2*v1 + 3*v3 -31 < 0; value: -16 0: 1 2 4 5 1: 3 5 2: 1 3 3: 1 2 3 4 5 optimal: (236/11 -e*1) a + 236/11 < 0; value: 236/11 d -2*v0 + v2 + v3 + 6 = 0; value: 0 d -11/3*v0 + 29/3 <= 0; value: 0 a -853/11 < 0; value: -853/11 d -5*v0 + 3*v2 + 17 <= 0; value: 0 d 5*v0 -2*v1 + 3*v3 -31 < 0; value: -2 0: 1 2 4 5 3 1: 3 5 2: 1 3 2 4 3: 1 2 3 4 5 0: 4 -> 29/11 1: 4 -> -78/11 2: 1 -> -14/11 3: 1 -> 6/11 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 -5*v2 -19 < 0; value: -48 a -1*v0 -2*v2 -1 < 0; value: -12 a -6*v0 + 5*v2 -55 <= 0; value: -36 a 2*v0 -1*v1 + v2 -5 < 0; value: -3 0: 1 2 3 4 1: 4 2: 1 2 3 4 3: optimal: (302/17 -e*1) a + 302/17 < 0; value: 302/17 a -108/17 <= 0; value: -108/17 d -1*v0 -2*v2 -1 < 0; value: -2 d -17/2*v0 -115/2 < 0; value: -17/2 d 2*v0 -1*v1 + v2 -5 < 0; value: -1 0: 1 2 3 4 1: 4 2: 1 2 3 4 3: 0: 1 -> -98/17 1: 5 -> -413/34 2: 5 -> 115/34 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 + 2*v2 -5*v3 -16 = 0; value: 0 a -2*v0 + 3*v2 + 1 = 0; value: 0 a -4*v0 -5*v1 + 4*v3 + 45 = 0; value: 0 a -3*v1 -1*v3 -9 <= 0; value: -24 a -3*v0 + 2*v2 + 9 = 0; value: 0 0: 2 3 5 1: 1 3 4 2: 1 2 5 3: 1 3 4 optimal: 0 a <= 0; value: 0 d 2*v1 + 2*v2 -5*v3 -16 = 0; value: 0 d -2*v0 + 3*v2 + 1 = 0; value: 0 d -4*v0 + 5*v2 -17/2*v3 + 5 = 0; value: 0 a -24 <= 0; value: -24 d -5/3*v0 + 25/3 = 0; value: 0 0: 2 3 5 4 1: 1 3 4 2: 1 2 5 3 4 3: 1 3 4 0: 5 -> 5 1: 5 -> 5 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + v1 + 3*v3 -17 <= 0; value: -11 a 5*v3 -12 < 0; value: -2 a -1*v0 + 3*v1 -3*v2 + 8 < 0; value: -7 a -3*v1 -1*v3 + 2 = 0; value: 0 a -2*v1 + v3 -5 <= 0; value: -3 0: 1 3 1: 1 3 4 5 2: 3 3: 1 2 4 5 optimal: (62/9 -e*1) a + 62/9 < 0; value: 62/9 d 3*v0 -149/15 <= 0; value: 0 d 5*v3 -12 < 0; value: -1 a -3*v2 + 193/45 < 0; value: -482/45 d -3*v1 -1*v3 + 2 = 0; value: 0 a -7/3 <= 0; value: -7/3 0: 1 3 1: 1 3 4 5 2: 3 3: 1 2 4 5 3 0: 0 -> 149/45 1: 0 -> -1/15 2: 5 -> 5 3: 2 -> 11/5 a 2*v0 -2*v1 <= 0; value: -2 a v2 <= 0; value: 0 a -4*v2 + 5*v3 -6 <= 0; value: -1 a v0 + 4*v2 -3 <= 0; value: -1 a 5*v1 -5*v2 -3*v3 -12 = 0; value: 0 a -1*v3 <= 0; value: -1 0: 3 1: 4 2: 1 2 3 4 3: 2 4 5 optimal: 81/5 a + 81/5 <= 0; value: 81/5 a -3/2 <= 0; value: -3/2 d -4*v2 -6 <= 0; value: 0 d v0 -9 <= 0; value: 0 d 5*v1 -5*v2 -3*v3 -12 = 0; value: 0 d -1*v3 <= 0; value: 0 0: 3 1: 4 2: 1 2 3 4 3: 2 4 5 0: 2 -> 9 1: 3 -> 9/10 2: 0 -> -3/2 3: 1 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -3*v1 -5*v2 + 10 = 0; value: 0 a -1*v1 <= 0; value: 0 a -3*v0 -6*v2 -1*v3 + 26 = 0; value: 0 a -4*v0 -1*v2 -5*v3 + 39 = 0; value: 0 a 5*v1 -6*v2 -9 < 0; value: -21 0: 3 4 1: 1 2 5 2: 1 3 4 5 3: 3 4 optimal: (4182/473 -e*1) a + 4182/473 < 0; value: 4182/473 d -3*v1 -5*v2 + 10 = 0; value: 0 a -105/43 < 0; value: -105/43 d -3*v0 -6*v2 -1*v3 + 26 = 0; value: 0 d -7/2*v0 -29/6*v3 + 104/3 = 0; value: 0 d 473/87*v0 -1082/29 < 0; value: -473/87 0: 3 4 2 5 1: 1 2 5 2: 1 3 4 5 2 3: 3 4 2 5 0: 3 -> 2773/473 1: 0 -> 6770/3741 2: 2 -> 1140/1247 3: 5 -> 40151/13717 a 2*v0 -2*v1 <= 0; value: 8 a -3*v2 -4*v3 + 10 < 0; value: -7 a -2*v2 -1*v3 + 7 <= 0; value: -1 a 2*v1 + 5*v3 -29 < 0; value: -19 a -5*v3 + 3 <= 0; value: -7 a 2*v1 + 3*v2 -5*v3 + 1 = 0; value: 0 0: 1: 3 5 2: 1 2 5 3: 1 2 3 4 5 optimal: oo a 2*v0 + 38/5 <= 0; value: 78/5 a -2 < 0; value: -2 d -2*v2 -1*v3 + 7 <= 0; value: 0 a -168/5 < 0; value: -168/5 d 10*v2 -32 <= 0; value: 0 d 2*v1 + 3*v2 -5*v3 + 1 = 0; value: 0 0: 1: 3 5 2: 1 2 5 3 4 3: 1 2 3 4 5 0: 4 -> 4 1: 0 -> -19/5 2: 3 -> 16/5 3: 2 -> 3/5 a 2*v0 -2*v1 <= 0; value: 0 a 4*v1 + v2 -29 <= 0; value: -12 a -3*v1 + 5*v2 + 4*v3 -80 <= 0; value: -48 a 4*v0 -3*v3 <= 0; value: 0 a 6*v1 + 6*v3 -89 < 0; value: -47 a -1*v2 + 5 = 0; value: 0 0: 3 1: 1 2 4 2: 1 2 5 3: 2 3 4 optimal: oo a -14/9*v0 + 110/3 <= 0; value: 32 a 64/9*v0 -292/3 <= 0; value: -76 d -3*v1 + 5*v2 + 4*v3 -80 <= 0; value: 0 d 4*v0 -3*v3 <= 0; value: 0 a 56/3*v0 -199 < 0; value: -143 d -1*v2 + 5 = 0; value: 0 0: 3 4 1 1: 1 2 4 2: 1 2 5 4 3: 2 3 4 1 0: 3 -> 3 1: 3 -> -13 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -1*v3 + 1 <= 0; value: -4 a -5*v2 + 1 < 0; value: -4 a 3*v0 -6*v1 -22 <= 0; value: -13 a 5*v0 -1*v1 -1*v3 -28 < 0; value: -18 a 2*v0 + 6*v1 -4*v3 -1 <= 0; value: -15 0: 3 4 5 1: 1 3 4 5 2: 2 3: 1 4 5 optimal: oo a 2/9*v3 + 344/27 < 0; value: 374/27 a -7/9*v3 -25/27 <= 0; value: -130/27 a -5*v2 + 1 < 0; value: -4 d 3*v0 -6*v1 -22 <= 0; value: 0 d 9/2*v0 -1*v3 -73/3 < 0; value: -9/2 a -26/9*v3 + 109/27 <= 0; value: -281/27 0: 3 4 5 1 1: 1 3 4 5 2: 2 3: 1 4 5 0: 3 -> 149/27 1: 0 -> -49/54 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 + 6*v1 -9 < 0; value: -3 a -1*v2 -1 <= 0; value: -3 a 2*v0 + v3 <= 0; value: 0 a -4*v0 + 2*v2 + v3 -9 < 0; value: -5 a -1*v1 + 6*v3 + 1 <= 0; value: 0 0: 1 3 4 1: 1 5 2: 2 4 3: 3 4 5 optimal: oo a 2*v0 -12*v3 -2 <= 0; value: -2 a -4*v0 + 36*v3 -3 < 0; value: -3 a -1*v2 -1 <= 0; value: -3 a 2*v0 + v3 <= 0; value: 0 a -4*v0 + 2*v2 + v3 -9 < 0; value: -5 d -1*v1 + 6*v3 + 1 <= 0; value: 0 0: 1 3 4 1: 1 5 2: 2 4 3: 3 4 5 1 0: 0 -> 0 1: 1 -> 1 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -1*v3 + 1 <= 0; value: -1 a -6*v0 -1*v2 + 26 = 0; value: 0 a -1*v0 + 4 <= 0; value: 0 a 5*v1 + 2*v2 -14 < 0; value: -5 a v2 -5 <= 0; value: -3 0: 2 3 1: 4 2: 2 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a -1*v3 + 1 <= 0; value: -1 a -6*v0 -1*v2 + 26 = 0; value: 0 a -1*v0 + 4 <= 0; value: 0 a 5*v1 + 2*v2 -14 < 0; value: -5 a v2 -5 <= 0; value: -3 0: 2 3 1: 4 2: 2 4 5 3: 1 0: 4 -> 4 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a 5*v1 -56 <= 0; value: -31 a 3*v0 -1*v2 -2*v3 + 6 = 0; value: 0 a v1 + 2*v3 -15 = 0; value: 0 a 4*v0 -6*v1 -4*v3 -39 <= 0; value: -81 a 3*v0 -2*v2 -5*v3 + 23 = 0; value: 0 0: 2 4 5 1: 1 3 4 2: 2 5 3: 2 3 4 5 optimal: 69/2 a + 69/2 <= 0; value: 69/2 a -305/2 <= 0; value: -305/2 d 3*v0 -1*v2 -2*v3 + 6 = 0; value: 0 d v1 + 2*v3 -15 = 0; value: 0 d -20*v0 -41 <= 0; value: 0 d -9/2*v0 + 1/2*v2 + 8 = 0; value: 0 0: 2 4 5 1 1: 1 3 4 2: 2 5 4 1 3: 2 3 4 5 1 0: 2 -> -41/20 1: 5 -> -193/10 2: 2 -> -689/20 3: 5 -> 343/20 a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 -3*v2 -1 < 0; value: -4 a 3*v0 -5*v1 + 1 <= 0; value: -1 a 6*v1 + 5*v2 -60 <= 0; value: -39 a -2*v0 + 6*v2 + v3 -17 = 0; value: 0 a v1 -1*v2 -2*v3 + 4 = 0; value: 0 0: 1 2 4 1: 2 3 5 2: 1 3 4 5 3: 4 5 optimal: (290/279 -e*1) a + 290/279 < 0; value: 290/279 d 279/55*v0 -502/55 < 0; value: -223/110 d -17*v0 + 55*v2 -149 <= 0; value: 0 a -10043/279 <= 0; value: -10043/279 d -2*v0 + 6*v2 + v3 -17 = 0; value: 0 d v1 -1*v2 -2*v3 + 4 = 0; value: 0 0: 1 2 4 3 1: 2 3 5 2: 1 3 4 5 2 3: 4 5 2 3 0: 1 -> 781/558 1: 1 -> 967/930 2: 3 -> 96419/30690 3: 1 -> 14563/15345 a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 -65 < 0; value: -41 a -5*v0 + 5*v3 + 18 <= 0; value: -2 a 3*v1 -2*v2 -10 < 0; value: -2 a v2 -3*v3 -4 < 0; value: -2 a -1*v0 + 1 < 0; value: -3 0: 1 2 5 1: 3 2: 3 4 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 -65 < 0; value: -41 a -5*v0 + 5*v3 + 18 <= 0; value: -2 a 3*v1 -2*v2 -10 < 0; value: -2 a v2 -3*v3 -4 < 0; value: -2 a -1*v0 + 1 < 0; value: -3 0: 1 2 5 1: 3 2: 3 4 3: 2 4 0: 4 -> 4 1: 4 -> 4 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 -1*v3 -4 = 0; value: 0 a 5*v1 -2*v2 -23 <= 0; value: -12 a v0 -2*v2 -1 <= 0; value: 0 a -1*v2 -6*v3 + 22 <= 0; value: -10 a v0 -1*v1 + 3*v2 -8 = 0; value: 0 0: 3 5 1: 1 2 5 2: 2 3 4 5 3: 1 4 optimal: 424/91 a + 424/91 <= 0; value: 424/91 d 3*v1 -1*v3 -4 = 0; value: 0 a -1322/91 <= 0; value: -1322/91 d v0 -2*v2 -1 <= 0; value: 0 d -91/2*v0 + 435/2 <= 0; value: 0 d v0 + 3*v2 -1/3*v3 -28/3 = 0; value: 0 0: 3 5 4 2 1: 1 2 5 2: 2 3 4 5 3: 1 4 5 2 0: 5 -> 435/91 1: 3 -> 223/91 2: 2 -> 172/91 3: 5 -> 305/91 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -1*v2 + 5*v3 + 1 <= 0; value: 0 a -2*v1 + v3 + 4 <= 0; value: -4 a -1*v0 + 2*v2 + 3*v3 -5 = 0; value: 0 a 3*v0 -2*v3 -7 <= 0; value: -4 0: 1 3 4 1: 2 2: 1 3 3: 1 2 3 4 optimal: 26/45 a + 26/45 <= 0; value: 26/45 d 45/4*v0 -97/4 <= 0; value: 0 d -2*v1 + v3 + 4 <= 0; value: 0 d -1*v0 + 2*v2 + 3*v3 -5 = 0; value: 0 d 7/3*v0 + 4/3*v2 -31/3 <= 0; value: 0 0: 1 3 4 1: 2 2: 1 3 4 3: 1 2 3 4 0: 1 -> 97/45 1: 4 -> 28/15 2: 3 -> 179/45 3: 0 -> -4/15 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 + 3*v3 -19 <= 0; value: -10 a v0 -4*v2 + 6*v3 -17 = 0; value: 0 a -5*v0 -2*v1 + 3*v2 + 7 <= 0; value: -13 a -1*v3 -1 <= 0; value: -5 a -1*v3 + 4 <= 0; value: 0 0: 2 3 1: 3 2: 1 2 3 3: 1 2 4 5 optimal: oo a 25/4*v0 -49/4 <= 0; value: 19 a -1/4*v0 -35/4 <= 0; value: -10 d v0 -4*v2 + 6*v3 -17 = 0; value: 0 d -5*v0 -2*v1 + 3*v2 + 7 <= 0; value: 0 a -5 <= 0; value: -5 d -1*v3 + 4 <= 0; value: 0 0: 2 3 1 1: 3 2: 1 2 3 3: 1 2 4 5 0: 5 -> 5 1: 2 -> -9/2 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -4*v1 -6*v2 + 27 <= 0; value: -3 a v0 + 2*v1 -5*v2 + 7 <= 0; value: 0 a -2*v2 -1 <= 0; value: -7 a -3*v0 + 4*v2 -6 = 0; value: 0 a 3*v1 + 3*v3 -25 <= 0; value: -10 0: 2 4 1: 1 2 5 2: 1 2 3 4 3: 5 optimal: oo a 17/4*v0 -9 <= 0; value: -1/2 d -4*v1 -6*v2 + 27 <= 0; value: 0 a -5*v0 + 17/2 <= 0; value: -3/2 a -3/2*v0 -4 <= 0; value: -7 d -3*v0 + 4*v2 -6 = 0; value: 0 a -27/8*v0 + 3*v3 -23/2 <= 0; value: -49/4 0: 2 4 3 5 1: 1 2 5 2: 1 2 3 4 5 3: 5 0: 2 -> 2 1: 3 -> 9/4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 + 5 = 0; value: 0 a -1*v1 -2*v3 + 6 = 0; value: 0 a 2*v0 -5 < 0; value: -1 a -1*v1 -1*v2 + 8 < 0; value: -1 a v1 + 2*v2 + 6*v3 -29 <= 0; value: -9 0: 3 1: 2 4 5 2: 1 4 5 3: 2 5 optimal: (-1 -e*1) a -1 < 0; value: -1 d -1*v2 + 5 = 0; value: 0 d -1*v1 -2*v3 + 6 = 0; value: 0 d 2*v0 -5 < 0; value: -1/2 d -1*v2 + 2*v3 + 2 < 0; value: -1/2 a -7 <= 0; value: -7 0: 3 1: 2 4 5 2: 1 4 5 3: 2 5 4 0: 2 -> 9/4 1: 4 -> 7/2 2: 5 -> 5 3: 1 -> 5/4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 -17 < 0; value: -9 a 3*v0 + v3 -33 <= 0; value: -18 a -1*v1 -1*v2 + 3*v3 -3 <= 0; value: 0 a v0 -4 = 0; value: 0 a -3*v2 -1*v3 + 17 <= 0; value: -1 0: 1 2 4 1: 3 2: 3 5 3: 2 3 5 optimal: oo a 2*v0 + 20*v2 -96 <= 0; value: 12 a 2*v0 -17 < 0; value: -9 a 3*v0 -3*v2 -16 <= 0; value: -19 d -1*v1 -1*v2 + 3*v3 -3 <= 0; value: 0 a v0 -4 = 0; value: 0 d -3*v2 -1*v3 + 17 <= 0; value: 0 0: 1 2 4 1: 3 2: 3 5 2 3: 2 3 5 0: 4 -> 4 1: 1 -> -2 2: 5 -> 5 3: 3 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -1*v3 = 0; value: 0 a -3*v1 -1 <= 0; value: -4 a 6*v0 -6*v2 -5*v3 -17 < 0; value: -11 a -1*v2 + 3 <= 0; value: -1 a 6*v1 -6*v2 + 5 <= 0; value: -13 0: 3 1: 2 5 2: 3 4 5 3: 1 3 optimal: oo a 2*v2 + 19/3 < 0; value: 43/3 d -1*v3 = 0; value: 0 d -3*v1 -1 <= 0; value: 0 d 6*v0 -6*v2 -5*v3 -17 < 0; value: -11/2 a -1*v2 + 3 <= 0; value: -1 a -6*v2 + 3 <= 0; value: -21 0: 3 1: 2 5 2: 3 4 5 3: 1 3 0: 5 -> 71/12 1: 1 -> -1/3 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 + v2 <= 0; value: -2 a -1*v0 -1*v1 + 7 = 0; value: 0 a v1 + v2 -7 <= 0; value: -2 a 2*v0 + v2 -2*v3 -4 <= 0; value: -10 a 5*v1 + 6*v2 -6*v3 + 4 <= 0; value: -1 0: 1 2 4 1: 2 3 5 2: 1 3 4 5 3: 4 5 optimal: oo a -2*v2 + 4*v3 -6 <= 0; value: 14 a 3/2*v2 -1*v3 -2 <= 0; value: -7 d -1*v0 -1*v1 + 7 = 0; value: 0 a 3/2*v2 -1*v3 -2 <= 0; value: -7 d 2*v0 + v2 -2*v3 -4 <= 0; value: 0 a 17/2*v2 -11*v3 + 29 <= 0; value: -26 0: 1 2 4 3 5 1: 2 3 5 2: 1 3 4 5 3: 4 5 1 3 0: 2 -> 7 1: 5 -> 0 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 + 5*v2 -4*v3 <= 0; value: 0 a -1*v3 + 5 = 0; value: 0 a 3*v0 + 3*v1 + v2 -21 < 0; value: -7 a v2 -2 = 0; value: 0 a 5*v0 -5*v1 -4*v2 + 8 = 0; value: 0 0: 1 3 5 1: 3 5 2: 1 3 4 5 3: 1 2 optimal: 0 a <= 0; value: 0 d 5*v0 + 5*v2 -4*v3 <= 0; value: 0 d -1*v3 + 5 = 0; value: 0 a -7 < 0; value: -7 d -1*v0 + 2 = 0; value: 0 d 5*v0 -5*v1 -4*v2 + 8 = 0; value: 0 0: 1 3 5 4 1: 3 5 2: 1 3 4 5 3: 1 2 4 3 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 4*v1 + 5*v3 -38 <= 0; value: -18 a -4*v1 + 4*v2 -5*v3 + 3 <= 0; value: -9 a 3*v0 + 6*v1 -3*v2 -74 < 0; value: -47 a 2*v0 -4*v1 -11 <= 0; value: -29 d <= 0; value: 0 0: 3 4 1: 1 2 3 4 2: 2 3 3: 1 2 optimal: (599/24 -e*1) a + 599/24 < 0; value: 599/24 d 4*v2 -35 <= 0; value: 0 d -4*v1 + 4*v2 -5*v3 + 3 <= 0; value: 0 d 6*v0 -3*v2 -181/2 < 0; value: -6 d 2*v0 -4*v2 + 5*v3 -14 <= 0; value: 0 d <= 0; value: 0 0: 3 4 1: 1 2 3 4 2: 2 3 4 1 3: 1 2 4 3 0: 1 -> 443/24 1: 5 -> 311/48 2: 2 -> 35/4 3: 0 -> 29/12 a 2*v0 -2*v1 <= 0; value: -2 a v3 -11 < 0; value: -6 a -4*v1 + 2*v3 -5 <= 0; value: -15 a -1*v1 + 2*v3 -5 = 0; value: 0 a -4*v1 -7 <= 0; value: -27 a 3*v0 + 4*v3 -92 < 0; value: -60 0: 5 1: 2 3 4 2: 3: 1 2 3 5 optimal: (164/3 -e*1) a + 164/3 < 0; value: 164/3 a -17/2 < 0; value: -17/2 d -6*v3 + 15 <= 0; value: 0 d -1*v1 + 2*v3 -5 = 0; value: 0 a -7 <= 0; value: -7 d 3*v0 -82 < 0; value: -3 0: 5 1: 2 3 4 2: 3: 1 2 3 5 4 0: 4 -> 79/3 1: 5 -> 0 2: 4 -> 4 3: 5 -> 5/2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + v1 + 1 = 0; value: 0 a -5*v1 + 4*v2 + v3 -10 = 0; value: 0 a 5*v2 + 2*v3 -85 <= 0; value: -50 a v0 + 2*v2 -36 < 0; value: -22 a -1*v1 + 2 <= 0; value: -1 0: 1 4 1: 1 2 5 2: 2 3 4 3: 2 3 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 + v1 + 1 = 0; value: 0 a -5*v0 + 4*v2 + v3 -5 = 0; value: 0 a 5*v2 + 2*v3 -85 <= 0; value: -50 a v0 + 2*v2 -36 < 0; value: -22 a -1*v0 + 3 <= 0; value: -1 0: 1 4 2 5 1: 1 2 5 2: 2 3 4 3: 2 3 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -1 < 0; value: -5 a 5*v1 + 3*v3 -32 <= 0; value: -16 a -2*v0 + 5*v2 -24 < 0; value: -3 a 4*v0 -6*v1 + 3 < 0; value: -1 a 6*v1 -3*v3 -16 < 0; value: -10 0: 1 3 4 1: 2 4 5 2: 3 3: 2 5 optimal: (63/22 -e*1) a + 63/22 < 0; value: 63/22 a -277/22 < 0; value: -277/22 d 11/2*v3 -56/3 <= 0; value: 0 a 5*v2 -783/22 < 0; value: -233/22 d 4*v0 -6*v1 + 3 < 0; value: -56/11 d 4*v0 -3*v3 -13 < 0; value: -4 0: 1 3 4 2 5 1: 2 4 5 2: 3 3: 2 5 1 3 0: 2 -> 211/44 1: 2 -> 50/11 2: 5 -> 5 3: 2 -> 112/33 a 2*v0 -2*v1 <= 0; value: 0 a -5*v0 + 6*v3 + 3 < 0; value: -10 a v1 -4*v2 -4 <= 0; value: -11 a v1 -13 <= 0; value: -8 a v1 + 4*v3 -13 = 0; value: 0 a 3*v1 + 5*v2 -30 = 0; value: 0 0: 1 1: 2 3 4 5 2: 2 5 3: 1 4 optimal: oo a 26/3*v0 -30 < 0; value: 40/3 d -5*v0 + 5/2*v2 + 15/2 < 0; value: -5/2 a -34/3*v0 + 23 < 0; value: -101/3 a -10/3*v0 + 2 < 0; value: -44/3 d v1 + 4*v3 -13 = 0; value: 0 d 5*v2 -12*v3 + 9 = 0; value: 0 0: 1 2 3 1: 2 3 4 5 2: 2 5 1 3 3: 1 4 5 2 3 0: 5 -> 5 1: 5 -> 0 2: 3 -> 6 3: 2 -> 13/4 a 2*v0 -2*v1 <= 0; value: -10 a -1*v1 -1*v2 -3*v3 -1 <= 0; value: -9 a -1*v1 + 5*v2 + 2 <= 0; value: -3 a v1 -3*v2 -5 = 0; value: 0 a -2*v1 + 2*v3 -5 < 0; value: -13 a 5*v0 -4*v2 <= 0; value: 0 0: 5 1: 1 2 3 4 2: 1 2 3 5 3: 1 4 optimal: (-23/65 -e*1) a -23/65 < 0; value: -23/65 d -13/3*v3 + 4 <= 0; value: 0 a -96/13 < 0; value: -96/13 d v1 -3*v2 -5 = 0; value: 0 d -15/2*v0 + 2*v3 -15 < 0; value: -171/26 d 5*v0 -4*v2 <= 0; value: 0 0: 5 1 4 2 1: 1 2 3 4 2: 1 2 3 5 4 3: 1 4 2 0: 0 -> -57/65 1: 5 -> 89/52 2: 0 -> -57/52 3: 1 -> 12/13 a 2*v0 -2*v1 <= 0; value: 4 a v0 -4 = 0; value: 0 a 5*v0 -4*v1 -3*v2 -3 = 0; value: 0 a 3*v1 + 6*v2 + v3 -40 < 0; value: -13 a -1*v3 -2 <= 0; value: -5 a 6*v0 + v3 -27 <= 0; value: 0 0: 1 2 5 1: 2 3 2: 2 3 3: 3 4 5 optimal: (56/5 -e*1) a + 56/5 < 0; value: 56/5 d v0 -4 = 0; value: 0 d 5*v0 -4*v1 -3*v2 -3 = 0; value: 0 d 15/4*v0 + 15/4*v2 + v3 -169/4 < 0; value: -15/4 d -1*v3 -2 <= 0; value: 0 a -5 <= 0; value: -5 0: 1 2 5 3 1: 2 3 2: 2 3 3: 3 4 5 0: 4 -> 4 1: 2 -> -17/20 2: 3 -> 34/5 3: 3 -> -2 a 2*v0 -2*v1 <= 0; value: -4 a -5*v2 -1*v3 + 7 <= 0; value: -13 a 3*v0 + 4*v1 -3*v3 -8 = 0; value: 0 a -1*v1 -1*v2 -3 <= 0; value: -9 a v0 + 3*v2 -21 < 0; value: -9 a 2*v0 + 6*v2 -5*v3 -38 <= 0; value: -14 0: 2 4 5 1: 2 3 2: 1 3 4 5 3: 1 2 5 optimal: 1636/71 a + 1636/71 <= 0; value: 1636/71 d -2/5*v0 -31/5*v2 + 73/5 <= 0; value: 0 d 3*v0 + 4*v1 -3*v3 -8 = 0; value: 0 d 71/124*v0 -117/31 <= 0; value: 0 a -612/71 < 0; value: -612/71 d 2*v0 + 6*v2 -5*v3 -38 <= 0; value: 0 0: 2 4 5 3 1 1: 2 3 2: 1 3 4 5 3: 1 2 5 3 0: 0 -> 468/71 1: 2 -> -350/71 2: 4 -> 137/71 3: 0 -> -188/71 a 2*v0 -2*v1 <= 0; value: -10 a 4*v0 -5*v2 + 6*v3 -1 <= 0; value: -16 a -6*v0 + v3 <= 0; value: 0 a -4*v2 + 3*v3 + 2 <= 0; value: -10 a 5*v1 -2*v3 -31 < 0; value: -6 a 3*v0 + 4*v1 + 4*v3 -20 = 0; value: 0 0: 1 2 5 1: 4 5 2: 1 3 3: 1 2 3 4 5 optimal: oo a 31/16*v2 -769/80 <= 0; value: -19/5 d 40*v0 -5*v2 -1 <= 0; value: 0 d -6*v0 + v3 <= 0; value: 0 a -7/4*v2 + 49/20 <= 0; value: -14/5 a -183/32*v2 -1143/160 < 0; value: -243/10 d 3*v0 + 4*v1 + 4*v3 -20 = 0; value: 0 0: 1 2 5 4 3 1: 4 5 2: 1 3 4 3: 1 2 3 4 5 0: 0 -> 2/5 1: 5 -> 23/10 2: 3 -> 3 3: 0 -> 12/5 a 2*v0 -2*v1 <= 0; value: -6 a -2*v1 + 2*v2 -1 <= 0; value: -3 a v1 -1*v3 <= 0; value: 0 a 4*v1 -1*v3 -15 < 0; value: -6 a v1 -3 <= 0; value: 0 a -5*v0 + 2*v3 -7 < 0; value: -1 0: 5 1: 1 2 3 4 2: 1 3: 2 3 5 optimal: oo a 2*v0 -2*v2 + 1 <= 0; value: -3 d -2*v1 + 2*v2 -1 <= 0; value: 0 a v2 -1*v3 -1/2 <= 0; value: -3/2 a 4*v2 -1*v3 -17 < 0; value: -12 a v2 -7/2 <= 0; value: -3/2 a -5*v0 + 2*v3 -7 < 0; value: -1 0: 5 1: 1 2 3 4 2: 1 2 3 4 3: 2 3 5 0: 0 -> 0 1: 3 -> 3/2 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -4*v1 + 4*v3 -5 <= 0; value: -1 a -3*v0 -5*v1 + v3 + 2 <= 0; value: -1 a 4*v0 -3*v3 + 5 < 0; value: -1 a v1 + 2*v3 -11 < 0; value: -6 a -1*v2 <= 0; value: 0 0: 2 3 1: 1 2 4 2: 5 3: 1 2 3 4 optimal: (-24/25 -e*1) a -24/25 < 0; value: -24/25 d 20/3*v0 -19/15 < 0; value: -19/30 d -3*v0 -5*v1 + v3 + 2 <= 0; value: 0 d 4*v0 -3*v3 + 5 < 0; value: -31/100 a -649/100 <= 0; value: -649/100 a -1*v2 <= 0; value: 0 0: 2 3 1 4 1: 1 2 4 2: 5 3: 1 2 3 4 0: 0 -> 19/200 1: 1 -> 2167/3000 2: 0 -> 0 3: 2 -> 569/300 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 3*v3 -45 <= 0; value: -25 a -5*v0 -4*v1 -1*v3 -37 < 0; value: -82 a v0 -3*v2 + 2*v3 + 1 < 0; value: -6 a -1*v0 + 2*v2 + 2*v3 -5 <= 0; value: -2 a -1*v2 + v3 -3 <= 0; value: -7 0: 1 2 3 4 1: 2 2: 3 4 5 3: 1 2 3 4 5 optimal: (5387/86 -e*1) a + 5387/86 < 0; value: 5387/86 d 43/10*v0 -411/10 <= 0; value: 0 d -5*v0 -4*v1 -1*v3 -37 < 0; value: -4 d 2*v0 -5*v2 + 6 < 0; value: -110/43 d -1*v0 + 2*v2 + 2*v3 -5 <= 0; value: 0 a -248/43 <= 0; value: -248/43 0: 1 2 3 4 5 1: 2 2: 3 4 5 1 3: 1 2 3 4 5 0: 5 -> 411/43 1: 5 -> -3549/172 2: 4 -> 238/43 3: 0 -> 75/43 a 2*v0 -2*v1 <= 0; value: 8 a -6*v1 -3*v3 -1 <= 0; value: -19 a 5*v1 + 4*v3 -49 < 0; value: -28 a -3*v0 -1*v2 + 10 <= 0; value: -7 a v3 -4 = 0; value: 0 a -2*v1 -3*v2 + 6*v3 -30 < 0; value: -14 0: 3 1: 1 2 5 2: 3 5 3: 1 2 4 5 optimal: oo a 2*v0 + 13/3 <= 0; value: 43/3 d -6*v1 -3*v3 -1 <= 0; value: 0 a -263/6 < 0; value: -263/6 a -3*v0 -1*v2 + 10 <= 0; value: -7 d v3 -4 = 0; value: 0 a -3*v2 -5/3 < 0; value: -23/3 0: 3 1: 1 2 5 2: 3 5 3: 1 2 4 5 0: 5 -> 5 1: 1 -> -13/6 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 -5*v2 + 3 <= 0; value: -22 a -1*v0 <= 0; value: 0 a v0 -6*v3 + 12 <= 0; value: 0 a v1 -4*v3 -4 < 0; value: -10 a -4*v0 + 4*v2 -27 <= 0; value: -15 0: 2 3 5 1: 1 4 2: 1 5 3: 3 4 optimal: oo a 24*v3 -357/10 <= 0; value: 123/10 d -5*v1 -5*v2 + 3 <= 0; value: 0 a -6*v3 + 12 <= 0; value: 0 d v0 -6*v3 + 12 <= 0; value: 0 a -10*v3 + 37/20 < 0; value: -363/20 d -4*v0 + 4*v2 -27 <= 0; value: 0 0: 2 3 5 4 1: 1 4 2: 1 5 4 3: 3 4 2 0: 0 -> 0 1: 2 -> -123/20 2: 3 -> 27/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a v2 -1*v3 + 1 <= 0; value: 0 a -3*v0 + 2*v1 + 3 <= 0; value: -1 a 2*v0 -6*v1 + 7 <= 0; value: -9 a -1*v1 -3 < 0; value: -7 a -1*v2 + 1 = 0; value: 0 0: 2 3 1: 2 3 4 2: 1 5 3: 1 optimal: oo a 4/3*v0 -7/3 <= 0; value: 3 a v2 -1*v3 + 1 <= 0; value: 0 a -7/3*v0 + 16/3 <= 0; value: -4 d 2*v0 -6*v1 + 7 <= 0; value: 0 a -1/3*v0 -25/6 < 0; value: -11/2 a -1*v2 + 1 = 0; value: 0 0: 2 3 4 1: 2 3 4 2: 1 5 3: 1 0: 4 -> 4 1: 4 -> 5/2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 5*v2 -73 <= 0; value: -48 a 3*v1 -29 < 0; value: -17 a 3*v2 -4*v3 -8 <= 0; value: -5 a v3 <= 0; value: 0 a -1*v0 + 5*v1 + 3*v2 -33 < 0; value: -13 0: 5 1: 1 2 5 2: 1 3 5 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 5*v2 -73 <= 0; value: -48 a 3*v1 -29 < 0; value: -17 a 3*v2 -4*v3 -8 <= 0; value: -5 a v3 <= 0; value: 0 a -1*v0 + 5*v1 + 3*v2 -33 < 0; value: -13 0: 5 1: 1 2 5 2: 1 3 5 3: 3 4 0: 3 -> 3 1: 4 -> 4 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 4*v1 + v2 + 1 <= 0; value: -3 a 3*v0 -5*v2 -2*v3 + 2 < 0; value: -6 a -4*v1 + v2 -1 <= 0; value: -6 a 3*v0 + 4*v2 -53 <= 0; value: -26 a 2*v1 -11 <= 0; value: -7 0: 1 2 4 1: 1 3 5 2: 1 2 3 4 3: 2 optimal: oo a 17/10*v0 + 1/5*v3 + 3/10 < 0; value: 48/5 a -9/5*v0 -4/5*v3 + 4/5 < 0; value: -57/5 d 3*v0 -5*v2 -2*v3 + 2 < 0; value: -3 d -4*v1 + v2 -1 <= 0; value: 0 a 27/5*v0 -8/5*v3 -257/5 < 0; value: -154/5 a 3/10*v0 -1/5*v3 -113/10 < 0; value: -53/5 0: 1 2 4 5 1: 1 3 5 2: 1 2 3 4 5 3: 2 1 4 5 0: 5 -> 5 1: 2 -> 7/20 2: 3 -> 12/5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a v0 -1*v3 -1 <= 0; value: 0 a -2*v0 -1*v3 -6 < 0; value: -17 a -2*v1 + v2 -3 <= 0; value: 0 a -3*v2 -4*v3 + 21 = 0; value: 0 a -1*v3 + 3 <= 0; value: 0 0: 1 2 1: 3 2: 3 4 3: 1 2 4 5 optimal: oo a 2*v0 + 4/3*v3 -4 <= 0; value: 8 a v0 -1*v3 -1 <= 0; value: 0 a -2*v0 -1*v3 -6 < 0; value: -17 d -2*v1 + v2 -3 <= 0; value: 0 d -3*v2 -4*v3 + 21 = 0; value: 0 a -1*v3 + 3 <= 0; value: 0 0: 1 2 1: 3 2: 3 4 3: 1 2 4 5 0: 4 -> 4 1: 0 -> 0 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 -3*v3 + 15 = 0; value: 0 a 5*v1 + v2 -37 < 0; value: -24 a 3*v0 + v2 -3 = 0; value: 0 a -4*v1 -6*v2 + 21 <= 0; value: -5 a 2*v1 -3*v2 + 5 <= 0; value: 0 0: 1 3 1: 2 4 5 2: 2 3 4 5 3: 1 optimal: oo a 21*v3 -213/2 <= 0; value: -3/2 d -1*v0 -3*v3 + 15 = 0; value: 0 a -117/2*v3 + 1049/4 < 0; value: -121/4 d 3*v0 + v2 -3 = 0; value: 0 d -4*v1 -6*v2 + 21 <= 0; value: 0 a -54*v3 + 535/2 <= 0; value: -5/2 0: 1 3 2 5 1: 2 4 5 2: 2 3 4 5 3: 1 2 5 0: 0 -> 0 1: 2 -> 3/4 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -6*v1 + 3*v3 -3 = 0; value: 0 a -1*v1 -1 < 0; value: -3 a 6*v1 + v3 -13 = 0; value: 0 a -1*v1 -3*v2 <= 0; value: -2 0: 1 1: 1 2 3 4 2: 4 3: 1 3 optimal: oo a 5/3*v0 -3 <= 0; value: 2 d 4*v0 -6*v1 + 3*v3 -3 = 0; value: 0 a -1/6*v0 -5/2 < 0; value: -3 d 4*v0 + 4*v3 -16 = 0; value: 0 a -1/6*v0 -3*v2 -3/2 <= 0; value: -2 0: 1 2 3 4 1: 1 2 3 4 2: 4 3: 1 3 2 4 0: 3 -> 3 1: 2 -> 2 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -2*v1 + v2 -23 <= 0; value: -13 a 5*v1 + 6*v3 -88 <= 0; value: -51 a 3*v1 -20 <= 0; value: -5 a -4*v0 -6*v1 + 3*v2 + 41 <= 0; value: -9 a -6*v0 -5*v2 + 7 <= 0; value: -23 0: 1 4 5 1: 1 2 3 4 2: 1 4 5 3: 2 optimal: 161/10 a + 161/10 <= 0; value: 161/10 d 16/3*v0 -110/3 <= 0; value: 0 a 6*v3 -751/8 <= 0; value: -655/8 a -941/40 <= 0; value: -941/40 d -4*v0 -6*v1 + 3*v2 + 41 <= 0; value: 0 d -6*v0 -5*v2 + 7 <= 0; value: 0 0: 1 4 5 2 3 1: 1 2 3 4 2: 1 4 5 2 3 3: 2 0: 5 -> 55/8 1: 5 -> -47/40 2: 0 -> -137/20 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 6*v2 -15 < 0; value: -8 a 5*v1 -4*v3 + 4 = 0; value: 0 a -1*v2 + 2 <= 0; value: 0 a 3*v1 -1*v3 + 1 <= 0; value: 0 a -3*v2 + 5*v3 + 1 <= 0; value: 0 0: 1 1: 2 4 2: 1 3 5 3: 2 4 5 optimal: oo a 2*v0 -8/5*v3 + 8/5 <= 0; value: 2 a -5*v0 + 6*v2 -15 < 0; value: -8 d 5*v1 -4*v3 + 4 = 0; value: 0 a -1*v2 + 2 <= 0; value: 0 a 7/5*v3 -7/5 <= 0; value: 0 a -3*v2 + 5*v3 + 1 <= 0; value: 0 0: 1 1: 2 4 2: 1 3 5 3: 2 4 5 0: 1 -> 1 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 -4*v1 -3*v3 + 7 <= 0; value: -1 a -1*v1 -1*v3 < 0; value: -1 a 4*v0 -3*v1 -13 = 0; value: 0 a 5*v1 + 5*v3 -8 < 0; value: -3 a -4*v0 -2*v3 + 5 <= 0; value: -11 0: 1 3 5 1: 1 2 3 4 2: 3: 1 2 4 5 optimal: (34/5 -e*1) a + 34/5 < 0; value: 34/5 d -19/3*v0 -3*v3 + 73/3 <= 0; value: 0 a -8/5 < 0; value: -8/5 d 4*v0 -3*v1 -13 = 0; value: 0 d 35/19*v3 -77/19 < 0; value: -35/19 a -53/5 < 0; value: -53/5 0: 1 3 5 2 4 1: 1 2 3 4 2: 3: 1 2 4 5 0: 4 -> 311/95 1: 1 -> 3/95 2: 3 -> 3 3: 0 -> 6/5 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + v3 -8 < 0; value: -5 a v1 <= 0; value: 0 a -1*v0 + v1 + 3*v3 -25 <= 0; value: -16 a -1*v1 -1*v3 + 3 <= 0; value: 0 a v0 + 6*v1 <= 0; value: 0 0: 1 3 5 1: 2 3 4 5 2: 3: 1 3 4 optimal: (94/7 -e*1) a + 94/7 < 0; value: 94/7 d 3*v0 + v3 -8 < 0; value: -1 a -53/7 < 0; value: -53/7 d -7*v0 -6 <= 0; value: 0 d -1*v1 -1*v3 + 3 <= 0; value: 0 a -324/7 < 0; value: -324/7 0: 1 3 5 2 1: 2 3 4 5 2: 3: 1 3 4 2 5 0: 0 -> -6/7 1: 0 -> -46/7 2: 0 -> 0 3: 3 -> 67/7 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 + 3*v3 -32 < 0; value: -16 a -4*v1 + 3*v2 + 5 = 0; value: 0 a 3*v1 + 5*v3 -85 <= 0; value: -50 a -5*v0 -1*v1 -4*v2 + 20 < 0; value: -15 0: 1 4 1: 2 3 4 2: 2 4 3: 1 3 optimal: oo a -102/19*v3 + 928/19 < 0; value: 520/19 d 2*v0 + 3*v3 -32 < 0; value: -2 d -4*v1 + 3*v2 + 5 = 0; value: 0 a 325/38*v3 -2095/19 < 0; value: -1445/19 d -5*v0 -19/4*v2 + 75/4 < 0; value: -19/4 0: 1 4 3 1: 2 3 4 2: 2 4 3 3: 1 3 0: 2 -> 9 1: 5 -> -163/76 2: 5 -> -86/19 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v0 -3*v3 + 4 < 0; value: -3 a 6*v2 -3*v3 -19 <= 0; value: -10 a 2*v2 + 5*v3 -45 <= 0; value: -24 a 4*v0 -4*v1 + 3*v3 -14 <= 0; value: -5 a 2*v0 + 5*v1 -12 <= 0; value: -5 0: 1 4 5 1: 4 5 2: 2 3 3: 1 2 3 4 optimal: oo a -3*v2 + 33/2 < 0; value: 15/2 d 2*v0 -3*v3 + 4 < 0; value: -3 d -2*v0 + 6*v2 -23 <= 0; value: 0 a 12*v2 -230/3 < 0; value: -122/3 d 4*v0 -4*v1 + 3*v3 -14 <= 0; value: 0 a 57/2*v2 -535/4 < 0; value: -193/4 0: 1 4 5 2 3 1: 4 5 2: 2 3 5 3: 1 2 3 4 5 0: 1 -> -5/2 1: 1 -> -11/2 2: 3 -> 3 3: 3 -> 2/3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 4 = 0; value: 0 a -3*v3 + 2 <= 0; value: -10 a -4*v0 -5*v1 -3*v3 -37 <= 0; value: -94 a v2 -2 <= 0; value: -1 a -3*v1 -1*v3 + 19 = 0; value: 0 0: 3 1: 3 5 2: 4 3: 1 2 3 5 optimal: oo a 2*v0 -10 <= 0; value: 0 d -1*v3 + 4 = 0; value: 0 a -10 <= 0; value: -10 a -4*v0 -74 <= 0; value: -94 a v2 -2 <= 0; value: -1 d -3*v1 -1*v3 + 19 = 0; value: 0 0: 3 1: 3 5 2: 4 3: 1 2 3 5 0: 5 -> 5 1: 5 -> 5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 + 2*v3 -40 <= 0; value: -23 a v0 -3 <= 0; value: 0 a 3*v2 -14 <= 0; value: -5 a v2 + 4*v3 -10 <= 0; value: -3 a v0 + 2*v3 -7 <= 0; value: -2 0: 2 5 1: 2: 1 3 4 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 + 2*v3 -40 <= 0; value: -23 a v0 -3 <= 0; value: 0 a 3*v2 -14 <= 0; value: -5 a v2 + 4*v3 -10 <= 0; value: -3 a v0 + 2*v3 -7 <= 0; value: -2 0: 2 5 1: 2: 1 3 4 3: 1 4 5 0: 3 -> 3 1: 3 -> 3 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -5*v2 + 3*v3 + 3 <= 0; value: -2 a -2*v2 -1 <= 0; value: -3 a -4*v0 -5*v2 + 7 < 0; value: -6 a 2*v0 -3*v3 -4 <= 0; value: 0 a 2*v0 -1*v1 -1 = 0; value: 0 0: 3 4 5 1: 5 2: 1 2 3 3: 1 4 optimal: oo a 5/2*v2 -3/2 < 0; value: 1 a -5*v2 + 3*v3 + 3 <= 0; value: -2 a -2*v2 -1 <= 0; value: -3 d -4*v0 -5*v2 + 7 < 0; value: -3 a -5/2*v2 -3*v3 -1/2 < 0; value: -3 d 2*v0 -1*v1 -1 = 0; value: 0 0: 3 4 5 1: 5 2: 1 2 3 4 3: 1 4 0: 2 -> 5/4 1: 3 -> 3/2 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 + v3 -1 <= 0; value: 0 a -6*v1 + 5*v3 -9 <= 0; value: -22 a 2*v0 -6*v2 -17 <= 0; value: -41 a v1 + 3*v2 -5*v3 -12 < 0; value: -2 0: 1 3 1: 2 4 2: 3 4 3: 1 2 4 optimal: (114/7 -e*1) a + 114/7 < 0; value: 114/7 d 56/25*v0 -157/25 < 0; value: -56/25 d -6*v1 + 5*v3 -9 <= 0; value: 0 d 2*v0 -6*v2 -17 <= 0; value: 0 d 3*v2 -25/6*v3 -27/2 < 0; value: -25/6 0: 1 3 1: 2 4 2: 3 4 1 3: 1 2 4 0: 0 -> 101/56 1: 3 -> -3953/840 2: 4 -> -125/56 3: 1 -> -2693/700 a 2*v0 -2*v1 <= 0; value: -10 a -3*v0 -6*v2 -1 <= 0; value: -31 a 5*v0 + 2*v1 + 6*v2 -86 <= 0; value: -46 a -1*v0 -1*v1 + 5 = 0; value: 0 a -5*v1 + 5*v2 -1*v3 + 4 = 0; value: 0 a v1 -7 <= 0; value: -2 0: 1 2 3 1: 2 3 4 5 2: 1 2 4 3: 4 optimal: oo a -8*v2 + 274/3 <= 0; value: 154/3 a -77 <= 0; value: -77 d 3*v2 + 3/5*v3 -317/5 <= 0; value: 0 d -1*v0 -1*v1 + 5 = 0; value: 0 d 5*v0 + 5*v2 -1*v3 -21 = 0; value: 0 a 2*v2 -82/3 <= 0; value: -52/3 0: 1 2 3 4 5 1: 2 3 4 5 2: 1 2 4 5 3: 4 2 1 5 0: 0 -> 46/3 1: 5 -> -31/3 2: 5 -> 5 3: 4 -> 242/3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -2*v1 + v2 -20 < 0; value: -10 a -6*v0 + v1 + 2*v2 + 11 <= 0; value: -10 a -2*v1 + v3 -5 <= 0; value: -11 a 6*v1 + v2 + 6*v3 -33 < 0; value: -15 a -1*v1 + 3 = 0; value: 0 0: 1 2 1: 1 2 3 4 5 2: 1 2 4 3: 3 4 optimal: oo a -1/2*v2 + 7 < 0; value: 7 d 4*v0 + v2 -26 < 0; value: -4 a 7/2*v2 -25 < 0; value: -25 a v3 -11 <= 0; value: -11 a v2 + 6*v3 -15 < 0; value: -15 d -1*v1 + 3 = 0; value: 0 0: 1 2 1: 1 2 3 4 5 2: 1 2 4 3: 3 4 0: 4 -> 11/2 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 -1 <= 0; value: -5 a -1*v1 + 2*v2 + 5*v3 -22 = 0; value: 0 a 5*v0 -1*v1 -3*v3 -10 = 0; value: 0 a -4*v0 -2*v2 + 21 <= 0; value: -3 a 3*v1 + 4*v2 -49 <= 0; value: -30 0: 3 4 1: 2 3 5 2: 1 2 4 5 3: 2 3 optimal: 24 a + 24 <= 0; value: 24 a -287/10 <= 0; value: -287/10 d -1*v1 + 2*v2 + 5*v3 -22 = 0; value: 0 d 5*v0 -2*v2 -8*v3 + 12 = 0; value: 0 d -4*v0 -2*v2 + 21 <= 0; value: 0 d -25/8*v0 -215/8 <= 0; value: 0 0: 3 4 5 1 1: 2 3 5 2: 1 2 4 5 3 3: 2 3 5 0: 4 -> -43/5 1: 1 -> -103/5 2: 4 -> 277/10 3: 3 -> -54/5 a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a v0 -2 = 0; value: 0 a v0 + 4*v2 -14 <= 0; value: -4 a -6*v0 -5*v2 + 10 <= 0; value: -12 0: 2 3 4 5 1: 2: 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a v0 -2 = 0; value: 0 a v0 + 4*v2 -14 <= 0; value: -4 a -6*v0 -5*v2 + 10 <= 0; value: -12 0: 2 3 4 5 1: 2: 4 5 3: 1 0: 2 -> 2 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 5*v1 -9 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a v1 -3*v3 + 4 <= 0; value: 0 a 6*v1 -2*v3 -21 <= 0; value: -13 a v1 + 5*v2 -7 = 0; value: 0 0: 1 1: 1 3 4 5 2: 5 3: 2 3 4 optimal: -2 a -2 <= 0; value: -2 d -1*v0 + 5*v1 -9 = 0; value: 0 d -1*v3 + 2 = 0; value: 0 d -5*v2 -3*v3 + 11 <= 0; value: 0 a -13 <= 0; value: -13 d 1/5*v0 + 5*v2 -26/5 = 0; value: 0 0: 1 5 3 4 1: 1 3 4 5 2: 5 3 4 3: 2 3 4 0: 1 -> 1 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 6*v1 -35 <= 0; value: -23 a -3*v0 + 4*v1 + 2*v3 -5 < 0; value: -3 a 4*v0 + 6*v2 -35 < 0; value: -21 a -1*v0 + 2*v1 -2 = 0; value: 0 d <= 0; value: 0 0: 2 3 4 1: 1 2 4 2: 3 3: 2 optimal: (23/3 -e*1) a + 23/3 < 0; value: 23/3 d -9/2*v2 -11/4 <= 0; value: 0 a 2*v3 -32/3 < 0; value: -32/3 d 4*v0 + 6*v2 -35 < 0; value: -4 d -1*v0 + 2*v1 -2 = 0; value: 0 d <= 0; value: 0 0: 2 3 4 1 1: 1 2 4 2: 3 1 2 3: 2 0: 2 -> 26/3 1: 2 -> 16/3 2: 1 -> -11/18 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a v1 + 6*v2 -20 = 0; value: 0 a -5*v0 + 5*v2 + 1 <= 0; value: -4 a -4*v1 + 5*v3 -48 <= 0; value: -31 a 3*v0 + 2*v1 -27 <= 0; value: -11 a 2*v1 -1*v2 -2 <= 0; value: -1 0: 2 4 1: 1 3 4 5 2: 1 2 5 3: 3 optimal: oo a -35/12*v3 + 526/15 <= 0; value: 1229/60 d v1 + 6*v2 -20 = 0; value: 0 d -5*v0 + 5*v2 + 1 <= 0; value: 0 d 24*v0 + 5*v3 -664/5 <= 0; value: 0 a 15/8*v3 -172/5 <= 0; value: -1001/40 a 65/24*v3 -94/3 <= 0; value: -427/24 0: 2 4 3 5 1: 1 3 4 5 2: 1 2 5 3 4 3: 3 4 5 0: 4 -> 539/120 1: 2 -> -23/4 2: 3 -> 103/24 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 8 a v1 + 2*v3 -25 <= 0; value: -15 a 2*v0 + 5*v3 -33 = 0; value: 0 a -1*v0 -6*v2 + 4*v3 -7 < 0; value: -15 a -1*v0 + v3 -1 <= 0; value: 0 a -1*v1 + 4*v3 -39 <= 0; value: -19 0: 2 3 4 1: 1 5 2: 3 3: 1 2 3 4 5 optimal: oo a 26/5*v0 + 126/5 <= 0; value: 46 a -12/5*v0 -122/5 <= 0; value: -34 d 2*v0 + 5*v3 -33 = 0; value: 0 a -13/5*v0 -6*v2 + 97/5 < 0; value: -15 a -7/5*v0 + 28/5 <= 0; value: 0 d -1*v1 + 4*v3 -39 <= 0; value: 0 0: 2 3 4 1 1: 1 5 2: 3 3: 1 2 3 4 5 0: 4 -> 4 1: 0 -> -19 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -4*v0 + 9 < 0; value: -11 a -4*v0 + 5*v1 + 4 < 0; value: -6 a 3*v1 + 4*v2 -16 < 0; value: -10 a 4*v0 -5*v1 -2*v3 <= 0; value: 0 0: 1 2 4 1: 2 3 4 2: 3 3: 4 optimal: oo a 2/5*v0 + 4/5*v3 <= 0; value: 6 a -4*v0 + 9 < 0; value: -11 a -2*v3 + 4 < 0; value: -6 a 12/5*v0 + 4*v2 -6/5*v3 -16 < 0; value: -10 d 4*v0 -5*v1 -2*v3 <= 0; value: 0 0: 1 2 4 3 1: 2 3 4 2: 3 3: 4 2 3 0: 5 -> 5 1: 2 -> 2 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -1*v1 = 0; value: 0 a 2*v0 -4*v1 -7 < 0; value: -1 a -3*v0 -5*v3 -13 < 0; value: -32 a 3*v1 + 4*v2 -4 = 0; value: 0 a -1*v0 + 1 < 0; value: -2 0: 2 3 5 1: 1 2 4 2: 4 3: 3 optimal: (7 -e*1) a + 7 < 0; value: 7 d -1*v1 = 0; value: 0 d 2*v0 -7 < 0; value: -1/2 a -5*v3 -47/2 < 0; value: -67/2 a 4*v2 -4 = 0; value: 0 a -5/2 < 0; value: -5/2 0: 2 3 5 1: 1 2 4 2: 4 3: 3 0: 3 -> 13/4 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 + 1 <= 0; value: -1 a 3*v0 -3*v3 -16 <= 0; value: -7 a -1*v0 -3*v3 + 2 < 0; value: -1 a -1*v2 + 5*v3 -2 <= 0; value: -5 a -1*v2 -2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2: 4 5 3: 2 3 4 5 optimal: 233/21 a + 233/21 <= 0; value: 233/21 d -2*v1 + 1 <= 0; value: 0 d 3*v0 -3*v3 -16 <= 0; value: 0 a -130/21 < 0; value: -130/21 d -7/2*v2 + 11/2 <= 0; value: 0 d -1*v2 -2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2: 4 5 3 3: 2 3 4 5 0: 3 -> 127/21 1: 1 -> 1/2 2: 3 -> 11/7 3: 0 -> 5/7 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -1*v1 + 3*v2 + 10 < 0; value: -7 a 2*v2 + v3 -9 <= 0; value: 0 a 2*v3 -19 <= 0; value: -9 a -3*v2 + 5*v3 -41 <= 0; value: -22 a -1*v1 + 2*v2 -3*v3 + 6 <= 0; value: -8 0: 1 1: 1 5 2: 1 2 4 5 3: 2 3 4 5 optimal: (3176/65 -e*1) a + 3176/65 < 0; value: 3176/65 d -5*v0 -1*v1 + 3*v2 + 10 < 0; value: -1 d 65/14*v0 -383/14 <= 0; value: 0 a -29/13 <= 0; value: -29/13 d -15*v0 + 14*v3 -29 <= 0; value: 0 d 5*v0 -1*v2 -3*v3 -4 <= 0; value: 0 0: 1 5 4 2 3 1: 1 5 2: 1 2 4 5 3: 2 3 4 5 0: 4 -> 383/65 1: 3 -> -228/13 2: 2 -> 4/13 3: 5 -> 109/13 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + v3 + 3 = 0; value: 0 a v0 -5*v1 + 22 = 0; value: 0 a -4*v0 -4*v3 + 9 <= 0; value: -3 a 5*v1 -3*v3 -49 <= 0; value: -24 a 6*v0 + 6*v1 -5*v2 -105 < 0; value: -62 0: 1 2 3 5 1: 2 4 5 2: 5 3: 1 3 4 optimal: oo a 10/9*v2 + 26/3 < 0; value: 88/9 d -1*v0 + v3 + 3 = 0; value: 0 d v0 -5*v1 + 22 = 0; value: 0 a -50/9*v2 -199/3 < 0; value: -647/9 a -25/18*v2 -239/6 < 0; value: -371/9 d -5*v2 + 36/5*v3 -57 < 0; value: -36/5 0: 1 2 3 5 4 1: 2 4 5 2: 5 3 4 3: 1 3 4 5 0: 3 -> 191/18 1: 5 -> 587/90 2: 1 -> 1 3: 0 -> 137/18 a 2*v0 -2*v1 <= 0; value: 4 a v1 + 4*v3 -32 < 0; value: -19 a -1*v1 -6*v3 -7 <= 0; value: -26 a -5*v1 -5*v2 + 5*v3 -23 <= 0; value: -13 a 2*v1 -1*v3 <= 0; value: -1 a 3*v3 -11 <= 0; value: -2 0: 1: 1 2 3 4 2: 3 3: 1 2 3 4 5 optimal: oo a 2*v0 + 58 <= 0; value: 64 a -139/3 < 0; value: -139/3 d v2 -7*v3 -12/5 <= 0; value: 0 d -5*v1 -5*v2 + 5*v3 -23 <= 0; value: 0 a -185/3 <= 0; value: -185/3 d 3/7*v2 -421/35 <= 0; value: 0 0: 1: 1 2 3 4 2: 3 2 1 4 5 3: 1 2 3 4 5 0: 3 -> 3 1: 1 -> -29 2: 0 -> 421/15 3: 3 -> 11/3 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 + 2*v2 -37 <= 0; value: -17 a -2*v0 + 3*v3 -35 <= 0; value: -22 a v2 -2*v3 + 4 <= 0; value: -2 a 5*v0 + 5*v1 -41 <= 0; value: -21 a 5*v0 -6*v1 + 13 <= 0; value: 0 0: 2 4 5 1: 1 4 5 2: 1 3 3: 2 3 optimal: -178/55 a -178/55 <= 0; value: -178/55 a 2*v2 -191/11 <= 0; value: -103/11 a 3*v3 -2287/55 <= 0; value: -1462/55 a v2 -2*v3 + 4 <= 0; value: -2 d 55/6*v0 -181/6 <= 0; value: 0 d 5*v0 -6*v1 + 13 <= 0; value: 0 0: 2 4 5 1 1: 1 4 5 2: 1 3 3: 2 3 0: 1 -> 181/55 1: 3 -> 54/11 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a 6*v1 + 5*v2 + 2*v3 -62 <= 0; value: -37 a -2*v1 + 5 <= 0; value: -1 a -5*v1 + 3*v2 + 12 = 0; value: 0 a v3 -1 <= 0; value: 0 a 4*v3 -5 < 0; value: -1 0: 1: 1 2 3 2: 1 3 3: 1 4 5 optimal: oo a 2*v0 -5 <= 0; value: -5 a 2*v3 -277/6 <= 0; value: -265/6 d -6/5*v2 + 1/5 <= 0; value: 0 d -5*v1 + 3*v2 + 12 = 0; value: 0 a v3 -1 <= 0; value: 0 a 4*v3 -5 < 0; value: -1 0: 1: 1 2 3 2: 1 3 2 3: 1 4 5 0: 0 -> 0 1: 3 -> 5/2 2: 1 -> 1/6 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + 5*v1 + 5*v3 -42 = 0; value: 0 a -3*v0 + 4*v2 -3*v3 -5 <= 0; value: -11 a -4*v0 + 3*v3 -11 = 0; value: 0 a 6*v1 -5*v2 -17 <= 0; value: -8 a 4*v0 + 5*v1 -31 <= 0; value: -7 0: 1 2 3 5 1: 1 4 5 2: 2 4 3: 1 2 3 optimal: 334/5 a + 334/5 <= 0; value: 334/5 d -3*v0 + 5*v1 + 5*v3 -42 = 0; value: 0 a 4*v2 -170 <= 0; value: -158 d -4*v0 + 3*v3 -11 = 0; value: 0 a -5*v2 -427/5 <= 0; value: -502/5 d 1/3*v0 -22/3 <= 0; value: 0 0: 1 2 3 5 4 1: 1 4 5 2: 2 4 3: 1 2 3 4 5 0: 1 -> 22 1: 4 -> -57/5 2: 3 -> 3 3: 5 -> 33 a 2*v0 -2*v1 <= 0; value: -2 a 5*v2 + 6*v3 -10 = 0; value: 0 a 4*v0 -2*v2 -9 <= 0; value: -5 a -3*v0 -2 < 0; value: -8 a -2*v2 -3*v3 -2 <= 0; value: -6 a -5*v0 + 2*v2 + 6 = 0; value: 0 0: 2 3 5 1: 2: 1 2 4 5 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v2 + 6*v3 -10 = 0; value: 0 a 4*v0 -2*v2 -9 <= 0; value: -5 a -3*v0 -2 < 0; value: -8 a -2*v2 -3*v3 -2 <= 0; value: -6 a -5*v0 + 2*v2 + 6 = 0; value: 0 0: 2 3 5 1: 2: 1 2 4 5 3: 1 4 0: 2 -> 2 1: 3 -> 3 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -5*v0 + 3*v2 + v3 -18 <= 0; value: -4 a -6*v1 + 2*v3 + 13 <= 0; value: -13 a 3*v2 -2*v3 -18 <= 0; value: -10 a 5*v0 + 3*v1 -15 = 0; value: 0 a -6*v0 + v3 -4 <= 0; value: -2 0: 1 4 5 1: 2 4 2: 1 3 3: 1 2 3 5 optimal: oo a -8/5*v2 + 26/3 <= 0; value: 34/15 a 6*v2 -89/2 <= 0; value: -41/2 d 10*v0 + 2*v3 -17 <= 0; value: 0 d 3*v2 -2*v3 -18 <= 0; value: 0 d 5*v0 + 3*v1 -15 = 0; value: 0 a 33/10*v2 -34 <= 0; value: -104/5 0: 1 4 5 2 1: 2 4 2: 1 3 5 3: 1 2 3 5 0: 0 -> 23/10 1: 5 -> 7/6 2: 4 -> 4 3: 2 -> -3 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -3*v1 -2 = 0; value: 0 a v0 -5*v1 -3 <= 0; value: -7 a -6*v0 -5*v2 -2*v3 -15 < 0; value: -46 a -2*v2 -5 < 0; value: -11 a -2*v2 -1*v3 + 11 = 0; value: 0 0: 1 2 3 1: 1 2 2: 3 4 5 3: 3 5 optimal: 14/11 a + 14/11 <= 0; value: 14/11 d 5*v0 -3*v1 -2 = 0; value: 0 d -22/3*v0 + 1/3 <= 0; value: 0 a -5*v2 -2*v3 -168/11 < 0; value: -443/11 a -2*v2 -5 < 0; value: -11 a -2*v2 -1*v3 + 11 = 0; value: 0 0: 1 2 3 1: 1 2 2: 3 4 5 3: 3 5 0: 1 -> 1/22 1: 1 -> -13/22 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 <= 0; value: 0 a 2*v3 -17 <= 0; value: -7 a 6*v0 -3*v1 + 8 < 0; value: -1 a -3*v1 + 2*v2 + 5 = 0; value: 0 a -6*v0 -1*v1 -5*v3 + 28 = 0; value: 0 0: 1 3 5 1: 3 4 5 2: 4 3: 2 5 optimal: (-16/3 -e*1) a -16/3 < 0; value: -16/3 d -1*v0 <= 0; value: 0 a -103/15 <= 0; value: -103/15 d 24*v0 + 15*v3 -76 < 0; value: -1/2 d -3*v1 + 2*v2 + 5 = 0; value: 0 d -6*v0 -2/3*v2 -5*v3 + 79/3 = 0; value: 0 0: 1 3 5 2 1: 3 4 5 2: 4 3 5 3: 2 5 3 0: 0 -> 0 1: 3 -> 17/6 2: 2 -> 7/4 3: 5 -> 151/30 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 4*v2 -2*v3 -47 <= 0; value: -15 a -1*v1 + 4 <= 0; value: 0 a 6*v0 + v1 -5*v3 -32 < 0; value: -14 a -4*v1 + 4*v3 + 3 <= 0; value: -5 a -5*v2 + 24 <= 0; value: -1 0: 1 3 1: 2 3 4 2: 1 5 3: 1 3 4 optimal: (27/4 -e*1) a + 27/4 < 0; value: 27/4 a 4*v2 -24 <= 0; value: -4 d -1*v1 + 4 <= 0; value: 0 d 6*v0 -5*v3 -28 < 0; value: -6 d 4*v3 -13 <= 0; value: 0 a -5*v2 + 24 <= 0; value: -1 0: 1 3 1: 2 3 4 2: 1 5 3: 1 3 4 0: 4 -> 51/8 1: 4 -> 4 2: 5 -> 5 3: 2 -> 13/4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v3 -5 = 0; value: 0 a v1 -5 = 0; value: 0 a -5*v0 -4*v3 + 10 < 0; value: -35 a -1*v0 + 5*v3 -36 <= 0; value: -16 a -2*v1 + 2*v2 + 3*v3 -13 <= 0; value: -4 0: 3 4 1: 1 2 5 2: 5 3: 1 3 4 5 optimal: oo a 2*v0 -10 <= 0; value: 0 d 2*v1 -1*v3 -5 = 0; value: 0 d 1/2*v3 -5/2 = 0; value: 0 a -5*v0 -10 < 0; value: -35 a -1*v0 -11 <= 0; value: -16 a 2*v2 -8 <= 0; value: -4 0: 3 4 1: 1 2 5 2: 5 3: 1 3 4 5 2 0: 5 -> 5 1: 5 -> 5 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v2 -3 <= 0; value: -9 a -1*v0 + v2 -2 <= 0; value: 0 a 3*v0 + 2*v1 -5*v2 + 10 = 0; value: 0 a 4*v0 + 2*v1 + 5*v2 -53 < 0; value: -32 a v0 -2*v2 -1*v3 + 5 = 0; value: 0 0: 2 3 4 5 1: 3 4 2: 1 2 3 4 5 3: 5 optimal: (815/2 -e*1) a + 815/2 < 0; value: 815/2 d -1*v0 + v3 -8 <= 0; value: 0 a -163/2 < 0; value: -163/2 d 3*v0 + 2*v1 -5*v2 + 10 = 0; value: 0 d v0 -78 < 0; value: -1 d v0 -2*v2 -1*v3 + 5 = 0; value: 0 0: 2 3 4 5 1 1: 3 4 2: 1 2 3 4 5 3: 5 1 2 4 0: 1 -> 77 1: 1 -> -497/4 2: 3 -> -3/2 3: 0 -> 85 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 -1*v2 + 3*v3 -10 <= 0; value: -22 a 5*v2 + 3*v3 -38 <= 0; value: -24 a v3 -3 <= 0; value: 0 a -6*v1 -1*v2 + 6*v3 <= 0; value: -1 a 2*v1 -1*v3 -3 <= 0; value: 0 0: 1 1: 4 5 2: 1 2 4 3: 1 2 3 4 5 optimal: oo a 2*v0 + 1/3*v2 -2*v3 <= 0; value: 13/3 a -4*v0 -1*v2 + 3*v3 -10 <= 0; value: -22 a 5*v2 + 3*v3 -38 <= 0; value: -24 a v3 -3 <= 0; value: 0 d -6*v1 -1*v2 + 6*v3 <= 0; value: 0 a -1/3*v2 + v3 -3 <= 0; value: -1/3 0: 1 1: 4 5 2: 1 2 4 5 3: 1 2 3 4 5 0: 5 -> 5 1: 3 -> 17/6 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 -5*v1 + 19 = 0; value: 0 a -2*v0 -1*v3 + 9 = 0; value: 0 a 3*v2 -6*v3 + 2 <= 0; value: -4 a -2*v1 + v3 < 0; value: -1 a -3*v1 -4*v2 -3*v3 -24 <= 0; value: -55 0: 1 2 1: 1 4 5 2: 3 5 3: 2 3 4 5 optimal: 3610/357 a + 3610/357 <= 0; value: 3610/357 d -3*v0 -5*v1 + 19 = 0; value: 0 d -2*v0 -1*v3 + 9 = 0; value: 0 d 3*v2 -6*v3 + 2 <= 0; value: 0 a -1081/357 < 0; value: -1081/357 d -119/20*v2 -143/5 <= 0; value: 0 0: 1 2 4 5 1: 1 4 5 2: 3 5 4 3: 2 3 4 5 0: 3 -> 1976/357 1: 2 -> 57/119 2: 4 -> -572/119 3: 3 -> -739/357 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 -5*v3 -17 <= 0; value: -40 a 2*v1 -4*v2 -1 <= 0; value: -3 a v2 -4*v3 + 14 = 0; value: 0 a v0 + 2*v1 -25 <= 0; value: -15 a -2*v1 -1*v2 -3*v3 + 20 = 0; value: 0 0: 4 1: 1 2 4 5 2: 2 3 5 3: 1 3 5 optimal: oo a 2*v0 + 7/4*v2 -19/2 <= 0; value: 2 a -3/8*v2 -157/4 <= 0; value: -40 a -23/4*v2 + 17/2 <= 0; value: -3 d v2 -4*v3 + 14 = 0; value: 0 a v0 -7/4*v2 -31/2 <= 0; value: -15 d -2*v1 -1*v2 -3*v3 + 20 = 0; value: 0 0: 4 1: 1 2 4 5 2: 2 3 5 1 4 3: 1 3 5 2 4 0: 4 -> 4 1: 3 -> 3 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 + 3 <= 0; value: -3 a -1*v1 -3*v2 + v3 + 4 = 0; value: 0 a v1 -1*v3 -1 <= 0; value: -3 a 5*v0 -26 <= 0; value: -1 a v0 + 5*v2 -2*v3 -8 < 0; value: -3 0: 4 5 1: 1 2 3 2: 2 5 3: 2 3 5 optimal: (37/5 -e*1) a + 37/5 < 0; value: 37/5 d -1*v0 + v2 + 3 <= 0; value: 0 d -1*v1 -3*v2 + v3 + 4 = 0; value: 0 a -18/5 <= 0; value: -18/5 d 5*v0 -26 <= 0; value: 0 d v0 + 5*v2 -2*v3 -8 < 0; value: -9/10 0: 4 5 1 3 1: 1 2 3 2: 2 5 1 3 3: 2 3 5 1 0: 5 -> 26/5 1: 3 -> 39/20 2: 2 -> 11/5 3: 5 -> 91/20 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -5*v3 + 1 < 0; value: -1 a -4*v1 + 3*v3 -3 <= 0; value: -8 a -1*v1 + 1 <= 0; value: -1 a -1*v0 -4*v1 -5*v3 + 7 <= 0; value: -7 a -3*v0 -3*v3 -1 <= 0; value: -7 0: 1 4 5 1: 2 3 4 2: 3: 1 2 4 5 optimal: (46/9 -e*1) a + 46/9 < 0; value: 46/9 d 3*v0 -5*v3 + 1 < 0; value: -3 d 3*v3 -7 <= 0; value: 0 d -1*v1 + 1 <= 0; value: 0 a -110/9 < 0; value: -110/9 a -56/3 < 0; value: -56/3 0: 1 4 5 1: 2 3 4 2: 3: 1 2 4 5 0: 1 -> 23/9 1: 2 -> 1 2: 0 -> 0 3: 1 -> 7/3 a 2*v0 -2*v1 <= 0; value: -2 a v0 + 5*v1 -1*v2 -19 <= 0; value: -11 a -3*v1 + 3*v2 + 2*v3 -5 = 0; value: 0 a -1*v2 + 6*v3 -8 <= 0; value: -5 a v0 + v1 -1*v2 = 0; value: 0 a -1*v0 + 2*v1 + 2*v3 -14 <= 0; value: -9 0: 1 4 5 1: 1 2 4 5 2: 1 2 3 4 3: 2 3 5 optimal: oo a 22*v0 -14 <= 0; value: 8 a -40*v0 + 9 <= 0; value: -31 d -3*v1 + 3*v2 + 2*v3 -5 = 0; value: 0 d -9*v0 -1*v2 + 7 <= 0; value: 0 d v0 + 2/3*v3 -5/3 = 0; value: 0 a -24*v0 + 5 <= 0; value: -19 0: 1 4 5 3 1: 1 2 4 5 2: 1 2 3 4 5 3: 2 3 5 4 1 0: 1 -> 1 1: 2 -> -3 2: 3 -> -2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 3 = 0; value: 0 a v0 + 2*v2 -7 = 0; value: 0 a 4*v2 + 5*v3 -29 <= 0; value: -17 a -4*v1 -1*v3 + 12 = 0; value: 0 a -3*v0 -2*v1 + 5*v3 + 3 < 0; value: -6 0: 2 5 1: 1 4 5 2: 2 3 3: 3 4 5 optimal: oo a -4*v2 + 8 <= 0; value: -4 d -1*v1 + 3 = 0; value: 0 d v0 + 2*v2 -7 = 0; value: 0 a 4*v2 + 5*v3 -29 <= 0; value: -17 a -1*v3 = 0; value: 0 a 6*v2 + 5*v3 -24 < 0; value: -6 0: 2 5 1: 1 4 5 2: 2 3 5 3: 3 4 5 0: 1 -> 1 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 4*v2 -12 <= 0; value: -4 a -1*v1 <= 0; value: -1 a -3*v1 + v2 < 0; value: -1 a -6*v0 + 2*v1 + 6*v3 -5 < 0; value: -3 0: 1 4 1: 2 3 4 2: 1 3 3: 4 optimal: (24/5 -e*1) a + 24/5 < 0; value: 24/5 d 5*v0 -12 <= 0; value: 0 d -1/3*v2 <= 0; value: 0 d -3*v1 + v2 < 0; value: -3/2 a 6*v3 -97/5 < 0; value: -97/5 0: 1 4 1: 2 3 4 2: 1 3 2 4 3: 4 0: 0 -> 12/5 1: 1 -> 1/2 2: 2 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -2*v0 + 2*v3 -3 < 0; value: -9 a -5*v0 + v1 + 4*v3 + 1 < 0; value: -14 a 3*v1 + 2*v2 -15 < 0; value: -6 a v0 + v3 -5 = 0; value: 0 a -2*v1 + v3 <= 0; value: -1 0: 1 2 4 1: 2 3 5 2: 3 3: 1 2 4 5 optimal: oo a 3*v0 -5 <= 0; value: 7 a -4*v0 + 7 < 0; value: -9 a -19/2*v0 + 47/2 < 0; value: -29/2 a -3/2*v0 + 2*v2 -15/2 < 0; value: -15/2 d v0 + v3 -5 = 0; value: 0 d -2*v1 + v3 <= 0; value: 0 0: 1 2 4 3 1: 2 3 5 2: 3 3: 1 2 4 5 3 0: 4 -> 4 1: 1 -> 1/2 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -3*v1 -4*v3 -11 < 0; value: -28 a 4*v2 -13 < 0; value: -1 a -3*v1 -2*v3 -10 <= 0; value: -23 a -1*v0 -1*v1 + 6*v2 -13 <= 0; value: -2 a -1*v3 < 0; value: -2 0: 4 1: 1 3 4 2: 2 4 3: 1 3 5 optimal: oo a 2*v0 + 4/3*v3 + 20/3 <= 0; value: 52/3 a -2*v3 -1 < 0; value: -5 a 2/3*v0 -4/9*v3 -59/9 < 0; value: -43/9 d 3*v0 -18*v2 -2*v3 + 29 <= 0; value: 0 d -1*v0 -1*v1 + 6*v2 -13 <= 0; value: 0 a -1*v3 < 0; value: -2 0: 4 1 3 2 1: 1 3 4 2: 2 4 1 3 3: 1 3 5 2 0: 4 -> 4 1: 3 -> -14/3 2: 3 -> 37/18 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -6*v0 -1*v1 + 3 <= 0; value: -1 a 6*v1 -2*v2 + 2*v3 -31 < 0; value: -1 a 3*v0 + 6*v3 -76 <= 0; value: -46 a 3*v1 -5*v2 -2 = 0; value: 0 a -6*v3 -13 < 0; value: -43 0: 1 3 1: 1 2 4 2: 2 4 3: 2 3 5 optimal: (1228/3 -e*1) a + 1228/3 < 0; value: 1228/3 d -6*v0 -5/3*v2 + 7/3 <= 0; value: 0 a -13118/15 < 0; value: -13118/15 d 3*v0 + 6*v3 -76 <= 0; value: 0 d 3*v1 -5*v2 -2 = 0; value: 0 d -6*v3 -13 < 0; value: -6 0: 1 3 2 1: 1 2 4 2: 2 4 1 3: 2 3 5 0: 0 -> 83/3 1: 4 -> -163 2: 2 -> -491/5 3: 5 -> -7/6 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 3*v2 + 5*v3 -47 <= 0; value: -27 a -1*v1 + 2*v2 -9 = 0; value: 0 a 3*v1 -2*v2 -1*v3 + 2 < 0; value: -6 a v1 + 4*v2 + 6*v3 -58 <= 0; value: -31 a 2*v0 -3*v1 + 5*v2 -48 <= 0; value: -26 0: 1 5 1: 2 3 4 5 2: 1 2 3 4 5 3: 1 3 4 optimal: oo a -6*v0 + 102 <= 0; value: 102 a 9*v0 + 5*v3 -110 <= 0; value: -105 d -1*v1 + 2*v2 -9 = 0; value: 0 a 8*v0 -1*v3 -109 < 0; value: -110 a 12*v0 + 6*v3 -193 <= 0; value: -187 d 2*v0 -1*v2 -21 <= 0; value: 0 0: 1 5 3 4 1: 2 3 4 5 2: 1 2 3 4 5 3: 1 3 4 0: 0 -> 0 1: 1 -> -51 2: 5 -> -21 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v3 -3 <= 0; value: 0 a -3*v2 -2*v3 + 4 < 0; value: -14 a v0 -2 <= 0; value: -1 a -2*v0 + 5*v2 -35 <= 0; value: -17 a 5*v0 + 4*v3 -17 = 0; value: 0 0: 3 4 5 1: 2: 2 4 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a v3 -3 <= 0; value: 0 a -3*v2 -2*v3 + 4 < 0; value: -14 a v0 -2 <= 0; value: -1 a -2*v0 + 5*v2 -35 <= 0; value: -17 a 5*v0 + 4*v3 -17 = 0; value: 0 0: 3 4 5 1: 2: 2 4 3: 1 2 5 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a v1 + 3*v3 -7 <= 0; value: -4 a -3*v1 -6*v2 + 2 <= 0; value: -7 a 2*v1 + v2 -6 = 0; value: 0 a 6*v0 -6*v2 + 4*v3 -31 < 0; value: -13 a -1*v0 -2*v1 -1*v3 -3 <= 0; value: -12 0: 4 5 1: 1 2 3 5 2: 2 3 4 3: 1 4 5 optimal: oo a 16/5*v0 + 32/5 <= 0; value: 16 d -1/2*v0 + 5/2*v3 -17/2 <= 0; value: 0 a -27/5*v0 -314/5 <= 0; value: -79 d 2*v1 + v2 -6 = 0; value: 0 a -2/5*v0 -459/5 < 0; value: -93 d -1*v0 + v2 -1*v3 -9 <= 0; value: 0 0: 4 5 2 1 4 1: 1 2 3 5 2: 2 3 4 5 1 3: 1 4 5 2 0: 3 -> 3 1: 3 -> -5 2: 0 -> 16 3: 0 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -17 <= 0; value: -9 a -1*v0 + v1 + 2*v3 <= 0; value: 0 a -1*v2 + v3 = 0; value: 0 a v0 -4 = 0; value: 0 a v2 = 0; value: 0 0: 2 4 1: 1 2 2: 3 5 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -17 <= 0; value: -9 a -1*v0 + v1 + 2*v3 <= 0; value: 0 a -1*v2 + v3 = 0; value: 0 a v0 -4 = 0; value: 0 a v2 = 0; value: 0 0: 2 4 1: 1 2 2: 3 5 3: 2 3 0: 4 -> 4 1: 4 -> 4 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -4*v0 + 4*v1 -3 < 0; value: -15 a -6*v0 -1*v2 -2*v3 + 31 <= 0; value: -4 a 3*v0 + v1 -13 = 0; value: 0 a -3*v0 -2*v2 + 10 <= 0; value: -8 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 3 2: 2 4 3: 2 5 optimal: oo a 8*v0 -26 <= 0; value: 6 a -16*v0 + 49 < 0; value: -15 a -6*v0 -1*v2 -2*v3 + 31 <= 0; value: -4 d 3*v0 + v1 -13 = 0; value: 0 a -3*v0 -2*v2 + 10 <= 0; value: -8 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 3 2: 2 4 3: 2 5 0: 4 -> 4 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 4*v2 + 2*v3 -25 <= 0; value: -13 a 5*v0 -6*v3 + 9 = 0; value: 0 a -2*v0 + v1 -5*v3 -13 < 0; value: -37 a v2 -1 = 0; value: 0 a 2*v0 + 2*v3 -25 < 0; value: -11 0: 2 3 5 1: 3 2: 1 4 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 4*v2 + 2*v3 -25 <= 0; value: -13 a 5*v0 -6*v3 + 9 = 0; value: 0 a -2*v0 + v1 -5*v3 -13 < 0; value: -37 a v2 -1 = 0; value: 0 a 2*v0 + 2*v3 -25 < 0; value: -11 0: 2 3 5 1: 3 2: 1 4 3: 1 2 3 5 0: 3 -> 3 1: 2 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -37 <= 0; value: -22 a -1*v0 -5*v2 + 2*v3 -7 <= 0; value: -20 a -2*v3 -7 < 0; value: -17 a 3*v0 + 5*v1 -34 < 0; value: -20 0: 1 2 4 1: 4 2: 2 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -37 <= 0; value: -22 a -1*v0 -5*v2 + 2*v3 -7 <= 0; value: -20 a -2*v3 -7 < 0; value: -17 a 3*v0 + 5*v1 -34 < 0; value: -20 0: 1 2 4 1: 4 2: 2 3: 2 3 0: 3 -> 3 1: 1 -> 1 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a v1 -4*v2 + 7 = 0; value: 0 a 2*v2 -1*v3 -1 = 0; value: 0 a 2*v0 -1*v1 -3*v3 + 8 <= 0; value: -2 a 5*v3 -17 < 0; value: -2 0: 3 1: 1 3 2: 1 2 3: 2 3 4 optimal: (2/5 -e*1) a + 2/5 < 0; value: 2/5 d v1 -4*v2 + 7 = 0; value: 0 d 2*v2 -1*v3 -1 = 0; value: 0 d 2*v0 -5*v3 + 13 <= 0; value: 0 d 2*v0 -4 < 0; value: -2 0: 3 4 1: 1 3 2: 1 2 3 3: 2 3 4 0: 0 -> 1 1: 1 -> 1 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v0 -5 < 0; value: -3 a -3*v2 -4*v3 + 2 <= 0; value: -19 a -2*v0 + v1 + 1 <= 0; value: 0 a -3*v0 -5*v1 + 4*v3 -6 <= 0; value: -15 a -3*v0 + 3*v1 + v2 -6 = 0; value: 0 0: 1 3 4 5 1: 3 4 5 2: 2 5 3: 2 4 optimal: oo a 16/5*v0 -8/5*v3 + 12/5 <= 0; value: 4 a v0 -5 < 0; value: -3 a -72/5*v0 + 16/5*v3 -134/5 <= 0; value: -46 a -13/5*v0 + 4/5*v3 -1/5 <= 0; value: -3 d -8*v0 + 5/3*v2 + 4*v3 -16 <= 0; value: 0 d -3*v0 + 3*v1 + v2 -6 = 0; value: 0 0: 1 3 4 5 2 1: 3 4 5 2: 2 5 4 3 3: 2 4 3 0: 2 -> 2 1: 3 -> 0 2: 3 -> 12 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + 6*v1 + 2*v3 -37 < 0; value: -13 a 2*v0 + 3*v1 + 2*v3 -50 <= 0; value: -28 a -5*v0 -2 <= 0; value: -12 a -2*v1 + 3*v2 -4 = 0; value: 0 0: 1 2 3 1: 1 2 4 2: 4 3: 1 2 optimal: oo a 2*v0 -3*v2 + 4 <= 0; value: -4 a -3*v0 + 9*v2 + 2*v3 -49 < 0; value: -13 a 2*v0 + 9/2*v2 + 2*v3 -56 <= 0; value: -28 a -5*v0 -2 <= 0; value: -12 d -2*v1 + 3*v2 -4 = 0; value: 0 0: 1 2 3 1: 1 2 4 2: 4 1 2 3: 1 2 0: 2 -> 2 1: 4 -> 4 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 -7 <= 0; value: -16 a -3*v0 + 4*v1 + v3 + 8 = 0; value: 0 a -1*v0 -4*v1 + 5*v2 -17 <= 0; value: -5 a -5*v2 + 6*v3 -7 <= 0; value: -16 a 5*v0 -1*v2 -28 <= 0; value: -16 0: 1 2 3 5 1: 2 3 2: 3 4 5 3: 2 4 optimal: 3167/302 a + 3167/302 <= 0; value: 3167/302 a -4138/151 <= 0; value: -4138/151 d -3*v0 + 4*v1 + v3 + 8 = 0; value: 0 d -4*v0 + 35/6*v2 -47/6 <= 0; value: 0 d -5*v2 + 6*v3 -7 <= 0; value: 0 d 151/35*v0 -1027/35 <= 0; value: 0 0: 1 2 3 5 1: 2 3 2: 3 4 5 3: 2 4 3 0: 3 -> 1027/151 1: 0 -> 941/604 2: 3 -> 907/151 3: 1 -> 932/151 a 2*v0 -2*v1 <= 0; value: 10 a -5*v0 + 2*v1 -4*v3 + 41 = 0; value: 0 a -5*v2 + 6*v3 + 1 <= 0; value: 0 a -1*v2 -1*v3 + 9 = 0; value: 0 a 4*v0 -31 <= 0; value: -11 a -5*v0 + 4*v2 + 5 = 0; value: 0 0: 1 4 5 1: 1 2: 2 3 5 3: 1 2 3 optimal: 31/2 a + 31/2 <= 0; value: 31/2 d -5*v0 + 2*v1 -4*v3 + 41 = 0; value: 0 a -605/16 <= 0; value: -605/16 d -1*v2 -1*v3 + 9 = 0; value: 0 d 4*v0 -31 <= 0; value: 0 d -5*v0 + 4*v2 + 5 = 0; value: 0 0: 1 4 5 2 1: 1 2: 2 3 5 3: 1 2 3 0: 5 -> 31/4 1: 0 -> 0 2: 5 -> 135/16 3: 4 -> 9/16 a 2*v0 -2*v1 <= 0; value: 8 a -1*v1 <= 0; value: 0 a -5*v0 + 2*v3 -1 <= 0; value: -13 a v0 -11 <= 0; value: -7 a v0 -4 <= 0; value: 0 a v0 -1*v3 <= 0; value: 0 0: 2 3 4 5 1: 1 2: 3: 2 5 optimal: 8 a + 8 <= 0; value: 8 d -1*v1 <= 0; value: 0 a 2*v3 -21 <= 0; value: -13 a -7 <= 0; value: -7 d v0 -4 <= 0; value: 0 a -1*v3 + 4 <= 0; value: 0 0: 2 3 4 5 1: 1 2: 3: 2 5 0: 4 -> 4 1: 0 -> 0 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 4*v2 <= 0; value: 0 a v2 -5 = 0; value: 0 a -3*v1 + v2 + 10 = 0; value: 0 a -3*v1 -4*v3 + 13 <= 0; value: -2 a v1 -12 <= 0; value: -7 0: 1 1: 3 4 5 2: 1 2 3 3: 4 optimal: oo a 2*v0 -10 <= 0; value: -2 a -5*v0 + 20 <= 0; value: 0 d v2 -5 = 0; value: 0 d -3*v1 + v2 + 10 = 0; value: 0 a -4*v3 -2 <= 0; value: -2 a -7 <= 0; value: -7 0: 1 1: 3 4 5 2: 1 2 3 4 5 3: 4 0: 4 -> 4 1: 5 -> 5 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a 2*v0 -2*v2 -3 < 0; value: -7 a v2 -1*v3 -2 < 0; value: -1 a -4*v1 -5*v2 + 30 = 0; value: 0 a 5*v2 + 3*v3 -27 <= 0; value: -14 0: 1 1: 3 2: 1 2 3 4 3: 2 4 optimal: (105/16 -e*1) a + 105/16 < 0; value: 105/16 d 2*v0 -45/4 < 0; value: -2 d v2 -1*v3 -2 < 0; value: -1 d -4*v1 -5*v2 + 30 = 0; value: 0 d 8*v3 -17 <= 0; value: 0 0: 1 1: 3 2: 1 2 3 4 3: 2 4 1 0: 0 -> 37/8 1: 5 -> 115/32 2: 2 -> 25/8 3: 1 -> 17/8 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + 6*v2 -37 < 0; value: -1 a -2*v0 -4*v1 -4*v2 + 1 <= 0; value: -21 a v0 + 5*v1 + v3 -18 <= 0; value: -9 a -2*v2 + 3*v3 + 3 = 0; value: 0 a 2*v3 -3 < 0; value: -1 0: 1 2 3 1: 2 3 2: 1 2 4 3: 3 4 5 optimal: (468/17 -e*1) a + 468/17 < 0; value: 468/17 d 6*v0 + 9*v3 -28 < 0; value: -9 d -2*v0 -4*v1 -4*v2 + 1 <= 0; value: 0 d 17/6*v0 -1601/36 < 0; value: -17/6 d -2*v2 + 3*v3 + 3 = 0; value: 0 a -301/17 < 0; value: -301/17 0: 1 2 3 5 1: 2 3 2: 1 2 4 3 3: 3 4 5 1 0: 3 -> 1499/102 1: 1 -> 299/102 2: 3 -> -341/34 3: 1 -> -392/51 a 2*v0 -2*v1 <= 0; value: -4 a v3 = 0; value: 0 a -2*v0 -2*v2 + 5 <= 0; value: -1 a v2 + 5*v3 -2 = 0; value: 0 a 3*v0 + v3 -7 <= 0; value: -4 a 5*v1 -22 < 0; value: -7 0: 2 4 1: 5 2: 2 3 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v3 = 0; value: 0 a -2*v0 -2*v2 + 5 <= 0; value: -1 a v2 + 5*v3 -2 = 0; value: 0 a 3*v0 + v3 -7 <= 0; value: -4 a 5*v1 -22 < 0; value: -7 0: 2 4 1: 5 2: 2 3 3: 1 3 4 0: 1 -> 1 1: 3 -> 3 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 4*v2 -2*v3 -7 <= 0; value: -3 a 6*v1 -2*v2 -3*v3 -59 <= 0; value: -37 a -5*v0 -2*v1 + 6*v2 + 18 < 0; value: -4 a 4*v0 + 6*v2 -23 < 0; value: -1 0: 3 4 1: 2 3 2: 1 2 3 4 3: 1 2 optimal: oo a 7*v0 -6*v2 -18 < 0; value: 4 a 4*v2 -2*v3 -7 <= 0; value: -3 a -15*v0 + 16*v2 -3*v3 -5 < 0; value: -49 d -5*v0 -2*v1 + 6*v2 + 18 < 0; value: -2 a 4*v0 + 6*v2 -23 < 0; value: -1 0: 3 4 2 1: 2 3 2: 1 2 3 4 3: 1 2 0: 4 -> 4 1: 4 -> 3 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + 5 = 0; value: 0 a 5*v0 -6*v1 -5*v3 + 13 <= 0; value: -1 a -3*v0 + 4*v1 + 4*v2 -47 <= 0; value: -30 a v0 -5 = 0; value: 0 a -1*v2 + v3 + 1 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 3 5 3: 2 5 optimal: 79 a + 79 <= 0; value: 79 d -1*v0 + 5 = 0; value: 0 d 5*v0 -6*v1 -5*v3 + 13 <= 0; value: 0 d 1/3*v0 + 2/3*v2 -35 <= 0; value: 0 a = 0; value: 0 d -1*v2 + v3 + 1 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 3 5 3: 2 5 3 0: 5 -> 5 1: 4 -> -69/2 2: 4 -> 50 3: 3 -> 49 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 <= 0; value: 0 a 2*v3 -11 < 0; value: -5 a 3*v0 -2*v3 -1 < 0; value: -7 a v0 -3*v2 -4 <= 0; value: -10 a 6*v0 + 4*v1 -5*v3 + 1 <= 0; value: -6 0: 1 3 4 5 1: 5 2: 4 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 <= 0; value: 0 a 2*v3 -11 < 0; value: -5 a 3*v0 -2*v3 -1 < 0; value: -7 a v0 -3*v2 -4 <= 0; value: -10 a 6*v0 + 4*v1 -5*v3 + 1 <= 0; value: -6 0: 1 3 4 5 1: 5 2: 4 3: 2 3 5 0: 0 -> 0 1: 2 -> 2 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 + 5*v3 -67 <= 0; value: -40 a v1 -3*v3 + 1 <= 0; value: -5 a 6*v0 + 2*v2 + 2*v3 -71 <= 0; value: -31 a -2*v0 -3*v3 + 3 <= 0; value: -16 a -6*v1 + 5*v3 + 2 <= 0; value: -1 0: 3 4 1: 1 2 5 2: 3 3: 1 2 3 4 5 optimal: oo a -2/3*v2 + 841/39 <= 0; value: 263/13 a -787/13 <= 0; value: -787/13 d -13/6*v3 + 4/3 <= 0; value: 0 d 6*v0 + 2*v2 -907/13 <= 0; value: 0 a 2/3*v2 -862/39 <= 0; value: -270/13 d -6*v1 + 5*v3 + 2 <= 0; value: 0 0: 3 4 1: 1 2 5 2: 3 4 3: 1 2 3 4 5 0: 5 -> 285/26 1: 3 -> 11/13 2: 2 -> 2 3: 3 -> 8/13 a 2*v0 -2*v1 <= 0; value: 2 a v3 -6 <= 0; value: -3 a 4*v1 -5*v2 + 5 = 0; value: 0 a 2*v0 + v1 -4 <= 0; value: -2 a -1*v3 + 3 = 0; value: 0 a -3*v1 + 3*v2 + v3 -16 <= 0; value: -10 0: 3 1: 2 3 5 2: 2 5 3: 1 4 5 optimal: 54 a + 54 <= 0; value: 54 a -3 <= 0; value: -3 d 4*v1 -5*v2 + 5 = 0; value: 0 d 2*v0 -62/3 <= 0; value: 0 d -1*v3 + 3 = 0; value: 0 d -3/4*v2 + v3 -49/4 <= 0; value: 0 0: 3 1: 2 3 5 2: 2 5 3 3: 1 4 5 3 0: 1 -> 31/3 1: 0 -> -50/3 2: 1 -> -37/3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v1 -2*v2 -17 < 0; value: -5 a -1*v0 + 4 = 0; value: 0 a -2*v1 + 4*v2 + v3 < 0; value: -4 a 4*v0 + 6*v1 -63 <= 0; value: -29 a -5*v0 -1*v1 + 19 < 0; value: -4 0: 2 4 5 1: 1 3 4 5 2: 1 3 3: 3 optimal: (10 -e*1) a + 10 < 0; value: 10 a -2*v2 -21 < 0; value: -21 d -1*v0 + 4 = 0; value: 0 d -2*v1 + 4*v2 + v3 < 0; value: -2 a -53 < 0; value: -53 d -5*v0 -2*v2 -1/2*v3 + 19 <= 0; value: 0 0: 2 4 5 1 1: 1 3 4 5 2: 1 3 5 4 3: 3 5 1 4 0: 4 -> 4 1: 3 -> 0 2: 0 -> 0 3: 2 -> -2 a 2*v0 -2*v1 <= 0; value: -4 a 6*v2 + 3*v3 -16 < 0; value: -7 a -3*v0 -6*v1 + 11 <= 0; value: -1 a -4*v1 -4*v2 -1*v3 + 11 = 0; value: 0 a -1*v1 + 2 = 0; value: 0 a 5*v1 + 3*v3 -27 < 0; value: -8 0: 2 1: 2 3 4 5 2: 1 3 3: 1 3 5 optimal: oo a 2*v0 -4 <= 0; value: -4 a -6*v2 -7 < 0; value: -7 a -3*v0 -1 <= 0; value: -1 d -4*v1 -4*v2 -1*v3 + 11 = 0; value: 0 d v2 + 1/4*v3 -3/4 = 0; value: 0 a -12*v2 -8 < 0; value: -8 0: 2 1: 2 3 4 5 2: 1 3 2 4 5 3: 1 3 5 2 4 0: 0 -> 0 1: 2 -> 2 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 + 4*v3 -5 = 0; value: 0 a 6*v0 + v1 -3*v2 <= 0; value: -9 a v0 -6*v1 + 3*v2 + 5 < 0; value: -1 a 4*v0 -1*v1 -2*v3 -3 < 0; value: -10 a -5*v0 -1*v1 + 4*v3 -5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 5 2: 2 3 3: 1 4 5 optimal: (-2 -e*1) a -2 < 0; value: -2 d -1*v1 + 4*v3 -5 = 0; value: 0 d 37/6*v0 -5/2*v2 + 5/6 < 0; value: -5/2 d v0 + 3*v2 -24*v3 + 35 < 0; value: -9/2 a -7 <= 0; value: -7 d -5*v0 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 5 2: 2 3 4 3: 1 4 5 3 2 0: 0 -> 0 1: 3 -> 9/4 2: 4 -> 4/3 3: 2 -> 29/16 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -4*v2 + 2 < 0; value: -13 a v3 <= 0; value: 0 a -1*v0 + 1 = 0; value: 0 a -6*v0 + v1 -6*v2 -2 <= 0; value: -22 a 3*v0 -1*v2 + 2*v3 = 0; value: 0 0: 1 3 4 5 1: 4 2: 1 4 5 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -4*v2 + 2 < 0; value: -13 a v3 <= 0; value: 0 a -1*v0 + 1 = 0; value: 0 a -6*v0 + v1 -6*v2 -2 <= 0; value: -22 a 3*v0 -1*v2 + 2*v3 = 0; value: 0 0: 1 3 4 5 1: 4 2: 1 4 5 3: 2 5 0: 1 -> 1 1: 4 -> 4 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -1*v3 <= 0; value: -5 a 6*v0 -5*v1 + 1 <= 0; value: -1 a -5*v0 -6*v2 + 33 = 0; value: 0 a -6*v1 -3*v2 -5*v3 + 58 = 0; value: 0 a 6*v0 + 5*v2 -66 < 0; value: -33 0: 2 3 5 1: 2 4 2: 3 4 5 3: 1 4 optimal: oo a 12/25*v2 -76/25 <= 0; value: -8/5 a -141/125*v2 -232/125 <= 0; value: -131/25 d 6*v0 + 5/2*v2 + 25/6*v3 -142/3 <= 0; value: 0 d -5*v0 -6*v2 + 33 = 0; value: 0 d -6*v1 -3*v2 -5*v3 + 58 = 0; value: 0 a -11/5*v2 -132/5 < 0; value: -33 0: 2 3 5 1 1: 2 4 2: 3 4 5 2 1 3: 1 4 2 0: 3 -> 3 1: 4 -> 19/5 2: 3 -> 3 3: 5 -> 131/25 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 -1*v2 + 13 = 0; value: 0 a -2*v0 -6*v1 -1*v3 + 4 < 0; value: -31 a -6*v0 + 5*v1 -2*v2 + 14 = 0; value: 0 a -1*v0 -1*v1 + 6 <= 0; value: -2 a 5*v0 -6*v3 -5 < 0; value: -3 0: 2 3 4 5 1: 1 2 3 4 2: 1 3 3: 2 5 optimal: oo a 4/5*v3 -2 < 0; value: 2/5 d -2*v1 -1*v2 + 13 = 0; value: 0 a -41/5*v3 -10 < 0; value: -173/5 d -6*v0 -9/2*v2 + 93/2 = 0; value: 0 a -2*v3 + 3 < 0; value: -3 d 5*v0 -6*v3 -5 < 0; value: -3/2 0: 2 3 4 5 1: 1 2 3 4 2: 1 3 2 4 3: 2 5 4 0: 4 -> 43/10 1: 4 -> 21/5 2: 5 -> 23/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -1*v3 -4 < 0; value: -2 a -1*v0 -4*v3 -1 <= 0; value: -20 a -2*v0 -1 <= 0; value: -7 a -2*v0 -1*v3 -4 <= 0; value: -14 a 5*v0 -1*v1 -32 < 0; value: -19 0: 1 2 3 4 5 1: 5 2: 3: 1 2 4 optimal: (68 -e*1) a + 68 < 0; value: 68 a -1*v3 -5 < 0; value: -9 a -4*v3 -1/2 <= 0; value: -33/2 d -2*v0 -1 <= 0; value: 0 a -1*v3 -3 <= 0; value: -7 d 5*v0 -1*v1 -32 < 0; value: -1 0: 1 2 3 4 5 1: 5 2: 3: 1 2 4 0: 3 -> -1/2 1: 2 -> -67/2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a v0 -5 < 0; value: -3 a v1 -3 = 0; value: 0 a 3*v3 -4 < 0; value: -1 a v2 -1 = 0; value: 0 a 5*v2 + 4*v3 -22 <= 0; value: -13 0: 1 1: 2 2: 4 5 3: 3 5 optimal: (4 -e*1) a + 4 < 0; value: 4 d v0 -5 < 0; value: -1 d v1 -3 = 0; value: 0 a 3*v3 -4 < 0; value: -1 a v2 -1 = 0; value: 0 a 5*v2 + 4*v3 -22 <= 0; value: -13 0: 1 1: 2 2: 4 5 3: 3 5 0: 2 -> 4 1: 3 -> 3 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a v2 -5 = 0; value: 0 a v0 -1*v2 + 3 = 0; value: 0 a -5*v1 -6*v3 + 8 < 0; value: -23 a -4*v1 + 3*v3 + 14 < 0; value: -3 a -1*v0 + 2*v2 -18 <= 0; value: -10 0: 2 5 1: 3 4 2: 1 2 5 3: 3 4 optimal: (-20/13 -e*1) a -20/13 < 0; value: -20/13 d v2 -5 = 0; value: 0 d v0 -1*v2 + 3 = 0; value: 0 d -39/4*v3 -19/2 <= 0; value: 0 d -4*v1 + 3*v3 + 14 < 0; value: -4 a -10 <= 0; value: -10 0: 2 5 1: 3 4 2: 1 2 5 3: 3 4 0: 2 -> 2 1: 5 -> 49/13 2: 5 -> 5 3: 1 -> -38/39 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 -1*v1 + 4 = 0; value: 0 a -5*v1 + 6*v2 -6 <= 0; value: -14 a 3*v0 + 2*v1 -8 = 0; value: 0 a -1*v1 -5*v2 + 3 <= 0; value: -11 a 6*v1 -29 <= 0; value: -5 0: 1 3 1: 1 2 3 4 5 2: 2 4 3: optimal: -8 a -8 <= 0; value: -8 d -1*v0 -1*v1 + 4 = 0; value: 0 a 6*v2 -26 <= 0; value: -14 d v0 = 0; value: 0 a -5*v2 -1 <= 0; value: -11 a -5 <= 0; value: -5 0: 1 3 2 4 5 1: 1 2 3 4 5 2: 2 4 3: 0: 0 -> 0 1: 4 -> 4 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 -1*v3 -1 < 0; value: -12 a 5*v0 + v2 -32 < 0; value: -10 a -2*v0 -2*v1 -1 < 0; value: -17 a -6*v2 + 6*v3 -13 <= 0; value: -7 a -1*v2 <= 0; value: -2 0: 2 3 1: 1 3 2: 2 4 5 3: 1 4 optimal: (431/21 -e*1) a + 431/21 < 0; value: 431/21 d -2*v1 -1*v3 -1 < 0; value: -2 d 7*v0 -205/6 < 0; value: -37/12 d -2*v0 + v2 + 13/6 <= 0; value: 0 d -6*v2 + 6*v3 -13 <= 0; value: 0 a -319/42 < 0; value: -319/42 0: 2 3 5 1: 1 3 2: 2 4 5 3 3: 1 4 3 0: 4 -> 373/84 1: 4 -> -331/84 2: 2 -> 47/7 3: 3 -> 373/42 a 2*v0 -2*v1 <= 0; value: 8 a 6*v1 + v2 -1*v3 -2 < 0; value: -1 a -1*v2 -2 <= 0; value: -6 a 3*v0 + 5*v2 -63 < 0; value: -31 a -6*v0 -2*v2 -31 < 0; value: -63 a -5*v2 -11 <= 0; value: -31 0: 3 4 1: 1 2: 1 2 3 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a 6*v1 + v2 -1*v3 -2 < 0; value: -1 a -1*v2 -2 <= 0; value: -6 a 3*v0 + 5*v2 -63 < 0; value: -31 a -6*v0 -2*v2 -31 < 0; value: -63 a -5*v2 -11 <= 0; value: -31 0: 3 4 1: 1 2: 1 2 3 4 5 3: 1 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a v2 -10 <= 0; value: -6 a -3*v1 + 5*v2 + 2*v3 -27 = 0; value: 0 a 4*v0 -7 <= 0; value: -3 a -3*v1 + 4*v2 -16 <= 0; value: -3 a -1*v0 + 5*v1 -1*v3 < 0; value: -1 0: 3 5 1: 2 4 5 2: 1 2 4 3: 2 5 optimal: oo a 2*v0 -8/3*v2 + 32/3 <= 0; value: 2 a v2 -10 <= 0; value: -6 d -3*v1 + 5*v2 + 2*v3 -27 = 0; value: 0 a 4*v0 -7 <= 0; value: -3 d -1*v2 -2*v3 + 11 <= 0; value: 0 a -1*v0 + 43/6*v2 -193/6 < 0; value: -9/2 0: 3 5 1: 2 4 5 2: 1 2 4 5 3: 2 5 4 0: 1 -> 1 1: 1 -> 0 2: 4 -> 4 3: 5 -> 7/2 a 2*v0 -2*v1 <= 0; value: -2 a v2 + 3*v3 -16 = 0; value: 0 a -1*v0 <= 0; value: 0 a -2*v0 + 6*v1 + 5*v2 -29 < 0; value: -18 a -5*v0 -6*v1 -5*v2 + 11 = 0; value: 0 a v0 -5*v3 -12 <= 0; value: -37 0: 2 3 4 5 1: 3 4 2: 1 3 4 3: 1 5 optimal: oo a 8/3*v0 + 35 <= 0; value: 35 d v2 + 3*v3 -16 = 0; value: 0 a -1*v0 <= 0; value: 0 a -7*v0 -18 < 0; value: -18 d -5*v0 -6*v1 -5*v2 + 11 = 0; value: 0 d v0 -5*v3 -12 <= 0; value: 0 0: 2 3 4 5 1: 3 4 2: 1 3 4 3: 1 5 0: 0 -> 0 1: 1 -> -35/2 2: 1 -> 116/5 3: 5 -> -12/5 a 2*v0 -2*v1 <= 0; value: 2 a v0 -5*v1 + v3 -5 <= 0; value: 0 a v1 + 2*v2 -8 = 0; value: 0 a v0 -2*v1 + 2*v3 -26 <= 0; value: -17 a 6*v1 + 3*v3 -35 < 0; value: -23 a -5*v0 -2*v1 + 4*v2 -28 <= 0; value: -17 0: 1 3 5 1: 1 2 3 4 5 2: 2 5 3: 1 3 4 optimal: oo a 9/2*v0 + 6 <= 0; value: 21/2 d v0 -5*v1 + v3 -5 <= 0; value: 0 d 1/5*v0 + 2*v2 + 1/5*v3 -9 = 0; value: 0 a -11*v0 -40 <= 0; value: -51 a -117/4*v0 -83 < 0; value: -449/4 d -5*v0 + 8*v2 -44 <= 0; value: 0 0: 1 3 5 2 4 1: 1 2 3 4 5 2: 2 5 3 4 3: 1 3 4 2 5 0: 1 -> 1 1: 0 -> -17/4 2: 4 -> 49/8 3: 4 -> -69/4 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 + 5 <= 0; value: -1 a -1*v0 -2*v1 -3*v3 + 18 <= 0; value: -5 a -1*v2 <= 0; value: 0 a 4*v0 -4*v3 -9 <= 0; value: -5 a 2*v0 -27 <= 0; value: -17 0: 2 4 5 1: 1 2 2: 3 3: 2 4 optimal: 22 a + 22 <= 0; value: 22 d -2*v1 + 5 <= 0; value: 0 a -137/4 <= 0; value: -137/4 a -1*v2 <= 0; value: 0 d 4*v0 -4*v3 -9 <= 0; value: 0 d 2*v3 -45/2 <= 0; value: 0 0: 2 4 5 1: 1 2 2: 3 3: 2 4 5 0: 5 -> 27/2 1: 3 -> 5/2 2: 0 -> 0 3: 4 -> 45/4 a 2*v0 -2*v1 <= 0; value: -4 a -3*v1 -2*v2 + 3*v3 + 10 = 0; value: 0 a -6*v0 -4*v1 + 4*v3 + 17 <= 0; value: -1 a -1*v0 -2*v2 -3*v3 -2 <= 0; value: -30 a v0 -5 < 0; value: -2 a v0 + 3*v3 -27 <= 0; value: -9 0: 2 3 4 5 1: 1 2 2: 1 3 3: 1 2 3 5 optimal: (103/3 -e*1) a + 103/3 < 0; value: 103/3 d -3*v1 -2*v2 + 3*v3 + 10 = 0; value: 0 d -6*v0 + 8/3*v2 + 11/3 <= 0; value: 0 d -1*v0 -2*v2 -3*v3 -2 <= 0; value: 0 d v0 -5 < 0; value: -1 a -195/4 < 0; value: -195/4 0: 2 3 4 5 5 1: 1 2 2: 1 3 2 5 3: 1 2 3 5 0: 3 -> 4 1: 5 -> -53/6 2: 5 -> 61/8 3: 5 -> -85/12 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 6*v1 -14 < 0; value: -9 a -6*v2 -5*v3 -1 <= 0; value: -25 a -1*v0 + 2*v1 -1*v2 -2 < 0; value: -5 a 2*v0 + 5*v1 -3*v2 <= 0; value: -5 a -1*v0 + 4*v3 + 1 <= 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3 4 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 6*v1 -14 < 0; value: -9 a -6*v2 -5*v3 -1 <= 0; value: -25 a -1*v0 + 2*v1 -1*v2 -2 < 0; value: -5 a 2*v0 + 5*v1 -3*v2 <= 0; value: -5 a -1*v0 + 4*v3 + 1 <= 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3 4 3: 2 5 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 3*v1 -12 <= 0; value: -5 a 5*v0 + 4*v3 -39 < 0; value: -7 a 6*v0 -2*v2 -25 < 0; value: -11 a 3*v0 + 2*v2 -22 = 0; value: 0 a 2*v1 + v2 -26 <= 0; value: -11 0: 1 2 3 4 1: 1 5 2: 3 4 5 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 3*v1 -12 <= 0; value: -5 a 5*v0 + 4*v3 -39 < 0; value: -7 a 6*v0 -2*v2 -25 < 0; value: -11 a 3*v0 + 2*v2 -22 = 0; value: 0 a 2*v1 + v2 -26 <= 0; value: -11 0: 1 2 3 4 1: 1 5 2: 3 4 5 3: 2 0: 4 -> 4 1: 5 -> 5 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v1 + 3*v3 -44 < 0; value: -27 a v2 <= 0; value: 0 a -6*v1 + 5*v2 -9 < 0; value: -21 a -2*v0 -1 <= 0; value: -7 a -1*v1 + 2 = 0; value: 0 0: 4 1: 1 3 5 2: 2 3 3: 1 optimal: oo a 2*v0 -4 <= 0; value: 2 a 3*v3 -36 < 0; value: -27 a v2 <= 0; value: 0 a 5*v2 -21 < 0; value: -21 a -2*v0 -1 <= 0; value: -7 d -1*v1 + 2 = 0; value: 0 0: 4 1: 1 3 5 2: 2 3 3: 1 0: 3 -> 3 1: 2 -> 2 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a -5*v0 + 6*v3 -25 <= 0; value: -6 a 5*v0 -3*v1 <= 0; value: -7 a 3*v0 -2*v1 + 5 <= 0; value: 0 a -3*v1 + 2 < 0; value: -10 a -1*v1 -3 < 0; value: -7 0: 1 2 3 1: 2 3 4 5 2: 3: 1 optimal: (-34/9 -e*1) a -34/9 < 0; value: -34/9 d -5*v0 + 6*v3 -25 <= 0; value: 0 a -73/9 < 0; value: -73/9 d 3*v0 -2*v1 + 5 <= 0; value: 0 d -27/5*v3 + 17 < 0; value: -23/10 a -11/3 <= 0; value: -11/3 0: 1 2 3 4 5 1: 2 3 4 5 2: 3: 1 4 5 2 0: 1 -> -32/45 1: 4 -> 43/30 2: 0 -> 0 3: 4 -> 193/54 a 2*v0 -2*v1 <= 0; value: -6 a -2*v1 + 5*v2 + 5*v3 -10 = 0; value: 0 a -1*v3 = 0; value: 0 a -1*v1 + 6*v2 -48 <= 0; value: -29 a v0 -2*v2 + 3 < 0; value: -3 a -5*v0 -2*v3 -4 <= 0; value: -14 0: 4 5 1: 1 3 2: 1 3 4 3: 1 2 5 optimal: (29/10 -e*1) a + 29/10 < 0; value: 29/10 d -2*v1 + 5*v2 + 5*v3 -10 = 0; value: 0 d -1*v3 = 0; value: 0 a -783/20 < 0; value: -783/20 d v0 -2*v2 + 3 < 0; value: -2 d -5*v0 -4 <= 0; value: 0 0: 4 5 3 1: 1 3 2: 1 3 4 3: 1 2 5 3 0: 2 -> -4/5 1: 5 -> 1/4 2: 4 -> 21/10 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 6*v2 + 4*v3 -69 <= 0; value: -43 a -5*v0 -2 <= 0; value: -7 a -3*v0 -4*v1 < 0; value: -7 a 4*v0 + v1 + 2*v2 -16 < 0; value: -5 a v0 -2*v1 + 1 = 0; value: 0 0: 2 3 4 5 1: 3 4 5 2: 1 4 3: 1 optimal: oo a -4/9*v2 + 22/9 < 0; value: 10/9 a 6*v2 + 4*v3 -69 <= 0; value: -43 a 20/9*v2 -173/9 < 0; value: -113/9 a 20/9*v2 -173/9 < 0; value: -113/9 d 9/2*v0 + 2*v2 -31/2 < 0; value: -5/2 d v0 -2*v1 + 1 = 0; value: 0 0: 2 3 4 5 1: 3 4 5 2: 1 4 2 3 3: 1 0: 1 -> 14/9 1: 1 -> 23/18 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 + 5*v2 -31 <= 0; value: -15 a -4*v2 -1*v3 + 16 <= 0; value: -3 a v0 + 3*v2 -13 <= 0; value: 0 a -5*v0 -6*v1 -1*v2 + 33 = 0; value: 0 a 3*v1 + 2*v2 -1*v3 -33 < 0; value: -16 0: 3 4 1: 1 4 5 2: 1 2 3 4 5 3: 2 5 optimal: oo a 8/3*v3 -6 <= 0; value: 2 a -2/3*v3 -15 <= 0; value: -17 d 4/3*v0 -1*v3 -4/3 <= 0; value: 0 d v0 + 3*v2 -13 <= 0; value: 0 d -5*v0 -6*v1 -1*v2 + 33 = 0; value: 0 a -13/4*v3 -13 < 0; value: -91/4 0: 3 4 1 5 2 1: 1 4 5 2: 1 2 3 4 5 3: 2 5 1 0: 1 -> 13/4 1: 4 -> 9/4 2: 4 -> 13/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a 6*v2 + 4*v3 -25 < 0; value: -11 a -2*v3 -3 <= 0; value: -7 a 4*v0 + v2 + 4*v3 -35 <= 0; value: -18 a 2*v1 -1*v3 -6 = 0; value: 0 a v1 -2*v2 -2*v3 -1 <= 0; value: -3 0: 3 1: 4 5 2: 1 3 5 3: 1 2 3 4 5 optimal: 239/16 a + 239/16 <= 0; value: 239/16 a -73/4 < 0; value: -73/4 d 8/3*v2 -17/3 <= 0; value: 0 d 4*v0 -311/8 <= 0; value: 0 d 2*v1 -1*v3 -6 = 0; value: 0 d -2*v2 -3/2*v3 + 2 <= 0; value: 0 0: 3 1: 4 5 2: 1 3 5 2 3: 1 2 3 4 5 0: 2 -> 311/32 1: 4 -> 9/4 2: 1 -> 17/8 3: 2 -> -3/2 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -3*v2 -2*v3 + 24 = 0; value: 0 a -1*v1 -2 <= 0; value: -6 a v3 -4 = 0; value: 0 a -3*v0 -2*v1 + 12 <= 0; value: -2 0: 1 4 1: 2 4 2: 1 3: 1 3 optimal: 44/3 a + 44/3 <= 0; value: 44/3 d -2*v0 -3*v2 -2*v3 + 24 = 0; value: 0 d -9/4*v2 + 4 <= 0; value: 0 d v3 -4 = 0; value: 0 d -3*v0 -2*v1 + 12 <= 0; value: 0 0: 1 4 2 1: 2 4 2: 1 2 3: 1 3 2 0: 2 -> 16/3 1: 4 -> -2 2: 4 -> 16/9 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 -1*v1 + 4*v3 -26 = 0; value: 0 a -2*v0 + v2 = 0; value: 0 a 2*v0 -6*v1 -5 < 0; value: -1 a 3*v0 -6*v3 -20 <= 0; value: -44 a -1*v1 + 2*v3 -17 <= 0; value: -7 0: 1 2 3 4 1: 1 3 5 2: 2 3: 1 4 5 optimal: (38/3 -e*1) a + 38/3 < 0; value: 38/3 d 3*v0 -1*v1 + 4*v3 -26 = 0; value: 0 d -2*v0 + v2 = 0; value: 0 d -16*v0 -24*v3 + 151 < 0; value: -24 d 7/2*v2 -231/4 <= 0; value: 0 a -52/3 <= 0; value: -52/3 0: 1 2 3 4 5 1: 1 3 5 2: 2 4 5 3: 1 4 5 3 0: 2 -> 33/4 1: 0 -> 71/12 2: 4 -> 33/2 3: 5 -> 43/24 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 -6*v1 + 5*v2 -1 = 0; value: 0 a -1*v0 + 2*v2 -1 = 0; value: 0 a v2 -2 = 0; value: 0 a 5*v1 + 5*v2 + 4*v3 -79 <= 0; value: -52 a -2*v1 + v2 <= 0; value: 0 0: 1 2 1: 1 4 5 2: 1 2 3 4 5 3: 4 optimal: 4 a + 4 <= 0; value: 4 d -1*v0 -6*v1 + 5*v2 -1 = 0; value: 0 d -1*v0 + 2*v2 -1 = 0; value: 0 d 1/2*v0 -3/2 = 0; value: 0 a 4*v3 -64 <= 0; value: -52 a <= 0; value: 0 0: 1 2 5 4 3 1: 1 4 5 2: 1 2 3 4 5 3: 4 0: 3 -> 3 1: 1 -> 1 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v2 + 8 <= 0; value: -1 a v2 + 2*v3 -7 = 0; value: 0 a -5*v2 -4 < 0; value: -19 a -3*v1 -5 <= 0; value: -20 a -3*v1 + 3*v2 + 2*v3 + 1 < 0; value: -1 0: 1: 4 5 2: 1 2 3 5 3: 2 5 optimal: oo a 2*v0 -80/9 < 0; value: 10/9 d -3*v2 + 8 <= 0; value: 0 d v2 + 2*v3 -7 = 0; value: 0 a -52/3 < 0; value: -52/3 a -55/3 <= 0; value: -55/3 d -3*v1 + 3*v2 + 2*v3 + 1 < 0; value: -5/6 0: 1: 4 5 2: 1 2 3 5 4 3: 2 5 4 0: 5 -> 5 1: 5 -> 85/18 2: 3 -> 8/3 3: 2 -> 13/6 a 2*v0 -2*v1 <= 0; value: -4 a -6*v1 + 2*v2 -1*v3 + 29 = 0; value: 0 a 2*v1 -3*v2 -6*v3 -6 <= 0; value: -20 a -3*v0 -1*v3 + 10 < 0; value: -2 a -2*v2 -3*v3 + 12 <= 0; value: -1 a 5*v0 -5*v2 -11 <= 0; value: -6 0: 3 5 1: 1 2 2: 1 2 4 5 3: 1 2 3 4 optimal: oo a 2*v0 -2/3*v2 + 1/3*v3 -29/3 <= 0; value: -4 d -6*v1 + 2*v2 -1*v3 + 29 = 0; value: 0 a -7/3*v2 -19/3*v3 + 11/3 <= 0; value: -20 a -3*v0 -1*v3 + 10 < 0; value: -2 a -2*v2 -3*v3 + 12 <= 0; value: -1 a 5*v0 -5*v2 -11 <= 0; value: -6 0: 3 5 1: 1 2 2: 1 2 4 5 3: 1 2 3 4 0: 3 -> 3 1: 5 -> 5 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -5*v0 + 5*v1 -3*v3 -4 = 0; value: 0 a 2*v2 -7 <= 0; value: -1 a -5*v0 + v3 + 8 = 0; value: 0 a -1*v1 + v3 + 2 <= 0; value: 0 a v0 -2*v3 + 2 = 0; value: 0 0: 1 3 5 1: 1 4 2: 2 3: 1 3 4 5 optimal: -4 a -4 <= 0; value: -4 d -5*v0 + 5*v1 -3*v3 -4 = 0; value: 0 a 2*v2 -7 <= 0; value: -1 d -5*v0 + v3 + 8 = 0; value: 0 a <= 0; value: 0 d -9*v0 + 18 = 0; value: 0 0: 1 3 5 4 1: 1 4 2: 2 3: 1 3 4 5 0: 2 -> 2 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 + 1 = 0; value: 0 a -1*v1 <= 0; value: -4 a v2 -4 = 0; value: 0 a 5*v1 + 2*v2 -2*v3 -40 <= 0; value: -18 a -3*v1 -4*v2 -12 <= 0; value: -40 0: 1 1: 2 4 5 2: 3 4 5 3: 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 + 1 = 0; value: 0 d -1*v1 <= 0; value: 0 a v2 -4 = 0; value: 0 a 2*v2 -2*v3 -40 <= 0; value: -38 a -4*v2 -12 <= 0; value: -28 0: 1 1: 2 4 5 2: 3 4 5 3: 4 0: 1 -> 1 1: 4 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a -3*v0 -6*v3 -11 < 0; value: -32 a 5*v0 + 3*v2 -67 < 0; value: -30 a 3*v2 -29 < 0; value: -17 a 5*v3 -12 <= 0; value: -7 a 3*v0 + v2 -5*v3 -14 = 0; value: 0 0: 1 2 5 1: 2: 2 3 5 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a -3*v0 -6*v3 -11 < 0; value: -32 a 5*v0 + 3*v2 -67 < 0; value: -30 a 3*v2 -29 < 0; value: -17 a 5*v3 -12 <= 0; value: -7 a 3*v0 + v2 -5*v3 -14 = 0; value: 0 0: 1 2 5 1: 2: 2 3 5 3: 1 4 5 0: 5 -> 5 1: 0 -> 0 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + 1 <= 0; value: 0 a -3*v2 -6*v3 -13 <= 0; value: -52 a 2*v1 + 3*v2 -17 = 0; value: 0 a 5*v1 -1*v3 -1 <= 0; value: 0 a 4*v0 -4*v2 -4*v3 -19 <= 0; value: -51 0: 5 1: 1 3 4 2: 2 3 5 3: 2 4 5 optimal: oo a 2*v2 + 2*v3 + 15/2 <= 0; value: 51/2 d -1*v1 + 1 <= 0; value: 0 a -3*v2 -6*v3 -13 <= 0; value: -52 a 3*v2 -15 = 0; value: 0 a -1*v3 + 4 <= 0; value: 0 d 4*v0 -4*v2 -4*v3 -19 <= 0; value: 0 0: 5 1: 1 3 4 2: 2 3 5 3: 2 4 5 0: 1 -> 55/4 1: 1 -> 1 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -2*v2 -3*v3 -1 <= 0; value: -12 a 6*v2 + 2*v3 -43 <= 0; value: -17 a 2*v0 + v1 -11 = 0; value: 0 a 5*v2 -52 < 0; value: -32 a 5*v2 -32 < 0; value: -12 0: 3 1: 3 2: 1 2 4 5 3: 1 2 optimal: oo a 6*v0 -22 <= 0; value: 2 a -2*v2 -3*v3 -1 <= 0; value: -12 a 6*v2 + 2*v3 -43 <= 0; value: -17 d 2*v0 + v1 -11 = 0; value: 0 a 5*v2 -52 < 0; value: -32 a 5*v2 -32 < 0; value: -12 0: 3 1: 3 2: 1 2 4 5 3: 1 2 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 -6*v2 + 3 < 0; value: -22 a 3*v1 -4*v2 + 3*v3 -56 <= 0; value: -29 a v0 -3*v3 -3 <= 0; value: -12 a -1*v1 -2*v2 + 5 = 0; value: 0 a -3*v0 -4*v1 + 4*v3 -12 < 0; value: -25 0: 3 5 1: 1 2 4 5 2: 1 2 4 3: 2 3 5 optimal: (108/5 -e*1) a + 108/5 < 0; value: 108/5 d 5/6*v0 -4 <= 0; value: 0 a -471/5 < 0; value: -471/5 d v0 -3*v3 -3 <= 0; value: 0 d -1*v1 -2*v2 + 5 = 0; value: 0 d -3*v0 + 8*v2 + 4*v3 -32 < 0; value: -8 0: 3 5 1 2 1: 1 2 4 5 2: 1 2 4 5 3: 2 3 5 1 0: 3 -> 24/5 1: 5 -> -4 2: 0 -> 9/2 3: 4 -> 3/5 a 2*v0 -2*v1 <= 0; value: 8 a 4*v2 -3*v3 + 8 <= 0; value: -7 a v1 + v3 -5 = 0; value: 0 a 5*v0 + 3*v1 -20 = 0; value: 0 a v1 <= 0; value: 0 a -5*v0 + 5*v3 -9 <= 0; value: -4 0: 3 5 1: 2 3 4 2: 1 3: 1 2 5 optimal: 72/5 a + 72/5 <= 0; value: 72/5 a 4*v2 -13 <= 0; value: -13 d v1 + v3 -5 = 0; value: 0 d 5*v0 -3*v3 -5 = 0; value: 0 a -2 <= 0; value: -2 d 10/3*v0 -52/3 <= 0; value: 0 0: 3 5 1 4 1: 2 3 4 2: 1 3: 1 2 5 3 4 0: 4 -> 26/5 1: 0 -> -2 2: 0 -> 0 3: 5 -> 7 a 2*v0 -2*v1 <= 0; value: -4 a 2*v2 -3*v3 -2 <= 0; value: -1 a -1*v0 + v3 = 0; value: 0 a 6*v2 -3*v3 -10 < 0; value: -1 a -3*v0 + 3*v2 + 5*v3 -17 <= 0; value: -9 a -1*v1 + 2*v2 + v3 -3 <= 0; value: -1 0: 2 4 1: 5 2: 1 3 4 5 3: 1 2 3 4 5 optimal: oo a -4*v2 + 6 <= 0; value: -2 a -3*v0 + 2*v2 -2 <= 0; value: -1 d -1*v0 + v3 = 0; value: 0 a -3*v0 + 6*v2 -10 < 0; value: -1 a 2*v0 + 3*v2 -17 <= 0; value: -9 d -1*v1 + 2*v2 + v3 -3 <= 0; value: 0 0: 2 4 1 3 1: 5 2: 1 3 4 5 3: 1 2 3 4 5 0: 1 -> 1 1: 3 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -1*v1 + 7 = 0; value: 0 a -1*v2 + 1 <= 0; value: -4 a v2 + 6*v3 -82 <= 0; value: -53 a v1 + 2*v2 -14 = 0; value: 0 0: 1 1: 1 4 2: 2 3 4 3: 3 optimal: oo a -32*v3 + 1214/3 <= 0; value: 830/3 d -3*v0 -1*v1 + 7 = 0; value: 0 a 6*v3 -81 <= 0; value: -57 d v2 + 6*v3 -82 <= 0; value: 0 d -3*v0 + 2*v2 -7 = 0; value: 0 0: 1 4 1: 1 4 2: 2 3 4 3: 3 2 0: 1 -> 109/3 1: 4 -> -102 2: 5 -> 58 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a v2 -1 = 0; value: 0 a 4*v1 -5*v2 -23 <= 0; value: -12 a -2*v1 + 5 < 0; value: -3 a -6*v0 -2*v1 + 2*v3 + 11 < 0; value: -1 0: 4 1: 2 3 4 2: 1 2 3: 4 optimal: oo a 2*v0 -5 < 0; value: -1 a v2 -1 = 0; value: 0 a -5*v2 -13 < 0; value: -18 d 6*v0 -2*v3 -6 <= 0; value: 0 d -6*v0 -2*v1 + 2*v3 + 11 < 0; value: -3/2 0: 4 3 2 1: 2 3 4 2: 1 2 3: 4 3 2 0: 2 -> 2 1: 4 -> 13/4 2: 1 -> 1 3: 4 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -5*v2 -2*v3 -4 <= 0; value: -20 a 3*v2 -5*v3 -5 <= 0; value: -17 a -3*v0 + 2*v2 + 1 = 0; value: 0 a 5*v2 + 4*v3 -17 = 0; value: 0 a -1*v1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 3 4 3: 1 2 4 optimal: 494/111 a + 494/111 <= 0; value: 494/111 a -3410/111 <= 0; value: -3410/111 d -37/5*v3 + 26/5 <= 0; value: 0 d -3*v0 + 2*v2 + 1 = 0; value: 0 d 5*v2 + 4*v3 -17 = 0; value: 0 d -1*v1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 3 4 3: 1 2 4 0: 1 -> 247/111 1: 0 -> 0 2: 1 -> 105/37 3: 3 -> 26/37 a 2*v0 -2*v1 <= 0; value: -4 a v2 -5 <= 0; value: 0 a -4*v0 + 5*v1 + 2*v3 -33 <= 0; value: -16 a -4*v1 + 3*v2 -4 <= 0; value: -9 a -1*v0 -1*v1 -2*v2 + 18 = 0; value: 0 a -1*v2 + v3 -2 < 0; value: -5 0: 2 4 1: 2 3 4 2: 1 3 4 5 3: 2 5 optimal: 5 a + 5 <= 0; value: 5 d v2 -5 <= 0; value: 0 a 2*v3 -161/4 <= 0; value: -145/4 d 4*v0 -21 <= 0; value: 0 d -1*v0 -1*v1 -2*v2 + 18 = 0; value: 0 a v3 -7 < 0; value: -5 0: 2 4 3 1: 2 3 4 2: 1 3 4 5 2 3: 2 5 0: 3 -> 21/4 1: 5 -> 11/4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 + v2 -34 < 0; value: -17 a 3*v0 + v3 -19 = 0; value: 0 a -1*v0 -2*v2 <= 0; value: -9 a -1*v1 -6*v2 -13 < 0; value: -29 a -1*v2 + 2 = 0; value: 0 0: 1 2 3 1: 4 2: 1 3 4 5 3: 2 optimal: (214/3 -e*1) a + 214/3 < 0; value: 214/3 d -1*v3 -13 < 0; value: -1 d 3*v0 + v3 -19 = 0; value: 0 a -44/3 < 0; value: -44/3 d -1*v1 -6*v2 -13 < 0; value: -1 d -1*v2 + 2 = 0; value: 0 0: 1 2 3 1: 4 2: 1 3 4 5 3: 2 1 3 0: 5 -> 31/3 1: 4 -> -24 2: 2 -> 2 3: 4 -> -12 a 2*v0 -2*v1 <= 0; value: -6 a -3*v2 + v3 + 5 <= 0; value: -9 a -2*v2 + 9 <= 0; value: -1 a 2*v3 -3 <= 0; value: -1 a 4*v0 -3*v1 -3*v3 + 12 = 0; value: 0 a -1*v0 = 0; value: 0 0: 4 5 1: 4 2: 1 2 3: 1 3 4 optimal: -5 a -5 <= 0; value: -5 a -3*v2 + 13/2 <= 0; value: -17/2 a -2*v2 + 9 <= 0; value: -1 d 2*v3 -3 <= 0; value: 0 d 4*v0 -3*v1 -3*v3 + 12 = 0; value: 0 d -1*v0 = 0; value: 0 0: 4 5 1: 4 2: 1 2 3: 1 3 4 0: 0 -> 0 1: 3 -> 5/2 2: 5 -> 5 3: 1 -> 3/2 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 -2*v3 -7 = 0; value: 0 a -6*v0 -6*v1 -6*v2 -23 <= 0; value: -89 a 2*v0 -3*v1 + 4*v3 + 5 = 0; value: 0 a 4*v1 -1*v3 -20 < 0; value: -1 a -1*v0 + 3*v2 -6 = 0; value: 0 0: 2 3 5 1: 2 3 4 2: 1 2 5 3: 1 3 4 optimal: -7/24 a -7/24 <= 0; value: -7/24 d 3*v2 -2*v3 -7 = 0; value: 0 d -16*v0 -41 <= 0; value: 0 d 2*v0 -3*v1 + 4*v3 + 5 = 0; value: 0 a -2677/96 < 0; value: -2677/96 d -1*v0 + 3*v2 -6 = 0; value: 0 0: 2 3 5 4 1: 2 3 4 2: 1 2 5 4 3: 1 3 4 2 0: 3 -> -41/16 1: 5 -> -29/12 2: 3 -> 55/48 3: 1 -> -57/32 a 2*v0 -2*v1 <= 0; value: -10 a -2*v0 + v3 -2 <= 0; value: 0 a 6*v0 -1*v2 + 3*v3 -2 = 0; value: 0 a 2*v1 -5*v2 -6 <= 0; value: -16 a -3*v1 + 5*v2 + 4*v3 -13 = 0; value: 0 a -1*v1 + 4 <= 0; value: -1 0: 1 2 1: 3 4 5 2: 2 3 4 3: 1 2 4 optimal: oo a 2*v0 -8 <= 0; value: -8 a -68/19*v0 -3/19 <= 0; value: -3/19 d 6*v0 -1*v2 + 3*v3 -2 = 0; value: 0 a -120/19*v0 -297/19 <= 0; value: -297/19 d -3*v1 + 5*v2 + 4*v3 -13 = 0; value: 0 d 8/3*v0 -19/9*v2 + 67/9 <= 0; value: 0 0: 1 2 5 3 1: 3 4 5 2: 2 3 4 5 1 3: 1 2 4 5 3 0: 0 -> 0 1: 5 -> 4 2: 4 -> 67/19 3: 2 -> 35/19 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 -1*v2 + 8 <= 0; value: -5 a v0 -6*v1 + 5*v2 + 14 <= 0; value: -2 a 2*v0 + 4*v1 -5*v2 -40 <= 0; value: -23 a 2*v1 + v2 -16 <= 0; value: -7 a 5*v0 -1*v1 + 6*v3 -54 < 0; value: -25 0: 1 2 3 5 1: 2 3 4 5 2: 1 2 3 4 3: 5 optimal: 149/7 a + 149/7 <= 0; value: 149/7 d -4*v0 -1*v2 + 8 <= 0; value: 0 d v0 -6*v1 + 5*v2 + 14 <= 0; value: 0 d 28/3*v0 -44 <= 0; value: 0 a -271/7 <= 0; value: -271/7 a 6*v3 -49/2 < 0; value: -13/2 0: 1 2 3 5 4 1: 2 3 4 5 2: 1 2 3 4 5 3: 5 0: 3 -> 33/7 1: 4 -> -83/14 2: 1 -> -76/7 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + 6*v1 -3*v3 -53 <= 0; value: -33 a -4*v1 + 3*v3 + 13 <= 0; value: -7 a -5*v0 -2*v1 + 6 < 0; value: -29 a 3*v0 + v1 -3*v2 -31 < 0; value: -14 a 4*v1 + 2*v3 -49 <= 0; value: -29 0: 1 3 4 1: 1 2 3 4 5 2: 4 3: 1 2 5 optimal: oo a 42*v2 + 386 < 0; value: 428 a -42*v2 -426 < 0; value: -468 d -4*v1 + 3*v3 + 13 <= 0; value: 0 d -5*v0 -3/2*v3 -1/2 < 0; value: -3/2 d 1/2*v0 -3*v2 -28 < 0; value: -1/2 a -100*v2 -971 < 0; value: -1071 0: 1 3 4 5 1: 1 2 3 4 5 2: 4 1 5 3: 1 2 5 3 4 0: 5 -> 61 1: 5 -> -595/4 2: 1 -> 1 3: 0 -> -608/3 a 2*v0 -2*v1 <= 0; value: 2 a v0 -2*v1 + 1 = 0; value: 0 a v0 -2*v3 <= 0; value: -1 a 5*v0 + v3 -17 = 0; value: 0 a v1 -2 = 0; value: 0 a 5*v0 + v1 -4*v3 -14 <= 0; value: -5 0: 1 2 3 5 1: 1 4 5 2: 3: 2 3 5 optimal: 2 a + 2 <= 0; value: 2 d v0 -2*v1 + 1 = 0; value: 0 a -1 <= 0; value: -1 d 5*v0 + v3 -17 = 0; value: 0 d -1/10*v3 + 1/5 = 0; value: 0 a -5 <= 0; value: -5 0: 1 2 3 5 4 1: 1 4 5 2: 3: 2 3 5 4 0: 3 -> 3 1: 2 -> 2 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 4*v2 -5 <= 0; value: -15 a -5*v1 -4*v3 + 11 < 0; value: -6 a -1*v0 + v3 + 2 = 0; value: 0 a -1*v2 -5*v3 -1 <= 0; value: -16 a 3*v2 + 6*v3 -25 <= 0; value: -7 0: 1 3 1: 2 2: 1 4 5 3: 2 3 4 5 optimal: oo a -9/5*v2 + 73/5 < 0; value: 73/5 a 5*v2 -52/3 <= 0; value: -52/3 d -5*v1 -4*v3 + 11 < 0; value: -5 d -1*v0 + v3 + 2 = 0; value: 0 a 3/2*v2 -131/6 <= 0; value: -131/6 d 6*v0 + 3*v2 -37 <= 0; value: 0 0: 1 3 5 4 1: 2 2: 1 4 5 3: 2 3 4 5 0: 5 -> 37/6 1: 1 -> -2/15 2: 0 -> 0 3: 3 -> 25/6 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 + 3*v1 -14 <= 0; value: 0 a 4*v0 + 3*v1 -2*v2 -28 <= 0; value: -14 a -1*v1 -2*v2 + 10 = 0; value: 0 a -1*v0 + 2*v1 + v3 -4 = 0; value: 0 a 2*v1 + 6*v2 -49 <= 0; value: -21 0: 1 2 4 1: 1 2 3 4 5 2: 2 3 5 3: 4 optimal: 95 a + 95 <= 0; value: 95 a -14 <= 0; value: -14 d 4*v0 -114 <= 0; value: 0 d -1*v1 -2*v2 + 10 = 0; value: 0 d -1*v0 -4*v2 + v3 + 16 = 0; value: 0 d -1/2*v0 + 1/2*v3 -21 <= 0; value: 0 0: 1 2 4 5 1: 1 2 3 4 5 2: 2 3 5 4 1 3: 4 5 2 1 0: 4 -> 57/2 1: 2 -> -19 2: 4 -> 29/2 3: 4 -> 141/2 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + v2 + 2*v3 -12 = 0; value: 0 a -2*v2 -7 <= 0; value: -15 a -6*v1 -3*v3 -14 < 0; value: -38 a -3*v0 + 2*v2 -8 = 0; value: 0 a -5*v2 -5*v3 -6 <= 0; value: -46 0: 1 4 1: 3 2: 1 2 4 5 3: 1 3 5 optimal: oo a 11/4*v0 + 26/3 < 0; value: 26/3 d -3*v0 + v2 + 2*v3 -12 = 0; value: 0 a -3*v0 -15 <= 0; value: -15 d -6*v1 -3*v3 -14 < 0; value: -6 d -3*v0 + 2*v2 -8 = 0; value: 0 a -45/4*v0 -46 <= 0; value: -46 0: 1 4 5 2 1: 3 2: 1 2 4 5 3: 1 3 5 0: 0 -> 0 1: 2 -> -10/3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a v1 + v3 -13 <= 0; value: -8 a 5*v0 + 2*v1 -20 = 0; value: 0 a -1*v1 = 0; value: 0 a -3*v0 + 3*v1 -11 <= 0; value: -23 a 5*v0 -3*v1 + 3*v3 -70 <= 0; value: -35 0: 2 4 5 1: 1 2 3 4 5 2: 3: 1 5 optimal: 8 a + 8 <= 0; value: 8 a v3 -13 <= 0; value: -8 d 5*v0 + 2*v1 -20 = 0; value: 0 d 5/2*v0 -10 = 0; value: 0 a -23 <= 0; value: -23 a 3*v3 -50 <= 0; value: -35 0: 2 4 5 3 1 1: 1 2 3 4 5 2: 3: 1 5 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -3*v1 + 4 <= 0; value: -3 a -1*v0 + 2*v2 <= 0; value: 0 a -3*v0 + 7 < 0; value: -5 a v0 + 3*v1 + v2 -54 < 0; value: -33 a 2*v1 -1*v3 -8 <= 0; value: -3 0: 1 2 3 4 1: 1 4 5 2: 2 4 3: 5 optimal: oo a -2/9*v2 + 76/9 < 0; value: 8 d 2*v0 -3*v1 + 4 <= 0; value: 0 a 7/3*v2 -50/3 < 0; value: -12 a v2 -43 < 0; value: -41 d v2 + 9/4*v3 -38 < 0; value: -9/4 d 4/3*v0 -1*v3 -16/3 <= 0; value: 0 0: 1 2 3 4 5 1: 1 4 5 2: 2 4 3 3: 5 4 2 3 0: 4 -> 61/4 1: 5 -> 23/2 2: 2 -> 2 3: 5 -> 15 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 -5*v2 + 6 <= 0; value: -4 a -5*v2 -8 < 0; value: -18 a -1*v2 -3*v3 + 2 < 0; value: -6 a v3 -3 <= 0; value: -1 a 6*v2 -3*v3 -17 <= 0; value: -11 0: 1 1: 2: 1 2 3 5 3: 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 -5*v2 + 6 <= 0; value: -4 a -5*v2 -8 < 0; value: -18 a -1*v2 -3*v3 + 2 < 0; value: -6 a v3 -3 <= 0; value: -1 a 6*v2 -3*v3 -17 <= 0; value: -11 0: 1 1: 2: 1 2 3 5 3: 3 4 5 0: 0 -> 0 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -1*v1 -1*v2 + v3 + 1 = 0; value: 0 a -2*v2 -1*v3 = 0; value: 0 a -1*v1 + 1 = 0; value: 0 a 4*v1 + 3*v2 -10 <= 0; value: -6 a -3*v1 + 4*v3 -1 <= 0; value: -4 0: 1: 1 3 4 5 2: 1 2 4 3: 1 2 5 optimal: oo a 2*v0 -2 <= 0; value: 6 d -1*v1 -1*v2 + v3 + 1 = 0; value: 0 d -2*v2 -1*v3 = 0; value: 0 d 3*v2 = 0; value: 0 a -6 <= 0; value: -6 a -4 <= 0; value: -4 0: 1: 1 3 4 5 2: 1 2 4 3 5 3: 1 2 5 3 4 0: 4 -> 4 1: 1 -> 1 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -1*v1 + v2 -3 < 0; value: -8 a v0 + 3*v1 + 3*v3 -31 <= 0; value: -4 a -2*v0 -3*v2 <= 0; value: 0 a -1*v0 -5*v1 -2*v2 -8 < 0; value: -33 a -4*v1 + 17 < 0; value: -3 0: 2 3 4 1: 1 2 4 5 2: 1 3 4 3: 2 optimal: oo a -6*v3 + 28 < 0; value: 4 a v2 -29/4 <= 0; value: -29/4 d v0 + 3*v3 -73/4 < 0; value: -1 a -3*v2 + 6*v3 -73/2 < 0; value: -25/2 a -2*v2 + 3*v3 -95/2 < 0; value: -71/2 d -4*v1 + 17 < 0; value: -3/2 0: 2 3 4 1: 1 2 4 5 2: 1 3 4 3: 2 3 4 0: 0 -> 21/4 1: 5 -> 37/8 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 3*v1 + v2 -11 = 0; value: 0 a -1*v0 + v2 <= 0; value: 0 a v0 -1*v2 = 0; value: 0 a v0 + 3*v3 -42 <= 0; value: -25 a -2*v0 -6*v2 -1*v3 + 21 = 0; value: 0 0: 2 3 4 5 1: 1 2: 1 2 3 5 3: 4 5 optimal: oo a -1/3*v3 -1/3 <= 0; value: -2 d 3*v1 + v2 -11 = 0; value: 0 d -1*v0 + v2 <= 0; value: 0 a = 0; value: 0 a 23/8*v3 -315/8 <= 0; value: -25 d -8*v0 -1*v3 + 21 = 0; value: 0 0: 2 3 4 5 1: 1 2: 1 2 3 5 3: 4 5 0: 2 -> 2 1: 3 -> 3 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 6*v1 + v3 -32 <= 0; value: -18 a -3*v0 + 7 <= 0; value: -2 a 4*v0 -15 <= 0; value: -3 a 5*v0 -18 < 0; value: -3 0: 2 3 4 1: 1 2: 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v1 + v3 -32 <= 0; value: -18 a -3*v0 + 7 <= 0; value: -2 a 4*v0 -15 <= 0; value: -3 a 5*v0 -18 < 0; value: -3 0: 2 3 4 1: 1 2: 3: 1 0: 3 -> 3 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a 4*v0 + 3*v1 -2*v2 -26 <= 0; value: -17 a -2*v1 -2*v2 + 3*v3 + 4 <= 0; value: -7 a 3*v1 -5*v2 + 4 < 0; value: -6 a -3*v2 -4*v3 -17 <= 0; value: -44 a -1*v1 + 5 = 0; value: 0 0: 1 1: 1 2 3 5 2: 1 2 3 4 3: 2 4 optimal: oo a v2 -9/2 <= 0; value: 1/2 d 4*v0 -2*v2 -11 <= 0; value: 0 a -2*v2 + 3*v3 -6 <= 0; value: -7 a -5*v2 + 19 < 0; value: -6 a -3*v2 -4*v3 -17 <= 0; value: -44 d -1*v1 + 5 = 0; value: 0 0: 1 1: 1 2 3 5 2: 1 2 3 4 3: 2 4 0: 1 -> 21/4 1: 5 -> 5 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 + 6*v1 -31 <= 0; value: -7 a -1*v0 + 5*v1 + 6*v3 -61 <= 0; value: -29 a -1*v1 -4*v2 + 7 <= 0; value: -1 a 6*v0 -4*v3 + 3 <= 0; value: -5 a 6*v1 + 4*v2 -39 <= 0; value: -11 0: 1 2 4 1: 1 2 3 5 2: 3 5 3: 2 4 optimal: oo a 2*v0 + 8*v2 -14 <= 0; value: -6 a -3*v0 -24*v2 + 11 <= 0; value: -13 a -1*v0 -20*v2 + 6*v3 -26 <= 0; value: -34 d -1*v1 -4*v2 + 7 <= 0; value: 0 a 6*v0 -4*v3 + 3 <= 0; value: -5 a -20*v2 + 3 <= 0; value: -17 0: 1 2 4 1: 1 2 3 5 2: 3 5 1 2 3: 2 4 0: 0 -> 0 1: 4 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -6*v0 + v1 -1*v3 + 18 = 0; value: 0 a 5*v0 -6*v2 -22 <= 0; value: -13 a 6*v0 -3*v1 + 5*v3 -20 <= 0; value: -2 a -5*v1 -5*v2 + 2*v3 + 2 <= 0; value: -3 a -6*v0 -6*v1 + v3 + 14 <= 0; value: -4 0: 1 2 3 5 1: 1 3 4 5 2: 2 4 3: 1 3 4 5 optimal: oo a 204/25*v2 + 428/25 <= 0; value: 632/25 d -6*v0 + v1 -1*v3 + 18 = 0; value: 0 d 5*v0 -6*v2 -22 <= 0; value: 0 a -864/25*v2 -1098/25 <= 0; value: -1962/25 a -269/25*v2 -58/25 <= 0; value: -327/25 d -42*v0 -5*v3 + 122 <= 0; value: 0 0: 1 2 3 5 4 1: 1 3 4 5 2: 2 4 3 3: 1 3 4 5 0: 3 -> 28/5 1: 0 -> -176/25 2: 1 -> 1 3: 0 -> -566/25 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + v3 -6 <= 0; value: -3 a 4*v2 + 5*v3 -25 = 0; value: 0 a v0 -1*v3 -2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a v0 + v2 -8 = 0; value: 0 0: 3 5 1: 1 4 2: 2 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + v3 -6 <= 0; value: -3 a 4*v2 + 5*v3 -25 = 0; value: 0 a v0 -1*v3 -2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a v0 + v2 -8 = 0; value: 0 0: 3 5 1: 1 4 2: 2 5 3: 1 2 3 4 0: 3 -> 3 1: 1 -> 1 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 10 a -4*v1 + 5*v2 + 6*v3 -21 <= 0; value: -11 a -1*v3 <= 0; value: 0 a v0 + 3*v1 + 5*v2 -42 <= 0; value: -27 a -3*v1 -2*v2 + 2*v3 + 4 <= 0; value: 0 a v2 -1*v3 -2 = 0; value: 0 0: 3 1: 1 3 4 2: 1 3 4 5 3: 1 2 4 5 optimal: 64 a + 64 <= 0; value: 64 a -11 <= 0; value: -11 d -1*v3 <= 0; value: 0 d v0 -32 <= 0; value: 0 d -3*v1 -2*v2 + 2*v3 + 4 <= 0; value: 0 d v2 -2 = 0; value: 0 0: 3 1: 1 3 4 2: 1 3 4 5 3: 1 2 4 5 3 0: 5 -> 32 1: 0 -> 0 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a v2 -1*v3 + 1 <= 0; value: -3 a 2*v1 + 5*v2 -6*v3 -21 <= 0; value: -44 a 4*v0 + 3*v1 -2*v2 -26 <= 0; value: -17 a 6*v1 -7 < 0; value: -1 a v0 + v1 -3*v2 <= 0; value: 0 0: 3 5 1: 2 3 4 5 2: 1 2 3 5 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a v2 -1*v3 + 1 <= 0; value: -3 a 2*v1 + 5*v2 -6*v3 -21 <= 0; value: -44 a 4*v0 + 3*v1 -2*v2 -26 <= 0; value: -17 a 6*v1 -7 < 0; value: -1 a v0 + v1 -3*v2 <= 0; value: 0 0: 3 5 1: 2 3 4 5 2: 1 2 3 5 3: 1 2 0: 2 -> 2 1: 1 -> 1 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a 6*v1 + 3*v2 -5*v3 -1 <= 0; value: -4 a 4*v0 -3*v1 -27 <= 0; value: -17 a 5*v2 + v3 -4 <= 0; value: -1 a 2*v0 + 3*v1 + 3*v3 -68 <= 0; value: -45 a 4*v0 -6*v1 + 2*v3 -23 <= 0; value: -13 0: 2 4 5 1: 1 2 4 5 2: 1 3 3: 1 3 4 5 optimal: oo a -2/3*v0 + 18 <= 0; value: 46/3 d 4*v0 + 3*v2 -3*v3 -24 <= 0; value: 0 d 2/3*v0 -1*v2 -15/2 <= 0; value: 0 a 16/3*v0 -57 <= 0; value: -107/3 a 12*v0 -283/2 <= 0; value: -187/2 d 4*v0 -6*v1 + 2*v3 -23 <= 0; value: 0 0: 2 4 5 1 3 1: 1 2 4 5 2: 1 3 2 4 3: 1 3 4 5 2 0: 4 -> 4 1: 2 -> -11/3 2: 0 -> -29/6 3: 3 -> -15/2 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v2 + 2*v3 -28 < 0; value: -13 a 3*v1 -4*v2 < 0; value: -20 a -3*v1 + 6*v2 -37 < 0; value: -7 a -5*v1 -4*v2 + 10 < 0; value: -10 a 6*v0 + 4*v3 -77 < 0; value: -37 0: 1 5 1: 2 3 4 2: 1 2 3 4 3: 1 5 optimal: oo a -4/3*v3 + 209/7 < 0; value: 515/21 a 10/3*v3 -1609/42 < 0; value: -1049/42 a -562/21 < 0; value: -562/21 d 42/5*v2 -43 <= 0; value: 0 d -5*v1 -4*v2 + 10 < 0; value: -5 d 6*v0 + 4*v3 -77 < 0; value: -6 0: 1 5 1: 2 3 4 2: 1 2 3 4 3: 1 5 0: 4 -> 55/6 1: 0 -> -23/21 2: 5 -> 215/42 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a v0 -4*v1 -1*v2 + 8 = 0; value: 0 a -4*v0 + v1 + 18 = 0; value: 0 a 4*v2 -1*v3 -41 <= 0; value: -23 a -1*v2 -5*v3 -8 <= 0; value: -23 a -5*v0 + 4*v1 < 0; value: -17 0: 1 2 5 1: 1 2 5 2: 1 3 4 3: 3 4 optimal: oo a 1/10*v3 + 81/10 <= 0; value: 83/10 d v0 -4*v1 -1*v2 + 8 = 0; value: 0 d -15/4*v0 -1/4*v2 + 20 = 0; value: 0 d -60*v0 -1*v3 + 279 <= 0; value: 0 a -21/4*v3 -73/4 <= 0; value: -115/4 a -11/60*v3 -417/20 < 0; value: -1273/60 0: 1 2 5 3 4 1: 1 2 5 2: 1 3 4 2 5 3: 3 4 5 0: 5 -> 277/60 1: 2 -> 7/15 2: 5 -> 43/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 + 3*v2 -3*v3 + 14 <= 0; value: -6 a 6*v0 + 5*v3 -53 <= 0; value: -21 a -5*v1 -4*v2 -4 < 0; value: -14 a -2*v3 + 1 < 0; value: -7 a -1*v0 + v1 <= 0; value: 0 0: 1 2 5 1: 3 5 2: 1 3 3: 1 2 4 optimal: (535/18 -e*1) a + 535/18 < 0; value: 535/18 d -4*v0 + 3*v2 -3*v3 + 14 <= 0; value: 0 d 6*v0 + 5*v3 -53 <= 0; value: 0 d -5*v1 -4*v2 -4 < 0; value: -5 d 12/5*v0 -101/5 < 0; value: -12/5 a -535/36 < 0; value: -535/36 0: 1 2 5 4 1: 3 5 2: 1 3 5 3: 1 2 4 5 0: 2 -> 89/12 1: 2 -> -1201/225 2: 0 -> 623/90 3: 4 -> 17/10 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 5*v1 + 3*v2 + 4 = 0; value: 0 a 2*v2 + v3 -9 = 0; value: 0 a 5*v1 + 3*v3 -26 <= 0; value: -6 a v2 -5 < 0; value: -3 a 3*v0 + v3 -20 = 0; value: 0 0: 1 5 1: 1 3 2: 1 2 4 3: 2 3 5 optimal: (66/5 -e*1) a + 66/5 < 0; value: 66/5 d -3*v0 + 5*v1 + 3*v2 + 4 = 0; value: 0 d 2*v2 + v3 -9 = 0; value: 0 a -27 < 0; value: -27 d 3/2*v0 -21/2 < 0; value: -3/2 d 3*v0 + v3 -20 = 0; value: 0 0: 1 5 3 4 1: 1 3 2: 1 2 4 3 3: 2 3 5 4 0: 5 -> 6 1: 1 -> 7/10 2: 2 -> 7/2 3: 5 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -4*v1 + 5*v2 -16 = 0; value: 0 a -1*v0 -5*v2 -2*v3 -11 <= 0; value: -35 a 3*v0 + 2*v2 + v3 -44 <= 0; value: -29 a -1*v1 + 3*v3 -5 <= 0; value: -3 a 2*v0 + v3 -5 = 0; value: 0 0: 2 3 5 1: 1 4 2: 1 2 3 3: 2 3 4 5 optimal: 538/27 a + 538/27 <= 0; value: 538/27 d -4*v1 + 5*v2 -16 = 0; value: 0 d 27*v0 -77 <= 0; value: 0 a -5552/135 <= 0; value: -5552/135 d -5/4*v2 + 3*v3 -1 <= 0; value: 0 d 2*v0 + v3 -5 = 0; value: 0 0: 2 3 5 1: 1 4 2: 1 2 3 4 3: 2 3 4 5 0: 2 -> 77/27 1: 1 -> -64/9 2: 4 -> -112/45 3: 1 -> -19/27 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -2*v2 + 3*v3 -29 < 0; value: -15 a 5*v1 -9 <= 0; value: -4 a 3*v2 -11 <= 0; value: -5 a v0 -6*v3 + 19 <= 0; value: -2 a v1 -5*v3 + 13 < 0; value: -6 0: 1 4 1: 2 5 2: 1 3 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -2*v2 + 3*v3 -29 < 0; value: -15 a 5*v1 -9 <= 0; value: -4 a 3*v2 -11 <= 0; value: -5 a v0 -6*v3 + 19 <= 0; value: -2 a v1 -5*v3 + 13 < 0; value: -6 0: 1 4 1: 2 5 2: 1 3 3: 1 4 5 0: 3 -> 3 1: 1 -> 1 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v0 + 4*v1 + v2 -4 <= 0; value: 0 a -3*v3 + 2 <= 0; value: -1 a v1 -5*v2 -6*v3 + 26 = 0; value: 0 a 2*v0 + v3 -2 < 0; value: -1 a -4*v3 -3 < 0; value: -7 0: 1 4 1: 1 3 2: 1 3 3: 2 3 4 5 optimal: oo a 2*v0 -10*v2 + 44 <= 0; value: 4 a -6*v0 + 21*v2 -92 <= 0; value: -8 d -3*v3 + 2 <= 0; value: 0 d v1 -5*v2 -6*v3 + 26 = 0; value: 0 a 2*v0 -4/3 < 0; value: -4/3 a -17/3 < 0; value: -17/3 0: 1 4 1: 1 3 2: 1 3 3: 2 3 4 5 1 0: 0 -> 0 1: 0 -> -2 2: 4 -> 4 3: 1 -> 2/3 a 2*v0 -2*v1 <= 0; value: 2 a -4*v0 -5*v1 + 22 = 0; value: 0 a -2*v0 -1*v2 + 9 = 0; value: 0 a 5*v3 -24 <= 0; value: -14 a 5*v0 -5*v3 -8 <= 0; value: -3 a -1*v0 -2 < 0; value: -5 0: 1 2 4 5 1: 1 2: 2 3: 3 4 optimal: 356/25 a + 356/25 <= 0; value: 356/25 d -4*v0 -5*v1 + 22 = 0; value: 0 d -2*v0 -1*v2 + 9 = 0; value: 0 d 5*v3 -24 <= 0; value: 0 d -5/2*v2 -5*v3 + 29/2 <= 0; value: 0 a -42/5 < 0; value: -42/5 0: 1 2 4 5 1: 1 2: 2 4 5 3: 3 4 5 0: 3 -> 32/5 1: 2 -> -18/25 2: 3 -> -19/5 3: 2 -> 24/5 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 -6*v3 + 37 = 0; value: 0 a -6*v0 + 4*v2 -4*v3 -21 <= 0; value: -55 a -5*v0 + 5*v2 + 7 < 0; value: -13 a -3*v2 -1*v3 <= 0; value: -5 a -1*v0 + v2 -1 < 0; value: -5 0: 2 3 5 1: 1 2: 2 3 4 5 3: 1 2 4 optimal: oo a 2*v0 + 12/5*v3 -74/5 <= 0; value: 0 d -5*v1 -6*v3 + 37 = 0; value: 0 a -6*v0 + 4*v2 -4*v3 -21 <= 0; value: -55 a -5*v0 + 5*v2 + 7 < 0; value: -13 a -3*v2 -1*v3 <= 0; value: -5 a -1*v0 + v2 -1 < 0; value: -5 0: 2 3 5 1: 1 2: 2 3 4 5 3: 1 2 4 0: 5 -> 5 1: 5 -> 5 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a v2 -4*v3 -5 <= 0; value: -20 a v0 -3 <= 0; value: -1 a -4*v2 -6*v3 -21 <= 0; value: -49 a -1*v0 + v2 -1*v3 + 2 < 0; value: -3 a 3*v0 -3*v1 -2 <= 0; value: -5 0: 2 4 5 1: 5 2: 1 3 4 3: 1 3 4 optimal: 4/3 a + 4/3 <= 0; value: 4/3 a v2 -4*v3 -5 <= 0; value: -20 a v0 -3 <= 0; value: -1 a -4*v2 -6*v3 -21 <= 0; value: -49 a -1*v0 + v2 -1*v3 + 2 < 0; value: -3 d 3*v0 -3*v1 -2 <= 0; value: 0 0: 2 4 5 1: 5 2: 1 3 4 3: 1 3 4 0: 2 -> 2 1: 3 -> 4/3 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 6*v1 -1*v2 -8 < 0; value: -5 a 5*v0 -4*v3 -2 = 0; value: 0 a -5*v0 -1*v1 -2*v3 -9 <= 0; value: -24 a v1 -1*v2 + 2 <= 0; value: 0 a -1*v1 + 1 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 4 3: 2 3 optimal: oo a 8/5*v3 -6/5 <= 0; value: 2 a -1*v2 -2 < 0; value: -5 d 5*v0 -4*v3 -2 = 0; value: 0 a -6*v3 -12 <= 0; value: -24 a -1*v2 + 3 <= 0; value: 0 d -1*v1 + 1 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 4 3: 2 3 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + v2 -13 <= 0; value: -7 a v1 + 2*v2 -7 < 0; value: -4 a -2*v0 -5*v2 -3*v3 + 1 <= 0; value: -4 a v1 -2 <= 0; value: -1 a -2*v2 + 5*v3 + 2 <= 0; value: 0 0: 3 1: 1 2 4 2: 1 2 3 5 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + v2 -13 <= 0; value: -7 a v1 + 2*v2 -7 < 0; value: -4 a -2*v0 -5*v2 -3*v3 + 1 <= 0; value: -4 a v1 -2 <= 0; value: -1 a -2*v2 + 5*v3 + 2 <= 0; value: 0 0: 3 1: 1 2 4 2: 1 2 3 5 3: 3 5 0: 0 -> 0 1: 1 -> 1 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a v1 -2*v3 -4 < 0; value: -9 a 4*v1 + 5*v2 -5*v3 -49 <= 0; value: -32 a 5*v1 -1*v2 -5*v3 + 1 < 0; value: -9 a -1*v2 + 4*v3 -17 <= 0; value: -6 0: 1: 1 2 3 2: 2 3 4 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a v1 -2*v3 -4 < 0; value: -9 a 4*v1 + 5*v2 -5*v3 -49 <= 0; value: -32 a 5*v1 -1*v2 -5*v3 + 1 < 0; value: -9 a -1*v2 + 4*v3 -17 <= 0; value: -6 0: 1: 1 2 3 2: 2 3 4 3: 1 2 3 4 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -4*v1 + 5 <= 0; value: -7 a -2*v0 + v2 + 5 = 0; value: 0 a v1 -7 < 0; value: -4 a 3*v3 -11 < 0; value: -5 a 6*v0 + 3*v1 -34 < 0; value: -7 0: 2 5 1: 1 3 5 2: 2 3: 4 optimal: (91/12 -e*1) a + 91/12 < 0; value: 91/12 d -4*v1 + 5 <= 0; value: 0 d -2*v0 + v2 + 5 = 0; value: 0 a -23/4 < 0; value: -23/4 a 3*v3 -11 < 0; value: -5 d 3*v2 -61/4 < 0; value: -3 0: 2 5 1: 1 3 5 2: 2 5 3: 4 0: 3 -> 109/24 1: 3 -> 5/4 2: 1 -> 49/12 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -3*v2 -1*v3 + 3 <= 0; value: -2 a -4*v1 -5*v2 + 3 <= 0; value: -6 a -2*v0 -1*v3 + 6 < 0; value: -4 a -3*v1 + 2*v2 + 1 <= 0; value: 0 a 5*v0 -3*v1 -6*v2 -11 = 0; value: 0 0: 3 5 1: 2 4 5 2: 1 2 4 5 3: 1 3 optimal: oo a 7/6*v0 + 4/3 <= 0; value: 6 a -15/8*v0 -1*v3 + 15/2 <= 0; value: -2 a -115/24*v0 + 79/6 <= 0; value: -6 a -2*v0 -1*v3 + 6 < 0; value: -4 d -3*v1 + 2*v2 + 1 <= 0; value: 0 d 5*v0 -8*v2 -12 = 0; value: 0 0: 3 5 2 1 1: 2 4 5 2: 1 2 4 5 3: 1 3 0: 4 -> 4 1: 1 -> 1 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 3*v3 -23 <= 0; value: -14 a -2*v0 -1*v1 -1 <= 0; value: -13 a -1*v0 + 4 = 0; value: 0 a 2*v2 -4*v3 -1 <= 0; value: -5 a -6*v0 + 4*v2 + 6*v3 -13 <= 0; value: -3 0: 2 3 5 1: 2 2: 4 5 3: 1 4 5 optimal: 26 a + 26 <= 0; value: 26 a 3*v3 -23 <= 0; value: -14 d -2*v0 -1*v1 -1 <= 0; value: 0 d -1*v0 + 4 = 0; value: 0 a 2*v2 -4*v3 -1 <= 0; value: -5 a 4*v2 + 6*v3 -37 <= 0; value: -3 0: 2 3 5 1: 2 2: 4 5 3: 1 4 5 0: 4 -> 4 1: 4 -> -9 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a 3*v2 -5 <= 0; value: -2 a -3*v2 -1 <= 0; value: -4 a -5*v2 + 3*v3 -18 <= 0; value: -11 a v1 -5 = 0; value: 0 a 3*v0 -2*v2 -6*v3 -4 < 0; value: -27 0: 5 1: 4 2: 1 2 3 5 3: 3 5 optimal: (30 -e*1) a + 30 < 0; value: 30 d 3*v2 -5 <= 0; value: 0 a -6 <= 0; value: -6 d -5*v2 + 3*v3 -18 <= 0; value: 0 d v1 -5 = 0; value: 0 d 3*v0 -2*v2 -6*v3 -4 < 0; value: -3 0: 5 1: 4 2: 1 2 3 5 3: 3 5 0: 1 -> 19 1: 5 -> 5 2: 1 -> 5/3 3: 4 -> 79/9 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 4*v1 + 4*v2 -11 <= 0; value: -7 a 3*v0 -4*v1 -12 <= 0; value: 0 a 6*v0 + 4*v1 + v2 -58 <= 0; value: -30 a v0 -5*v1 -1*v2 <= 0; value: 0 a 4*v1 + 4*v2 -21 <= 0; value: -5 0: 1 2 3 4 1: 1 2 3 4 5 2: 1 3 4 5 3: optimal: 643/66 a + 643/66 <= 0; value: 643/66 a -137/11 <= 0; value: -137/11 d 3*v0 -4*v1 -12 <= 0; value: 0 d -11*v2 + 29 <= 0; value: 0 a -1085/132 <= 0; value: -1085/132 d 3*v0 + 4*v2 -33 <= 0; value: 0 0: 1 2 3 4 5 1: 1 2 3 4 5 2: 1 3 4 5 3: 0: 4 -> 247/33 1: 0 -> 115/44 2: 4 -> 29/11 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -5*v0 + 3*v3 -8 < 0; value: -3 a v1 -4*v2 -5*v3 + 20 < 0; value: -25 a -5*v1 + 4*v2 -1*v3 -43 <= 0; value: -28 a 5*v0 -1*v2 -6 < 0; value: -1 a -1*v2 + 3 <= 0; value: -2 0: 1 4 1: 2 3 2: 2 3 4 5 3: 1 2 3 optimal: (274/15 -e*1) a + 274/15 < 0; value: 274/15 d -5*v0 + 3*v3 -8 < 0; value: -1 a -83/3 <= 0; value: -83/3 d -5*v1 + 4*v2 -1*v3 -43 <= 0; value: 0 d 5*v0 -1*v2 -6 < 0; value: -1 d -5*v0 + 9 <= 0; value: 0 0: 1 4 2 5 1: 2 3 2: 2 3 4 5 3: 1 2 3 0: 2 -> 9/5 1: 0 -> -97/15 2: 5 -> 4 3: 5 -> 16/3 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 -3*v3 + 10 <= 0; value: 0 a 4*v1 -1*v3 -4 = 0; value: 0 a -1*v1 + 2*v2 -7 <= 0; value: -2 a -5*v0 -1*v2 + 2*v3 -26 < 0; value: -54 a v3 <= 0; value: 0 0: 1 4 1: 2 3 2: 3 4 3: 1 2 4 5 optimal: oo a -28*v2 + 120 <= 0; value: 36 d -2*v0 -3*v3 + 10 <= 0; value: 0 d 4*v1 -1*v3 -4 = 0; value: 0 d 1/6*v0 + 2*v2 -53/6 <= 0; value: 0 a 75*v2 -355 < 0; value: -130 a 8*v2 -32 <= 0; value: -8 0: 1 4 3 5 1: 2 3 2: 3 4 5 3: 1 2 4 5 3 0: 5 -> 17 1: 1 -> -1 2: 3 -> 3 3: 0 -> -8 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + v2 -1 <= 0; value: -3 a -2*v0 + 1 <= 0; value: -7 a -4*v0 + 3*v1 + 2*v2 + 6 <= 0; value: 0 a 3*v0 -3*v1 + 2*v3 -17 < 0; value: -7 a -1*v1 + 2 = 0; value: 0 0: 1 2 3 4 1: 3 4 5 2: 1 3 3: 4 optimal: oo a -4/3*v3 + 34/3 < 0; value: 26/3 a v2 + 2/3*v3 -26/3 < 0; value: -16/3 a 4/3*v3 -43/3 < 0; value: -35/3 a 2*v2 + 8/3*v3 -56/3 < 0; value: -28/3 d 3*v0 + 2*v3 -23 < 0; value: -3 d -1*v1 + 2 = 0; value: 0 0: 1 2 3 4 1: 3 4 5 2: 1 3 3: 4 1 2 3 0: 4 -> 16/3 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -3*v3 -1 <= 0; value: 0 a -3*v1 -6*v2 + 4*v3 -1 <= 0; value: -6 a -5*v0 + 4 <= 0; value: -11 a -1*v1 -4*v2 -5*v3 + 7 <= 0; value: -3 a -4*v0 + 2*v2 -3 <= 0; value: -13 0: 3 5 1: 1 2 4 2: 2 4 5 3: 1 2 4 optimal: oo a 222/19*v0 + 92/19 <= 0; value: 758/19 a -332/19*v0 -242/19 <= 0; value: -1238/19 d -3*v1 -6*v2 + 4*v3 -1 <= 0; value: 0 a -5*v0 + 4 <= 0; value: -11 d -2*v2 -19/3*v3 + 22/3 <= 0; value: 0 d -4*v0 + 2*v2 -3 <= 0; value: 0 0: 3 5 1 1: 1 2 4 2: 2 4 5 1 3: 1 2 4 0: 3 -> 3 1: 1 -> -322/19 2: 1 -> 15/2 3: 1 -> -23/19 a 2*v0 -2*v1 <= 0; value: -6 a 4*v0 + 6*v3 -23 < 0; value: -9 a -6*v0 -3*v1 -4*v2 + 39 = 0; value: 0 a -2*v1 + v2 + 4 <= 0; value: -3 a 3*v1 -6*v2 + 5*v3 -2 = 0; value: 0 a -4*v0 -3*v1 -1*v2 -19 <= 0; value: -45 0: 1 2 5 1: 2 3 4 5 2: 2 3 4 5 3: 1 4 optimal: (-129/52 -e*1) a -129/52 < 0; value: -129/52 d 4*v0 + 6*v3 -23 < 0; value: -189/52 d -6*v0 -3*v1 -4*v2 + 39 = 0; value: 0 d 26/45*v0 -253/180 <= 0; value: 0 d -6*v0 -10*v2 + 5*v3 + 37 = 0; value: 0 a -2241/52 <= 0; value: -2241/52 0: 1 2 5 3 4 1: 2 3 4 5 2: 2 3 4 5 3: 1 4 3 5 0: 2 -> 253/104 1: 5 -> 53/13 2: 3 -> 633/208 3: 1 -> 167/104 a 2*v0 -2*v1 <= 0; value: 0 a v1 -1*v2 -1*v3 + 6 = 0; value: 0 a v0 -2 = 0; value: 0 a -6*v0 -1*v2 + 7 <= 0; value: -9 a 5*v0 + v2 + 4*v3 -60 < 0; value: -30 a -3*v2 + v3 + 8 <= 0; value: 0 0: 2 3 4 1: 1 2: 1 3 4 5 3: 1 4 5 optimal: oo a 2*v0 -2*v2 -2*v3 + 12 <= 0; value: 0 d v1 -1*v2 -1*v3 + 6 = 0; value: 0 a v0 -2 = 0; value: 0 a -6*v0 -1*v2 + 7 <= 0; value: -9 a 5*v0 + v2 + 4*v3 -60 < 0; value: -30 a -3*v2 + v3 + 8 <= 0; value: 0 0: 2 3 4 1: 1 2: 1 3 4 5 3: 1 4 5 0: 2 -> 2 1: 2 -> 2 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v0 -4*v2 + 1 = 0; value: 0 a v0 + v1 + v3 -8 = 0; value: 0 a -3*v0 + 5 < 0; value: -4 a -5*v0 -9 <= 0; value: -24 a -1*v0 -6*v2 + 4*v3 + 1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 1 5 3: 2 5 optimal: oo a 21/4*v0 -63/4 <= 0; value: 0 d v0 -4*v2 + 1 = 0; value: 0 d v0 + v1 + v3 -8 = 0; value: 0 a -3*v0 + 5 < 0; value: -4 a -5*v0 -9 <= 0; value: -24 d -1*v0 -6*v2 + 4*v3 + 1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 1 5 3: 2 5 0: 3 -> 3 1: 3 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 + 3 = 0; value: 0 a -6*v1 -4*v3 + 21 <= 0; value: -5 a -6*v1 + v2 < 0; value: -17 a -5*v1 -1*v3 -2 <= 0; value: -19 a -5*v1 -2*v2 <= 0; value: -17 0: 1: 1 2 3 4 5 2: 3 5 3: 2 4 optimal: oo a 2*v0 -6 <= 0; value: -6 d -1*v1 + 3 = 0; value: 0 a -4*v3 + 3 <= 0; value: -5 a v2 -18 < 0; value: -17 a -1*v3 -17 <= 0; value: -19 a -2*v2 -15 <= 0; value: -17 0: 1: 1 2 3 4 5 2: 3 5 3: 2 4 0: 0 -> 0 1: 3 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -6*v1 -4*v2 + 1 <= 0; value: -21 a 2*v0 -4*v1 -7 <= 0; value: -1 a 6*v0 -3*v1 -4*v2 -11 = 0; value: 0 a 6*v1 -2*v2 -1 <= 0; value: -3 a v0 -6*v1 + 1 = 0; value: 0 0: 2 3 5 1: 1 2 3 4 5 2: 1 3 4 3: optimal: 37/4 a + 37/4 <= 0; value: 37/4 a -207/8 <= 0; value: -207/8 d 4/3*v0 -23/3 <= 0; value: 0 d 6*v0 -3*v1 -4*v2 -11 = 0; value: 0 a -69/16 <= 0; value: -69/16 d -11*v0 + 8*v2 + 23 = 0; value: 0 0: 2 3 5 1 4 1: 1 2 3 4 5 2: 1 3 4 2 5 3: 0: 5 -> 23/4 1: 1 -> 9/8 2: 4 -> 161/32 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v1 -4 = 0; value: 0 a v0 -1*v1 + v2 -5 = 0; value: 0 a v0 -2*v1 + 4 = 0; value: 0 a 3*v2 -17 <= 0; value: -2 a 3*v0 -3*v3 -11 <= 0; value: -2 0: 2 3 5 1: 1 2 3 2: 2 4 3: 5 optimal: 0 a <= 0; value: 0 d v1 -4 = 0; value: 0 d v0 + v2 -9 = 0; value: 0 d -1*v2 + 5 = 0; value: 0 a -2 <= 0; value: -2 a -3*v3 + 1 <= 0; value: -2 0: 2 3 5 1: 1 2 3 2: 2 4 3 5 3: 5 0: 4 -> 4 1: 4 -> 4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -35 <= 0; value: -20 a v2 -3 = 0; value: 0 a -5*v0 + 1 < 0; value: -4 a -5*v2 -1*v3 + 20 = 0; value: 0 a 4*v1 -3*v2 -3 = 0; value: 0 0: 3 1: 5 2: 2 4 5 3: 1 4 optimal: oo a 2*v0 -6 <= 0; value: -4 a 3*v3 -35 <= 0; value: -20 d v2 -3 = 0; value: 0 a -5*v0 + 1 < 0; value: -4 a -1*v3 + 5 = 0; value: 0 d 4*v1 -3*v2 -3 = 0; value: 0 0: 3 1: 5 2: 2 4 5 3: 1 4 0: 1 -> 1 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a -1*v1 + 5*v3 -5 <= 0; value: 0 a v0 -6*v1 -24 <= 0; value: -53 a -3*v0 -2*v1 + 6 <= 0; value: -7 a 5*v0 + 4*v3 -13 = 0; value: 0 a -6*v0 -6*v1 -19 <= 0; value: -55 0: 2 3 4 5 1: 1 2 3 5 2: 3: 1 4 optimal: 51/19 a + 51/19 <= 0; value: 51/19 d -1*v1 + 5*v3 -5 <= 0; value: 0 a -468/19 <= 0; value: -468/19 d 19/2*v0 -33/2 <= 0; value: 0 d 5*v0 + 4*v3 -13 = 0; value: 0 a -604/19 <= 0; value: -604/19 0: 2 3 4 5 1: 1 2 3 5 2: 3: 1 4 2 3 5 0: 1 -> 33/19 1: 5 -> 15/38 2: 2 -> 2 3: 2 -> 41/38 a 2*v0 -2*v1 <= 0; value: 0 a v2 -3*v3 -2 = 0; value: 0 a -1*v2 + 5*v3 = 0; value: 0 a -4*v0 + 1 < 0; value: -3 a 2*v1 + 4*v2 -55 < 0; value: -33 a 2*v0 -1*v1 -2*v3 + 1 = 0; value: 0 0: 3 5 1: 4 5 2: 1 2 4 3: 1 2 5 optimal: (3/2 -e*1) a + 3/2 < 0; value: 3/2 d v2 -3*v3 -2 = 0; value: 0 d 2/3*v2 -10/3 = 0; value: 0 d -4*v0 + 1 < 0; value: -3/2 a -36 < 0; value: -36 d 2*v0 -1*v1 -2*v3 + 1 = 0; value: 0 0: 3 5 4 1: 4 5 2: 1 2 4 3: 1 2 5 4 0: 1 -> 5/8 1: 1 -> 1/4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -3*v1 -6*v2 -4*v3 + 43 = 0; value: 0 a -3*v0 -5*v2 -4*v3 + 34 < 0; value: -17 a -1*v1 + 4*v3 -16 < 0; value: -1 a v1 -2*v3 + 7 = 0; value: 0 a 6*v1 -1*v2 -5 < 0; value: -3 0: 2 1: 1 3 4 5 2: 1 2 5 3: 1 2 3 4 optimal: oo a 2*v0 + 12/5*v2 -58/5 <= 0; value: 8 d -3*v1 -6*v2 -4*v3 + 43 = 0; value: 0 a -3*v0 -13/5*v2 + 42/5 < 0; value: -17 a -6/5*v2 + 19/5 < 0; value: -1 d -2*v2 -10/3*v3 + 64/3 = 0; value: 0 a -41/5*v2 + 149/5 < 0; value: -3 0: 2 1: 1 3 4 5 2: 1 2 5 3 4 3: 1 2 3 4 5 0: 5 -> 5 1: 1 -> 1 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 4*v3 <= 0; value: 0 a 4*v0 -5*v2 -2 <= 0; value: -1 a -3*v2 + 2*v3 -1 <= 0; value: -4 a v0 + 6*v1 + 6*v3 -52 < 0; value: -24 a -1*v0 + 4 <= 0; value: 0 0: 1 2 4 5 1: 4 2: 2 3 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 4*v3 <= 0; value: 0 a 4*v0 -5*v2 -2 <= 0; value: -1 a -3*v2 + 2*v3 -1 <= 0; value: -4 a v0 + 6*v1 + 6*v3 -52 < 0; value: -24 a -1*v0 + 4 <= 0; value: 0 0: 1 2 4 5 1: 4 2: 2 3 3: 1 3 4 0: 4 -> 4 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v2 + 5*v3 -90 < 0; value: -53 a -3*v2 -3*v3 -23 < 0; value: -50 a v3 -5 = 0; value: 0 a v1 <= 0; value: 0 a -1*v0 + v3 -6 < 0; value: -1 0: 5 1: 4 2: 1 2 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 3*v2 + 5*v3 -90 < 0; value: -53 a -3*v2 -3*v3 -23 < 0; value: -50 a v3 -5 = 0; value: 0 a v1 <= 0; value: 0 a -1*v0 + v3 -6 < 0; value: -1 0: 5 1: 4 2: 1 2 3: 1 2 3 5 0: 0 -> 0 1: 0 -> 0 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 8 a 3*v1 + 4*v3 -23 < 0; value: -8 a 6*v0 -5*v2 -88 < 0; value: -58 a -1*v1 -3*v2 + 1 <= 0; value: 0 a -1*v1 < 0; value: -1 a -1*v0 + 5*v2 < 0; value: -5 0: 2 5 1: 1 3 4 2: 2 3 5 3: 1 optimal: (269/9 -e*1) a + 269/9 < 0; value: 269/9 a 4*v3 -23 < 0; value: -11 d 6*v0 -269/3 < 0; value: -6 d -1*v1 -3*v2 + 1 <= 0; value: 0 d 3*v2 -1 < 0; value: -1/2 a -239/18 < 0; value: -239/18 0: 2 5 1: 1 3 4 2: 2 3 5 4 1 3: 1 0: 5 -> 251/18 1: 1 -> 1/2 2: 0 -> 1/6 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v3 -2 = 0; value: 0 a 3*v0 -2*v2 -26 <= 0; value: -16 a -1*v2 + v3 -1 = 0; value: 0 a -1*v0 + 3*v3 -5 <= 0; value: -3 a -1*v1 + 4*v2 -1*v3 -2 < 0; value: -5 0: 2 4 1: 5 2: 2 3 5 3: 1 3 4 5 optimal: (56/3 -e*1) a + 56/3 < 0; value: 56/3 d v3 -2 = 0; value: 0 d 3*v0 -28 <= 0; value: 0 d -1*v2 + 1 = 0; value: 0 a -25/3 <= 0; value: -25/3 d -1*v1 + 4*v2 -1*v3 -2 < 0; value: -1 0: 2 4 1: 5 2: 2 3 5 3: 1 3 4 5 0: 4 -> 28/3 1: 5 -> 1 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 -2*v1 + 3 <= 0; value: -2 a -2*v1 + v2 + 1 = 0; value: 0 a v2 -2 < 0; value: -1 a 2*v0 + v2 -19 <= 0; value: -12 a -1*v2 + 1 <= 0; value: 0 0: 1 4 1: 1 2 2: 2 3 4 5 3: optimal: 16 a + 16 <= 0; value: 16 a -8 <= 0; value: -8 d -2*v1 + v2 + 1 = 0; value: 0 a -1 < 0; value: -1 d 2*v0 -18 <= 0; value: 0 d -1*v2 + 1 <= 0; value: 0 0: 1 4 1: 1 2 2: 2 3 4 5 1 3: 0: 3 -> 9 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 6*v2 -2*v3 -16 < 0; value: -10 a 3*v0 + 6*v2 + 5*v3 -121 <= 0; value: -72 a -3*v0 -6*v1 + v3 + 1 = 0; value: 0 a -1*v1 <= 0; value: 0 a -1*v1 -3*v2 + 9 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 1 2 5 3: 1 2 3 optimal: 12 a + 12 <= 0; value: 12 a -38 < 0; value: -38 d 18*v0 + 6*v2 -126 <= 0; value: 0 d -3*v0 -6*v1 + v3 + 1 = 0; value: 0 d 1/2*v0 -1/6*v3 -1/6 <= 0; value: 0 d -3*v2 + 9 = 0; value: 0 0: 1 2 3 4 5 1: 3 4 5 2: 1 2 5 3: 1 2 3 4 5 0: 2 -> 6 1: 0 -> 0 2: 3 -> 3 3: 5 -> 17 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -6*v2 -6 <= 0; value: -14 a v0 -6*v1 -2*v2 + 16 = 0; value: 0 a 2*v0 + 6*v1 + 3*v3 -46 <= 0; value: -15 a 3*v0 + 6*v3 -106 < 0; value: -70 a -1*v0 + v3 -3 = 0; value: 0 0: 1 2 3 4 5 1: 2 3 2: 1 2 3: 3 4 5 optimal: oo a 5/3*v0 + 2/3*v2 -16/3 <= 0; value: 0 a 5*v0 -6*v2 -6 <= 0; value: -14 d v0 -6*v1 -2*v2 + 16 = 0; value: 0 a 3*v0 -2*v2 + 3*v3 -30 <= 0; value: -15 a 3*v0 + 6*v3 -106 < 0; value: -70 a -1*v0 + v3 -3 = 0; value: 0 0: 1 2 3 4 5 1: 2 3 2: 1 2 3 3: 3 4 5 0: 2 -> 2 1: 2 -> 2 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 10 a 5*v0 -6*v3 -7 = 0; value: 0 a 3*v2 + v3 -15 = 0; value: 0 a v1 <= 0; value: 0 a -2*v1 -3*v2 -5*v3 -7 <= 0; value: -34 a -1*v0 + 3*v2 -3*v3 + 2 <= 0; value: 0 0: 1 5 1: 3 4 2: 2 4 5 3: 1 2 4 5 optimal: oo a 16/3*v0 + 52/3 <= 0; value: 44 d 5*v0 -6*v3 -7 = 0; value: 0 d 5/6*v0 + 3*v2 -97/6 = 0; value: 0 a -5/3*v0 -26/3 <= 0; value: -17 d -2*v1 -3*v2 -5*v3 -7 <= 0; value: 0 a -13/3*v0 + 65/3 <= 0; value: 0 0: 1 5 2 3 1: 3 4 2: 2 4 5 3 3: 1 2 4 5 3 0: 5 -> 5 1: 0 -> -17 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a -5*v3 + 1 < 0; value: -14 a -1*v0 -1*v1 + 7 = 0; value: 0 a v1 + 3*v2 -26 <= 0; value: -9 a -4*v0 + 5*v1 + 5*v2 -15 = 0; value: 0 a 3*v1 -2*v3 <= 0; value: 0 0: 2 4 1: 2 3 4 5 2: 3 4 3: 1 5 optimal: 156/11 a + 156/11 <= 0; value: 156/11 a -5*v3 + 1 < 0; value: -14 d -1*v0 -1*v1 + 7 = 0; value: 0 d 22/9*v2 -191/9 <= 0; value: 0 d -9*v0 + 5*v2 + 20 = 0; value: 0 a -2*v3 -3/22 <= 0; value: -135/22 0: 2 4 3 5 1: 2 3 4 5 2: 3 4 5 3: 1 5 0: 5 -> 155/22 1: 2 -> -1/22 2: 5 -> 191/22 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a 6*v0 -5*v3 -4 < 0; value: -14 a -1*v0 + 3*v2 -14 <= 0; value: -5 a 5*v2 -4*v3 -16 < 0; value: -9 a 4*v1 + 3*v3 -60 <= 0; value: -38 a -1*v1 -4*v2 + 2 <= 0; value: -14 0: 1 2 1: 4 5 2: 2 3 5 3: 1 3 4 optimal: (2304/47 -e*1) a + 2304/47 < 0; value: 2304/47 d 47/5*v3 -152/5 <= 0; value: 0 d -1*v0 + 3*v2 -14 <= 0; value: 0 d 5/3*v0 -4*v3 + 22/3 < 0; value: -5/3 a -6340/47 < 0; value: -6340/47 d -1*v1 -4*v2 + 2 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 2 3 5 4 3: 1 3 4 0: 0 -> 111/47 1: 4 -> -2794/141 2: 3 -> 769/141 3: 2 -> 152/47 a 2*v0 -2*v1 <= 0; value: 6 a v0 -2*v1 -1 = 0; value: 0 a 6*v1 + 5*v2 -12 = 0; value: 0 a v2 <= 0; value: 0 a 3*v3 -7 <= 0; value: -4 a -5*v0 -2*v1 -21 <= 0; value: -50 0: 1 5 1: 1 2 5 2: 2 3 3: 4 optimal: oo a -5/3*v2 + 6 <= 0; value: 6 d v0 -2*v1 -1 = 0; value: 0 d 3*v0 + 5*v2 -15 = 0; value: 0 a v2 <= 0; value: 0 a 3*v3 -7 <= 0; value: -4 a 10*v2 -50 <= 0; value: -50 0: 1 5 2 1: 1 2 5 2: 2 3 5 3: 4 0: 5 -> 5 1: 2 -> 2 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -3*v3 <= 0; value: -1 a 4*v2 -25 < 0; value: -13 a 3*v2 + 2*v3 -15 = 0; value: 0 a -1*v0 + 2*v1 = 0; value: 0 a 3*v0 + v3 -11 < 0; value: -2 0: 1 4 5 1: 4 2: 2 3 3: 1 3 5 optimal: (33/13 -e*1) a + 33/13 < 0; value: 33/13 d 4*v0 -3*v3 <= 0; value: 0 a -547/39 < 0; value: -547/39 d 3*v2 + 2*v3 -15 = 0; value: 0 d -1*v0 + 2*v1 = 0; value: 0 d -39/8*v2 + 107/8 < 0; value: -5/8 0: 1 4 5 1: 4 2: 2 3 5 3: 1 3 5 0: 2 -> 249/104 1: 1 -> 249/208 2: 3 -> 112/39 3: 3 -> 83/26 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 + v1 + 6 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -1*v0 -2*v2 -3*v3 + 10 = 0; value: 0 a -6*v0 -1*v2 + 13 = 0; value: 0 a -3*v0 -2*v3 -6 <= 0; value: -16 0: 1 2 3 4 5 1: 1 2: 3 4 3: 3 5 optimal: 4 a + 4 <= 0; value: 4 d -3*v0 + v1 + 6 = 0; value: 0 d -1*v0 + 2 = 0; value: 0 a -2*v2 -3*v3 + 8 = 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -2*v3 -12 <= 0; value: -16 0: 1 2 3 4 5 1: 1 2: 3 4 3: 3 5 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v0 + 6*v1 -1*v2 <= 0; value: -1 a 3*v0 + 4*v2 + 2*v3 -78 < 0; value: -45 a 2*v0 -1*v2 -6*v3 + 22 = 0; value: 0 a -5*v2 + v3 -1 <= 0; value: -17 a -5*v1 + 2*v3 -18 < 0; value: -10 0: 1 2 3 1: 1 5 2: 1 2 3 4 3: 2 3 4 5 optimal: (294/11 -e*1) a + 294/11 < 0; value: 294/11 d 16/5*v0 -2188/55 < 0; value: -16/5 d 11/3*v0 + 11/3*v2 -212/3 < 0; value: -11/3 d 2*v0 -1*v2 -6*v3 + 22 = 0; value: 0 a -2511/88 <= 0; value: -2511/88 d -5*v1 + 2*v3 -18 < 0; value: -703/264 0: 1 2 3 4 1: 1 5 2: 1 2 3 4 3: 2 3 4 5 1 0: 3 -> 503/44 1: 0 -> -703/1320 2: 4 -> 301/44 3: 4 -> 1673/264 a 2*v0 -2*v1 <= 0; value: 2 a v1 -1*v3 -3 = 0; value: 0 a 3*v2 -5*v3 -6 = 0; value: 0 a 5*v1 + 6*v2 -3*v3 -35 < 0; value: -8 a 2*v0 + 5*v3 -8 = 0; value: 0 a v0 -9 < 0; value: -5 0: 4 5 1: 1 3 2: 2 3 3: 1 2 3 4 optimal: (16 -e*1) a + 16 < 0; value: 16 d v1 -1*v3 -3 = 0; value: 0 d 3*v2 -5*v3 -6 = 0; value: 0 a -32 < 0; value: -32 d 2*v0 + 3*v2 -14 = 0; value: 0 d v0 -9 < 0; value: -1 0: 4 5 3 1: 1 3 2: 2 3 4 3: 1 2 3 4 0: 4 -> 8 1: 3 -> 7/5 2: 2 -> -2/3 3: 0 -> -8/5 a 2*v0 -2*v1 <= 0; value: -2 a -4*v1 -3*v2 -4*v3 -3 <= 0; value: -30 a 4*v0 -5*v2 + 2*v3 + 17 = 0; value: 0 a v0 -1*v3 -2 = 0; value: 0 a v0 + v1 -1*v3 -5 = 0; value: 0 a 6*v0 + 4*v1 -5*v2 + 1 <= 0; value: 0 0: 2 3 4 5 1: 1 4 5 2: 1 2 5 3: 1 2 3 4 optimal: oo a 2*v0 -6 <= 0; value: -2 a -38/5*v0 -74/5 <= 0; value: -30 d 4*v0 -5*v2 + 2*v3 + 17 = 0; value: 0 d 3*v0 -5/2*v2 + 13/2 = 0; value: 0 d v0 + v1 -1*v3 -5 = 0; value: 0 a <= 0; value: 0 0: 2 3 4 5 1 1: 1 4 5 2: 1 2 5 3 3: 1 2 3 4 5 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -1*v1 -2*v3 -1 = 0; value: 0 a 2*v1 -23 <= 0; value: -13 a 5*v0 -5*v3 -11 <= 0; value: -6 a -5*v1 + v2 + v3 + 13 <= 0; value: -5 a 2*v2 + 2*v3 -39 < 0; value: -25 0: 1 3 1: 1 2 4 2: 4 5 3: 1 3 4 5 optimal: oo a 16/11*v0 -4/11*v2 -50/11 <= 0; value: -2/11 d 3*v0 -1*v1 -2*v3 -1 = 0; value: 0 a 6/11*v0 + 4/11*v2 -203/11 <= 0; value: -163/11 a -20/11*v0 + 5/11*v2 -31/11 <= 0; value: -91/11 d -15*v0 + v2 + 11*v3 + 18 <= 0; value: 0 a 30/11*v0 + 20/11*v2 -465/11 < 0; value: -265/11 0: 1 3 4 2 5 1: 1 2 4 2: 4 5 3 2 3: 1 3 4 5 2 0: 4 -> 4 1: 5 -> 45/11 2: 4 -> 4 3: 3 -> 38/11 a 2*v0 -2*v1 <= 0; value: -8 a -6*v2 + 5*v3 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -1*v0 + v2 + 1 <= 0; value: 0 a v0 -5*v1 + 2*v3 -17 <= 0; value: -41 a 6*v1 -5*v2 -34 <= 0; value: -4 0: 3 4 1: 4 5 2: 1 3 5 3: 1 2 4 optimal: oo a 20/3*v2 + 238/3 <= 0; value: 238/3 a -6*v2 <= 0; value: 0 d -1*v3 <= 0; value: 0 a -19/6*v2 -133/3 <= 0; value: -133/3 d v0 -5*v1 + 2*v3 -17 <= 0; value: 0 d 6/5*v0 -5*v2 -272/5 <= 0; value: 0 0: 3 4 5 1: 4 5 2: 1 3 5 3: 1 2 4 5 0: 1 -> 136/3 1: 5 -> 17/3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 3*v1 -4*v2 -11 = 0; value: 0 a -1*v1 + 5*v3 -15 = 0; value: 0 a -5*v2 + 3 <= 0; value: -2 a v1 -9 <= 0; value: -4 a -1*v1 + 2*v2 + 3 = 0; value: 0 0: 1: 1 2 4 5 2: 1 3 5 3: 2 optimal: oo a 2*v0 -10 <= 0; value: -6 d 3*v1 -4*v2 -11 = 0; value: 0 a 5*v3 -20 = 0; value: 0 a -2 <= 0; value: -2 a -4 <= 0; value: -4 d 2/3*v2 -2/3 = 0; value: 0 0: 1: 1 2 4 5 2: 1 3 5 2 4 3: 2 0: 2 -> 2 1: 5 -> 5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a -4*v2 + 3*v3 -15 = 0; value: 0 a 6*v0 + v1 -4*v2 -92 <= 0; value: -61 a -4*v1 -1*v2 + 3*v3 -14 < 0; value: -3 a 3*v1 -4 <= 0; value: -1 a -2*v0 + 1 < 0; value: -9 0: 2 5 1: 2 3 4 2: 1 2 3 3: 1 3 optimal: (539/13 -e*1) a + 539/13 < 0; value: 539/13 d -4*v2 + 3*v3 -15 = 0; value: 0 d 6*v0 -13/4*v2 -367/4 < 0; value: -13/4 d -4*v1 -1*v2 + 3*v3 -14 < 0; value: -4 a -841/13 < 0; value: -841/13 d -2*v0 + 1 < 0; value: -2 0: 2 5 4 1: 2 3 4 2: 1 2 3 4 3: 1 3 2 4 0: 5 -> 3/2 1: 1 -> -889/52 2: 0 -> -318/13 3: 5 -> -359/13 a 2*v0 -2*v1 <= 0; value: 2 a -3*v1 + 3*v3 -1 <= 0; value: -4 a 2*v0 -21 <= 0; value: -13 a 6*v0 + 3*v2 + 6*v3 -47 <= 0; value: -2 a v1 -2*v3 <= 0; value: -1 a 3*v2 + 5*v3 -43 < 0; value: -24 0: 2 3 1: 1 4 2: 3 5 3: 1 3 4 5 optimal: 67/3 a + 67/3 <= 0; value: 67/3 d -3*v1 + 3*v3 -1 <= 0; value: 0 d -1*v2 -14/3 <= 0; value: 0 d 6*v0 + 3*v2 -49 <= 0; value: 0 d -1*v3 -1/3 <= 0; value: 0 a -176/3 < 0; value: -176/3 0: 2 3 1: 1 4 2: 3 5 2 3: 1 3 4 5 0: 4 -> 21/2 1: 3 -> -2/3 2: 3 -> -14/3 3: 2 -> -1/3 a 2*v0 -2*v1 <= 0; value: -2 a 6*v1 + 2*v2 -3*v3 -24 <= 0; value: -12 a 6*v1 -6*v3 -5 <= 0; value: -11 a 3*v1 + v3 -13 = 0; value: 0 a -1*v0 -2*v1 + v2 + 5 = 0; value: 0 a 3*v1 + v2 + v3 -38 < 0; value: -22 0: 4 1: 1 2 3 4 5 2: 1 4 5 3: 1 2 3 5 optimal: oo a 3*v0 -1*v2 -5 <= 0; value: -2 a -15/2*v0 + 19/2*v2 -51/2 <= 0; value: -12 a -12*v0 + 12*v2 -23 <= 0; value: -11 d 3*v1 + v3 -13 = 0; value: 0 d -1*v0 + v2 + 2/3*v3 -11/3 = 0; value: 0 a v2 -25 < 0; value: -22 0: 4 1 2 1: 1 2 3 4 5 2: 1 4 5 2 3: 1 2 3 5 4 0: 2 -> 2 1: 3 -> 3 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a v2 -2 <= 0; value: -1 a -3*v0 + 4*v1 -3*v3 -3 <= 0; value: -10 a 6*v2 + 6*v3 -65 <= 0; value: -29 a 2*v2 -3 <= 0; value: -1 a 3*v3 -28 <= 0; value: -13 0: 2 1: 2 2: 1 3 4 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v2 -2 <= 0; value: -1 a -3*v0 + 4*v1 -3*v3 -3 <= 0; value: -10 a 6*v2 + 6*v3 -65 <= 0; value: -29 a 2*v2 -3 <= 0; value: -1 a 3*v3 -28 <= 0; value: -13 0: 2 1: 2 2: 1 3 4 3: 2 3 5 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v3 < 0; value: -4 a v0 + 2*v3 -12 = 0; value: 0 a 6*v0 + 3*v2 + 5*v3 -71 <= 0; value: -25 a -2*v1 -1*v3 + 7 <= 0; value: 0 a v0 + 2*v3 -12 = 0; value: 0 0: 1 2 3 5 1: 4 2: 3 3: 1 2 3 4 5 optimal: (7/2 -e*1) a + 7/2 < 0; value: 7/2 d 4*v0 -12 < 0; value: -2 d v0 + 2*v3 -12 = 0; value: 0 a 3*v2 -61/2 <= 0; value: -43/2 d -2*v1 -1*v3 + 7 <= 0; value: 0 a = 0; value: 0 0: 1 2 3 5 1: 4 2: 3 3: 1 2 3 4 5 0: 2 -> 5/2 1: 1 -> 9/8 2: 3 -> 3 3: 5 -> 19/4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v1 + 3 <= 0; value: 0 a 3*v1 -1*v2 -3*v3 + 1 = 0; value: 0 a -4*v1 -1*v3 + 3 < 0; value: -21 a -2*v3 -3 <= 0; value: -11 d <= 0; value: 0 0: 1 1: 1 2 3 2: 2 3: 2 3 4 optimal: oo a 2*v0 -2/15*v2 -16/15 < 0; value: 32/5 a -2*v0 + 1/15*v2 + 53/15 < 0; value: -21/5 d 3*v1 -1*v2 -3*v3 + 1 = 0; value: 0 d -4/3*v2 -5*v3 + 13/3 < 0; value: -5 a 8/15*v2 -71/15 <= 0; value: -13/5 d <= 0; value: 0 0: 1 1: 1 2 3 2: 2 3 1 4 3: 2 3 4 1 0: 4 -> 4 1: 5 -> 9/5 2: 4 -> 4 3: 4 -> 4/5 a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 -1*v3 -25 <= 0; value: -6 a -1*v0 + 2*v2 -4 = 0; value: 0 a 3*v0 -31 <= 0; value: -19 a v1 + 2*v2 -31 <= 0; value: -20 a v0 -11 < 0; value: -7 0: 2 3 5 1: 4 2: 1 2 4 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 -1*v3 -25 <= 0; value: -6 a -1*v0 + 2*v2 -4 = 0; value: 0 a 3*v0 -31 <= 0; value: -19 a v1 + 2*v2 -31 <= 0; value: -20 a v0 -11 < 0; value: -7 0: 2 3 5 1: 4 2: 1 2 4 3: 1 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -2*v2 + 3 <= 0; value: -1 a v0 + 6*v1 + 4*v3 -11 = 0; value: 0 a -1*v2 < 0; value: -2 a -1*v1 + 1 <= 0; value: 0 a 2*v1 -2*v3 -5 <= 0; value: -3 0: 2 1: 2 4 5 2: 1 3 3: 2 5 optimal: 20 a + 20 <= 0; value: 20 a -2*v2 + 3 <= 0; value: -1 d v0 + 6*v1 + 4*v3 -11 = 0; value: 0 a -1*v2 < 0; value: -2 d 1/6*v0 + 2/3*v3 -5/6 <= 0; value: 0 d 1/2*v0 -11/2 <= 0; value: 0 0: 2 4 5 1: 2 4 5 2: 1 3 3: 2 5 4 0: 5 -> 11 1: 1 -> 1 2: 2 -> 2 3: 0 -> -3/2 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 + 2*v2 -5*v3 -2 <= 0; value: -13 a v0 -1 = 0; value: 0 a -3*v1 + 2 <= 0; value: -4 a 3*v0 + v3 -8 <= 0; value: 0 a -2*v1 + 5*v2 -32 <= 0; value: -16 0: 1 2 4 1: 3 5 2: 1 5 3: 1 4 optimal: 2/3 a + 2/3 <= 0; value: 2/3 a 2*v2 -5*v3 + 4 <= 0; value: -13 d v0 -1 = 0; value: 0 d -3*v1 + 2 <= 0; value: 0 a v3 -5 <= 0; value: 0 a 5*v2 -100/3 <= 0; value: -40/3 0: 1 2 4 1: 3 5 2: 1 5 3: 1 4 0: 1 -> 1 1: 2 -> 2/3 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -9 < 0; value: -3 a -1*v2 + 6*v3 -4 < 0; value: -9 a -5*v2 + 1 <= 0; value: -24 a v3 <= 0; value: 0 a -4*v0 + 5*v1 <= 0; value: -1 0: 5 1: 1 5 2: 2 3 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -9 < 0; value: -3 a -1*v2 + 6*v3 -4 < 0; value: -9 a -5*v2 + 1 <= 0; value: -24 a v3 <= 0; value: 0 a -4*v0 + 5*v1 <= 0; value: -1 0: 5 1: 1 5 2: 2 3 3: 2 4 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a 4*v1 -1*v2 + 4 = 0; value: 0 a -2*v0 + 2*v3 -1 <= 0; value: -3 a -2*v0 + 5*v3 -11 < 0; value: -4 a -1*v0 + 4 = 0; value: 0 a -1*v0 + 2 <= 0; value: -2 0: 2 3 4 5 1: 1 2: 1 3: 2 3 optimal: oo a 2*v0 -1/2*v2 + 2 <= 0; value: 8 d 4*v1 -1*v2 + 4 = 0; value: 0 a -2*v0 + 2*v3 -1 <= 0; value: -3 a -2*v0 + 5*v3 -11 < 0; value: -4 a -1*v0 + 4 = 0; value: 0 a -1*v0 + 2 <= 0; value: -2 0: 2 3 4 5 1: 1 2: 1 3: 2 3 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a -1*v1 <= 0; value: 0 a 2*v0 -2*v1 -1*v2 -9 <= 0; value: -3 a 3*v0 -2*v3 -27 < 0; value: -16 a -3*v3 + 2 < 0; value: -4 a -3*v0 -1*v2 -17 <= 0; value: -36 0: 2 3 5 1: 1 2 2: 2 5 3: 3 4 optimal: oo a 4/3*v3 + 18 < 0; value: 62/3 d -1*v1 <= 0; value: 0 d 2*v0 -1*v2 -9 <= 0; value: 0 d 3/2*v2 -2*v3 -27/2 < 0; value: -3/2 a -3*v3 + 2 < 0; value: -4 a -10/3*v3 -53 < 0; value: -179/3 0: 2 3 5 1: 1 2 2: 2 5 3 3: 3 4 5 0: 5 -> 59/6 1: 0 -> 0 2: 4 -> 32/3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -10 a -6*v2 -5*v3 + 13 <= 0; value: -5 a v0 = 0; value: 0 a 3*v1 + 5*v2 -64 <= 0; value: -34 a -2*v0 + 3*v2 -9 = 0; value: 0 d = 0; value: 0 0: 2 4 1: 3 2: 1 3 4 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a -6*v2 -5*v3 + 13 <= 0; value: -5 a v0 = 0; value: 0 a 3*v1 + 5*v2 -64 <= 0; value: -34 a -2*v0 + 3*v2 -9 = 0; value: 0 d = 0; value: 0 0: 2 4 1: 3 2: 1 3 4 3: 1 0: 0 -> 0 1: 5 -> 5 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a v1 -6*v3 + 4 <= 0; value: -4 a 4*v1 -1*v3 -18 <= 0; value: -4 a v2 + v3 -18 < 0; value: -11 a -6*v2 -5*v3 -39 < 0; value: -79 a -4*v1 -6*v3 -1 <= 0; value: -29 0: 1: 1 2 5 2: 3 4 3: 1 2 3 4 5 optimal: oo a 2*v0 + 883/2 < 0; value: 891/2 a -4395/4 < 0; value: -4395/4 a -1048 < 0; value: -1048 d v2 + v3 -18 < 0; value: -1 d -1*v2 -129 < 0; value: -1 d -4*v1 -6*v3 -1 <= 0; value: 0 0: 1: 1 2 5 2: 3 4 1 2 3: 1 2 3 4 5 0: 2 -> 2 1: 4 -> -871/4 2: 5 -> -128 3: 2 -> 145 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 + 2*v3 -7 = 0; value: 0 a -5*v2 + 6*v3 -17 <= 0; value: -2 a -6*v2 -1*v3 + 8 <= 0; value: -15 a -3*v0 + v1 -3 <= 0; value: -13 a 3*v0 -2*v1 -8 = 0; value: 0 0: 4 5 1: 4 5 2: 1 2 3 3: 1 2 3 optimal: 38/3 a + 38/3 <= 0; value: 38/3 a -1*v2 + 2*v3 -7 = 0; value: 0 a -5*v2 + 6*v3 -17 <= 0; value: -2 a -6*v2 -1*v3 + 8 <= 0; value: -15 d -3/2*v0 -7 <= 0; value: 0 d 3*v0 -2*v1 -8 = 0; value: 0 0: 4 5 1: 4 5 2: 1 2 3 3: 1 2 3 0: 4 -> -14/3 1: 2 -> -11 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a 2*v0 + 3*v2 + 5*v3 -71 < 0; value: -38 a v1 -2*v2 + 2 = 0; value: 0 a v0 + 3*v1 -33 < 0; value: -19 a 2*v1 -23 <= 0; value: -15 a v0 + 3*v1 -6*v2 + 4 = 0; value: 0 0: 1 3 5 1: 2 3 4 5 2: 1 2 5 3: 1 optimal: oo a 2*v0 -4*v2 + 4 <= 0; value: -4 a 2*v0 + 3*v2 + 5*v3 -71 < 0; value: -38 d v1 -2*v2 + 2 = 0; value: 0 a v0 + 6*v2 -39 < 0; value: -19 a 4*v2 -27 <= 0; value: -15 a v0 -2 = 0; value: 0 0: 1 3 5 1: 2 3 4 5 2: 1 2 5 3 4 3: 1 0: 2 -> 2 1: 4 -> 4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a -5*v0 + 4*v3 <= 0; value: -1 a v2 -1*v3 -3 = 0; value: 0 a -5*v1 -3*v3 -12 <= 0; value: -40 a -5*v0 + 3*v1 -21 <= 0; value: -11 a -1*v0 -3*v1 -3 <= 0; value: -19 0: 1 4 5 1: 3 4 5 2: 2 3: 1 2 3 optimal: oo a 24/5*v2 -6/5 <= 0; value: 18 a -5*v2 -6 <= 0; value: -26 d v2 -1*v3 -3 = 0; value: 0 d 5/3*v0 -3*v3 -7 <= 0; value: 0 a -54/5*v2 -84/5 <= 0; value: -60 d -1*v0 -3*v1 -3 <= 0; value: 0 0: 1 4 5 3 1: 3 4 5 2: 2 1 4 3: 1 2 3 4 0: 1 -> 6 1: 5 -> -3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 -1*v3 -3 < 0; value: -10 a 3*v1 + v2 -5 <= 0; value: 0 a v0 + v2 -3 < 0; value: -1 a -5*v2 + 3*v3 -6 <= 0; value: -1 a -4*v1 + v3 -1 = 0; value: 0 0: 3 1: 2 5 2: 1 2 3 4 3: 1 4 5 optimal: (173/16 -e*1) a + 173/16 < 0; value: 173/16 d -1*v2 -1*v3 -3 < 0; value: -1 a -271/32 < 0; value: -271/32 d v0 + v2 -3 < 0; value: -1 d 8*v0 -39 < 0; value: -8 d -4*v1 + v3 -1 = 0; value: 0 0: 3 2 4 1: 2 5 2: 1 2 3 4 3: 1 4 5 2 0: 0 -> 31/8 1: 1 -> -9/32 2: 2 -> -15/8 3: 5 -> -1/8 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -3*v3 <= 0; value: -9 a 4*v0 + 3*v2 -8 <= 0; value: -5 a v0 + 5*v1 + 3*v3 -26 < 0; value: -12 a 4*v2 + 4*v3 -41 < 0; value: -25 a -3*v0 + 3*v1 -8 <= 0; value: -5 0: 1 2 3 5 1: 3 5 2: 2 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -3*v3 <= 0; value: -9 a 4*v0 + 3*v2 -8 <= 0; value: -5 a v0 + 5*v1 + 3*v3 -26 < 0; value: -12 a 4*v2 + 4*v3 -41 < 0; value: -25 a -3*v0 + 3*v1 -8 <= 0; value: -5 0: 1 2 3 5 1: 3 5 2: 2 4 3: 1 3 4 0: 0 -> 0 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 2*v2 + v3 + 1 <= 0; value: -3 a 6*v0 + v1 -4*v3 -20 = 0; value: 0 a -3*v0 + 1 <= 0; value: -14 a v3 -6 < 0; value: -3 a v2 -6*v3 -5 <= 0; value: -19 0: 1 2 3 1: 2 2: 1 5 3: 1 2 4 5 optimal: oo a 14*v0 -4/3*v2 -100/3 <= 0; value: 94/3 a -3*v0 + 13/6*v2 + 1/6 <= 0; value: -37/6 d 6*v0 + v1 -4*v3 -20 = 0; value: 0 a -3*v0 + 1 <= 0; value: -14 a 1/6*v2 -41/6 < 0; value: -37/6 d v2 -6*v3 -5 <= 0; value: 0 0: 1 2 3 1: 2 2: 1 5 4 3: 1 2 4 5 0: 5 -> 5 1: 2 -> -32/3 2: 4 -> 4 3: 3 -> -1/6 a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 -6*v2 -1*v3 -6 < 0; value: -17 a -3*v2 -4*v3 + 22 = 0; value: 0 a -2*v0 + 4*v1 -1 <= 0; value: -5 a 2*v2 + 5*v3 -48 < 0; value: -24 a -3*v1 + 3*v2 -4 <= 0; value: -1 0: 3 1: 1 3 5 2: 1 2 4 5 3: 1 2 4 optimal: oo a 2*v0 + 548/21 < 0; value: 716/21 a -320/21 <= 0; value: -320/21 d -3*v2 -4*v3 + 22 = 0; value: 0 a -2*v0 -1117/21 < 0; value: -1285/21 d 7/3*v3 -100/3 < 0; value: -7/3 d -3*v1 + 3*v2 -4 <= 0; value: 0 0: 3 1: 1 3 5 2: 1 2 4 5 3 3: 1 2 4 3 0: 4 -> 4 1: 1 -> -82/7 2: 2 -> -218/21 3: 4 -> 93/7 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 3*v3 -25 <= 0; value: -14 a -1*v2 + 3 = 0; value: 0 a -6*v2 + 5*v3 + 1 < 0; value: -7 a -1*v0 <= 0; value: 0 a 4*v3 -9 < 0; value: -1 0: 4 1: 1 2: 2 3 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 3*v3 -25 <= 0; value: -14 a -1*v2 + 3 = 0; value: 0 a -6*v2 + 5*v3 + 1 < 0; value: -7 a -1*v0 <= 0; value: 0 a 4*v3 -9 < 0; value: -1 0: 4 1: 1 2: 2 3 3: 1 3 5 0: 0 -> 0 1: 1 -> 1 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 10 a -6*v2 + 5*v3 -25 <= 0; value: -16 a -2*v0 + v2 -4 <= 0; value: -13 a 5*v0 -5*v2 -1*v3 -17 = 0; value: 0 a v2 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 2 3 1: 5 2: 1 2 3 4 3: 1 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a -6*v2 + 5*v3 -25 <= 0; value: -16 a -2*v0 + v2 -4 <= 0; value: -13 a 5*v0 -5*v2 -1*v3 -17 = 0; value: 0 a v2 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 2 3 1: 5 2: 1 2 3 4 3: 1 3 0: 5 -> 5 1: 0 -> 0 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -1*v3 + 3 <= 0; value: -2 a v1 -4*v2 + v3 -5 <= 0; value: -3 a -2*v0 + v2 + 9 = 0; value: 0 a 2*v0 -3*v1 -13 <= 0; value: -6 a -1*v2 -2*v3 + 7 <= 0; value: -4 0: 3 4 1: 2 4 2: 2 3 5 3: 1 2 5 optimal: oo a 1/3*v2 + 35/3 <= 0; value: 12 a -1*v3 + 3 <= 0; value: -2 a -11/3*v2 + v3 -19/3 <= 0; value: -5 d -2*v0 + v2 + 9 = 0; value: 0 d 2*v0 -3*v1 -13 <= 0; value: 0 a -1*v2 -2*v3 + 7 <= 0; value: -4 0: 3 4 2 1: 2 4 2: 2 3 5 3: 1 2 5 0: 5 -> 5 1: 1 -> -1 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 + 5*v1 -32 <= 0; value: -13 a -4*v1 -1*v3 + 2 <= 0; value: -11 a 3*v0 -1*v3 -5 = 0; value: 0 a -1*v1 + 3*v2 + 2 <= 0; value: -1 a 4*v2 + 5*v3 -14 <= 0; value: -9 0: 1 3 1: 1 2 4 2: 4 5 3: 2 3 5 optimal: 19/3 a + 19/3 <= 0; value: 19/3 a -169/6 <= 0; value: -169/6 d -12*v2 -1*v3 -6 <= 0; value: 0 d 3*v0 -1*v3 -5 = 0; value: 0 d -1*v1 + 3*v2 + 2 <= 0; value: 0 d 14*v0 -118/3 <= 0; value: 0 0: 1 3 5 1: 1 2 4 2: 4 5 2 1 3: 2 3 5 1 0: 2 -> 59/21 1: 3 -> -5/14 2: 0 -> -11/14 3: 1 -> 24/7 a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -8 <= 0; value: -5 a v0 + v1 -2 <= 0; value: 0 a -6*v2 + 25 < 0; value: -5 a -6*v0 + 5*v1 -28 < 0; value: -18 a 2*v0 + 3*v2 -35 < 0; value: -20 0: 2 4 5 1: 2 4 2: 3 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -8 <= 0; value: -5 a v0 + v1 -2 <= 0; value: 0 a -6*v2 + 25 < 0; value: -5 a -6*v0 + 5*v1 -28 < 0; value: -18 a 2*v0 + 3*v2 -35 < 0; value: -20 0: 2 4 5 1: 2 4 2: 3 5 3: 1 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -4*v1 -5*v3 + 14 < 0; value: -14 a -5*v1 -6*v2 + 34 = 0; value: 0 a -5*v3 -18 <= 0; value: -38 a -2*v0 -3*v2 -2*v3 -1 <= 0; value: -27 d = 0; value: 0 0: 4 1: 1 2 2: 2 4 3: 1 3 4 optimal: oo a 2*v0 + 5/2*v3 -7 < 0; value: 9 d 24/5*v2 -5*v3 -66/5 < 0; value: -24/5 d -5*v1 -6*v2 + 34 = 0; value: 0 a -5*v3 -18 <= 0; value: -38 a -2*v0 -41/8*v3 -37/4 < 0; value: -143/4 d = 0; value: 0 0: 4 1: 1 2 2: 2 4 1 3: 1 3 4 0: 3 -> 3 1: 2 -> -3/10 2: 4 -> 71/12 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 -4*v3 + 1 < 0; value: -15 a 5*v0 + 3*v3 -20 <= 0; value: -6 a -3*v1 -6*v3 + 19 <= 0; value: -5 a -1*v2 + 4*v3 -17 <= 0; value: -5 a -1*v1 + 2 = 0; value: 0 0: 2 1: 1 3 5 2: 4 3: 1 2 3 4 optimal: 7/5 a + 7/5 <= 0; value: 7/5 a -35/3 < 0; value: -35/3 d 5*v0 + 3*v3 -20 <= 0; value: 0 d -6*v3 + 13 <= 0; value: 0 a -1*v2 -25/3 <= 0; value: -25/3 d -1*v1 + 2 = 0; value: 0 0: 2 1: 1 3 5 2: 4 3: 1 2 3 4 0: 1 -> 27/10 1: 2 -> 2 2: 0 -> 0 3: 3 -> 13/6 a 2*v0 -2*v1 <= 0; value: -2 a -1*v3 <= 0; value: 0 a -6*v0 -3*v1 + 2 <= 0; value: -1 a 2*v2 -11 < 0; value: -7 a -1*v0 + 3*v1 -3 = 0; value: 0 a v1 -3*v3 -2 <= 0; value: -1 0: 2 4 1: 2 4 5 2: 3 3: 1 5 optimal: oo a 12*v3 + 2 <= 0; value: 2 a -1*v3 <= 0; value: 0 a -63*v3 -22 <= 0; value: -22 a 2*v2 -11 < 0; value: -7 d -1*v0 + 3*v1 -3 = 0; value: 0 d 1/3*v0 -3*v3 -1 <= 0; value: 0 0: 2 4 5 1: 2 4 5 2: 3 3: 1 5 2 0: 0 -> 3 1: 1 -> 2 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + 3*v3 -13 = 0; value: 0 a -1*v2 + 2*v3 -8 = 0; value: 0 a -1*v1 -4*v3 + 22 = 0; value: 0 a v3 -7 <= 0; value: -2 a 3*v2 -1*v3 -1 <= 0; value: 0 0: 1: 1 3 2: 2 5 3: 1 2 3 4 5 optimal: oo a 2*v0 -4 <= 0; value: 0 d -1*v1 + 3*v3 -13 = 0; value: 0 d -1*v2 + 2*v3 -8 = 0; value: 0 d -7/2*v2 + 7 = 0; value: 0 a -2 <= 0; value: -2 a <= 0; value: 0 0: 1: 1 3 2: 2 5 3 4 3: 1 2 3 4 5 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 2*v3 -3 <= 0; value: -1 a -4*v1 + v2 + 2 <= 0; value: -10 a 5*v0 -4*v3 + 1 <= 0; value: -3 a -5*v2 + 4*v3 + 16 = 0; value: 0 a 2*v3 -3 < 0; value: -1 0: 3 1: 2 2: 2 4 3: 1 3 4 5 optimal: (-6/5 -e*1) a -6/5 < 0; value: -6/5 a <= 0; value: 0 d -4*v1 + v2 + 2 <= 0; value: 0 d 5*v0 -4*v3 + 1 <= 0; value: 0 d -5*v2 + 4*v3 + 16 = 0; value: 0 d 5/2*v0 -5/2 < 0; value: -5/4 0: 3 1 5 1: 2 2: 2 4 3: 1 3 4 5 0: 0 -> 1/2 1: 4 -> 59/40 2: 4 -> 39/10 3: 1 -> 7/8 a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v2 -2 <= 0; value: 0 a 2*v0 + 3*v3 -12 <= 0; value: -3 a 5*v1 + 2*v2 -15 < 0; value: -4 a -1*v3 + 3 = 0; value: 0 a -1*v3 -2 < 0; value: -5 0: 1 2 1: 1 3 2: 1 3 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v2 -2 <= 0; value: 0 a 2*v0 + 3*v3 -12 <= 0; value: -3 a 5*v1 + 2*v2 -15 < 0; value: -4 a -1*v3 + 3 = 0; value: 0 a -1*v3 -2 < 0; value: -5 0: 1 2 1: 1 3 2: 1 3 3: 2 4 5 0: 0 -> 0 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + 5*v2 + 4*v3 -78 <= 0; value: -47 a v0 + v3 -4 <= 0; value: 0 a -5*v0 + 6*v1 -35 < 0; value: -23 a 3*v3 -14 <= 0; value: -2 a -1*v0 -6*v2 + 10 <= 0; value: -8 0: 1 2 3 5 1: 3 2: 1 5 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + 5*v2 + 4*v3 -78 <= 0; value: -47 a v0 + v3 -4 <= 0; value: 0 a -5*v0 + 6*v1 -35 < 0; value: -23 a 3*v3 -14 <= 0; value: -2 a -1*v0 -6*v2 + 10 <= 0; value: -8 0: 1 2 3 5 1: 3 2: 1 5 3: 1 2 4 0: 0 -> 0 1: 2 -> 2 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a v1 -2*v2 + v3 + 3 = 0; value: 0 a -3*v1 -2*v2 + 12 = 0; value: 0 a 4*v0 -3*v2 -5*v3 -17 <= 0; value: -11 a 5*v0 -4*v2 -17 <= 0; value: -4 a -1*v3 + 1 = 0; value: 0 0: 3 4 1: 1 2 2: 1 2 3 4 3: 1 3 5 optimal: 38/5 a + 38/5 <= 0; value: 38/5 d v1 -2*v2 + v3 + 3 = 0; value: 0 d -8*v2 + 24 = 0; value: 0 a -39/5 <= 0; value: -39/5 d 5*v0 -29 <= 0; value: 0 d -1*v3 + 1 = 0; value: 0 0: 3 4 1: 1 2 2: 1 2 3 4 3: 1 3 5 2 0: 5 -> 29/5 1: 2 -> 2 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 3 <= 0; value: 0 a -3*v0 + 4*v1 + 6*v3 -9 <= 0; value: -2 a -5*v0 + 6*v1 -24 <= 0; value: -15 a v0 + 5*v1 -37 <= 0; value: -14 a -4*v2 + 7 <= 0; value: -5 0: 1 2 3 4 1: 2 3 4 2: 5 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 3 <= 0; value: 0 a -3*v0 + 4*v1 + 6*v3 -9 <= 0; value: -2 a -5*v0 + 6*v1 -24 <= 0; value: -15 a v0 + 5*v1 -37 <= 0; value: -14 a -4*v2 + 7 <= 0; value: -5 0: 1 2 3 4 1: 2 3 4 2: 5 3: 2 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 + 3*v3 -53 <= 0; value: -34 a -2*v0 -4*v2 -3*v3 + 17 = 0; value: 0 a -4*v0 -3*v2 + 11 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 2: 2 3 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 + 3*v3 -53 <= 0; value: -34 a -2*v0 -4*v2 -3*v3 + 17 = 0; value: 0 a -4*v0 -3*v2 + 11 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 2: 2 3 3: 1 2 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -6*v0 -5*v2 + v3 -25 <= 0; value: -73 a -1*v0 -1*v1 -1 < 0; value: -5 a -2*v0 -5*v1 + 8 = 0; value: 0 a -2*v0 -1 <= 0; value: -9 a -1*v2 + 5 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 5 3: 1 optimal: oo a 14/5*v0 -16/5 <= 0; value: 8 a -6*v0 -5*v2 + v3 -25 <= 0; value: -73 a -3/5*v0 -13/5 < 0; value: -5 d -2*v0 -5*v1 + 8 = 0; value: 0 a -2*v0 -1 <= 0; value: -9 a -1*v2 + 5 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 5 3: 1 0: 4 -> 4 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + v1 + 1 <= 0; value: 0 a -2*v0 -6*v1 + 23 < 0; value: -3 a v2 -1*v3 + 3 = 0; value: 0 a 4*v2 -3*v3 + 9 = 0; value: 0 a 5*v1 -4*v2 -37 < 0; value: -22 0: 1 2 1: 1 2 5 2: 3 4 5 3: 3 4 optimal: oo a 8/3*v0 -23/3 < 0; value: 3 a -4/3*v0 + 29/6 < 0; value: -1/2 d -2*v0 -6*v1 + 23 < 0; value: -3/2 a v2 -1*v3 + 3 = 0; value: 0 a 4*v2 -3*v3 + 9 = 0; value: 0 a -5/3*v0 -4*v2 -107/6 < 0; value: -49/2 0: 1 2 5 1: 1 2 5 2: 3 4 5 3: 3 4 0: 4 -> 4 1: 3 -> 11/4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a v0 -2 < 0; value: -1 a -5*v0 -6*v3 -2 <= 0; value: -37 a 3*v0 -2*v2 + 6 <= 0; value: -1 a -1*v1 -6*v2 -3*v3 + 8 <= 0; value: -37 a -6*v1 + 5*v3 -73 <= 0; value: -48 0: 1 2 3 1: 4 5 2: 3 4 3: 2 4 5 optimal: (95/3 -e*1) a + 95/3 < 0; value: 95/3 d 2/3*v2 -4 < 0; value: -1/3 d -5*v0 -6*v3 -2 <= 0; value: 0 d 3*v0 -2*v2 + 6 <= 0; value: 0 a -49/6 < 0; value: -49/6 d -6*v1 + 5*v3 -73 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 3 4 1 3: 2 4 5 0: 1 -> 5/3 1: 0 -> -1469/108 2: 5 -> 11/2 3: 5 -> -31/18 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 + 3*v3 -34 <= 0; value: -20 a -3*v0 -3*v2 + 1 <= 0; value: -2 a -4*v2 -1 <= 0; value: -5 a -5*v0 -2*v3 + 4 < 0; value: -4 0: 1 2 4 1: 2: 1 2 3 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 + 3*v3 -34 <= 0; value: -20 a -3*v0 -3*v2 + 1 <= 0; value: -2 a -4*v2 -1 <= 0; value: -5 a -5*v0 -2*v3 + 4 < 0; value: -4 0: 1 2 4 1: 2: 1 2 3 3: 1 4 0: 0 -> 0 1: 1 -> 1 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a v0 -3*v2 + 8 <= 0; value: -2 a -6*v0 + 3*v2 + 5*v3 -60 < 0; value: -35 a -1*v1 + v2 < 0; value: -1 a -4*v0 + 4*v2 -1*v3 -3 = 0; value: 0 a v0 + 6*v2 -45 <= 0; value: -19 0: 1 2 4 5 1: 3 2: 1 2 3 4 5 3: 2 4 optimal: (68/9 -e*1) a + 68/9 < 0; value: 68/9 d -2*v0 -3/4*v3 + 23/4 <= 0; value: 0 a -1718/9 < 0; value: -1718/9 d -1*v1 + v2 < 0; value: -4/9 d -4*v0 + 4*v2 -1*v3 -3 = 0; value: 0 d 3*v0 -29 <= 0; value: 0 0: 1 2 4 5 1: 3 2: 1 2 3 4 5 3: 2 4 1 5 0: 2 -> 29/3 1: 5 -> 19/3 2: 4 -> 53/9 3: 5 -> -163/9 a 2*v0 -2*v1 <= 0; value: -6 a v2 -5 < 0; value: -2 a -3*v0 -1*v1 -3*v2 + 4 <= 0; value: -16 a -1*v0 < 0; value: -2 a -1*v2 + 1 < 0; value: -2 a v2 -3 = 0; value: 0 0: 2 3 1: 2 2: 1 2 4 5 3: optimal: oo a 8*v0 + 10 <= 0; value: 26 a -2 < 0; value: -2 d -3*v0 -1*v1 -3*v2 + 4 <= 0; value: 0 a -1*v0 < 0; value: -2 a -2 < 0; value: -2 d v2 -3 = 0; value: 0 0: 2 3 1: 2 2: 1 2 4 5 3: 0: 2 -> 2 1: 5 -> -11 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 6*v3 + 1 <= 0; value: -2 a 2*v0 -3*v3 -4 = 0; value: 0 a v0 -1*v1 -3 = 0; value: 0 a 5*v1 -4*v2 -2 = 0; value: 0 a 4*v2 + 2*v3 -13 <= 0; value: -1 0: 1 2 3 1: 3 4 2: 4 5 3: 1 2 5 optimal: 6 a + 6 <= 0; value: 6 a -3*v0 + 6*v3 + 1 <= 0; value: -2 a 2*v0 -3*v3 -4 = 0; value: 0 d v0 -1*v1 -3 = 0; value: 0 a 5*v0 -4*v2 -17 = 0; value: 0 a 4*v2 + 2*v3 -13 <= 0; value: -1 0: 1 2 3 4 1: 3 4 2: 4 5 3: 1 2 5 0: 5 -> 5 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 + 2*v3 + 2 <= 0; value: 0 a -3*v0 + v1 + 6 = 0; value: 0 a 2*v0 + 3*v3 -16 <= 0; value: -6 a -1*v0 -1*v2 + 7 = 0; value: 0 a -2*v0 -3*v3 + 10 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 4 3: 1 3 5 optimal: 4 a + 4 <= 0; value: 4 d -3*v0 + 2*v3 + 2 <= 0; value: 0 d -3*v0 + v1 + 6 = 0; value: 0 a -6 <= 0; value: -6 a -1*v2 + 5 = 0; value: 0 d -13/3*v3 + 26/3 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 4 3: 1 3 5 4 0: 2 -> 2 1: 0 -> 0 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 2*v2 + v3 -7 <= 0; value: -4 a -1*v0 + v3 <= 0; value: 0 a -6*v2 + v3 -3 <= 0; value: 0 a v2 <= 0; value: 0 a 2*v1 + v2 -24 < 0; value: -14 0: 2 1: 5 2: 1 3 4 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a 2*v2 + v3 -7 <= 0; value: -4 a -1*v0 + v3 <= 0; value: 0 a -6*v2 + v3 -3 <= 0; value: 0 a v2 <= 0; value: 0 a 2*v1 + v2 -24 < 0; value: -14 0: 2 1: 5 2: 1 3 4 5 3: 1 2 3 0: 3 -> 3 1: 5 -> 5 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -6*v0 -2*v2 + 25 < 0; value: -3 a 6*v0 -3*v2 -1*v3 + 2 = 0; value: 0 a 2*v0 -11 <= 0; value: -5 a v0 + 2*v1 -13 = 0; value: 0 a -4*v0 + 5*v1 -26 <= 0; value: -13 0: 1 2 3 4 5 1: 4 5 2: 1 2 3: 2 optimal: 7/2 a + 7/2 <= 0; value: 7/2 a -2*v2 -8 < 0; value: -18 d 6*v0 -3*v2 -1*v3 + 2 = 0; value: 0 d v2 + 1/3*v3 -35/3 <= 0; value: 0 d v0 + 2*v1 -13 = 0; value: 0 a -117/4 <= 0; value: -117/4 0: 1 2 3 4 5 1: 4 5 2: 1 2 3 5 3: 2 3 1 5 0: 3 -> 11/2 1: 5 -> 15/4 2: 5 -> 5 3: 5 -> 20 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 + 3*v1 -32 = 0; value: 0 a -1*v1 + 4 = 0; value: 0 a -5*v0 -16 <= 0; value: -41 a -2*v0 + 4*v1 + 5*v2 -6 <= 0; value: 0 a v1 -2*v2 -2*v3 -1 < 0; value: -3 0: 1 3 4 1: 1 2 4 5 2: 4 5 3: 5 optimal: 2 a + 2 <= 0; value: 2 d 4*v0 + 3*v1 -32 = 0; value: 0 d 4/3*v0 -20/3 = 0; value: 0 a -41 <= 0; value: -41 a 5*v2 <= 0; value: 0 a -2*v2 -2*v3 + 3 < 0; value: -3 0: 1 3 4 2 5 1: 1 2 4 5 2: 4 5 3: 5 0: 5 -> 5 1: 4 -> 4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v0 = 0; value: 0 a 2*v1 -1*v2 + 2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a 3*v2 -1*v3 -28 <= 0; value: -17 a -6*v0 + v3 -1 = 0; value: 0 0: 1 5 1: 2 3 2: 2 4 3: 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v0 = 0; value: 0 a 2*v1 -1*v2 + 2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a 3*v2 -1*v3 -28 <= 0; value: -17 a -6*v0 + v3 -1 = 0; value: 0 0: 1 5 1: 2 3 2: 2 4 3: 3 4 5 0: 0 -> 0 1: 1 -> 1 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -17 < 0; value: -11 a -4*v0 -5*v2 + 3*v3 + 10 = 0; value: 0 a v1 -1*v3 = 0; value: 0 a -3*v1 -2*v2 + 5 = 0; value: 0 0: 1 2 1: 3 4 2: 2 4 3: 2 3 optimal: (412/63 -e*1) a + 412/63 < 0; value: 412/63 d 3*v0 -17 < 0; value: -3 d -4*v0 -5*v2 + 3*v3 + 10 = 0; value: 0 d v1 -1*v3 = 0; value: 0 d -4*v0 -7*v2 + 15 = 0; value: 0 0: 1 2 4 1: 3 4 2: 2 4 3: 2 3 4 0: 2 -> 14/3 1: 1 -> 127/63 2: 1 -> -11/21 3: 1 -> 127/63 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -1*v2 + 2 <= 0; value: 0 a 3*v1 -1*v2 + 1 = 0; value: 0 a -6*v0 -2*v1 + v2 -6 <= 0; value: -16 a -2*v0 -3 <= 0; value: -7 a 3*v0 + v2 + 4*v3 -69 <= 0; value: -39 0: 3 4 5 1: 1 2 3 2: 1 2 3 5 3: 5 optimal: oo a -8/3*v3 + 124/3 <= 0; value: 28 d -1/3*v2 + 4/3 <= 0; value: 0 d 3*v1 -1*v2 + 1 = 0; value: 0 a 8*v3 -134 <= 0; value: -94 a 8/3*v3 -139/3 <= 0; value: -33 d 3*v0 + 4*v3 -65 <= 0; value: 0 0: 3 4 5 1: 1 2 3 2: 1 2 3 5 3: 5 3 4 0: 2 -> 15 1: 1 -> 1 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 + 4*v3 -46 < 0; value: -19 a -4*v2 + 3*v3 + 2 <= 0; value: -1 a v1 -2 <= 0; value: -1 a 2*v0 -3*v3 + 3 <= 0; value: -2 a v3 -3 = 0; value: 0 0: 4 1: 3 2: 1 2 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 + 4*v3 -46 < 0; value: -19 a -4*v2 + 3*v3 + 2 <= 0; value: -1 a v1 -2 <= 0; value: -1 a 2*v0 -3*v3 + 3 <= 0; value: -2 a v3 -3 = 0; value: 0 0: 4 1: 3 2: 1 2 3: 1 2 4 5 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 4*v1 -5*v2 + v3 <= 0; value: -1 a -2*v1 -5*v2 + 3*v3 -5 < 0; value: -20 a v1 -1*v2 <= 0; value: 0 a 3*v2 + 3*v3 -35 <= 0; value: -20 a -4*v1 -4*v2 + 23 <= 0; value: -1 0: 1: 1 2 3 5 2: 1 2 3 4 5 3: 1 2 4 optimal: oo a 2*v0 -2*v3 + 71/6 <= 0; value: 83/6 a 10*v3 -82 <= 0; value: -62 a 6*v3 -103/2 < 0; value: -79/2 a 2*v3 -211/12 <= 0; value: -163/12 d 3*v2 + 3*v3 -35 <= 0; value: 0 d -4*v1 -4*v2 + 23 <= 0; value: 0 0: 1: 1 2 3 5 2: 1 2 3 4 5 3: 1 2 4 3 0: 3 -> 3 1: 3 -> -47/12 2: 3 -> 29/3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 + v1 -20 < 0; value: -13 a 2*v0 -2*v1 -1 < 0; value: -3 a -2*v2 -3*v3 -18 <= 0; value: -38 a 2*v1 -1*v2 -2 = 0; value: 0 a 3*v2 -2*v3 -8 < 0; value: -4 0: 1 2 1: 1 2 4 2: 3 4 5 3: 3 5 optimal: (1 -e*1) a + 1 < 0; value: 1 a 3*v0 -41/2 < 0; value: -29/2 d 2*v0 -1*v2 -3 < 0; value: -1 a -4*v0 -3*v3 -12 <= 0; value: -32 d 2*v1 -1*v2 -2 = 0; value: 0 a 6*v0 -2*v3 -17 < 0; value: -13 0: 1 2 3 5 1: 1 2 4 2: 3 4 5 2 1 3: 3 5 0: 2 -> 2 1: 3 -> 2 2: 4 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a 5*v2 -2*v3 <= 0; value: -8 a -3*v1 + 5*v2 + 6 <= 0; value: -3 a -2*v2 + 3*v3 -35 <= 0; value: -23 a v2 = 0; value: 0 a v1 + v2 -1*v3 + 1 <= 0; value: 0 0: 1: 2 5 2: 1 2 3 4 5 3: 1 3 5 optimal: oo a 2*v0 -4 <= 0; value: -4 a -2*v3 <= 0; value: -8 d -3*v1 + 5*v2 + 6 <= 0; value: 0 a 3*v3 -35 <= 0; value: -23 d v2 = 0; value: 0 a -1*v3 + 3 <= 0; value: -1 0: 1: 2 5 2: 1 2 3 4 5 3: 1 3 5 0: 0 -> 0 1: 3 -> 2 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v1 + 6*v3 -3 = 0; value: 0 a v0 + 2*v2 -11 = 0; value: 0 a -4*v0 -3*v2 + 9 <= 0; value: -10 a -5*v2 + 8 < 0; value: -17 a 5*v0 -1*v2 + v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2: 2 3 4 5 3: 1 5 optimal: oo a -1*v0 -6*v3 + 3 <= 0; value: 2 d 3*v0 -2*v1 + 6*v3 -3 = 0; value: 0 a v0 + 2*v2 -11 = 0; value: 0 a -4*v0 -3*v2 + 9 <= 0; value: -10 a -5*v2 + 8 < 0; value: -17 a 5*v0 -1*v2 + v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2: 2 3 4 5 3: 1 5 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + v1 + 1 <= 0; value: 0 a -2*v2 -3 <= 0; value: -7 a 6*v0 + 4*v3 -17 < 0; value: -11 a 2*v1 -5*v2 -2*v3 + 5 < 0; value: -3 a 4*v1 + 3*v3 -4 = 0; value: 0 0: 1 3 1: 1 4 5 2: 2 4 3: 3 4 5 optimal: (33/7 -e*1) a + 33/7 < 0; value: 33/7 d -7/8*v0 -19/16 < 0; value: -7/8 a -2*v2 -3 <= 0; value: -7 d 6*v0 + 4*v3 -17 < 0; value: -4 a -5*v2 -15 < 0; value: -25 d 4*v1 + 3*v3 -4 = 0; value: 0 0: 1 3 4 1: 1 4 5 2: 2 4 3: 3 4 5 1 0: 1 -> -5/14 1: 1 -> -103/56 2: 2 -> 2 3: 0 -> 53/14 a 2*v0 -2*v1 <= 0; value: 4 a -2*v0 + 3 <= 0; value: -3 a 6*v1 -5*v2 -2 <= 0; value: -1 a -5*v0 + 5*v1 -1*v2 + 3 <= 0; value: -8 a 5*v0 + 6*v1 -47 <= 0; value: -26 a -1*v0 + 6*v1 + 2*v2 -5 = 0; value: 0 0: 1 3 4 5 1: 2 3 4 5 2: 2 3 5 3: optimal: oo a 5/3*v0 + 2/3*v2 -5/3 <= 0; value: 4 a -2*v0 + 3 <= 0; value: -3 a v0 -7*v2 + 3 <= 0; value: -1 a -25/6*v0 -8/3*v2 + 43/6 <= 0; value: -8 a 6*v0 -2*v2 -42 <= 0; value: -26 d -1*v0 + 6*v1 + 2*v2 -5 = 0; value: 0 0: 1 3 4 5 2 1: 2 3 4 5 2: 2 3 5 4 3: 0: 3 -> 3 1: 1 -> 1 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a v0 -2*v1 <= 0; value: -1 a v1 -2*v3 < 0; value: -4 a 2*v0 -5*v2 -11 <= 0; value: -30 a -1*v3 + 3 = 0; value: 0 a 6*v1 -1*v3 -23 <= 0; value: -14 0: 1 3 1: 1 2 5 2: 3 3: 2 4 5 optimal: 26/3 a + 26/3 <= 0; value: 26/3 d v0 -2*v1 <= 0; value: 0 a -5/3 < 0; value: -5/3 a -5*v2 + 19/3 <= 0; value: -56/3 d -1*v3 + 3 = 0; value: 0 d 3*v0 -1*v3 -23 <= 0; value: 0 0: 1 3 2 5 1: 1 2 5 2: 3 3: 2 4 5 3 0: 3 -> 26/3 1: 2 -> 13/3 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -1*v1 -4*v3 + 12 < 0; value: -5 a v2 + 3*v3 -32 <= 0; value: -12 a -5*v0 + 5*v3 -23 < 0; value: -3 a -2*v0 + v2 -6 <= 0; value: -3 a 3*v0 -2*v3 -2 < 0; value: -9 0: 1 3 4 5 1: 1 2: 2 4 3: 1 2 3 5 optimal: (64/5 -e*1) a + 64/5 < 0; value: 64/5 d 5*v0 -1*v1 -4*v3 + 12 < 0; value: -1 a 3*v0 + v2 -91/5 <= 0; value: -51/5 d -5*v0 + 5*v3 -23 < 0; value: -3/2 a -2*v0 + v2 -6 <= 0; value: -3 a v0 -56/5 < 0; value: -51/5 0: 1 3 4 5 2 1: 1 2: 2 4 3: 1 2 3 5 0: 1 -> 1 1: 2 -> -16/5 2: 5 -> 5 3: 5 -> 53/10 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 4*v1 -6 = 0; value: 0 a v1 + v3 -5 = 0; value: 0 a -6*v0 -1*v3 -11 <= 0; value: -26 a v1 -2 = 0; value: 0 a v0 + 2*v1 -6 <= 0; value: 0 0: 1 3 5 1: 1 2 4 5 2: 3: 2 3 optimal: 0 a <= 0; value: 0 d -1*v0 + 4*v1 -6 = 0; value: 0 a v3 -3 = 0; value: 0 a -1*v3 -23 <= 0; value: -26 a = 0; value: 0 d 3/2*v0 -3 <= 0; value: 0 0: 1 3 5 2 4 1: 1 2 4 5 2: 3: 2 3 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -10 a 5*v2 -4*v3 -11 = 0; value: 0 a -1*v2 -1*v3 + 4 <= 0; value: 0 a v0 + 3*v1 -44 <= 0; value: -29 a -2*v2 -1*v3 + 4 < 0; value: -3 a v0 -6*v3 -5 < 0; value: -11 0: 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a 5*v2 -4*v3 -11 = 0; value: 0 a -1*v2 -1*v3 + 4 <= 0; value: 0 a v0 + 3*v1 -44 <= 0; value: -29 a -2*v2 -1*v3 + 4 < 0; value: -3 a v0 -6*v3 -5 < 0; value: -11 0: 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 0: 0 -> 0 1: 5 -> 5 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -41 <= 0; value: -21 a -3*v0 + v1 -2*v2 + 20 = 0; value: 0 a 3*v1 -5*v2 -1 < 0; value: -11 a 6*v2 -2*v3 -37 <= 0; value: -15 a -3*v0 + 6*v1 + 5*v3 -70 <= 0; value: -35 0: 1 2 5 1: 2 3 5 2: 2 3 4 3: 4 5 optimal: oo a -4*v0 -4*v2 + 40 <= 0; value: 0 a 4*v0 -41 <= 0; value: -21 d -3*v0 + v1 -2*v2 + 20 = 0; value: 0 a 9*v0 + v2 -61 < 0; value: -11 a 6*v2 -2*v3 -37 <= 0; value: -15 a 15*v0 + 12*v2 + 5*v3 -190 <= 0; value: -35 0: 1 2 5 3 1: 2 3 5 2: 2 3 4 5 3: 4 5 0: 5 -> 5 1: 5 -> 5 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 -4*v2 + 21 <= 0; value: -1 a v2 -4 = 0; value: 0 a -5*v0 + 5*v2 -14 <= 0; value: -4 a 6*v2 -6*v3 -49 < 0; value: -31 a v0 -6*v1 -5*v2 + 23 <= 0; value: -13 0: 3 5 1: 1 5 2: 1 2 3 4 5 3: 4 optimal: 19 a + 19 <= 0; value: 19 d -2*v1 -4*v2 + 21 <= 0; value: 0 d v2 -4 = 0; value: 0 a -54 <= 0; value: -54 a -6*v3 -25 < 0; value: -31 d v0 -12 <= 0; value: 0 0: 3 5 1: 1 5 2: 1 2 3 4 5 3: 4 0: 2 -> 12 1: 3 -> 5/2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 -5*v2 -10 <= 0; value: -35 a -1*v2 + 5 = 0; value: 0 a 6*v0 + 2*v1 -23 < 0; value: -15 a -1*v0 <= 0; value: 0 a -3*v2 -1*v3 -11 <= 0; value: -30 0: 1 3 4 1: 3 2: 1 2 5 3: 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 -5*v2 -10 <= 0; value: -35 a -1*v2 + 5 = 0; value: 0 a 6*v0 + 2*v1 -23 < 0; value: -15 a -1*v0 <= 0; value: 0 a -3*v2 -1*v3 -11 <= 0; value: -30 0: 1 3 4 1: 3 2: 1 2 5 3: 5 0: 0 -> 0 1: 4 -> 4 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 -2*v1 <= 0; value: 0 a -1*v2 + 4 = 0; value: 0 a 2*v1 -1*v2 -6 = 0; value: 0 a -5*v0 -6*v2 + v3 -19 <= 0; value: -51 a -6*v2 -3*v3 + 14 < 0; value: -16 0: 1 4 1: 1 3 2: 2 3 4 5 3: 4 5 optimal: -6 a -6 <= 0; value: -6 d 5*v0 -2*v1 <= 0; value: 0 d -1*v2 + 4 = 0; value: 0 d 5*v0 -1*v2 -6 = 0; value: 0 a v3 -53 <= 0; value: -51 a -3*v3 -10 < 0; value: -16 0: 1 4 3 1: 1 3 2: 2 3 4 5 3: 4 5 0: 2 -> 2 1: 5 -> 5 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 4*v1 -27 <= 0; value: -10 a 3*v1 -1*v3 -6 <= 0; value: 0 a 3*v0 + 4*v2 + 2*v3 -25 = 0; value: 0 a -3*v0 -1*v1 + 3*v2 -6 = 0; value: 0 a 2*v1 -6*v2 + v3 + 5 <= 0; value: -10 0: 1 3 4 1: 1 2 4 5 2: 3 4 5 3: 2 3 5 optimal: oo a 61/2*v0 -9/2 <= 0; value: 26 a -52*v0 -18 <= 0; value: -70 a -195/4*v0 -25/4 <= 0; value: -55 d 3*v0 + 4*v2 + 2*v3 -25 = 0; value: 0 d -3*v0 -1*v1 + 3*v2 -6 = 0; value: 0 d -6*v0 + v3 -7 <= 0; value: 0 0: 1 3 4 2 5 1: 1 2 4 5 2: 3 4 5 1 2 3: 2 3 5 1 0: 1 -> 1 1: 3 -> -12 2: 4 -> -1 3: 3 -> 13 a 2*v0 -2*v1 <= 0; value: -2 a -5*v1 -5*v2 + 9 <= 0; value: -21 a 3*v0 -7 < 0; value: -4 a 3*v2 -2*v3 -7 <= 0; value: -1 a -5*v2 -6*v3 + 38 = 0; value: 0 a 4*v0 + 4*v3 -47 <= 0; value: -31 0: 2 5 1: 1 2: 1 3 4 3: 3 4 5 optimal: (997/105 -e*1) a + 997/105 < 0; value: 997/105 d -5*v1 -5*v2 + 9 <= 0; value: 0 d 3*v0 -7 < 0; value: -2 d -28/5*v3 + 79/5 <= 0; value: 0 d -5*v2 -6*v3 + 38 = 0; value: 0 a -554/21 <= 0; value: -554/21 0: 2 5 1: 1 2: 1 3 4 3: 3 4 5 0: 1 -> 5/3 1: 2 -> -169/70 2: 4 -> 59/14 3: 3 -> 79/28 a 2*v0 -2*v1 <= 0; value: 6 a 5*v3 -13 < 0; value: -3 a -1*v2 + 2 = 0; value: 0 a 5*v1 -6*v3 -5 < 0; value: -12 a 6*v2 + 3*v3 -44 <= 0; value: -26 a v1 + 2*v2 -5 = 0; value: 0 0: 1: 3 5 2: 2 4 5 3: 1 3 4 optimal: oo a 2*v0 -2 <= 0; value: 6 a 5*v3 -13 < 0; value: -3 d -1*v2 + 2 = 0; value: 0 a -6*v3 < 0; value: -12 a 3*v3 -32 <= 0; value: -26 d v1 + 2*v2 -5 = 0; value: 0 0: 1: 3 5 2: 2 4 5 3 3: 1 3 4 0: 4 -> 4 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 -2 < 0; value: -7 a -1*v2 <= 0; value: -3 a 3*v1 -6*v2 -5*v3 + 5 <= 0; value: -29 a 2*v1 + v3 -29 <= 0; value: -18 a 4*v1 -6*v3 + 1 <= 0; value: -17 0: 1: 3 4 5 2: 2 3 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 -2 < 0; value: -7 a -1*v2 <= 0; value: -3 a 3*v1 -6*v2 -5*v3 + 5 <= 0; value: -29 a 2*v1 + v3 -29 <= 0; value: -18 a 4*v1 -6*v3 + 1 <= 0; value: -17 0: 1: 3 4 5 2: 2 3 3: 1 3 4 5 0: 4 -> 4 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -2*v0 + 6*v2 -43 <= 0; value: -25 a 3*v0 + 3*v1 -32 <= 0; value: -17 a 5*v1 + v2 -18 <= 0; value: -4 a 3*v1 + v2 -16 < 0; value: -6 a -1*v0 + 3 = 0; value: 0 0: 1 2 5 1: 2 3 4 2: 1 3 4 3: optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -2*v0 + 6*v2 -43 <= 0; value: -25 a 3*v0 + 3*v1 -32 <= 0; value: -17 a 5*v1 + v2 -18 <= 0; value: -4 a 3*v1 + v2 -16 < 0; value: -6 a -1*v0 + 3 = 0; value: 0 0: 1 2 5 1: 2 3 4 2: 1 3 4 3: 0: 3 -> 3 1: 2 -> 2 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a 5*v2 -37 <= 0; value: -17 a -2*v0 -1*v2 -3 <= 0; value: -9 a 3*v0 -4*v2 + 5*v3 -4 < 0; value: -17 a -1*v3 <= 0; value: 0 a -1*v0 -1*v1 + 5 <= 0; value: -1 0: 2 3 5 1: 5 2: 1 2 3 3: 3 4 optimal: (174/5 -e*1) a + 174/5 < 0; value: 174/5 d 5*v2 -37 <= 0; value: 0 a -164/5 < 0; value: -164/5 d 3*v0 -4*v2 + 5*v3 -4 < 0; value: -3 d -1*v3 <= 0; value: 0 d -1*v0 -1*v1 + 5 <= 0; value: 0 0: 2 3 5 1: 5 2: 1 2 3 3: 3 4 2 0: 1 -> 51/5 1: 5 -> -26/5 2: 4 -> 37/5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a -4*v1 + 2*v2 -23 < 0; value: -13 a 6*v1 -2*v2 -1 <= 0; value: -11 a 5*v1 + 6*v2 + v3 -73 <= 0; value: -39 a -2*v0 -5*v1 + 10 <= 0; value: 0 a -3*v1 + 6*v2 + 2*v3 -39 <= 0; value: -1 0: 4 1: 1 2 3 4 5 2: 1 2 3 5 3: 3 5 optimal: oo a -7/2*v2 + 201/4 < 0; value: 131/4 d -6*v2 -8/3*v3 + 29 < 0; value: -8/3 a v2 -71/2 < 0; value: -61/2 a 25/4*v2 -727/8 < 0; value: -477/8 d -2*v0 -5*v1 + 10 <= 0; value: 0 d 6/5*v0 + 6*v2 + 2*v3 -45 <= 0; value: 0 0: 4 1 5 2 3 1: 1 2 3 4 5 2: 1 2 3 5 3: 3 5 1 2 0: 5 -> 275/24 1: 0 -> -31/12 2: 5 -> 5 3: 4 -> 5/8 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 6*v1 -6 = 0; value: 0 a 4*v1 + v3 -7 = 0; value: 0 a v2 + 6*v3 -46 <= 0; value: -25 a 6*v2 + 5*v3 -85 <= 0; value: -52 a v1 + v2 + 3*v3 -13 = 0; value: 0 0: 1 1: 1 2 5 2: 3 4 5 3: 2 3 4 5 optimal: 84/13 a + 84/13 <= 0; value: 84/13 d 5*v0 + 6*v1 -6 = 0; value: 0 d -10/3*v0 + v3 -3 = 0; value: 0 d -13/11*v2 -236/11 <= 0; value: 0 a -1826/13 <= 0; value: -1826/13 d v2 + 11/4*v3 -45/4 = 0; value: 0 0: 1 2 5 1: 1 2 5 2: 3 4 5 3: 2 3 4 5 0: 0 -> 30/13 1: 1 -> -12/13 2: 3 -> -236/13 3: 3 -> 139/13 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -14 < 0; value: -29 a -1*v0 + v3 + 3 <= 0; value: 0 a 2*v0 + 4*v2 -19 <= 0; value: -3 a 2*v0 + v3 -9 = 0; value: 0 a -2*v0 + v2 -4 <= 0; value: -10 0: 2 3 4 5 1: 1 2: 3 5 3: 2 4 optimal: oo a -4*v2 + 85/3 < 0; value: 61/3 d -3*v1 -14 < 0; value: -3 a 6*v2 -33/2 <= 0; value: -9/2 d 4*v2 -1*v3 -10 <= 0; value: 0 d 2*v0 + v3 -9 = 0; value: 0 a 5*v2 -23 <= 0; value: -13 0: 2 3 4 5 1: 1 2: 3 5 2 3: 2 4 3 5 0: 4 -> 11/2 1: 5 -> -11/3 2: 2 -> 2 3: 1 -> -2 a 2*v0 -2*v1 <= 0; value: -4 a -2*v3 -1 <= 0; value: -3 a 5*v0 -5*v1 + 3*v3 -3 <= 0; value: -10 a -4*v0 + 4*v2 -6*v3 -3 < 0; value: -9 a -1*v1 + 4*v2 -1 < 0; value: -3 a v2 <= 0; value: 0 0: 2 3 1: 2 4 2: 3 4 5 3: 1 2 3 optimal: (9/5 -e*1) a + 9/5 < 0; value: 9/5 d 4/3*v0 -4/3*v2 <= 0; value: 0 d 5*v0 -5*v1 + 3*v3 -3 <= 0; value: 0 d -4*v0 + 4*v2 -6*v3 -3 < 0; value: -9/2 a 3*v0 -1/10 <= 0; value: -1/10 a v0 <= 0; value: 0 0: 2 3 4 1 5 1: 2 4 2: 3 4 5 1 3: 1 2 3 4 0: 0 -> 0 1: 2 -> -9/20 2: 0 -> 0 3: 1 -> 1/4 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 + 5*v2 -9 < 0; value: -4 a 3*v2 -1*v3 -7 < 0; value: -4 a 3*v1 -26 <= 0; value: -14 a 2*v0 + 5*v2 -14 <= 0; value: -9 a -3*v1 + 2 < 0; value: -10 0: 1 4 1: 3 5 2: 1 2 4 3: 2 optimal: oo a -5*v2 + 38/3 < 0; value: 23/3 a 15/2*v2 -16 < 0; value: -17/2 a 3*v2 -1*v3 -7 < 0; value: -4 a -24 < 0; value: -24 d 2*v0 + 5*v2 -14 <= 0; value: 0 d -3*v1 + 2 < 0; value: -3 0: 1 4 1: 3 5 2: 1 2 4 3: 2 0: 0 -> 9/2 1: 4 -> 5/3 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 + 4*v1 -47 <= 0; value: -29 a -4*v1 + 6*v2 -3*v3 -27 <= 0; value: -8 a -1*v0 + 6*v2 -41 <= 0; value: -13 a -2*v0 -6*v1 + 4*v3 + 11 < 0; value: -1 a -6*v1 + v2 + 3 <= 0; value: -4 0: 1 3 4 1: 1 2 4 5 2: 2 3 5 3: 2 4 optimal: oo a 2*v0 -1/3*v2 -1 < 0; value: 4/3 a 5*v0 + 2/3*v2 -45 < 0; value: -95/3 a -3/2*v0 + 55/12*v2 -23 <= 0; value: -37/12 a -1*v0 + 6*v2 -41 <= 0; value: -13 d -2*v0 -6*v1 + 4*v3 + 11 < 0; value: -2 d 2*v0 + v2 -4*v3 -8 <= 0; value: 0 0: 1 3 4 2 5 1: 1 2 4 5 2: 2 3 5 1 3: 2 4 5 1 0: 2 -> 2 1: 2 -> 5/3 2: 5 -> 5 3: 1 -> 1/4 a 2*v0 -2*v1 <= 0; value: 2 a -6*v0 -1*v1 + 5*v2 <= 0; value: 0 a -6*v0 + 5*v3 + 1 <= 0; value: -2 a v3 -7 <= 0; value: -4 a -5*v0 + 4*v1 + 7 = 0; value: 0 a -6*v1 -5 < 0; value: -17 0: 1 2 4 1: 1 4 5 2: 1 3: 2 3 optimal: (47/15 -e*1) a + 47/15 < 0; value: 47/15 d -6*v0 -1*v1 + 5*v2 <= 0; value: 0 d -6*v0 + 5*v3 + 1 <= 0; value: 0 a -158/25 < 0; value: -158/25 d -29*v0 + 20*v2 + 7 = 0; value: 0 d -25/4*v3 + 17/4 < 0; value: -25/4 0: 1 2 4 5 1: 1 4 5 2: 1 4 5 3: 2 3 5 0: 3 -> 47/30 1: 2 -> 5/24 2: 4 -> 1153/600 3: 3 -> 42/25 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v3 -3 <= 0; value: -1 a 2*v0 + 6*v2 + 3*v3 -40 < 0; value: -17 a -3*v3 + 7 <= 0; value: -8 a v0 + 3*v2 -2*v3 + 6 = 0; value: 0 a -1*v0 + v2 + 4 = 0; value: 0 0: 1 2 4 5 1: 2: 2 4 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v3 -3 <= 0; value: -1 a 2*v0 + 6*v2 + 3*v3 -40 < 0; value: -17 a -3*v3 + 7 <= 0; value: -8 a v0 + 3*v2 -2*v3 + 6 = 0; value: 0 a -1*v0 + v2 + 4 = 0; value: 0 0: 1 2 4 5 1: 2: 2 4 5 3: 1 2 3 4 0: 4 -> 4 1: 3 -> 3 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v1 + v2 -24 < 0; value: -11 a -1*v0 -1*v3 -1 <= 0; value: -6 a -5*v1 -6*v2 + 50 = 0; value: 0 a 3*v1 -14 <= 0; value: -2 0: 2 1: 1 3 4 2: 1 3 3: 2 optimal: oo a 2*v0 + 12/5*v2 -20 <= 0; value: -2 a -7/5*v2 -4 < 0; value: -11 a -1*v0 -1*v3 -1 <= 0; value: -6 d -5*v1 -6*v2 + 50 = 0; value: 0 a -18/5*v2 + 16 <= 0; value: -2 0: 2 1: 1 3 4 2: 1 3 4 3: 2 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 + 5*v3 -23 <= 0; value: -7 a 2*v1 + 5*v2 -12 = 0; value: 0 a 5*v0 + 4*v2 -68 <= 0; value: -45 a -5*v0 -3*v3 + 5 <= 0; value: -16 a 6*v0 + 2*v3 -61 <= 0; value: -39 0: 1 3 4 5 1: 2 2: 2 3 3: 1 4 5 optimal: 1574/19 a + 1574/19 <= 0; value: 1574/19 d 19/5*v3 -21 <= 0; value: 0 d 2*v1 + 5*v2 -12 = 0; value: 0 d 5*v0 + 4*v2 -68 <= 0; value: 0 d -5*v0 -3*v3 + 5 <= 0; value: 0 a -1213/19 <= 0; value: -1213/19 0: 1 3 4 5 1: 2 2: 2 3 3: 1 4 5 0: 3 -> -44/19 1: 1 -> -831/19 2: 2 -> 378/19 3: 2 -> 105/19 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 6*v3 -11 <= 0; value: -7 a v0 + v1 + v2 -14 <= 0; value: -8 a 2*v0 + v1 + 2*v3 -15 <= 0; value: -9 a -1*v2 -1*v3 -4 <= 0; value: -9 0: 1 2 3 1: 2 3 2: 2 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 6*v3 -11 <= 0; value: -7 a v0 + v1 + v2 -14 <= 0; value: -8 a 2*v0 + v1 + 2*v3 -15 <= 0; value: -9 a -1*v2 -1*v3 -4 <= 0; value: -9 0: 1 2 3 1: 2 3 2: 2 4 3: 1 3 4 0: 2 -> 2 1: 0 -> 0 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v3 + 2 <= 0; value: -7 a v1 -6*v2 -4 <= 0; value: 0 a -5*v0 + 2*v2 + 6*v3 -13 = 0; value: 0 a v2 <= 0; value: 0 a 4*v0 + 6*v1 -6*v2 -41 < 0; value: -13 0: 3 5 1: 2 5 2: 2 3 4 5 3: 1 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -3*v3 + 2 <= 0; value: -7 a v1 -6*v2 -4 <= 0; value: 0 a -5*v0 + 2*v2 + 6*v3 -13 = 0; value: 0 a v2 <= 0; value: 0 a 4*v0 + 6*v1 -6*v2 -41 < 0; value: -13 0: 3 5 1: 2 5 2: 2 3 4 5 3: 1 3 0: 1 -> 1 1: 4 -> 4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -10 a v0 + 3*v1 -15 = 0; value: 0 a -3*v0 + 2*v2 <= 0; value: 0 a v0 -1*v2 = 0; value: 0 a -1*v1 -2*v2 + v3 + 1 = 0; value: 0 a 2*v1 -19 < 0; value: -9 0: 1 2 3 1: 1 4 5 2: 2 3 4 3: 4 optimal: oo a 8/5*v3 -82/5 <= 0; value: -10 d v0 + 3*v1 -15 = 0; value: 0 a -3/5*v3 + 12/5 <= 0; value: 0 d v0 -1*v2 = 0; value: 0 d -5/3*v2 + v3 -4 = 0; value: 0 a -2/5*v3 -37/5 < 0; value: -9 0: 1 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 4 2 5 0: 0 -> 0 1: 5 -> 5 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 -5*v2 -2*v3 + 21 = 0; value: 0 a -3*v1 -2*v2 + 2*v3 -4 < 0; value: -12 a -1*v0 + v1 -3*v3 -3 <= 0; value: -8 a 3*v0 -5 <= 0; value: -2 a v0 -1 <= 0; value: 0 0: 3 4 5 1: 1 2 3 2: 1 2 3: 1 2 3 optimal: (534/25 -e*1) a + 534/25 < 0; value: 534/25 d -1*v1 -5*v2 -2*v3 + 21 = 0; value: 0 d 13*v2 + 8*v3 -67 < 0; value: -8 d -1*v0 + 25/8*v2 -191/8 < 0; value: -25/8 a -2 <= 0; value: -2 d v0 -1 <= 0; value: 0 0: 3 4 5 1: 1 2 3 2: 1 2 3 3: 1 2 3 0: 1 -> 1 1: 2 -> -593/100 2: 3 -> 174/25 3: 2 -> -787/200 a 2*v0 -2*v1 <= 0; value: 0 a 6*v1 + 5*v3 -81 <= 0; value: -42 a v0 + 2*v2 -12 = 0; value: 0 a -1*v1 -2*v3 -5 <= 0; value: -15 a v0 -5*v1 + 16 = 0; value: 0 a 2*v0 -2*v2 -1*v3 + 3 = 0; value: 0 0: 2 4 5 1: 1 3 4 2: 2 5 3: 1 3 5 optimal: 112/27 a + 112/27 <= 0; value: 112/27 d 27/5*v3 -291/5 <= 0; value: 0 d v0 + 2*v2 -12 = 0; value: 0 a -839/27 <= 0; value: -839/27 d v0 -5*v1 + 16 = 0; value: 0 d -6*v2 -1*v3 + 27 = 0; value: 0 0: 2 4 5 3 1 1: 1 3 4 2: 2 5 1 3 3: 1 3 5 0: 4 -> 178/27 1: 4 -> 122/27 2: 4 -> 73/27 3: 3 -> 97/9 a 2*v0 -2*v1 <= 0; value: -4 a v0 <= 0; value: 0 a -2*v0 -2*v3 -1 <= 0; value: -9 a 5*v1 -5*v2 -1*v3 -2 <= 0; value: -1 a v0 <= 0; value: 0 a 5*v3 -29 <= 0; value: -9 0: 1 2 4 1: 3 2: 3 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v0 <= 0; value: 0 a -2*v0 -2*v3 -1 <= 0; value: -9 a 5*v1 -5*v2 -1*v3 -2 <= 0; value: -1 a v0 <= 0; value: 0 a 5*v3 -29 <= 0; value: -9 0: 1 2 4 1: 3 2: 3 3: 2 3 5 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 + 4*v1 -3*v3 -61 <= 0; value: -39 a -6*v0 -5*v1 -3*v3 + 18 <= 0; value: -27 a 2*v1 -2*v3 -11 <= 0; value: -5 a -1*v0 -2*v3 -1 < 0; value: -6 a 5*v1 -39 < 0; value: -24 0: 1 2 4 1: 1 2 3 5 2: 3: 1 2 3 4 optimal: oo a 22/5*v0 + 6/5*v3 -36/5 <= 0; value: 74/5 a -14/5*v0 -27/5*v3 -233/5 <= 0; value: -303/5 d -6*v0 -5*v1 -3*v3 + 18 <= 0; value: 0 a -12/5*v0 -16/5*v3 -19/5 <= 0; value: -79/5 a -1*v0 -2*v3 -1 < 0; value: -6 a -6*v0 -3*v3 -21 < 0; value: -51 0: 1 2 4 3 5 1: 1 2 3 5 2: 3: 1 2 3 4 5 0: 5 -> 5 1: 3 -> -12/5 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a v0 <= 0; value: 0 a -1*v3 < 0; value: -2 a -3*v1 + v2 -11 < 0; value: -26 a 5*v0 -6*v1 + 6 <= 0; value: -24 d = 0; value: 0 0: 1 4 1: 3 4 2: 3 3: 2 optimal: -2 a -2 <= 0; value: -2 d v0 <= 0; value: 0 a -1*v3 < 0; value: -2 a v2 -14 < 0; value: -14 d 5*v0 -6*v1 + 6 <= 0; value: 0 d = 0; value: 0 0: 1 4 3 1: 3 4 2: 3 3: 2 0: 0 -> 0 1: 5 -> 1 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -1*v1 -1*v2 -4 <= 0; value: -11 a -5*v1 -1*v3 + 14 < 0; value: -11 a 3*v0 + 6*v1 -92 <= 0; value: -59 a 2*v1 -1*v3 -12 <= 0; value: -2 a v2 -6*v3 -5 <= 0; value: -3 0: 3 1: 1 2 3 4 2: 1 5 3: 2 4 5 optimal: oo a 2*v0 + 2*v2 + 8 < 0; value: 14 d -1*v2 + 1/5*v3 -34/5 <= 0; value: 0 d -5*v1 -1*v3 + 14 < 0; value: -5 a 3*v0 -6*v2 -116 < 0; value: -125 a -7*v2 -54 < 0; value: -68 a -29*v2 -209 <= 0; value: -267 0: 3 1: 1 2 3 4 2: 1 5 4 3 3: 2 4 5 1 3 0: 1 -> 1 1: 5 -> -5 2: 2 -> 2 3: 0 -> 44 a 2*v0 -2*v1 <= 0; value: 8 a 2*v0 -6*v1 + 3*v3 -19 < 0; value: -8 a 4*v0 -2*v2 + 2*v3 -33 < 0; value: -15 a v1 = 0; value: 0 a -5*v1 -4*v3 + 4 = 0; value: 0 a 6*v0 + 4*v1 -45 < 0; value: -21 0: 1 2 5 1: 1 3 4 5 2: 2 3: 1 2 4 optimal: (15 -e*1) a + 15 < 0; value: 15 a 3*v3 -4 <= 0; value: -1 a -2*v2 + 2*v3 -3 <= 0; value: -1 d v1 = 0; value: 0 a -4*v3 + 4 = 0; value: 0 d 6*v0 -45 < 0; value: -6 0: 1 2 5 1: 1 3 4 5 2: 2 3: 1 2 4 0: 4 -> 13/2 1: 0 -> 0 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -4*v2 -4*v3 + 3 < 0; value: -5 a -1*v1 -1*v2 = 0; value: 0 a 6*v2 -2*v3 -1 <= 0; value: -5 a -1*v1 + v2 <= 0; value: 0 a -3*v0 + 2*v2 -2*v3 -7 < 0; value: -20 0: 5 1: 2 4 2: 1 2 3 4 5 3: 1 3 5 optimal: oo a 2*v0 <= 0; value: 6 a -4*v3 + 3 < 0; value: -5 d -1*v1 -1*v2 = 0; value: 0 a -2*v3 -1 <= 0; value: -5 d 2*v2 <= 0; value: 0 a -3*v0 -2*v3 -7 < 0; value: -20 0: 5 1: 2 4 2: 1 2 3 4 5 3: 1 3 5 0: 3 -> 3 1: 0 -> 0 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -5*v0 -1*v1 + 22 < 0; value: -4 a 2*v2 + 4*v3 -9 < 0; value: -3 a 3*v1 -1*v2 -3 <= 0; value: -1 a -1*v0 + v3 + 4 = 0; value: 0 a -3*v1 + 4*v2 -2 < 0; value: -1 0: 1 4 1: 1 3 5 2: 2 3 5 3: 2 4 optimal: oo a 12*v3 + 4 < 0; value: 16 d -5*v0 -4/3*v2 + 68/3 <= 0; value: 0 a -7/2*v3 -5 < 0; value: -17/2 a -45/4*v3 + 1 < 0; value: -41/4 d -1*v0 + v3 + 4 = 0; value: 0 d -3*v1 + 4*v2 -2 < 0; value: -3 0: 1 4 2 3 1: 1 3 5 2: 2 3 5 1 3: 2 4 3 0: 5 -> 5 1: 1 -> -2 2: 1 -> -7/4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 -6*v3 + 5 <= 0; value: -10 a -2*v1 + 3*v3 -11 <= 0; value: -6 a 3*v1 -2*v3 <= 0; value: 0 a -5*v0 -2*v3 + 5 <= 0; value: -1 a -6*v2 -1*v3 -7 <= 0; value: -16 0: 4 1: 2 3 2: 1 5 3: 1 2 3 4 5 optimal: 788/65 a + 788/65 <= 0; value: 788/65 d 15*v0 + 3*v2 -10 <= 0; value: 0 d -2*v1 + 3*v3 -11 <= 0; value: 0 a -207/13 <= 0; value: -207/13 d -5*v0 -2*v3 + 5 <= 0; value: 0 d -13/2*v2 -47/6 <= 0; value: 0 0: 4 1 5 3 1: 2 3 2: 1 5 3 3: 1 2 3 4 5 0: 0 -> 59/65 1: 2 -> -67/13 2: 1 -> -47/39 3: 3 -> 3/13 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 2 <= 0; value: -1 a -1*v2 + 2*v3 -2 <= 0; value: -1 a -5*v1 + 3*v2 + 11 = 0; value: 0 a v0 -3 = 0; value: 0 a 4*v0 + 5*v3 -63 < 0; value: -41 0: 4 5 1: 3 2: 1 2 3 3: 2 5 optimal: -4/5 a -4/5 <= 0; value: -4/5 d -1*v2 + 2 <= 0; value: 0 a 2*v3 -4 <= 0; value: 0 d -5*v1 + 3*v2 + 11 = 0; value: 0 d v0 -3 = 0; value: 0 a 5*v3 -51 < 0; value: -41 0: 4 5 1: 3 2: 1 2 3 3: 2 5 0: 3 -> 3 1: 4 -> 17/5 2: 3 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 1 <= 0; value: 0 a v3 -1 <= 0; value: 0 a 3*v1 + 4*v2 -14 <= 0; value: 0 a 3*v0 -2*v2 -2 = 0; value: 0 d <= 0; value: 0 0: 4 1: 3 2: 3 4 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 1 <= 0; value: 0 a v3 -1 <= 0; value: 0 a 3*v1 + 4*v2 -14 <= 0; value: 0 a 3*v0 -2*v2 -2 = 0; value: 0 d <= 0; value: 0 0: 4 1: 3 2: 3 4 3: 1 2 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 2 <= 0; value: -3 a 5*v2 -14 <= 0; value: -9 a -1*v1 -1*v2 + 5*v3 -14 <= 0; value: 0 a -4*v1 + v2 -1*v3 + 1 <= 0; value: -1 a -1*v0 -5*v3 + 16 = 0; value: 0 0: 1 5 1: 3 4 2: 2 3 4 3: 3 4 5 optimal: oo a 58/25*v0 + 2/25 <= 0; value: 12/5 a -5*v0 + 2 <= 0; value: -3 a -21/5*v0 -19/5 <= 0; value: -8 d -1*v1 -1*v2 + 5*v3 -14 <= 0; value: 0 d 21/5*v0 + 5*v2 -51/5 <= 0; value: 0 d -1*v0 -5*v3 + 16 = 0; value: 0 0: 1 5 4 2 1: 3 4 2: 2 3 4 3: 3 4 5 0: 1 -> 1 1: 0 -> -1/5 2: 1 -> 6/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a v0 -2*v3 -2 <= 0; value: -9 a -5*v0 -6*v1 + 23 = 0; value: 0 a -6*v0 -1*v3 + 2 < 0; value: -8 a 6*v0 -1*v3 -3 <= 0; value: -1 a v0 -1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 3: 1 3 4 optimal: -4 a -4 <= 0; value: -4 a -2*v3 -1 <= 0; value: -9 d -5*v0 -6*v1 + 23 = 0; value: 0 a -1*v3 -4 < 0; value: -8 a -1*v3 + 3 <= 0; value: -1 d v0 -1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 3: 1 3 4 0: 1 -> 1 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 -3*v2 + 6*v3 -28 <= 0; value: -10 a 3*v2 -26 <= 0; value: -14 a -1*v0 -3*v2 + 2*v3 -5 <= 0; value: -16 a 5*v0 -3*v1 + 6*v2 -75 <= 0; value: -38 a -4*v0 + v2 -3 < 0; value: -19 0: 3 4 5 1: 1 4 2: 1 2 3 4 5 3: 1 3 optimal: oo a -8/3*v3 + 170/3 <= 0; value: 146/3 a 4*v0 + 8*v3 -108 <= 0; value: -64 a -1*v0 + 2*v3 -31 <= 0; value: -30 d -1*v0 -3*v2 + 2*v3 -5 <= 0; value: 0 d 5*v0 -3*v1 + 6*v2 -75 <= 0; value: 0 a -13/3*v0 + 2/3*v3 -14/3 < 0; value: -73/3 0: 3 4 5 1 2 1: 1 4 2: 1 2 3 4 5 3: 1 3 2 5 0: 5 -> 5 1: 4 -> -58/3 2: 4 -> -4/3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 6*v1 + 4*v2 + v3 -28 = 0; value: 0 a -1*v2 = 0; value: 0 a v1 -3*v3 + 2 <= 0; value: -6 a 5*v1 + 4*v3 -56 <= 0; value: -20 a -3*v0 -5*v1 + 32 = 0; value: 0 0: 5 1: 1 3 4 5 2: 1 2 3: 1 3 4 optimal: 320/57 a + 320/57 <= 0; value: 320/57 d 6*v1 + 4*v2 + v3 -28 = 0; value: 0 d -1*v2 = 0; value: 0 a -26 <= 0; value: -26 d 57/5*v0 -16*v2 -328/5 <= 0; value: 0 d -3*v0 + 10/3*v2 + 5/6*v3 + 26/3 = 0; value: 0 0: 5 4 3 1: 1 3 4 5 2: 1 2 5 3 4 3: 1 3 4 5 0: 4 -> 328/57 1: 4 -> 56/19 2: 0 -> 0 3: 4 -> 196/19 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 + 4*v1 + 5*v2 -12 = 0; value: 0 a -1*v2 <= 0; value: 0 a -1*v2 <= 0; value: 0 a v1 -5 <= 0; value: -1 0: 1 1: 1 4 2: 1 2 3 3: optimal: oo a v0 + 5/2*v2 -6 <= 0; value: -4 d -2*v0 + 4*v1 + 5*v2 -12 = 0; value: 0 a -1*v2 <= 0; value: 0 a -1*v2 <= 0; value: 0 a 1/2*v0 -5/4*v2 -2 <= 0; value: -1 0: 1 4 1: 1 4 2: 1 2 3 4 3: 0: 2 -> 2 1: 4 -> 4 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -2*v1 -11 = 0; value: 0 a 2*v1 -4*v2 + 3 <= 0; value: -1 a -1*v1 + v3 <= 0; value: 0 a 3*v0 + 2*v2 -28 <= 0; value: -9 a 6*v0 -5*v2 -25 < 0; value: -5 0: 1 4 5 1: 1 2 3 2: 2 4 5 3: 3 optimal: oo a -2/3*v3 + 22/3 <= 0; value: 6 d 3*v0 -2*v1 -11 = 0; value: 0 a -4*v2 + 2*v3 + 3 <= 0; value: -1 d -3/2*v0 + v3 + 11/2 <= 0; value: 0 a 2*v2 + 2*v3 -17 <= 0; value: -9 a -5*v2 + 4*v3 -3 < 0; value: -5 0: 1 4 5 3 2 1: 1 2 3 2: 2 4 5 3: 3 4 5 2 0: 5 -> 5 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -4*v1 -4*v2 + 17 <= 0; value: -7 a 2*v0 + 3*v2 -6*v3 = 0; value: 0 a 2*v0 + 3*v1 -12 = 0; value: 0 a 2*v0 -2*v1 -3 <= 0; value: -11 a 3*v1 -1*v3 -26 <= 0; value: -15 0: 2 3 4 1: 1 3 4 5 2: 1 2 3: 2 5 optimal: 3 a + 3 <= 0; value: 3 d -8*v2 + 8*v3 + 1 <= 0; value: 0 d 2*v0 + 3*v2 -6*v3 = 0; value: 0 d 2*v0 + 3*v1 -12 = 0; value: 0 d 5*v2 -49/4 <= 0; value: 0 a -917/40 <= 0; value: -917/40 0: 2 3 4 1 5 1: 1 3 4 5 2: 1 2 4 5 3: 2 5 4 1 0: 0 -> 33/10 1: 4 -> 9/5 2: 2 -> 49/20 3: 1 -> 93/40 a 2*v0 -2*v1 <= 0; value: -6 a -6*v1 + 5 < 0; value: -13 a -4*v1 -3*v3 + 21 = 0; value: 0 a v0 <= 0; value: 0 a -1*v0 <= 0; value: 0 0: 3 4 1: 1 2 2: 3: 2 optimal: (-5/3 -e*1) a -5/3 < 0; value: -5/3 d 9/2*v3 -53/2 < 0; value: -9/2 d -4*v1 -3*v3 + 21 = 0; value: 0 d v0 <= 0; value: 0 a <= 0; value: 0 0: 3 4 1: 1 2 2: 3: 2 1 0: 0 -> 0 1: 3 -> 19/12 2: 1 -> 1 3: 3 -> 44/9 a 2*v0 -2*v1 <= 0; value: -4 a 4*v0 -2*v1 -1*v2 <= 0; value: 0 a -1*v1 + v3 + 1 <= 0; value: 0 a -3*v0 + 2*v2 -1*v3 -2 < 0; value: -11 a v0 -5*v3 + 7 <= 0; value: -10 a v3 -4 = 0; value: 0 0: 1 3 4 1: 1 2 2: 1 3 3: 2 3 4 5 optimal: (2/5 -e*1) a + 2/5 < 0; value: 2/5 d 4*v0 -2*v1 -1*v2 <= 0; value: 0 d -2*v0 + 1/2*v2 + v3 + 1 <= 0; value: 0 d 5*v0 -26 < 0; value: -5 a -39/5 <= 0; value: -39/5 d v3 -4 = 0; value: 0 0: 1 3 4 2 1: 1 2 2: 1 3 2 3: 2 3 4 5 0: 3 -> 21/5 1: 5 -> 5 2: 2 -> 34/5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 3*v2 + 2*v3 -25 <= 0; value: -16 a v0 -7 < 0; value: -2 a -5*v0 + 5*v2 -1*v3 + 2 <= 0; value: -21 a -3*v0 -14 <= 0; value: -29 a -1*v1 + 1 < 0; value: -1 0: 2 3 4 1: 5 2: 1 3 3: 1 3 optimal: (12 -e*1) a + 12 < 0; value: 12 a 3*v2 + 2*v3 -25 <= 0; value: -16 d v0 -7 < 0; value: -1 a 5*v2 -1*v3 -33 < 0; value: -31 a -35 < 0; value: -35 d -1*v1 + 1 < 0; value: -1/2 0: 2 3 4 1: 5 2: 1 3 3: 1 3 0: 5 -> 6 1: 2 -> 3/2 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -4*v0 -1*v1 + 9 = 0; value: 0 a -3*v3 + 1 < 0; value: -11 a -1*v0 + 2*v1 + 4*v3 -23 < 0; value: -7 a v3 -4 = 0; value: 0 a v1 -1 <= 0; value: 0 0: 1 3 1: 1 3 5 2: 3: 2 3 4 optimal: oo a 10*v0 -18 <= 0; value: 2 d -4*v0 -1*v1 + 9 = 0; value: 0 a -3*v3 + 1 < 0; value: -11 a -9*v0 + 4*v3 -5 < 0; value: -7 a v3 -4 = 0; value: 0 a -4*v0 + 8 <= 0; value: 0 0: 1 3 5 1: 1 3 5 2: 3: 2 3 4 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 2*v0 -2*v2 -7 <= 0; value: -3 a -2*v0 -5*v3 + 1 <= 0; value: -3 a 2*v0 + 4*v3 -7 <= 0; value: -3 a -5*v1 + 6*v3 + 8 <= 0; value: -12 a v0 + 3*v2 -3 < 0; value: -1 0: 1 2 3 5 1: 4 2: 1 5 3: 2 3 4 optimal: (631/100 -e*1) a + 631/100 < 0; value: 631/100 d -8*v2 -1 <= 0; value: 0 d -2*v0 -5*v3 + 1 <= 0; value: 0 a -97/20 <= 0; value: -97/20 d -5*v1 + 6*v3 + 8 <= 0; value: 0 d v0 + 3*v2 -3 < 0; value: -11/16 0: 1 2 3 5 1: 4 2: 1 5 3 3: 2 3 4 0: 2 -> 43/16 1: 4 -> 11/20 2: 0 -> -1/8 3: 0 -> -7/8 a 2*v0 -2*v1 <= 0; value: -2 a v2 -4 < 0; value: -1 a 4*v0 + 5*v1 + 3*v3 -54 < 0; value: -16 a 4*v3 -21 <= 0; value: -13 a 3*v2 -16 <= 0; value: -7 a v1 -7 <= 0; value: -3 0: 2 1: 2 5 2: 1 4 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v2 -4 < 0; value: -1 a 4*v0 + 5*v1 + 3*v3 -54 < 0; value: -16 a 4*v3 -21 <= 0; value: -13 a 3*v2 -16 <= 0; value: -7 a v1 -7 <= 0; value: -3 0: 2 1: 2 5 2: 1 4 3: 2 3 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 -2*v3 + 1 <= 0; value: -7 a -2*v1 + 2*v2 + 4*v3 -35 < 0; value: -21 a -5*v0 + v2 + 6 <= 0; value: -7 a 4*v0 -2*v3 -7 <= 0; value: -1 a -1*v2 + 2 = 0; value: 0 0: 3 4 1: 1 2 2: 2 3 5 3: 1 2 4 optimal: (37/2 -e*1) a + 37/2 < 0; value: 37/2 d -2*v1 -2*v3 + 1 <= 0; value: 0 d 2*v2 + 6*v3 -36 < 0; value: -6 a -169/12 < 0; value: -169/12 d 4*v0 -53/3 < 0; value: -17/6 d -1*v2 + 2 = 0; value: 0 0: 3 4 1: 1 2 2: 2 3 5 4 3: 1 2 4 0: 3 -> 89/24 1: 1 -> -23/6 2: 2 -> 2 3: 3 -> 13/3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + v3 -2 <= 0; value: 0 a -1*v1 -3*v2 + 7 < 0; value: -10 a -1*v1 + v3 -2 = 0; value: 0 a -2*v0 -3*v2 -19 <= 0; value: -40 a -6*v0 -2*v3 + 23 < 0; value: -3 0: 4 5 1: 1 2 3 2: 2 4 3: 1 3 5 optimal: oo a 8*v2 -37/3 < 0; value: 83/3 d -1*v1 + v3 -2 <= 0; value: 0 d 3*v0 -3*v2 -5/2 <= 0; value: 0 a = 0; value: 0 a -5*v2 -62/3 <= 0; value: -137/3 d -6*v0 -2*v3 + 23 < 0; value: -2 0: 4 5 2 1: 1 2 3 2: 2 4 3: 1 3 5 2 0: 3 -> 35/6 1: 2 -> -7 2: 5 -> 5 3: 4 -> -5 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + v2 -3*v3 + 1 <= 0; value: -10 a -4*v0 -4*v2 + 3*v3 + 20 = 0; value: 0 a 2*v1 -1*v3 -6 <= 0; value: 0 a 3*v1 -22 <= 0; value: -13 a -1*v0 + v1 + 1 <= 0; value: 0 0: 1 2 5 1: 3 4 5 2: 1 2 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + v2 -3*v3 + 1 <= 0; value: -10 a -4*v0 -4*v2 + 3*v3 + 20 = 0; value: 0 a 2*v1 -1*v3 -6 <= 0; value: 0 a 3*v1 -22 <= 0; value: -13 a -1*v0 + v1 + 1 <= 0; value: 0 0: 1 2 5 1: 3 4 5 2: 1 2 3: 1 2 3 0: 4 -> 4 1: 3 -> 3 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 2*v2 -3*v3 -9 = 0; value: 0 a v1 -1*v3 <= 0; value: 0 a v1 -1*v3 = 0; value: 0 a v0 + v1 + v3 -3 = 0; value: 0 a v0 -3*v2 + 6*v3 + 4 <= 0; value: -1 0: 1 4 5 1: 2 3 4 2: 1 5 3: 1 2 3 4 5 optimal: 12/25 a + 12/25 <= 0; value: 12/25 d 4*v0 + 2*v2 -3*v3 -9 = 0; value: 0 a <= 0; value: 0 d v1 -1*v3 = 0; value: 0 d 11/3*v0 + 4/3*v2 -9 = 0; value: 0 d 25/4*v0 -29/4 <= 0; value: 0 0: 1 4 5 1: 2 3 4 2: 1 5 4 3: 1 2 3 4 5 0: 1 -> 29/25 1: 1 -> 23/25 2: 4 -> 89/25 3: 1 -> 23/25 a 2*v0 -2*v1 <= 0; value: -4 a -2*v2 + v3 -3 <= 0; value: -9 a 6*v0 -4*v1 -1 <= 0; value: -7 a -4*v0 -3*v2 + 11 <= 0; value: -5 0: 2 3 1: 2 2: 1 3 3: 1 optimal: oo a 3/4*v2 -9/4 <= 0; value: 3/4 a -2*v2 + v3 -3 <= 0; value: -9 d 6*v0 -4*v1 -1 <= 0; value: 0 d -4*v0 -3*v2 + 11 <= 0; value: 0 0: 2 3 1: 2 2: 1 3 3: 1 0: 1 -> -1/4 1: 3 -> -5/8 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a v0 -4 = 0; value: 0 a v1 + 6*v3 -27 < 0; value: -3 a 3*v1 -4*v2 + 16 <= 0; value: 0 a -3*v1 + 5*v3 -34 <= 0; value: -14 a 3*v1 -5*v2 -3 <= 0; value: -23 0: 1 1: 2 3 4 5 2: 3 5 3: 2 4 optimal: oo a 2*v0 -10/3*v3 + 68/3 <= 0; value: 52/3 a v0 -4 = 0; value: 0 a 23/3*v3 -115/3 < 0; value: -23/3 a -4*v2 + 5*v3 -18 <= 0; value: -14 d -3*v1 + 5*v3 -34 <= 0; value: 0 a -5*v2 + 5*v3 -37 <= 0; value: -37 0: 1 1: 2 3 4 5 2: 3 5 3: 2 4 3 5 0: 4 -> 4 1: 0 -> -14/3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 + v1 -2 <= 0; value: -17 a -5*v0 -4*v1 + 15 = 0; value: 0 a -6*v1 -1*v2 -2*v3 + 13 = 0; value: 0 a v1 <= 0; value: 0 a -3*v0 + 3*v2 + 3*v3 -52 <= 0; value: -34 0: 1 2 5 1: 1 2 3 4 2: 3 5 3: 3 5 optimal: oo a -9/11*v2 + 315/11 <= 0; value: 270/11 a 25/22*v2 -3197/66 <= 0; value: -1411/33 d -5*v0 -4*v1 + 15 = 0; value: 0 d 15/2*v0 -1*v2 -2*v3 -19/2 = 0; value: 0 a 5/22*v2 -415/66 <= 0; value: -170/33 d 13/5*v2 + 11/5*v3 -279/5 <= 0; value: 0 0: 1 2 5 3 4 1: 1 2 3 4 2: 3 5 1 4 3: 3 5 1 4 0: 3 -> 235/33 1: 0 -> -170/33 2: 5 -> 5 3: 4 -> 214/11 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 + 2*v1 -2*v3 -23 <= 0; value: -14 a 3*v1 + v2 -22 <= 0; value: -14 a 4*v0 -1*v1 + 6*v2 -90 < 0; value: -49 a 4*v0 -2*v1 -15 < 0; value: -5 a -4*v1 -3*v2 -4*v3 -11 <= 0; value: -34 0: 1 3 4 1: 1 2 3 4 5 2: 2 3 5 3: 1 5 optimal: oo a 3/4*v2 + v3 + 41/4 < 0; value: 15 a -21/8*v2 -11/2*v3 -171/8 < 0; value: -40 a -5/4*v2 -3*v3 -121/4 < 0; value: -79/2 a 21/4*v2 -1*v3 -311/4 <= 0; value: -105/2 d 4*v0 -2*v1 -15 < 0; value: -2 d -8*v0 -3*v2 -4*v3 + 19 <= 0; value: 0 0: 1 3 4 5 2 1: 1 2 3 4 5 2: 2 3 5 1 3: 1 5 3 2 0: 3 -> 0 1: 1 -> -13/2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 -5*v1 <= 0; value: 0 a -4*v0 -6*v1 + 3*v3 -4 <= 0; value: -42 a v0 -5 = 0; value: 0 a -6*v0 + 5*v3 -28 <= 0; value: -58 a -3*v0 -4*v1 + 6 <= 0; value: -21 0: 1 2 3 4 5 1: 1 2 5 2: 3: 2 4 optimal: 4 a + 4 <= 0; value: 4 d 3*v0 -5*v1 <= 0; value: 0 a 3*v3 -42 <= 0; value: -42 d v0 -5 = 0; value: 0 a 5*v3 -58 <= 0; value: -58 a -21 <= 0; value: -21 0: 1 2 3 4 5 1: 1 2 5 2: 3: 2 4 0: 5 -> 5 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -4*v2 + 5*v3 + 16 = 0; value: 0 a -2*v1 + 5*v2 -1*v3 -35 <= 0; value: -21 a -4*v0 -4*v2 -33 <= 0; value: -69 a v1 -5 < 0; value: -2 a -3*v0 + v1 -2 <= 0; value: -14 0: 3 5 1: 2 4 5 2: 1 2 3 3: 1 2 optimal: oo a 31/5*v0 + 1329/20 <= 0; value: 1949/20 d -4*v2 + 5*v3 + 16 = 0; value: 0 d -2*v1 + 5*v2 -1*v3 -35 <= 0; value: 0 d -4*v0 -4*v2 -33 <= 0; value: 0 a -21/10*v0 -1529/40 < 0; value: -1949/40 a -51/10*v0 -1409/40 <= 0; value: -2429/40 0: 3 5 4 1: 2 4 5 2: 1 2 3 4 5 3: 1 2 4 5 0: 5 -> 5 1: 3 -> -1749/40 2: 4 -> -53/4 3: 0 -> -69/5 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 -16 < 0; value: -10 a -2*v2 + 3 < 0; value: -1 a -4*v0 -1*v1 + v3 -1 < 0; value: -3 a -3*v0 -4*v2 -3 <= 0; value: -11 a -3*v0 + 5*v2 -15 < 0; value: -5 0: 3 4 5 1: 3 2: 1 2 4 5 3: 3 optimal: oo a 10*v0 -2*v3 + 2 < 0; value: 2 a 3*v2 -16 < 0; value: -10 a -2*v2 + 3 < 0; value: -1 d -4*v0 -1*v1 + v3 -1 < 0; value: -1 a -3*v0 -4*v2 -3 <= 0; value: -11 a -3*v0 + 5*v2 -15 < 0; value: -5 0: 3 4 5 1: 3 2: 1 2 4 5 3: 3 0: 0 -> 0 1: 2 -> 0 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 + v2 -38 <= 0; value: -14 a -4*v0 -1*v1 -5 < 0; value: -24 a v2 -1*v3 -8 <= 0; value: -5 a -1*v0 + 2*v3 -1 <= 0; value: -3 a -1*v1 + 3 = 0; value: 0 0: 1 2 4 1: 2 5 2: 1 3 3: 3 4 optimal: oo a -2/5*v2 + 46/5 <= 0; value: 38/5 d 5*v0 + v2 -38 <= 0; value: 0 a 4/5*v2 -192/5 < 0; value: -176/5 a v2 -1*v3 -8 <= 0; value: -5 a 1/5*v2 + 2*v3 -43/5 <= 0; value: -29/5 d -1*v1 + 3 = 0; value: 0 0: 1 2 4 1: 2 5 2: 1 3 2 4 3: 3 4 0: 4 -> 34/5 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 + 5*v1 -29 < 0; value: -18 a v0 -3*v3 + 14 = 0; value: 0 a 4*v0 -1*v1 -5 < 0; value: -2 a -4*v1 -5*v3 + 29 = 0; value: 0 a -4*v1 + 3 < 0; value: -1 0: 1 2 3 1: 1 3 4 5 2: 3: 2 4 optimal: (68/53 -e*1) a + 68/53 < 0; value: 68/53 a -860/53 <= 0; value: -860/53 d v0 -3*v3 + 14 = 0; value: 0 d 53/12*v0 -77/12 < 0; value: -1 d -4*v1 -5*v3 + 29 = 0; value: 0 a -13/53 <= 0; value: -13/53 0: 1 2 3 5 1: 1 3 4 5 2: 3: 2 4 3 5 1 0: 1 -> 65/53 1: 1 -> 48/53 2: 2 -> 2 3: 5 -> 269/53 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 -1*v3 -1 < 0; value: -7 a -2*v2 + 1 <= 0; value: -9 a -6*v1 -1*v2 + v3 + 30 < 0; value: -4 a -4*v0 -1 <= 0; value: -17 a -2*v0 + 4*v2 -2*v3 -29 < 0; value: -19 0: 4 5 1: 3 2: 1 2 3 5 3: 1 3 5 optimal: oo a 20/9*v0 -20/3 < 0; value: 20/9 d -1*v2 -1*v3 -1 < 0; value: -1 a -2/3*v0 -8 <= 0; value: -32/3 d -6*v1 -1*v2 + v3 + 30 < 0; value: -35/6 a -4*v0 -1 <= 0; value: -17 d -2*v0 + 6*v2 -27 <= 0; value: 0 0: 4 5 2 1: 3 2: 1 2 3 5 3: 1 3 5 0: 4 -> 4 1: 5 -> 145/36 2: 5 -> 35/6 3: 1 -> -35/6 a 2*v0 -2*v1 <= 0; value: 4 a 2*v2 -2*v3 -5 <= 0; value: -3 a -4*v0 + 6*v1 + v2 <= 0; value: 0 a v0 -2*v1 + 1 = 0; value: 0 a 4*v2 -5*v3 -8 <= 0; value: -5 a -1*v2 + 3*v3 -1 <= 0; value: 0 0: 2 3 1: 2 3 2: 1 2 4 5 3: 1 4 5 optimal: oo a v0 -1 <= 0; value: 4 a 2*v2 -2*v3 -5 <= 0; value: -3 a -1*v0 + v2 + 3 <= 0; value: 0 d v0 -2*v1 + 1 = 0; value: 0 a 4*v2 -5*v3 -8 <= 0; value: -5 a -1*v2 + 3*v3 -1 <= 0; value: 0 0: 2 3 1: 2 3 2: 1 2 4 5 3: 1 4 5 0: 5 -> 5 1: 3 -> 3 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 5*v1 -1*v2 -11 <= 0; value: -6 a 4*v0 -2*v2 -3*v3 -11 <= 0; value: -5 a v2 -5 = 0; value: 0 a 6*v1 -5*v3 -33 <= 0; value: -21 a -2*v0 -4*v2 -1*v3 -6 < 0; value: -34 0: 2 5 1: 1 4 2: 1 2 3 5 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v1 -1*v2 -11 <= 0; value: -6 a 4*v0 -2*v2 -3*v3 -11 <= 0; value: -5 a v2 -5 = 0; value: 0 a 6*v1 -5*v3 -33 <= 0; value: -21 a -2*v0 -4*v2 -1*v3 -6 < 0; value: -34 0: 2 5 1: 1 4 2: 1 2 3 5 3: 2 4 5 0: 4 -> 4 1: 2 -> 2 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a v2 -5 = 0; value: 0 a 2*v1 + 3*v2 -3*v3 -25 = 0; value: 0 a -3*v0 + 1 <= 0; value: -5 a 2*v0 -1*v1 -5*v2 -15 <= 0; value: -41 a -3*v0 + 5*v3 + 6 = 0; value: 0 0: 3 4 5 1: 2 4 2: 1 2 4 3: 2 5 optimal: 16/11 a + 16/11 <= 0; value: 16/11 d v2 -5 = 0; value: 0 d 2*v1 + 3*v2 -3*v3 -25 = 0; value: 0 a -1285/11 <= 0; value: -1285/11 d 11/10*v0 -216/5 <= 0; value: 0 d -3*v0 + 5*v3 + 6 = 0; value: 0 0: 3 4 5 1: 2 4 2: 1 2 4 3: 2 5 4 0: 2 -> 432/11 1: 5 -> 424/11 2: 5 -> 5 3: 0 -> 246/11 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 6*v2 -24 < 0; value: -13 a -1*v0 -1*v3 -3 < 0; value: -8 a 2*v0 -3*v2 = 0; value: 0 a -1*v2 -5*v3 + 12 = 0; value: 0 a 3*v3 -8 <= 0; value: -2 0: 2 3 1: 1 2: 1 3 4 3: 2 4 5 optimal: (60 -e*1) a + 60 < 0; value: 60 d -1*v1 + 6*v2 -24 < 0; value: -1 a -11/3 < 0; value: -11/3 d 2*v0 -3*v2 = 0; value: 0 d -2/3*v0 -5*v3 + 12 = 0; value: 0 d 3*v3 -8 <= 0; value: 0 0: 2 3 4 1: 1 2: 1 3 4 3: 2 4 5 0: 3 -> -2 1: 1 -> -31 2: 2 -> -4/3 3: 2 -> 8/3 a 2*v0 -2*v1 <= 0; value: -6 a 4*v2 + 2*v3 -33 < 0; value: -19 a 2*v2 -4*v3 -3 <= 0; value: -11 a 6*v0 -6*v1 -7 < 0; value: -25 a v3 -3 <= 0; value: 0 a -1*v0 + 5*v3 -28 <= 0; value: -14 0: 3 5 1: 3 2: 1 2 3: 1 2 4 5 optimal: (7/3 -e*1) a + 7/3 < 0; value: 7/3 a 4*v2 + 2*v3 -33 < 0; value: -19 a 2*v2 -4*v3 -3 <= 0; value: -11 d 6*v0 -6*v1 -7 < 0; value: -6 a v3 -3 <= 0; value: 0 a -1*v0 + 5*v3 -28 <= 0; value: -14 0: 3 5 1: 3 2: 1 2 3: 1 2 4 5 0: 1 -> 1 1: 4 -> 5/6 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -37 < 0; value: -22 a v1 -6*v2 + 15 < 0; value: -4 a 3*v0 + 6*v1 + 2*v3 -63 <= 0; value: -8 a 4*v2 -3*v3 -1 = 0; value: 0 a -5*v1 -1*v3 + 30 = 0; value: 0 0: 1 3 1: 2 3 5 2: 2 4 3: 3 4 5 optimal: (256/47 -e*1) a + 256/47 < 0; value: 256/47 a -626/47 <= 0; value: -626/47 d 141/8*v0 -1113/8 < 0; value: -141/8 d 3*v0 + 16/15*v2 -409/15 <= 0; value: 0 d 4*v2 -3*v3 -1 = 0; value: 0 d -5*v1 -1*v3 + 30 = 0; value: 0 0: 1 3 2 1: 2 3 5 2: 2 4 3 3: 3 4 5 2 0: 5 -> 324/47 1: 5 -> 831/188 2: 4 -> 4643/752 3: 5 -> 1485/188 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -5*v2 + 5*v3 <= 0; value: -18 a -1*v3 <= 0; value: 0 a -1*v1 -2*v2 + 7 <= 0; value: -2 a 5*v1 -4*v3 -50 <= 0; value: -25 a -3*v1 + 6*v2 + 1 < 0; value: -2 0: 1 1: 3 4 5 2: 1 3 5 3: 1 2 4 optimal: oo a 2*v0 -22/3 < 0; value: 2/3 a -2*v0 + 5*v3 -25/3 <= 0; value: -49/3 a -1*v3 <= 0; value: 0 d -4*v2 + 20/3 <= 0; value: 0 a -4*v3 -95/3 < 0; value: -95/3 d -3*v1 + 6*v2 + 1 < 0; value: -2 0: 1 1: 3 4 5 2: 1 3 5 4 3: 1 2 4 0: 4 -> 4 1: 5 -> 13/3 2: 2 -> 5/3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 1 <= 0; value: 0 a 6*v1 + 3*v2 + 2*v3 -35 < 0; value: -21 a -3*v1 -4*v2 -3*v3 + 9 <= 0; value: 0 a 4*v0 -1*v1 + 5*v3 -22 <= 0; value: -11 a 5*v0 -6*v1 + 5*v3 -3 = 0; value: 0 0: 4 5 1: 2 3 4 5 2: 2 3 3: 1 2 3 4 5 optimal: 22/19 a + 22/19 <= 0; value: 22/19 d 5/11*v0 + 8/11*v2 -10/11 <= 0; value: 0 a -771/76 < 0; value: -771/76 d -3*v1 -4*v2 -3*v3 + 9 <= 0; value: 0 d 19/6*v0 -52/3 <= 0; value: 0 d 5*v0 + 8*v2 + 11*v3 -21 = 0; value: 0 0: 4 5 1 2 1: 2 3 4 5 2: 2 3 4 5 1 3: 1 2 3 4 5 0: 2 -> 104/19 1: 2 -> 93/19 2: 0 -> -165/76 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v1 + v3 -9 < 0; value: -1 a -5*v0 -6*v1 + 5*v3 + 29 = 0; value: 0 a -3*v1 + 5*v2 -9 <= 0; value: -1 a -6*v1 + v3 -17 < 0; value: -37 a -6*v0 + 5*v3 + 6 <= 0; value: -4 0: 2 5 1: 1 2 3 4 2: 3 3: 1 2 4 5 optimal: (1292/35 -e*1) a + 1292/35 < 0; value: 1292/35 d 35/24*v0 -101/4 < 0; value: -35/24 d -5*v0 -6*v1 + 5*v3 + 29 = 0; value: 0 d 5/2*v0 + 5*v2 -5/2*v3 -47/2 <= 0; value: 0 d v0 -8*v2 -42/5 < 0; value: -8 a -1651/35 <= 0; value: -1651/35 0: 2 5 3 4 1 1: 1 2 3 4 2: 3 4 1 5 3: 1 2 4 5 3 0: 5 -> 571/35 1: 4 -> 53/168 2: 4 -> 557/280 3: 4 -> 305/28 a 2*v0 -2*v1 <= 0; value: 4 a v1 -2*v2 + 2*v3 -19 <= 0; value: -8 a -2*v1 -1 <= 0; value: -3 a 6*v1 + 2*v2 -3*v3 + 7 <= 0; value: -2 a 2*v1 -5*v2 -2 <= 0; value: 0 a 3*v0 -4*v3 -9 <= 0; value: -20 0: 5 1: 1 2 3 4 2: 1 3 4 3: 1 3 5 optimal: oo a 8/3*v2 + 33 <= 0; value: 33 d -2*v2 + 2*v3 -39/2 <= 0; value: 0 d -2*v1 -1 <= 0; value: 0 a -1*v2 -101/4 <= 0; value: -101/4 a -5*v2 -3 <= 0; value: -3 d 3*v0 -4*v3 -9 <= 0; value: 0 0: 5 1: 1 2 3 4 2: 1 3 4 3: 1 3 5 0: 3 -> 16 1: 1 -> -1/2 2: 0 -> 0 3: 5 -> 39/4 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 -2 <= 0; value: -6 a 2*v0 -1*v1 + 3*v2 -22 <= 0; value: -4 a v1 <= 0; value: 0 a -1*v3 = 0; value: 0 a -3*v0 -2*v2 + 8 <= 0; value: -9 0: 2 5 1: 2 3 2: 1 2 5 3: 4 optimal: 48 a + 48 <= 0; value: 48 d 3/2*v0 -6 <= 0; value: 0 d 2*v0 -1*v1 + 3*v2 -22 <= 0; value: 0 a -20 <= 0; value: -20 a -1*v3 = 0; value: 0 d -3*v0 -2*v2 + 8 <= 0; value: 0 0: 2 5 3 1 1: 2 3 2: 1 2 5 3 3: 4 0: 3 -> 4 1: 0 -> -20 2: 4 -> -2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -6*v0 -6*v2 + 5*v3 -31 <= 0; value: -63 a -6*v2 -2*v3 + 5 <= 0; value: -17 a -1*v0 + v1 + 2 = 0; value: 0 a 3*v0 -19 <= 0; value: -7 a 5*v0 + 2*v2 -1*v3 -31 <= 0; value: -7 0: 1 3 4 5 1: 3 2: 1 2 5 3: 1 2 5 optimal: 4 a + 4 <= 0; value: 4 a -6*v0 -6*v2 + 5*v3 -31 <= 0; value: -63 a -6*v2 -2*v3 + 5 <= 0; value: -17 d -1*v0 + v1 + 2 = 0; value: 0 a 3*v0 -19 <= 0; value: -7 a 5*v0 + 2*v2 -1*v3 -31 <= 0; value: -7 0: 1 3 4 5 1: 3 2: 1 2 5 3: 1 2 5 0: 4 -> 4 1: 2 -> 2 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -17 < 0; value: -8 a 3*v1 + 3*v3 -4 < 0; value: -1 a -2*v1 + 5*v2 = 0; value: 0 a v1 + 6*v2 <= 0; value: 0 a -2*v0 + 3 <= 0; value: -3 0: 1 5 1: 2 3 4 2: 3 4 3: 2 optimal: oo a 2*v0 -5*v2 <= 0; value: 6 a 3*v0 -17 < 0; value: -8 a 15/2*v2 + 3*v3 -4 < 0; value: -1 d -2*v1 + 5*v2 = 0; value: 0 a 17/2*v2 <= 0; value: 0 a -2*v0 + 3 <= 0; value: -3 0: 1 5 1: 2 3 4 2: 3 4 2 3: 2 0: 3 -> 3 1: 0 -> 0 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -1*v0 -5*v1 -4*v3 + 28 <= 0; value: -2 a -1*v0 -2*v3 + 6 <= 0; value: -9 a 3*v1 -4 <= 0; value: -1 a -3*v0 + 4*v2 + 11 = 0; value: 0 a 5*v0 -4*v1 + 6*v3 -55 <= 0; value: -4 0: 1 2 4 5 1: 1 3 5 2: 4 3: 1 2 5 optimal: 284/21 a + 284/21 <= 0; value: 284/21 d -1*v0 -5*v1 -4*v3 + 28 <= 0; value: 0 a -61/7 <= 0; value: -61/7 d 28/23*v2 -93/23 <= 0; value: 0 d -3*v0 + 4*v2 + 11 = 0; value: 0 d 29/5*v0 + 46/5*v3 -387/5 <= 0; value: 0 0: 1 2 4 5 3 1: 1 3 5 2: 4 2 3 3: 1 2 5 3 0: 5 -> 170/21 1: 1 -> 4/3 2: 1 -> 93/28 3: 5 -> 139/42 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 <= 0; value: 0 a -1*v1 + 3*v2 + 4 <= 0; value: -1 a 3*v1 + v2 -32 < 0; value: -17 a v2 <= 0; value: 0 a -2*v1 + 2*v2 -5*v3 + 6 < 0; value: -19 0: 1: 2 3 5 2: 1 2 3 4 5 3: 5 optimal: oo a 2*v0 -8 <= 0; value: -2 d -1*v2 <= 0; value: 0 d -1*v1 + 3*v2 + 4 <= 0; value: 0 a -20 < 0; value: -20 a <= 0; value: 0 a -5*v3 -2 < 0; value: -17 0: 1: 2 3 5 2: 1 2 3 4 5 3: 5 0: 3 -> 3 1: 5 -> 4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v3 <= 0; value: 0 a 3*v2 -4*v3 -12 = 0; value: 0 a -2*v2 -1*v3 -2 <= 0; value: -10 a v1 <= 0; value: 0 0: 1: 4 2: 2 3 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -1*v3 <= 0; value: 0 a 3*v2 -4*v3 -12 = 0; value: 0 a -2*v2 -1*v3 -2 <= 0; value: -10 a v1 <= 0; value: 0 0: 1: 4 2: 2 3 3: 1 2 3 0: 2 -> 2 1: 0 -> 0 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 + 4*v2 + 2*v3 -37 < 0; value: -19 a -3*v0 -4*v1 -5*v3 + 18 <= 0; value: -9 a -5*v2 -5*v3 -11 <= 0; value: -31 a 6*v0 -25 <= 0; value: -7 a v1 + 2*v3 -6 <= 0; value: 0 0: 2 4 1: 1 2 5 2: 1 3 3: 1 2 3 5 optimal: 21 a + 21 <= 0; value: 21 a 4*v2 -131/3 < 0; value: -107/3 d -3*v0 -4*v1 -5*v3 + 18 <= 0; value: 0 a -5*v2 -251/6 <= 0; value: -311/6 d 6*v0 -25 <= 0; value: 0 d -3/4*v0 + 3/4*v3 -3/2 <= 0; value: 0 0: 2 4 1 5 3 1: 1 2 5 2: 1 3 3: 1 2 3 5 0: 3 -> 25/6 1: 2 -> -19/3 2: 2 -> 2 3: 2 -> 37/6 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 = 0; value: 0 a 4*v0 -11 <= 0; value: -7 a 3*v2 + 2*v3 -42 < 0; value: -20 a v1 <= 0; value: 0 a -1*v1 + 3*v3 -15 = 0; value: 0 0: 2 1: 1 4 5 2: 3 3: 3 5 optimal: 11/2 a + 11/2 <= 0; value: 11/2 d -1*v1 = 0; value: 0 d 4*v0 -11 <= 0; value: 0 a 3*v2 + 2*v3 -42 < 0; value: -20 a <= 0; value: 0 a 3*v3 -15 = 0; value: 0 0: 2 1: 1 4 5 2: 3 3: 3 5 0: 1 -> 11/4 1: 0 -> 0 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 -1*v2 + 9 = 0; value: 0 a v2 + 4*v3 -71 < 0; value: -46 a -3*v1 + 6*v3 -79 <= 0; value: -52 a 2*v0 + v1 + 5*v3 -34 = 0; value: 0 a -6*v0 + v3 -9 <= 0; value: -28 0: 1 4 5 1: 3 4 2: 1 2 3: 2 3 4 5 optimal: oo a -22/7*v2 + 976/21 <= 0; value: 646/21 d -1*v0 -1*v2 + 9 = 0; value: 0 a 15/7*v2 -983/21 < 0; value: -758/21 d 6*v0 + 21*v3 -181 <= 0; value: 0 d 2*v0 + v1 + 5*v3 -34 = 0; value: 0 a 44/7*v2 -1196/21 <= 0; value: -536/21 0: 1 4 5 3 2 1: 3 4 2: 1 2 5 3: 2 3 4 5 0: 4 -> 4 1: 1 -> -239/21 2: 5 -> 5 3: 5 -> 157/21 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 + v1 + 4*v2 -11 <= 0; value: -7 a 4*v1 -6*v2 + v3 -39 <= 0; value: -23 a -2*v1 + 4*v2 -5*v3 + 3 <= 0; value: -5 a -2*v1 -4*v2 + 1 < 0; value: -7 a 4*v1 -1*v3 -19 <= 0; value: -3 0: 1 1: 1 2 3 4 5 2: 1 2 3 4 3: 2 3 5 optimal: oo a 8*v0 + 20 < 0; value: 20 d -3*v0 + 2*v2 -21/2 < 0; value: -2 a -93/5*v0 -1017/10 < 0; value: -1017/10 d -2*v1 + 4*v2 -5*v3 + 3 <= 0; value: 0 d -8*v2 + 5*v3 -2 < 0; value: -5 a -72/5*v0 -339/5 < 0; value: -339/5 0: 1 2 5 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 2 3 5 4 1 0: 0 -> 0 1: 4 -> -11/2 2: 0 -> 17/4 3: 0 -> 31/5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -3 < 0; value: -11 a -1*v0 + 3*v2 + 5*v3 -7 = 0; value: 0 a v3 -1 <= 0; value: 0 a v1 + 3*v2 -10 <= 0; value: 0 a 5*v1 -4*v2 + v3 -35 <= 0; value: -22 0: 1 2 1: 4 5 2: 2 4 5 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -3 < 0; value: -11 a -1*v0 + 3*v2 + 5*v3 -7 = 0; value: 0 a v3 -1 <= 0; value: 0 a v1 + 3*v2 -10 <= 0; value: 0 a 5*v1 -4*v2 + v3 -35 <= 0; value: -22 0: 1 2 1: 4 5 2: 2 4 5 3: 2 3 5 0: 4 -> 4 1: 4 -> 4 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -2*v1 -5*v2 + 5 <= 0; value: -14 a -1*v1 + 5*v3 -5 <= 0; value: -2 a 5*v0 + 6*v2 -18 <= 0; value: 0 a -5*v2 -2 <= 0; value: -17 a 3*v0 -2*v1 + 6*v2 -23 <= 0; value: -9 0: 3 5 1: 1 2 5 2: 1 3 4 5 3: 2 optimal: 305/37 a + 305/37 <= 0; value: 305/37 d -3*v0 -11*v2 + 28 <= 0; value: 0 d -1*v1 + 5*v3 -5 <= 0; value: 0 d 37/11*v0 -30/11 <= 0; value: 0 a -504/37 <= 0; value: -504/37 d 3*v0 + 6*v2 -10*v3 -13 <= 0; value: 0 0: 3 5 1 4 1: 1 2 5 2: 1 3 4 5 3: 2 1 5 0: 0 -> 30/37 1: 2 -> -245/74 2: 3 -> 86/37 3: 1 -> 25/74 a 2*v0 -2*v1 <= 0; value: 10 a -1*v1 = 0; value: 0 a -2*v2 -3*v3 + 8 < 0; value: -4 a v3 -2 <= 0; value: 0 a -2*v0 -5*v1 -1 < 0; value: -11 a v2 + 3*v3 -20 <= 0; value: -11 0: 4 1: 1 4 2: 2 5 3: 2 3 5 optimal: oo a 2*v0 <= 0; value: 10 d -1*v1 = 0; value: 0 a -2*v2 -3*v3 + 8 < 0; value: -4 a v3 -2 <= 0; value: 0 a -2*v0 -1 < 0; value: -11 a v2 + 3*v3 -20 <= 0; value: -11 0: 4 1: 1 4 2: 2 5 3: 2 3 5 0: 5 -> 5 1: 0 -> 0 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 3*v2 -5*v3 + 14 = 0; value: 0 a -6*v0 + 5*v2 -4 <= 0; value: -12 a -5*v1 + 5*v3 -14 < 0; value: -29 a v3 -1 <= 0; value: 0 a -6*v0 + v1 -3*v2 + 20 = 0; value: 0 0: 1 2 5 1: 3 5 2: 1 2 5 3: 1 3 4 optimal: oo a 15/2*v0 -10 < 0; value: 25/2 d -5*v0 + 3*v2 -5*v3 + 14 = 0; value: 0 a -247/12*v0 + 113/3 < 0; value: -289/12 d -55*v0 -20*v3 + 156 < 0; value: -29/2 a -11/4*v0 + 34/5 < 0; value: -29/20 d -6*v0 + v1 -3*v2 + 20 = 0; value: 0 0: 1 2 5 3 4 1: 3 5 2: 1 2 5 3 3: 1 3 4 2 0: 3 -> 3 1: 4 -> 3/8 2: 2 -> 19/24 3: 1 -> 11/40 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 + 2 <= 0; value: -8 a 5*v2 -16 <= 0; value: -6 a 3*v0 -1*v2 + 1 < 0; value: -1 a 2*v1 + 3*v2 -25 <= 0; value: -15 a -1*v1 <= 0; value: -2 0: 3 1: 1 4 5 2: 2 3 4 3: optimal: (2/3 -e*1) a + 2/3 < 0; value: 2/3 d -5*v1 + 2 <= 0; value: 0 d 5*v2 -16 <= 0; value: 0 d 3*v0 -1*v2 + 1 < 0; value: -11/10 a -73/5 <= 0; value: -73/5 a -2/5 <= 0; value: -2/5 0: 3 1: 1 4 5 2: 2 3 4 3: 0: 0 -> 11/30 1: 2 -> 2/5 2: 2 -> 16/5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a -5*v0 -1*v3 + 3 <= 0; value: 0 a -1*v2 + 1 <= 0; value: 0 a -2*v1 -5*v3 -7 <= 0; value: -30 a 3*v0 -2*v2 -3*v3 + 2 <= 0; value: -9 a -3*v0 + v2 -1 <= 0; value: 0 0: 1 4 5 1: 3 2: 2 4 5 3: 1 3 4 optimal: oo a 2*v0 + 5*v3 + 7 <= 0; value: 22 a -5*v0 -1*v3 + 3 <= 0; value: 0 a -1*v2 + 1 <= 0; value: 0 d -2*v1 -5*v3 -7 <= 0; value: 0 a 3*v0 -2*v2 -3*v3 + 2 <= 0; value: -9 a -3*v0 + v2 -1 <= 0; value: 0 0: 1 4 5 1: 3 2: 2 4 5 3: 1 3 4 0: 0 -> 0 1: 4 -> -11 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 -27 <= 0; value: -15 a -2*v0 -6*v2 -5 < 0; value: -31 a 2*v1 -3*v3 -6 = 0; value: 0 a -3*v2 + 5*v3 + 7 < 0; value: -5 a v0 -6*v1 + 17 = 0; value: 0 0: 2 5 1: 1 3 5 2: 2 4 3: 3 4 optimal: (67/2 -e*1) a + 67/2 < 0; value: 67/2 d 18/5*v2 -117/5 <= 0; value: 0 a -91 < 0; value: -91 d 2*v1 -3*v3 -6 = 0; value: 0 d 5/9*v0 -3*v2 + 58/9 < 0; value: -5/9 d v0 -9*v3 -1 = 0; value: 0 0: 2 5 4 1 1: 1 3 5 2: 2 4 1 3: 3 4 5 1 0: 1 -> 45/2 1: 3 -> 79/12 2: 4 -> 13/2 3: 0 -> 43/18 a 2*v0 -2*v1 <= 0; value: 6 a 3*v1 -2*v2 -3 = 0; value: 0 a 3*v0 -1*v1 -11 = 0; value: 0 a 3*v2 -4*v3 + 8 = 0; value: 0 a -5*v0 -3*v2 + 20 = 0; value: 0 a -5*v2 -3*v3 + 4 < 0; value: -2 0: 2 4 1: 1 2 2: 1 3 4 5 3: 3 5 optimal: 6 a + 6 <= 0; value: 6 d 3*v1 -2*v2 -3 = 0; value: 0 d 37/9*v0 -148/9 = 0; value: 0 d 3*v2 -4*v3 + 8 = 0; value: 0 d -5*v0 -4*v3 + 28 = 0; value: 0 a -2 < 0; value: -2 0: 2 4 5 1: 1 2 2: 1 3 4 5 2 3: 3 5 4 2 0: 4 -> 4 1: 1 -> 1 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + v2 -1*v3 -3 <= 0; value: -10 a 6*v0 -5*v2 -1 <= 0; value: -3 a 3*v0 -4*v1 + 3 = 0; value: 0 a -1*v0 + v3 -5 < 0; value: -3 a 3*v0 -16 < 0; value: -7 0: 1 2 3 4 5 1: 3 2: 1 2 3: 1 4 optimal: (7/6 -e*1) a + 7/6 < 0; value: 7/6 a -1*v3 -112/15 < 0; value: -187/15 d 6*v0 -5*v2 -1 <= 0; value: 0 d 3*v0 -4*v1 + 3 = 0; value: 0 a v3 -31/3 < 0; value: -16/3 d 5/2*v2 -31/2 < 0; value: -5/2 0: 1 2 3 4 5 1: 3 2: 1 2 5 4 3: 1 4 0: 3 -> 9/2 1: 3 -> 33/8 2: 4 -> 26/5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -11 <= 0; value: -5 a v2 <= 0; value: 0 a 5*v0 -3*v1 -3*v3 -7 < 0; value: -16 a 2*v2 -1*v3 + 4 <= 0; value: 0 a -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 3 1: 3 5 2: 2 4 5 3: 3 4 optimal: 3 a + 3 <= 0; value: 3 d 2*v0 -11 <= 0; value: 0 d v2 <= 0; value: 0 a -3*v3 + 17/2 < 0; value: -7/2 a -1*v3 + 4 <= 0; value: 0 d -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 3 1: 3 5 2: 2 4 5 3 3: 3 4 0: 3 -> 11/2 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -5*v1 -5*v3 -14 <= 0; value: -34 a -6*v0 -5*v3 <= 0; value: -5 a v1 -3*v3 <= 0; value: 0 a 4*v0 -3*v1 -3*v3 -10 < 0; value: -22 a 2*v0 + 6*v1 -1*v2 -17 = 0; value: 0 0: 2 4 5 1: 1 3 4 5 2: 5 3: 1 2 3 4 optimal: oo a 2*v0 + 2*v3 + 28/5 <= 0; value: 38/5 d 5/3*v0 -5/6*v2 -5*v3 -169/6 <= 0; value: 0 a -6*v0 -5*v3 <= 0; value: -5 a -4*v3 -14/5 <= 0; value: -34/5 a 4*v0 -8/5 < 0; value: -8/5 d 2*v0 + 6*v1 -1*v2 -17 = 0; value: 0 0: 2 4 5 1 3 1: 1 3 4 5 2: 5 4 1 3 3: 1 2 3 4 0: 0 -> 0 1: 3 -> -19/5 2: 1 -> -199/5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 + 2*v1 -1 <= 0; value: -9 a -2*v2 -1 < 0; value: -3 a -1*v0 -1*v1 -2*v2 + 4 = 0; value: 0 a 4*v1 -1*v3 + 2 <= 0; value: 0 a -1*v2 + 2*v3 -3 = 0; value: 0 0: 1 3 1: 1 3 4 2: 2 3 5 3: 4 5 optimal: oo a 4*v0 + 8*v3 -20 <= 0; value: 4 a -6*v0 -8*v3 + 19 <= 0; value: -9 a -4*v3 + 5 < 0; value: -3 d -1*v0 -1*v1 -2*v2 + 4 = 0; value: 0 a -4*v0 -17*v3 + 42 <= 0; value: 0 d -1*v2 + 2*v3 -3 = 0; value: 0 0: 1 3 4 1: 1 3 4 2: 2 3 5 1 4 3: 4 5 2 1 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -3*v3 -10 <= 0; value: -34 a -3*v3 + 13 < 0; value: -2 a -3*v0 -1*v1 -1*v3 -9 <= 0; value: -27 a v1 -5*v3 + 1 < 0; value: -20 a 2*v0 + 5*v3 -49 <= 0; value: -18 0: 1 3 5 1: 3 4 2: 3: 1 2 3 4 5 optimal: (136 -e*1) a + 136 < 0; value: 136 a -64 < 0; value: -64 d 6/5*v0 -82/5 < 0; value: -6/5 d -3*v0 -1*v1 -1*v3 -9 <= 0; value: 0 a -75 < 0; value: -75 d 2*v0 + 5*v3 -49 <= 0; value: 0 0: 1 3 5 4 2 1: 3 4 2: 3: 1 2 3 4 5 0: 3 -> 38/3 1: 4 -> -776/15 2: 2 -> 2 3: 5 -> 71/15 a 2*v0 -2*v1 <= 0; value: -2 a 3*v1 + 2*v2 -2*v3 -12 <= 0; value: -4 a -3*v0 -2 < 0; value: -11 a 4*v1 -5*v2 -4*v3 + 10 <= 0; value: 0 a 3*v3 -19 < 0; value: -7 a 4*v0 -1*v1 -2*v3 <= 0; value: 0 0: 2 5 1: 1 3 5 2: 1 3 3: 1 3 4 5 optimal: (88/3 -e*1) a + 88/3 < 0; value: 88/3 a 2*v2 -212/3 < 0; value: -200/3 d -3*v0 -2 < 0; value: -3 a -5*v2 -230/3 < 0; value: -260/3 d 3*v3 -19 < 0; value: -3 d 4*v0 -1*v1 -2*v3 <= 0; value: 0 0: 2 5 1 3 1: 1 3 5 2: 1 3 3: 1 3 4 5 0: 3 -> 1/3 1: 4 -> -28/3 2: 2 -> 2 3: 4 -> 16/3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 1 < 0; value: -3 a v1 + 2*v3 -10 < 0; value: -5 a 6*v1 + v2 + 4*v3 -97 < 0; value: -63 a -1*v1 + 5 = 0; value: 0 d <= 0; value: 0 0: 1: 2 3 4 2: 1 3 3: 2 3 optimal: oo a 2*v0 -10 <= 0; value: -2 a -1*v2 + 1 < 0; value: -3 a 2*v3 -5 < 0; value: -5 a v2 + 4*v3 -67 < 0; value: -63 d -1*v1 + 5 = 0; value: 0 d <= 0; value: 0 0: 1: 2 3 4 2: 1 3 3: 2 3 0: 4 -> 4 1: 5 -> 5 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 4*v2 -1*v3 -36 <= 0; value: -21 a v1 + v2 -6 = 0; value: 0 a 4*v0 -4*v2 -3 <= 0; value: -7 a -1*v2 -1*v3 -3 < 0; value: -8 a 6*v1 + 5*v2 -42 <= 0; value: -10 0: 3 1: 2 5 2: 1 2 3 4 5 3: 1 4 optimal: oo a 2*v0 + 1/2*v3 + 6 <= 0; value: 25/2 d 4*v2 -1*v3 -36 <= 0; value: 0 d v1 + v2 -6 = 0; value: 0 a 4*v0 -1*v3 -39 <= 0; value: -28 a -5/4*v3 -12 < 0; value: -53/4 a -1/4*v3 -15 <= 0; value: -61/4 0: 3 1: 2 5 2: 1 2 3 4 5 3: 1 4 3 5 0: 3 -> 3 1: 2 -> -13/4 2: 4 -> 37/4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 + 2*v2 + 4 < 0; value: -6 a -5*v1 -6*v3 -4 < 0; value: -33 a 5*v0 -6*v3 < 0; value: -4 a v0 -3*v3 -4 <= 0; value: -12 a 4*v0 + v2 -5*v3 -1 <= 0; value: 0 0: 1 3 4 5 1: 2 2: 1 5 3: 2 3 4 5 optimal: oo a 2*v0 + 12/5*v3 + 8/5 < 0; value: 96/5 a -5*v0 + 2*v2 + 4 < 0; value: -6 d -5*v1 -6*v3 -4 < 0; value: -5 a 5*v0 -6*v3 < 0; value: -4 a v0 -3*v3 -4 <= 0; value: -12 a 4*v0 + v2 -5*v3 -1 <= 0; value: 0 0: 1 3 4 5 1: 2 2: 1 5 3: 2 3 4 5 0: 4 -> 4 1: 1 -> -23/5 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a 3*v0 -1*v2 + v3 -13 = 0; value: 0 a -2*v0 -3*v1 -1*v2 + 4 <= 0; value: -4 a 4*v1 -6*v2 -6*v3 -5 < 0; value: -11 a -5*v0 + 5*v1 -8 <= 0; value: -28 a 2*v0 -3*v1 -15 <= 0; value: -7 0: 1 2 4 5 1: 2 3 4 5 2: 1 2 3 3: 1 3 optimal: (1361/103 -e*1) a + 1361/103 < 0; value: 1361/103 d 3*v0 -1*v2 + v3 -13 = 0; value: 0 d -2*v0 -3*v1 -1*v2 + 4 <= 0; value: 0 d 206/3*v0 -331 < 0; value: -169/6 a -8453/206 < 0; value: -8453/206 d 7*v0 + v3 -32 <= 0; value: 0 0: 1 2 4 5 3 1: 2 3 4 5 2: 1 2 3 5 4 3: 1 3 5 4 0: 4 -> 1817/412 1: 0 -> -1273/618 2: 0 -> 140/103 3: 1 -> 465/412 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 5*v2 + 4*v3 + 16 = 0; value: 0 a 5*v1 -2*v2 + 4*v3 -29 = 0; value: 0 a -3*v0 -2*v2 + 9 <= 0; value: -3 a v1 + v2 -14 <= 0; value: -9 a -1*v1 -3 < 0; value: -8 0: 1 3 1: 2 4 5 2: 1 2 3 4 3: 1 2 optimal: (552/31 -e*1) a + 552/31 < 0; value: 552/31 d -5*v0 + 5*v2 + 4*v3 + 16 = 0; value: 0 d 5*v1 -2*v2 + 4*v3 -29 = 0; value: 0 d -3*v0 -2*v2 + 9 <= 0; value: 0 a -662/31 < 0; value: -662/31 d 31/10*v0 -183/10 < 0; value: -59/20 0: 1 3 5 4 1: 2 4 5 2: 1 2 3 4 5 3: 1 2 5 4 0: 4 -> 307/62 1: 5 -> -1/20 2: 0 -> -363/124 3: 1 -> 2901/496 a 2*v0 -2*v1 <= 0; value: -8 a -2*v2 -3*v3 -1 <= 0; value: -10 a 2*v0 -5*v1 -1*v3 + 24 = 0; value: 0 a -5*v1 -1*v3 -9 <= 0; value: -35 a -6*v1 -1*v3 + 31 = 0; value: 0 a -2*v1 -5*v2 + 5*v3 + 20 = 0; value: 0 0: 2 1: 2 3 4 5 2: 1 5 3: 1 2 3 4 5 optimal: oo a 15/32*v2 -301/32 <= 0; value: -8 a -77/16*v2 + 71/16 <= 0; value: -10 d 2*v0 -5*v1 -1*v3 + 24 = 0; value: 0 a -5/32*v2 -1105/32 <= 0; value: -35 d -12/5*v0 + 1/5*v3 + 11/5 = 0; value: 0 d 64*v0 -5*v2 -49 = 0; value: 0 0: 2 3 4 5 1 1: 2 3 4 5 2: 1 5 3 3: 1 2 3 4 5 0: 1 -> 1 1: 5 -> 5 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a 3*v0 -2*v1 + 4 = 0; value: 0 a -2*v1 -3 <= 0; value: -7 a v0 <= 0; value: 0 a -3*v1 + 1 <= 0; value: -5 a -1*v0 + v3 -5 <= 0; value: -1 0: 1 3 5 1: 1 2 4 2: 3: 5 optimal: -26/9 a -26/9 <= 0; value: -26/9 d 3*v0 -2*v1 + 4 = 0; value: 0 a -11/3 <= 0; value: -11/3 a -10/9 <= 0; value: -10/9 d -9/2*v3 + 35/2 <= 0; value: 0 d -1*v0 + v3 -5 <= 0; value: 0 0: 1 3 5 2 4 1: 1 2 4 2: 3: 5 2 4 3 0: 0 -> -10/9 1: 2 -> 1/3 2: 1 -> 1 3: 4 -> 35/9 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v3 + 6 <= 0; value: -4 a -4*v1 -1 < 0; value: -5 a -4*v0 + 4*v1 -3 < 0; value: -19 a -5*v1 -2 < 0; value: -7 a 5*v0 -6*v3 -25 = 0; value: 0 0: 1 3 5 1: 2 3 4 2: 3: 1 5 optimal: (53/2 -e*1) a + 53/2 < 0; value: 53/2 d 3/5*v3 -4 <= 0; value: 0 d -4*v1 -1 < 0; value: -5/2 a -56 < 0; value: -56 a -3/4 <= 0; value: -3/4 d 5*v0 -6*v3 -25 = 0; value: 0 0: 1 3 5 1: 2 3 4 2: 3: 1 5 3 0: 5 -> 13 1: 1 -> 3/8 2: 2 -> 2 3: 0 -> 20/3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 -2*v1 + 13 <= 0; value: -1 a v1 + v2 -6 = 0; value: 0 a 5*v2 -11 <= 0; value: -6 a 5*v2 -9 < 0; value: -4 a -1*v0 -4*v2 + 3 <= 0; value: -5 0: 1 5 1: 1 2 2: 2 3 4 5 3: optimal: (4/5 -e*1) a + 4/5 < 0; value: 4/5 d -1*v0 + 2*v2 + 1 <= 0; value: 0 d v1 + v2 -6 = 0; value: 0 a -2 <= 0; value: -2 d 5/2*v0 -23/2 < 0; value: -3/4 a -44/5 < 0; value: -44/5 0: 1 5 3 4 1: 1 2 2: 2 3 4 5 1 3: 0: 4 -> 43/10 1: 5 -> 87/20 2: 1 -> 33/20 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -3*v1 + 1 <= 0; value: -2 a 3*v0 + 5*v1 -1*v2 -8 = 0; value: 0 a 2*v0 -6*v3 + 19 < 0; value: -3 a -2*v0 -2*v3 -7 <= 0; value: -17 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 2 2: 2 3: 3 4 5 optimal: -2/3 a -2/3 <= 0; value: -2/3 d 24/5*v0 -3/5*v2 -19/5 <= 0; value: 0 d 3*v0 + 5*v1 -1*v2 -8 = 0; value: 0 a 2*v0 -6*v3 + 19 < 0; value: -3 a -2*v0 -2*v3 -7 <= 0; value: -17 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 2 2: 2 1 3: 3 4 5 0: 1 -> 1 1: 2 -> 4/3 2: 5 -> 5/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 4*v0 -1*v2 -13 < 0; value: -5 a 5*v0 -5*v2 + 4*v3 -28 <= 0; value: -17 a -5*v0 -1*v2 -14 < 0; value: -33 a 3*v2 -19 < 0; value: -7 a -1*v0 + 5*v2 -35 < 0; value: -18 0: 1 2 3 5 1: 2: 1 2 3 4 5 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 4*v0 -1*v2 -13 < 0; value: -5 a 5*v0 -5*v2 + 4*v3 -28 <= 0; value: -17 a -5*v0 -1*v2 -14 < 0; value: -33 a 3*v2 -19 < 0; value: -7 a -1*v0 + 5*v2 -35 < 0; value: -18 0: 1 2 3 5 1: 2: 1 2 3 4 5 3: 2 0: 3 -> 3 1: 0 -> 0 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -6*v0 -1*v1 -1*v3 -14 < 0; value: -29 a 2*v0 + 6*v3 -21 <= 0; value: -5 a 5*v2 -1*v3 -13 <= 0; value: 0 a -3*v1 + 4*v2 -3*v3 -5 < 0; value: -2 a 6*v0 -1*v2 -9 = 0; value: 0 0: 1 2 5 1: 1 4 2: 3 4 5 3: 1 2 3 4 optimal: (2185/63 -e*1) a + 2185/63 < 0; value: 2185/63 d -14*v0 -1/3 <= 0; value: 0 d 2*v0 + 6*v3 -21 <= 0; value: 0 a -560/9 <= 0; value: -560/9 d -3*v1 + 4*v2 -3*v3 -5 < 0; value: -3 d 6*v0 -1*v2 -9 = 0; value: 0 0: 1 2 5 3 1: 1 4 2: 3 4 5 1 3: 1 2 3 4 0: 2 -> -1/42 1: 1 -> -1031/63 2: 3 -> -64/7 3: 2 -> 221/63 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 <= 0; value: -2 a -6*v1 + v2 + 8 < 0; value: -2 a v0 -1*v3 <= 0; value: 0 a -6*v0 -4*v1 + 15 <= 0; value: -17 0: 3 4 1: 1 2 4 2: 2 3: 3 optimal: oo a 2*v3 < 0; value: 8 d -1/6*v2 -4/3 <= 0; value: 0 d -6*v1 + v2 + 8 < 0; value: -6 d v0 -1*v3 <= 0; value: 0 a -6*v3 + 15 <= 0; value: -9 0: 3 4 1: 1 2 4 2: 2 1 4 3: 3 4 0: 4 -> 4 1: 2 -> 1 2: 2 -> -8 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a v0 -3 = 0; value: 0 a 4*v0 -1*v3 -20 < 0; value: -8 a -4*v1 + 5*v3 <= 0; value: 0 a v2 -8 <= 0; value: -3 a -4*v0 + 2*v1 + 3*v3 + 5 <= 0; value: -7 0: 1 2 5 1: 3 5 2: 4 3: 2 3 5 optimal: (26 -e*1) a + 26 < 0; value: 26 d v0 -3 = 0; value: 0 d 4*v0 -1*v3 -20 < 0; value: -1 d -4*v1 + 5*v3 <= 0; value: 0 a v2 -8 <= 0; value: -3 a -51 < 0; value: -51 0: 1 2 5 1: 3 5 2: 4 3: 2 3 5 0: 3 -> 3 1: 0 -> -35/4 2: 5 -> 5 3: 0 -> -7 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 + 6*v1 -17 <= 0; value: -5 a 3*v2 + 5*v3 -16 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a 3*v1 + v3 -14 = 0; value: 0 a 4*v1 -5*v2 -6 = 0; value: 0 0: 1 1: 1 4 5 2: 2 5 3: 2 3 4 optimal: oo a 2*v0 -8 <= 0; value: -2 a -4*v0 + 7 <= 0; value: -5 d 3*v2 + 5*v3 -16 = 0; value: 0 a = 0; value: 0 d 3*v1 + v3 -14 = 0; value: 0 d -21/5*v2 + 42/5 = 0; value: 0 0: 1 1: 1 4 5 2: 2 5 3 1 3: 2 3 4 5 1 0: 3 -> 3 1: 4 -> 4 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 3*v2 -32 <= 0; value: -19 a v2 -5 = 0; value: 0 a -1*v0 -5*v1 -8 < 0; value: -18 a -1*v1 -1*v3 + 3 <= 0; value: 0 a -1*v3 + 1 = 0; value: 0 0: 3 1: 1 3 4 2: 1 2 3: 4 5 optimal: oo a 2*v0 -4 <= 0; value: -4 a 3*v2 -34 <= 0; value: -19 a v2 -5 = 0; value: 0 a -1*v0 -18 < 0; value: -18 d -1*v1 -1*v3 + 3 <= 0; value: 0 d -1*v3 + 1 = 0; value: 0 0: 3 1: 1 3 4 2: 1 2 3: 4 5 1 3 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -3*v1 + v2 -5 <= 0; value: 0 a -1*v0 + 1 = 0; value: 0 a -1*v0 -5*v1 <= 0; value: -1 a -2*v3 -1 <= 0; value: -11 a -2*v1 -1*v2 + 5 = 0; value: 0 0: 2 3 1: 1 3 5 2: 1 5 3: 4 optimal: 2 a + 2 <= 0; value: 2 d -3*v1 + v2 -5 <= 0; value: 0 d -1*v0 + 1 = 0; value: 0 a -1 <= 0; value: -1 a -2*v3 -1 <= 0; value: -11 d -5/3*v2 + 25/3 = 0; value: 0 0: 2 3 1: 1 3 5 2: 1 5 3 3: 4 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 + v2 -4*v3 -1 < 0; value: -13 a 3*v0 + 3*v1 -1*v3 -5 = 0; value: 0 a 6*v0 -5*v1 + 5*v3 -46 < 0; value: -19 a -1*v0 -6*v1 + 4*v3 -9 <= 0; value: -1 a -3*v2 + 2 < 0; value: -4 0: 2 3 4 1: 1 2 3 4 2: 1 5 3: 1 2 3 4 optimal: (911/57 -e*1) a + 911/57 < 0; value: 911/57 d -2*v0 + v2 -10/3*v3 + 7/3 < 0; value: -10/3 d 3*v0 + 3*v1 -1*v3 -5 = 0; value: 0 a -604/57 <= 0; value: -604/57 d 19/5*v0 -86/5 < 0; value: -19/5 d -3*v2 + 2 < 0; value: -2 0: 2 3 4 1 1: 1 2 3 4 2: 1 5 3 4 3: 1 2 3 4 0: 2 -> 67/19 1: 1 -> -1063/570 2: 2 -> 4/3 3: 4 -> -3/190 a 2*v0 -2*v1 <= 0; value: -4 a 4*v0 -3*v1 -1*v3 -6 <= 0; value: -15 a -1*v0 + 2*v1 -14 <= 0; value: -8 a v0 + 4*v2 -5*v3 -4 <= 0; value: -15 a 5*v1 -6*v2 -2 = 0; value: 0 a -6*v0 -3*v1 -1*v2 -8 <= 0; value: -35 0: 1 2 3 5 1: 1 2 4 5 2: 3 4 5 3: 1 3 optimal: oo a 118/23*v0 + 4 <= 0; value: 328/23 d 4*v0 -18/5*v2 -1*v3 -36/5 <= 0; value: 0 a -95/23*v0 -18 <= 0; value: -604/23 a -1097/23*v0 -12 <= 0; value: -2470/23 d 5*v1 -6*v2 -2 = 0; value: 0 d -100/9*v0 + 23/18*v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2 4 5 2: 3 4 5 1 2 3: 1 3 5 2 0: 2 -> 2 1: 4 -> -118/23 2: 3 -> -106/23 3: 5 -> 400/23 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -6*v1 + 2 <= 0; value: -10 a v0 -3*v3 -5 <= 0; value: -1 a 6*v0 -3*v2 + 2*v3 -45 <= 0; value: -24 a -1*v0 + v1 <= 0; value: 0 0: 1 2 3 4 1: 1 4 2: 3 3: 2 3 optimal: oo a 9/20*v2 + 79/12 <= 0; value: 211/30 d 3*v0 -6*v1 + 2 <= 0; value: 0 d v0 -3*v3 -5 <= 0; value: 0 d -3*v2 + 20*v3 -15 <= 0; value: 0 a -9/40*v2 -79/24 <= 0; value: -211/60 0: 1 2 3 4 1: 1 4 2: 3 4 3: 2 3 4 0: 4 -> 77/10 1: 4 -> 251/60 2: 1 -> 1 3: 0 -> 9/10 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + v2 + 2*v3 + 1 <= 0; value: -1 a -4*v1 -3*v2 + 31 = 0; value: 0 a -4*v0 -5*v2 + 3*v3 + 16 <= 0; value: -17 a -1*v1 -6*v3 + 28 = 0; value: 0 a -2*v0 + v2 -2*v3 + 13 = 0; value: 0 0: 1 3 5 1: 2 4 2: 1 2 3 5 3: 1 3 4 5 optimal: 20 a + 20 <= 0; value: 20 d 1/3*v0 -8/3 <= 0; value: 0 d -4*v1 -3*v2 + 31 = 0; value: 0 a -66 <= 0; value: -66 d 3/2*v0 -9/2*v3 + 21/2 = 0; value: 0 d -2*v0 + v2 -2*v3 + 13 = 0; value: 0 0: 1 3 5 4 1: 2 4 2: 1 2 3 5 4 3: 1 3 4 5 0: 5 -> 8 1: 4 -> -2 2: 5 -> 13 3: 4 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a v2 -2 = 0; value: 0 a -4*v3 -1 <= 0; value: -13 a -6*v1 + 5*v3 -3 <= 0; value: 0 a 6*v2 + 5*v3 -58 < 0; value: -31 a 6*v2 -31 < 0; value: -19 0: 1: 3 2: 1 4 5 3: 2 3 4 optimal: oo a 2*v0 + 17/12 <= 0; value: 113/12 a v2 -2 = 0; value: 0 d -4*v3 -1 <= 0; value: 0 d -6*v1 + 5*v3 -3 <= 0; value: 0 a 6*v2 -237/4 < 0; value: -189/4 a 6*v2 -31 < 0; value: -19 0: 1: 3 2: 1 4 5 3: 2 3 4 0: 4 -> 4 1: 2 -> -17/24 2: 2 -> 2 3: 3 -> -1/4 a 2*v0 -2*v1 <= 0; value: 10 a 3*v0 + v3 -19 < 0; value: -2 a 6*v1 -3*v2 -2*v3 + 7 <= 0; value: 0 a 6*v0 + 4*v3 -41 <= 0; value: -3 a 2*v1 + 3*v2 + 2*v3 -7 = 0; value: 0 a -3*v0 -6*v1 + 11 <= 0; value: -4 0: 1 3 5 1: 2 4 5 2: 2 4 3: 1 2 3 4 optimal: (83/6 -e*1) a + 83/6 < 0; value: 83/6 d 9/8*v2 -37/16 < 0; value: -19/32 a -26/3 < 0; value: -26/3 d 8*v0 -6*v2 -103/3 <= 0; value: 0 d 2*v1 + 3*v2 + 2*v3 -7 = 0; value: 0 d -3*v0 + 9*v2 + 6*v3 -10 <= 0; value: 0 0: 1 3 5 2 1: 2 4 5 2: 2 4 5 1 3 2 3: 1 2 3 4 5 0: 5 -> 87/16 1: 0 -> -85/96 2: 1 -> 55/36 3: 2 -> 67/32 a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 + 5*v2 -6*v3 -2 <= 0; value: -17 a -4*v0 + 5*v2 -6*v3 + 9 < 0; value: -27 a -4*v0 + 3*v1 -4*v3 -11 <= 0; value: -30 a 6*v3 -25 < 0; value: -1 a 2*v2 + 3*v3 -18 < 0; value: -6 0: 2 3 1: 1 3 2: 1 2 5 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 + 5*v2 -6*v3 -2 <= 0; value: -17 a -4*v0 + 5*v2 -6*v3 + 9 < 0; value: -27 a -4*v0 + 3*v1 -4*v3 -11 <= 0; value: -30 a 6*v3 -25 < 0; value: -1 a 2*v2 + 3*v3 -18 < 0; value: -6 0: 2 3 1: 1 3 2: 1 2 5 3: 1 2 3 4 5 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -1*v2 + 2*v3 + 8 <= 0; value: 0 a -5*v0 + 6*v1 + 6*v2 -13 < 0; value: -4 a v1 -2*v3 <= 0; value: 0 a 2*v1 -1*v2 + v3 -10 = 0; value: 0 a -1*v0 + v1 -1 = 0; value: 0 0: 2 5 1: 1 2 3 4 5 2: 1 2 4 3: 1 3 4 optimal: -2 a -2 <= 0; value: -2 d -3*v1 -1*v2 + 2*v3 + 8 <= 0; value: 0 a -4 < 0; value: -4 d -1/3*v2 -4/3*v3 + 8/3 <= 0; value: 0 d -9/4*v2 = 0; value: 0 d -1*v0 + 3 = 0; value: 0 0: 2 5 1: 1 2 3 4 5 2: 1 2 4 5 3 3: 1 3 4 5 2 0: 3 -> 3 1: 4 -> 4 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -3*v1 -6*v2 + 35 < 0; value: -1 a v1 -3*v2 + 1 < 0; value: -12 a -2*v0 -1*v2 + 6*v3 -16 < 0; value: -1 a 2*v1 -5*v3 -5 <= 0; value: -21 a v1 -4*v3 -11 <= 0; value: -25 0: 3 1: 1 2 4 5 2: 1 2 3 3: 3 4 5 optimal: oo a 2*v0 + 4*v2 -70/3 < 0; value: 2/3 d -3*v1 -6*v2 + 35 < 0; value: -1/2 a -5*v2 + 38/3 < 0; value: -37/3 a -2*v0 -1*v2 + 6*v3 -16 < 0; value: -1 a -4*v2 -5*v3 + 55/3 < 0; value: -65/3 a -2*v2 -4*v3 + 2/3 < 0; value: -76/3 0: 3 1: 1 2 4 5 2: 1 2 3 4 5 3: 3 4 5 0: 2 -> 2 1: 2 -> 11/6 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 + 5*v2 -2*v3 -3 <= 0; value: 0 a -1*v1 + 5*v2 + 6*v3 -5 = 0; value: 0 a -1*v0 + 3*v1 + v2 -4 < 0; value: -2 a 4*v0 -1*v3 -5 < 0; value: -2 a 5*v0 -6*v1 + 4*v2 + 1 <= 0; value: 0 0: 3 4 5 1: 1 2 3 5 2: 1 2 3 5 3: 1 2 4 optimal: oo a 1/3*v0 -4/3*v2 -1/3 <= 0; value: 0 a 35/9*v0 + 88/9*v2 -35/9 <= 0; value: 0 d -1*v1 + 5*v2 + 6*v3 -5 = 0; value: 0 a 3/2*v0 + 3*v2 -7/2 < 0; value: -2 a 139/36*v0 + 13/18*v2 -211/36 < 0; value: -2 d 5*v0 -26*v2 -36*v3 + 31 <= 0; value: 0 0: 3 4 5 1 1: 1 2 3 5 2: 1 2 3 5 4 3: 1 2 4 5 3 0: 1 -> 1 1: 1 -> 1 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -4*v1 -6*v2 + 5*v3 -15 < 0; value: -32 a -1*v1 + 5*v3 -13 = 0; value: 0 a 2*v1 -2*v2 -3*v3 + 10 < 0; value: -3 a -1*v0 -3*v1 + 11 = 0; value: 0 a v1 -3*v2 + 10 = 0; value: 0 0: 4 1: 1 2 3 4 5 2: 1 3 5 3: 1 2 3 optimal: (286/5 -e*1) a + 286/5 < 0; value: 286/5 d -15*v2 + 28 < 0; value: -15 d -1*v1 + 5*v3 -13 = 0; value: 0 a -577/75 < 0; value: -577/75 d -1*v0 -15*v3 + 50 = 0; value: 0 d -1/3*v0 -3*v2 + 41/3 = 0; value: 0 0: 4 1 5 3 1: 1 2 3 4 5 2: 1 3 5 3: 1 2 3 4 5 0: 5 -> 76/5 1: 2 -> -7/5 2: 4 -> 43/15 3: 3 -> 58/25 a 2*v0 -2*v1 <= 0; value: 0 a v2 -2 = 0; value: 0 a -6*v0 -1*v3 + 7 = 0; value: 0 a -4*v0 -3*v2 + 3 <= 0; value: -7 a -1*v2 -1*v3 + 3 = 0; value: 0 a v1 -1 = 0; value: 0 0: 2 3 1: 5 2: 1 3 4 3: 2 4 optimal: 0 a <= 0; value: 0 d v2 -2 = 0; value: 0 d -6*v0 -1*v3 + 7 = 0; value: 0 a -7 <= 0; value: -7 d -1*v2 -1*v3 + 3 = 0; value: 0 d v1 -1 = 0; value: 0 0: 2 3 1: 5 2: 1 3 4 3: 2 4 3 0: 1 -> 1 1: 1 -> 1 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v0 + 2*v1 -12 = 0; value: 0 a v0 -1*v2 -7 <= 0; value: -3 a -1*v0 -2 <= 0; value: -6 a -1*v3 < 0; value: -2 0: 1 2 3 1: 1 2: 2 3: 4 optimal: oo a 3*v2 + 9 <= 0; value: 9 d v0 + 2*v1 -12 = 0; value: 0 d v0 -1*v2 -7 <= 0; value: 0 a -1*v2 -9 <= 0; value: -9 a -1*v3 < 0; value: -2 0: 1 2 3 1: 1 2: 2 3 3: 4 0: 4 -> 7 1: 4 -> 5/2 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a v1 -1*v2 -1*v3 -6 < 0; value: -14 a -3*v0 + 2*v1 + 3*v3 <= 0; value: -1 a 2*v1 + 5*v3 -25 < 0; value: -3 a -2*v0 + 3*v1 -2 < 0; value: -9 a -3*v0 + 6*v3 -16 <= 0; value: -7 0: 2 4 5 1: 1 2 3 4 2: 1 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v1 -1*v2 -1*v3 -6 < 0; value: -14 a -3*v0 + 2*v1 + 3*v3 <= 0; value: -1 a 2*v1 + 5*v3 -25 < 0; value: -3 a -2*v0 + 3*v1 -2 < 0; value: -9 a -3*v0 + 6*v3 -16 <= 0; value: -7 0: 2 4 5 1: 1 2 3 4 2: 1 3: 1 2 3 5 0: 5 -> 5 1: 1 -> 1 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v3 <= 0; value: -1 a 2*v0 + 5*v3 -19 = 0; value: 0 a 6*v0 + 4*v1 -1*v3 -31 <= 0; value: -10 a -1*v0 -1 <= 0; value: -3 0: 1 2 3 4 1: 3 2: 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v3 <= 0; value: -1 a 2*v0 + 5*v3 -19 = 0; value: 0 a 6*v0 + 4*v1 -1*v3 -31 <= 0; value: -10 a -1*v0 -1 <= 0; value: -3 0: 1 2 3 4 1: 3 2: 3: 1 2 3 0: 2 -> 2 1: 3 -> 3 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a v0 + 6*v1 -1*v2 -30 = 0; value: 0 a -1*v0 < 0; value: -2 a -3*v0 -1*v2 + 7 < 0; value: -1 a -5*v1 -6*v2 + v3 + 17 <= 0; value: -20 a 4*v0 -1*v1 -5 <= 0; value: -2 0: 1 2 3 5 1: 1 4 5 2: 1 3 4 3: 4 optimal: (-61/14 -e*1) a -61/14 < 0; value: -61/14 d v0 + 6*v1 -1*v2 -30 = 0; value: 0 a -67/28 < 0; value: -67/28 d -3*v0 -1*v2 + 7 < 0; value: -1 a v3 -67/14 <= 0; value: -67/14 d 14/3*v0 -67/6 <= 0; value: 0 0: 1 2 3 5 4 1: 1 4 5 2: 1 3 4 5 3: 4 0: 2 -> 67/28 1: 5 -> 199/42 2: 2 -> 23/28 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 -1*v2 -11 <= 0; value: 0 a -1*v2 + 4 = 0; value: 0 a 3*v1 + 3*v2 -47 < 0; value: -26 a v1 + 3*v2 -44 <= 0; value: -29 a -3*v1 + 6*v2 -34 < 0; value: -19 0: 1 1: 3 4 5 2: 1 2 3 4 5 3: optimal: (50/3 -e*1) a + 50/3 < 0; value: 50/3 d 3*v0 -1*v2 -11 <= 0; value: 0 d -3*v0 + 15 = 0; value: 0 a -45 < 0; value: -45 a -106/3 < 0; value: -106/3 d -3*v1 + 6*v2 -34 < 0; value: -3 0: 1 2 3 4 1: 3 4 5 2: 1 2 3 4 5 3: 0: 5 -> 5 1: 3 -> -7/3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -2*v1 -2*v3 -5 <= 0; value: -15 a -6*v0 -23 <= 0; value: -47 a -6*v0 -5*v1 < 0; value: -29 a 2*v0 -3*v1 -2*v3 + 3 = 0; value: 0 a 4*v1 -1*v3 <= 0; value: 0 0: 2 3 4 1: 1 3 4 5 2: 3: 1 4 5 optimal: oo a 22/5*v0 < 0; value: 88/5 a -16/5*v0 -8 < 0; value: -104/5 a -6*v0 -23 <= 0; value: -47 d -28/3*v0 + 10/3*v3 -5 < 0; value: -10/3 d 2*v0 -3*v1 -2*v3 + 3 = 0; value: 0 a -38/5*v0 -3/2 < 0; value: -319/10 0: 2 3 4 1 5 1: 1 3 4 5 2: 3: 1 4 5 3 0: 4 -> 4 1: 1 -> -62/15 2: 1 -> 1 3: 4 -> 117/10 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -4*v3 + 12 = 0; value: 0 a 5*v1 -56 <= 0; value: -36 a -1*v3 + 1 < 0; value: -2 a v0 -2*v2 -5 <= 0; value: -15 a -5*v0 -2*v2 + v3 + 7 = 0; value: 0 0: 1 4 5 1: 2 2: 4 5 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -4*v3 + 12 = 0; value: 0 a 5*v1 -56 <= 0; value: -36 a -1*v3 + 1 < 0; value: -2 a v0 -2*v2 -5 <= 0; value: -15 a -5*v0 -2*v2 + v3 + 7 = 0; value: 0 0: 1 4 5 1: 2 2: 4 5 3: 1 3 5 0: 0 -> 0 1: 4 -> 4 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a -1*v3 + 1 = 0; value: 0 a 2*v2 -1*v3 -1 <= 0; value: 0 a -5*v0 -1*v1 + 10 = 0; value: 0 a -1*v2 + 1 <= 0; value: 0 a -1*v0 + v1 -7 <= 0; value: -3 0: 3 5 1: 3 5 2: 2 4 3: 1 2 optimal: oo a 12*v0 -20 <= 0; value: -8 a -1*v3 + 1 = 0; value: 0 a 2*v2 -1*v3 -1 <= 0; value: 0 d -5*v0 -1*v1 + 10 = 0; value: 0 a -1*v2 + 1 <= 0; value: 0 a -6*v0 + 3 <= 0; value: -3 0: 3 5 1: 3 5 2: 2 4 3: 1 2 0: 1 -> 1 1: 5 -> 5 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v0 -3*v1 + 4*v3 -14 < 0; value: -1 a -6*v0 + 3*v3 -4 <= 0; value: -10 a v1 -2*v2 + 6*v3 -16 = 0; value: 0 a -1*v0 -4*v1 + 2 < 0; value: -9 a -3*v0 -1*v3 + 5 < 0; value: -8 0: 1 2 4 5 1: 1 3 4 2: 3 3: 1 2 3 5 optimal: oo a 5/2*v0 -1 < 0; value: 13/2 d v0 -6*v2 + 22*v3 -62 < 0; value: -253/16 a -117/16*v0 + 61/8 <= 0; value: -229/16 d v1 -2*v2 + 6*v3 -16 = 0; value: 0 d -23/11*v0 -16/11*v2 + 62/11 <= 0; value: 0 a -41/16*v0 + 9/8 < 0; value: -105/16 0: 1 2 4 5 1: 1 3 4 2: 3 1 4 2 5 3: 1 2 3 5 4 0: 3 -> 3 1: 2 -> 65/16 2: 5 -> -7/16 3: 4 -> 59/32 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 -1*v1 -1*v2 -1 < 0; value: -21 a 2*v2 + v3 -18 <= 0; value: -3 a -1*v1 -3*v3 + 15 = 0; value: 0 a 5*v1 -5*v2 + v3 + 3 <= 0; value: -17 a 5*v1 -4*v2 -4*v3 + 2 <= 0; value: -38 0: 1 1: 1 3 4 5 2: 1 2 4 5 3: 2 3 4 5 optimal: oo a 74/7*v0 + 90/7 < 0; value: 312/7 d -5*v0 -7*v2 + 38 < 0; value: -6 d 2*v2 + v3 -18 <= 0; value: 0 d -1*v1 -3*v3 + 15 = 0; value: 0 a -115/7*v0 -344/7 < 0; value: -689/7 a -170/7*v0 -563/7 < 0; value: -1073/7 0: 1 4 5 1: 1 3 4 5 2: 1 2 4 5 3: 2 3 4 5 1 0: 3 -> 3 1: 0 -> -99/7 2: 5 -> 29/7 3: 5 -> 68/7 a 2*v0 -2*v1 <= 0; value: 0 a -6*v1 + 4*v2 -13 < 0; value: -31 a v2 -8 <= 0; value: -5 a -1*v2 + 3 <= 0; value: 0 a 6*v0 -6*v2 -35 < 0; value: -23 a v3 -4 < 0; value: -2 0: 4 1: 1 2: 1 2 3 4 3: 5 optimal: (18 -e*1) a + 18 < 0; value: 18 d -6*v1 + 4*v2 -13 < 0; value: -6 a -5 <= 0; value: -5 d -1*v2 + 3 <= 0; value: 0 d 6*v0 -53 < 0; value: -6 a v3 -4 < 0; value: -2 0: 4 1: 1 2: 1 2 3 4 3: 5 0: 5 -> 47/6 1: 5 -> 5/6 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a 2*v1 + v2 -32 <= 0; value: -21 a 3*v1 -2*v3 -26 < 0; value: -15 a -5*v0 + 3*v1 + 2*v2 -31 <= 0; value: -19 a -6*v2 + 5 <= 0; value: -1 a -4*v0 -5*v1 + 13 < 0; value: -16 0: 3 5 1: 1 2 3 5 2: 1 3 4 3: 2 optimal: oo a 18/5*v0 -26/5 < 0; value: -8/5 a -8/5*v0 + v2 -134/5 < 0; value: -137/5 a -12/5*v0 -2*v3 -91/5 < 0; value: -123/5 a -37/5*v0 + 2*v2 -116/5 < 0; value: -143/5 a -6*v2 + 5 <= 0; value: -1 d -4*v0 -5*v1 + 13 < 0; value: -5 0: 3 5 1 2 1: 1 2 3 5 2: 1 3 4 3: 2 0: 1 -> 1 1: 5 -> 14/5 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -6*v0 -3*v2 + 4 <= 0; value: -2 a 2*v1 -5*v2 -10 = 0; value: 0 a -6*v0 + v3 + 1 < 0; value: -2 a -1*v1 + 2 <= 0; value: -3 0: 1 3 1: 2 4 2: 1 2 3: 3 optimal: -22/15 a -22/15 <= 0; value: -22/15 d -6*v0 -3*v2 + 4 <= 0; value: 0 d 2*v1 -5*v2 -10 = 0; value: 0 a v3 -33/5 < 0; value: -18/5 d 5*v0 -19/3 <= 0; value: 0 0: 1 3 4 1: 2 4 2: 1 2 4 3: 3 0: 1 -> 19/15 1: 5 -> 2 2: 0 -> -6/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 2*v1 + v2 -10 < 0; value: -5 a -5*v0 -1*v2 + 2*v3 + 1 <= 0; value: -1 a -5*v1 -4*v3 + 8 < 0; value: -10 a -1*v0 + 2*v3 -3 = 0; value: 0 a 4*v0 -5*v1 + 6 = 0; value: 0 0: 2 4 5 1: 1 3 5 2: 1 2 3: 2 3 4 optimal: oo a -1/4*v2 -1/2 < 0; value: -3/4 d v2 + 16/5*v3 -62/5 < 0; value: -5/2 a 3/2*v2 -15 < 0; value: -27/2 a 15/4*v2 -65/2 < 0; value: -115/4 d -1*v0 + 2*v3 -3 = 0; value: 0 d 4*v0 -5*v1 + 6 = 0; value: 0 0: 2 4 5 3 1 1: 1 3 5 2: 1 2 3 3: 2 3 4 1 0: 1 -> 41/16 1: 2 -> 13/4 2: 1 -> 1 3: 2 -> 89/32 a 2*v0 -2*v1 <= 0; value: 10 a v1 + 2*v2 -5 <= 0; value: -3 a v2 -1*v3 <= 0; value: 0 a v0 -5*v1 -13 <= 0; value: -8 a -3*v1 + v3 -1 = 0; value: 0 0: 3 1: 1 3 4 2: 1 2 3: 2 4 optimal: 206/7 a + 206/7 <= 0; value: 206/7 d 7/5*v0 -106/5 <= 0; value: 0 d v2 -1*v3 <= 0; value: 0 d v0 -5/3*v2 -34/3 <= 0; value: 0 d -3*v1 + v3 -1 = 0; value: 0 0: 3 1 1: 1 3 4 2: 1 2 3 3: 2 4 3 1 0: 5 -> 106/7 1: 0 -> 3/7 2: 1 -> 16/7 3: 1 -> 16/7 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -4*v1 -2*v2 -7 <= 0; value: -39 a 6*v0 -3*v1 -7 <= 0; value: -4 a v0 -7 <= 0; value: -4 a v2 + v3 -10 < 0; value: -3 a -2*v1 -3*v2 + 19 = 0; value: 0 0: 1 2 3 1: 1 2 5 2: 1 4 5 3: 4 optimal: (25/3 -e*1) a + 25/3 < 0; value: 25/3 d -11/2*v3 -11/6 <= 0; value: 0 d 6*v0 + 9/2*v2 -71/2 <= 0; value: 0 a -53/6 < 0; value: -53/6 d -4/3*v0 + v3 -19/9 < 0; value: -4/3 d -2*v1 -3*v2 + 19 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 1 4 5 2 3: 4 1 3 0: 3 -> -5/6 1: 5 -> -4 2: 3 -> 9 3: 4 -> -1/3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -4*v2 -4 <= 0; value: -14 a -1*v0 + 2 <= 0; value: 0 a -2*v0 -3*v1 -3*v3 + 18 <= 0; value: -4 a -2*v1 + 6*v3 -59 <= 0; value: -39 a v1 -2 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 1 3: 3 4 optimal: oo a 8/3*v2 -4/3 <= 0; value: 28/3 d 3*v0 -4*v2 -4 <= 0; value: 0 a -4/3*v2 + 2/3 <= 0; value: -14/3 a -8/3*v2 -3*v3 + 28/3 <= 0; value: -40/3 a 6*v3 -63 <= 0; value: -39 d v1 -2 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 1 2 3 3: 3 4 0: 2 -> 20/3 1: 2 -> 2 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -1*v2 -1 < 0; value: -3 a -3*v1 + 2*v3 -9 <= 0; value: -22 a v0 -2 = 0; value: 0 a -1*v0 + v3 + 1 = 0; value: 0 a v0 + 6*v3 -8 = 0; value: 0 0: 3 4 5 1: 2 2: 1 3: 2 4 5 optimal: 26/3 a + 26/3 <= 0; value: 26/3 a -1*v2 -1 < 0; value: -3 d -3*v1 + 2*v3 -9 <= 0; value: 0 d v0 -2 = 0; value: 0 d -1*v0 + v3 + 1 = 0; value: 0 a = 0; value: 0 0: 3 4 5 1: 2 2: 1 3: 2 4 5 0: 2 -> 2 1: 5 -> -7/3 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -2*v1 + 3*v3 -12 = 0; value: 0 a -3*v1 -1*v2 -2*v3 -4 < 0; value: -12 a -1*v0 + 1 < 0; value: -2 a 4*v0 -2*v2 -3*v3 <= 0; value: 0 a -2*v1 -1*v3 + 2 < 0; value: -2 0: 3 4 1: 1 2 5 2: 2 4 3: 1 2 4 5 optimal: oo a 2*v0 + 3/2 < 0; value: 15/2 d -2*v1 + 3*v3 -12 = 0; value: 0 a -2*v0 -7/2 <= 0; value: -19/2 a -1*v0 + 1 < 0; value: -2 d 4*v0 -2*v2 -3*v3 <= 0; value: 0 d -16/3*v0 + 8/3*v2 + 14 < 0; value: -1 0: 3 4 2 5 1: 1 2 5 2: 2 4 5 3: 1 2 4 5 0: 3 -> 3 1: 0 -> -3/8 2: 0 -> 3/8 3: 4 -> 15/4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + v1 + 4*v3 -7 <= 0; value: -2 a 3*v0 -6*v2 -1*v3 + 10 = 0; value: 0 a 2*v0 + 5*v2 + 4*v3 -52 <= 0; value: -27 a 4*v0 -3*v3 -9 = 0; value: 0 a 5*v0 + v1 -5*v2 -4 = 0; value: 0 0: 1 2 3 4 5 1: 1 5 2: 2 3 5 3: 1 2 3 4 optimal: 306/13 a + 306/13 <= 0; value: 306/13 d 13/18*v0 -25/6 <= 0; value: 0 d 3*v0 -6*v2 -1*v3 + 10 = 0; value: 0 a -37/13 <= 0; value: -37/13 d 4*v0 -3*v3 -9 = 0; value: 0 d 5*v0 + v1 -5*v2 -4 = 0; value: 0 0: 1 2 3 4 5 1: 1 5 2: 2 3 5 1 3: 1 2 3 4 0: 3 -> 75/13 1: 4 -> -6 2: 3 -> 49/13 3: 1 -> 61/13 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -1*v1 -2*v2 + 2 = 0; value: 0 a -2*v1 -3*v2 + 4 <= 0; value: -10 a -1*v3 + 4 = 0; value: 0 a v1 + 3*v2 -23 <= 0; value: -13 a -3*v0 + 3*v1 -8 < 0; value: -5 0: 1 5 1: 1 2 4 5 2: 1 2 4 3: 3 optimal: 45 a + 45 <= 0; value: 45 d 2*v0 -1*v1 -2*v2 + 2 = 0; value: 0 d -4*v0 + v2 <= 0; value: 0 a -1*v3 + 4 = 0; value: 0 d 6*v0 -21 <= 0; value: 0 a -151/2 < 0; value: -151/2 0: 1 5 2 4 1: 1 2 4 5 2: 1 2 4 5 3: 3 0: 3 -> 7/2 1: 4 -> -19 2: 2 -> 14 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -1*v3 -9 <= 0; value: -5 a 5*v0 -3*v2 -4*v3 + 1 <= 0; value: -1 a -5*v0 -6*v2 -10 < 0; value: -43 a -2*v2 -1*v3 + 8 = 0; value: 0 a v0 -2*v1 -5*v2 + 7 <= 0; value: -13 0: 1 2 3 5 1: 5 2: 2 3 4 5 3: 1 2 4 optimal: oo a -4*v0 + 24 <= 0; value: 12 a -23/5 <= 0; value: -23/5 d 5*v0 -5/2*v3 -11 <= 0; value: 0 a v0 -236/5 < 0; value: -221/5 d -2*v2 -1*v3 + 8 = 0; value: 0 d v0 -2*v1 -5*v2 + 7 <= 0; value: 0 0: 1 2 3 5 1: 5 2: 2 3 4 5 3: 1 2 4 3 0: 3 -> 3 1: 4 -> -3 2: 3 -> 16/5 3: 2 -> 8/5 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 + 3*v3 + 10 = 0; value: 0 a 2*v0 + v1 + 2*v2 -23 = 0; value: 0 a -1*v0 -1*v1 + v2 + 6 = 0; value: 0 a 4*v0 -3*v2 -23 < 0; value: -15 a -4*v0 + 3*v3 + 5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 2: 2 3 4 3: 1 5 optimal: 0 a <= 0; value: 0 d -5*v1 + 3*v3 + 10 = 0; value: 0 d 14/5*v0 + 2*v2 -22 = 0; value: 0 d 16/7*v2 -64/7 = 0; value: 0 a -15 < 0; value: -15 d -4*v0 + 3*v3 + 5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 2: 2 3 4 3: 1 5 2 3 0: 5 -> 5 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -6*v2 + 17 <= 0; value: -13 a -1*v0 -2*v3 -7 <= 0; value: -15 a 5*v0 -6*v1 + 18 = 0; value: 0 a -1*v1 + 5*v3 -18 < 0; value: -1 a -2*v1 + 2*v2 -7 <= 0; value: -3 0: 2 3 1: 3 4 5 2: 1 5 3: 2 4 optimal: oo a 1/3*v0 -6 <= 0; value: -6 a -6*v2 + 17 <= 0; value: -13 a -1*v0 -2*v3 -7 <= 0; value: -15 d 5*v0 -6*v1 + 18 = 0; value: 0 a -5/6*v0 + 5*v3 -21 < 0; value: -1 a -5/3*v0 + 2*v2 -13 <= 0; value: -3 0: 2 3 4 5 1: 3 4 5 2: 1 5 3: 2 4 0: 0 -> 0 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a -3*v1 + 6*v3 -22 < 0; value: -13 a v3 -4 = 0; value: 0 a v0 + v2 -6*v3 + 6 < 0; value: -18 a -5*v0 -2*v1 <= 0; value: -10 a v2 -3*v3 + 12 = 0; value: 0 0: 3 4 1: 1 4 2: 3 5 3: 1 2 3 5 optimal: (104/3 -e*1) a + 104/3 < 0; value: 104/3 d -3*v1 + 6*v3 -22 < 0; value: -3 d v3 -4 = 0; value: 0 d v0 + v2 -18 < 0; value: -1 a -274/3 < 0; value: -274/3 d v2 = 0; value: 0 0: 3 4 1: 1 4 2: 3 5 4 3: 1 2 3 5 4 0: 0 -> 17 1: 5 -> 5/3 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -2*v2 -3 <= 0; value: -7 a -1*v0 -3*v1 + 2 <= 0; value: 0 a v0 -2*v1 -5 <= 0; value: -3 a 5*v0 -6*v1 -11 <= 0; value: -1 a -5*v0 -4*v3 + 16 < 0; value: -2 0: 1 2 3 4 5 1: 2 3 4 2: 1 3: 5 optimal: 92/21 a + 92/21 <= 0; value: 92/21 a -2*v2 + 9/7 <= 0; value: -47/7 d -1*v0 -3*v1 + 2 <= 0; value: 0 a -58/21 <= 0; value: -58/21 d 7*v0 -15 <= 0; value: 0 a -4*v3 + 37/7 < 0; value: -19/7 0: 1 2 3 4 5 1: 2 3 4 2: 1 3: 5 0: 2 -> 15/7 1: 0 -> -1/21 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 11 <= 0; value: -1 a 4*v1 + 3*v2 + 4*v3 -77 <= 0; value: -40 a -4*v2 + 1 <= 0; value: -11 a -3*v1 + 2*v3 + 6 = 0; value: 0 d <= 0; value: 0 0: 1 1: 2 4 2: 2 3 3: 2 4 optimal: oo a 2*v0 -4/3*v3 -4 <= 0; value: 0 a -3*v0 + 11 <= 0; value: -1 a 3*v2 + 20/3*v3 -69 <= 0; value: -40 a -4*v2 + 1 <= 0; value: -11 d -3*v1 + 2*v3 + 6 = 0; value: 0 d <= 0; value: 0 0: 1 1: 2 4 2: 2 3 3: 2 4 0: 4 -> 4 1: 4 -> 4 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -5*v1 -4*v3 = 0; value: 0 a -4*v1 -1*v3 <= 0; value: 0 a v1 -4*v3 <= 0; value: 0 a -1*v3 <= 0; value: 0 a 4*v1 -6*v2 + 7 < 0; value: -17 0: 1: 1 2 3 5 2: 5 3: 1 2 3 4 optimal: oo a 2*v0 <= 0; value: 8 d -5*v1 -4*v3 = 0; value: 0 d 11/5*v3 <= 0; value: 0 a <= 0; value: 0 a <= 0; value: 0 a -6*v2 + 7 < 0; value: -17 0: 1: 1 2 3 5 2: 5 3: 1 2 3 4 5 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 -23 <= 0; value: -13 a -1*v1 + 4*v3 -4 <= 0; value: -1 a -4*v0 -4*v1 + 2*v2 + 1 <= 0; value: -1 a 3*v0 + 6*v1 -6*v3 -10 <= 0; value: -4 a -6*v0 + 4*v2 -21 < 0; value: -13 0: 1 3 4 5 1: 2 3 4 2: 3 5 3: 2 4 optimal: oo a 2*v0 -8*v3 + 8 <= 0; value: 4 a 5*v0 -23 <= 0; value: -13 d v0 -1/2*v2 + 4*v3 -17/4 <= 0; value: 0 d -4*v0 -4*v1 + 2*v2 + 1 <= 0; value: 0 a 3*v0 + 18*v3 -34 <= 0; value: -10 a 2*v0 + 32*v3 -55 < 0; value: -19 0: 1 3 4 5 2 1: 2 3 4 2: 3 5 2 4 3: 2 4 5 0: 2 -> 2 1: 1 -> 0 2: 5 -> 7/2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -6*v0 -6*v1 + v3 + 1 <= 0; value: 0 a -4*v0 -3*v2 -5*v3 + 13 <= 0; value: -25 a -4*v0 + 5*v1 -6*v3 + 34 = 0; value: 0 a v1 + v2 -3 = 0; value: 0 0: 1 2 3 1: 1 3 4 2: 2 4 3: 1 2 3 optimal: 1801/13 a + 1801/13 <= 0; value: 1801/13 d -6*v0 -6*v1 + v3 + 1 <= 0; value: 0 d 13/20*v2 -539/20 <= 0; value: 0 d -9*v0 -31/6*v3 + 209/6 = 0; value: 0 d -40/31*v0 + v2 -53/31 = 0; value: 0 0: 1 2 3 4 1: 1 3 4 2: 2 4 3: 1 2 3 4 0: 1 -> 801/26 1: 0 -> -500/13 2: 3 -> 539/13 3: 5 -> -610/13 a 2*v0 -2*v1 <= 0; value: 2 a v0 -3*v2 <= 0; value: 0 a 6*v0 -4*v1 + v2 -29 < 0; value: -18 a -1*v3 <= 0; value: -1 a -5*v0 + v3 + 2 < 0; value: -12 a v3 -2 <= 0; value: -1 0: 1 2 4 1: 2 2: 1 2 3: 3 4 5 optimal: (421/30 -e*1) a + 421/30 < 0; value: 421/30 d v0 -3*v2 <= 0; value: 0 d 6*v0 -4*v1 + v2 -29 < 0; value: -4 d -1*v3 <= 0; value: 0 d -5*v0 + v3 + 2 < 0; value: -5 a -2 <= 0; value: -2 0: 1 2 4 1: 2 2: 1 2 3: 3 4 5 0: 3 -> 7/5 1: 2 -> -121/30 2: 1 -> 7/15 3: 1 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a -4*v1 -4*v2 + 7 <= 0; value: -13 a -5*v2 -5*v3 + 13 <= 0; value: -17 a -4*v1 -1 <= 0; value: -5 a 3*v0 -5*v3 -12 <= 0; value: -7 a -1*v0 -2*v3 + 9 <= 0; value: 0 0: 4 5 1: 1 3 2: 1 2 3: 2 4 5 optimal: oo a 10/3*v3 + 17/2 <= 0; value: 91/6 a -4*v2 + 8 <= 0; value: -8 a -5*v2 -5*v3 + 13 <= 0; value: -17 d -4*v1 -1 <= 0; value: 0 d 3*v0 -5*v3 -12 <= 0; value: 0 a -11/3*v3 + 5 <= 0; value: -7/3 0: 4 5 1: 1 3 2: 1 2 3: 2 4 5 0: 5 -> 22/3 1: 1 -> -1/4 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -3*v2 + v3 -3 < 0; value: -7 a -2*v0 -2*v2 + 3 <= 0; value: -5 a 3*v1 + 6*v2 + 2*v3 -58 < 0; value: -33 a 4*v1 -33 <= 0; value: -21 a -1*v0 + 2*v3 -4 <= 0; value: -2 0: 2 5 1: 3 4 2: 1 2 3 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -3*v2 + v3 -3 < 0; value: -7 a -2*v0 -2*v2 + 3 <= 0; value: -5 a 3*v1 + 6*v2 + 2*v3 -58 < 0; value: -33 a 4*v1 -33 <= 0; value: -21 a -1*v0 + 2*v3 -4 <= 0; value: -2 0: 2 5 1: 3 4 2: 1 2 3 3: 1 3 5 0: 2 -> 2 1: 3 -> 3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -10 a -5*v0 + 6*v1 -30 = 0; value: 0 a 2*v0 -1*v1 -1*v3 + 1 < 0; value: -5 a -6*v0 + v2 -7 < 0; value: -3 a -3*v2 + 5*v3 + 7 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 3 5 1: 1 2 2: 3 4 3: 2 4 optimal: oo a 6/35*v2 -324/35 < 0; value: -60/7 d -5*v0 + 6*v1 -30 = 0; value: 0 d 7/6*v0 -1*v3 -4 < 0; value: -7/6 a -73/35*v2 -713/35 < 0; value: -201/7 d -3*v2 + 5*v3 + 7 = 0; value: 0 a -18/35*v2 -78/35 < 0; value: -30/7 0: 1 2 3 5 1: 1 2 2: 3 4 5 3: 2 4 3 5 0: 0 -> 23/7 1: 5 -> 325/42 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 + 2*v2 -33 <= 0; value: -16 a v1 + 3*v2 + 3*v3 -30 < 0; value: -7 a -6*v2 + 3*v3 -11 <= 0; value: -26 a -3*v1 -2*v3 -10 <= 0; value: -22 a -5*v2 + 16 < 0; value: -4 0: 1 1: 2 4 2: 1 2 3 5 3: 2 3 4 optimal: (7838/207 -e*1) a + 7838/207 < 0; value: 7838/207 d 3*v0 -1831/69 <= 0; value: 0 d 3*v2 + 7/3*v3 -100/3 < 0; value: -7/3 d -69/7*v2 + 223/7 <= 0; value: 0 d -3*v1 -2*v3 -10 <= 0; value: 0 a -11/69 < 0; value: -11/69 0: 1 1: 2 4 2: 1 2 3 5 3: 2 3 4 0: 3 -> 1831/207 1: 2 -> -650/69 2: 4 -> 223/69 3: 3 -> 210/23 a 2*v0 -2*v1 <= 0; value: 6 a v1 -1*v3 -1 <= 0; value: -6 a v0 + v2 -5 <= 0; value: -2 a -5*v0 + v1 -8 <= 0; value: -23 a -6*v1 + 2*v2 + 3*v3 -23 < 0; value: -8 a 6*v3 -65 <= 0; value: -35 0: 2 3 1: 1 3 4 2: 2 4 3: 1 4 5 optimal: oo a 2*v0 -4/3*v2 + 52/3 < 0; value: 70/3 d 1/3*v2 -1/2*v3 -29/6 < 0; value: -1/2 a v0 + v2 -5 <= 0; value: -2 a -5*v0 + 2/3*v2 -50/3 < 0; value: -95/3 d -6*v1 + 2*v2 + 3*v3 -23 < 0; value: -6 a 4*v2 -123 < 0; value: -123 0: 2 3 1: 1 3 4 2: 2 4 1 3 5 3: 1 4 5 3 0: 3 -> 3 1: 0 -> -43/6 2: 0 -> 0 3: 5 -> -26/3 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 4*v2 + 3*v3 -6 = 0; value: 0 a -1*v1 -4*v3 -7 <= 0; value: -16 a -5*v3 + 2 <= 0; value: -3 a v2 <= 0; value: 0 a -1*v1 -1*v2 + 2 <= 0; value: -3 0: 1 1: 2 5 2: 1 4 5 3: 1 2 3 optimal: 28/5 a + 28/5 <= 0; value: 28/5 d v0 + 4*v2 + 3*v3 -6 = 0; value: 0 a -53/5 <= 0; value: -53/5 d 5/3*v0 -8 <= 0; value: 0 d -1/4*v0 -3/4*v3 + 3/2 <= 0; value: 0 d -1*v1 -1*v2 + 2 <= 0; value: 0 0: 1 4 2 3 1: 2 5 2: 1 4 5 2 3: 1 2 3 4 0: 3 -> 24/5 1: 5 -> 2 2: 0 -> 0 3: 1 -> 2/5 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + v1 -2*v2 -6 <= 0; value: -18 a 6*v0 + 3*v2 + v3 -65 <= 0; value: -29 a -6*v0 -3*v1 -1*v2 + 12 <= 0; value: -14 a -2*v1 + 6*v2 -45 <= 0; value: -17 a 4*v0 + 2*v2 + 3*v3 -52 <= 0; value: -21 0: 1 2 3 5 1: 1 3 4 2: 1 2 3 4 5 3: 2 5 optimal: oo a -4/3*v3 + 313/6 <= 0; value: 289/6 a 8/21*v3 -3043/84 <= 0; value: -421/12 d 21/5*v0 + v3 -823/20 <= 0; value: 0 d -6*v0 -3*v1 -1*v2 + 12 <= 0; value: 0 d 4*v0 + 20/3*v2 -53 <= 0; value: 0 a 7/3*v3 -26/3 <= 0; value: -5/3 0: 1 2 3 5 4 1: 1 3 4 2: 1 2 3 4 5 3: 2 5 1 0: 3 -> 109/12 1: 1 -> -15 2: 5 -> 5/2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a v3 -2 <= 0; value: 0 a 5*v0 + 6*v3 -12 = 0; value: 0 a -4*v2 -5*v3 -15 <= 0; value: -33 a 2*v0 + 2*v3 -9 < 0; value: -5 a -6*v0 -3*v2 -2 <= 0; value: -8 0: 2 4 5 1: 2: 3 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a v3 -2 <= 0; value: 0 a 5*v0 + 6*v3 -12 = 0; value: 0 a -4*v2 -5*v3 -15 <= 0; value: -33 a 2*v0 + 2*v3 -9 < 0; value: -5 a -6*v0 -3*v2 -2 <= 0; value: -8 0: 2 4 5 1: 2: 3 5 3: 1 2 3 4 0: 0 -> 0 1: 3 -> 3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + v1 + 3*v2 -24 = 0; value: 0 a v0 -5*v2 + 2 <= 0; value: -21 a 5*v2 -1*v3 -22 = 0; value: 0 a -2*v1 -5*v3 -16 <= 0; value: -37 0: 1 2 1: 1 4 2: 1 2 3 3: 3 4 optimal: oo a 8*v0 + 6/5*v3 -108/5 <= 0; value: -2 d 3*v0 + v1 + 3*v2 -24 = 0; value: 0 a v0 -1*v3 -20 <= 0; value: -21 d 5*v2 -1*v3 -22 = 0; value: 0 a 6*v0 -19/5*v3 -188/5 <= 0; value: -37 0: 1 2 4 1: 1 4 2: 1 2 3 4 3: 3 4 2 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -1*v1 -6*v2 -4 < 0; value: -10 a -5*v0 -4*v2 -17 < 0; value: -41 a -5*v0 + v2 -6*v3 + 25 = 0; value: 0 a -2*v1 -3*v3 + 3 = 0; value: 0 a 6*v1 -2*v2 -1 < 0; value: -3 0: 2 3 1: 1 4 5 2: 1 2 3 5 3: 3 4 optimal: oo a -1/2*v0 + 1/2*v2 + 19/2 <= 0; value: 8 a -5/4*v0 -23/4*v2 + 3/4 < 0; value: -10 a -5*v0 -4*v2 -17 < 0; value: -41 d -5*v0 + v2 -6*v3 + 25 = 0; value: 0 d -2*v1 -3*v3 + 3 = 0; value: 0 a 15/2*v0 -7/2*v2 -59/2 < 0; value: -3 0: 2 3 1 5 1: 1 4 5 2: 1 2 3 5 3: 3 4 1 5 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v0 -1*v3 + 4 = 0; value: 0 a -3*v1 -5*v2 + 25 = 0; value: 0 a -5*v1 -6*v2 -4*v3 + 50 = 0; value: 0 a v2 -5 = 0; value: 0 a 5*v0 -1*v3 <= 0; value: 0 0: 1 5 1: 2 3 2: 2 3 4 3: 1 3 5 optimal: 2 a + 2 <= 0; value: 2 d v0 -1*v3 + 4 = 0; value: 0 d -3*v1 -5*v2 + 25 = 0; value: 0 d 7/3*v2 -4*v3 + 25/3 = 0; value: 0 a = 0; value: 0 d 4*v0 -4 <= 0; value: 0 0: 1 5 4 1: 2 3 2: 2 3 4 3: 1 3 5 4 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 2*v3 -20 <= 0; value: -10 a -1*v1 + 2 = 0; value: 0 a -6*v1 -6*v2 -3*v3 -43 <= 0; value: -88 a -1*v3 -1 <= 0; value: -6 a -1*v0 = 0; value: 0 0: 1 5 1: 2 3 2: 3 3: 1 3 4 optimal: -4 a -4 <= 0; value: -4 a 2*v3 -20 <= 0; value: -10 d -1*v1 + 2 = 0; value: 0 a -6*v2 -3*v3 -55 <= 0; value: -88 a -1*v3 -1 <= 0; value: -6 d -1*v0 = 0; value: 0 0: 1 5 1: 2 3 2: 3 3: 1 3 4 0: 0 -> 0 1: 2 -> 2 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -6*v1 + 2*v3 -1 <= 0; value: -9 a -1*v0 -2*v1 + 7 = 0; value: 0 a 3*v0 -4*v1 -4*v3 + 7 <= 0; value: 0 a -3*v1 + 6*v3 -13 <= 0; value: -7 a -4*v0 -3*v1 -6*v3 + 28 < 0; value: -2 0: 2 3 5 1: 1 2 3 4 5 2: 3: 1 3 4 5 optimal: 13/3 a + 13/3 <= 0; value: 13/3 a -85/18 <= 0; value: -85/18 d -1*v0 -2*v1 + 7 = 0; value: 0 d 5*v0 -4*v3 -7 <= 0; value: 0 d 36/5*v3 -107/5 <= 0; value: 0 a -88/9 < 0; value: -88/9 0: 2 3 5 1 4 1: 1 2 3 4 5 2: 3: 1 3 4 5 0: 3 -> 34/9 1: 2 -> 29/18 2: 3 -> 3 3: 2 -> 107/36 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v1 -5*v2 -7 < 0; value: -20 a v1 -5*v3 + 6 < 0; value: -3 a 5*v1 -6*v3 + 7 = 0; value: 0 a 6*v0 + 2*v2 -17 <= 0; value: -11 a 2*v0 -1*v1 -2*v3 + 5 = 0; value: 0 0: 1 4 5 1: 1 2 3 5 2: 1 4 3: 2 3 5 optimal: (-61/78 -e*1) a -61/78 < 0; value: -61/78 d -13/2*v2 + 31/4 < 0; value: -47/8 a -2741/312 < 0; value: -2741/312 d 5*v1 -6*v3 + 7 = 0; value: 0 d 6*v0 + 2*v2 -17 <= 0; value: 0 d 2*v0 -16/5*v3 + 32/5 = 0; value: 0 0: 1 4 5 2 1: 1 2 3 5 2: 1 4 2 3: 2 3 5 1 0: 0 -> 111/52 1: 1 -> 541/208 2: 3 -> 109/52 3: 2 -> 1387/416 a 2*v0 -2*v1 <= 0; value: 2 a v0 -6 <= 0; value: -3 a -1*v0 -2 <= 0; value: -5 a v3 -4 = 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -2*v0 + 5*v3 -16 <= 0; value: -2 0: 1 2 5 1: 2: 4 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a v0 -6 <= 0; value: -3 a -1*v0 -2 <= 0; value: -5 a v3 -4 = 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -2*v0 + 5*v3 -16 <= 0; value: -2 0: 1 2 5 1: 2: 4 3: 3 5 0: 3 -> 3 1: 2 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 -4*v3 = 0; value: 0 a -1*v0 + 1 <= 0; value: -1 a v1 <= 0; value: 0 a v3 <= 0; value: 0 a 5*v2 -63 <= 0; value: -38 0: 2 1: 1 3 2: 5 3: 1 4 optimal: oo a 2*v0 -8/3*v3 <= 0; value: 4 d 3*v1 -4*v3 = 0; value: 0 a -1*v0 + 1 <= 0; value: -1 a 4/3*v3 <= 0; value: 0 a v3 <= 0; value: 0 a 5*v2 -63 <= 0; value: -38 0: 2 1: 1 3 2: 5 3: 1 4 3 0: 2 -> 2 1: 0 -> 0 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 + v2 -3 <= 0; value: 0 a -6*v1 + v2 + 2*v3 + 5 <= 0; value: 0 a -3*v1 -2*v3 + 19 = 0; value: 0 a -1*v0 <= 0; value: 0 a -6*v0 -1*v1 + 6*v2 -15 = 0; value: 0 0: 1 4 5 1: 2 3 5 2: 1 2 5 3: 2 3 optimal: -6 a -6 <= 0; value: -6 d 1/53*v0 <= 0; value: 0 d -6*v1 + v2 + 2*v3 + 5 <= 0; value: 0 d -1/2*v2 -3*v3 + 33/2 = 0; value: 0 a <= 0; value: 0 d -6*v0 + 53/9*v2 -53/3 = 0; value: 0 0: 1 4 5 1: 2 3 5 2: 1 2 5 3 3: 2 3 5 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 10 a 4*v0 + 4*v2 -37 < 0; value: -9 a -3*v0 -8 < 0; value: -23 a 6*v1 + 5*v2 -10 = 0; value: 0 a -2*v2 + v3 = 0; value: 0 0: 1 2 1: 3 2: 1 3 4 3: 4 optimal: oo a 1/3*v0 + 145/12 < 0; value: 55/4 d 4*v0 + 2*v3 -37 < 0; value: -2 a -3*v0 -8 < 0; value: -23 d 6*v1 + 5*v2 -10 = 0; value: 0 d -2*v2 + v3 = 0; value: 0 0: 1 2 1: 3 2: 1 3 4 3: 4 1 0: 5 -> 5 1: 0 -> -35/24 2: 2 -> 15/4 3: 4 -> 15/2 a 2*v0 -2*v1 <= 0; value: -8 a -3*v1 -1*v2 -9 <= 0; value: -21 a 4*v0 + 4*v3 -35 <= 0; value: -19 a v1 -4 = 0; value: 0 a 2*v0 -1*v2 <= 0; value: 0 a -2*v0 -5*v2 -3*v3 + 12 = 0; value: 0 0: 2 4 5 1: 1 3 2: 1 4 5 3: 2 5 optimal: oo a -1/2*v3 -6 <= 0; value: -8 a 1/2*v3 -23 <= 0; value: -21 a 3*v3 -31 <= 0; value: -19 d v1 -4 = 0; value: 0 d 2*v0 -1*v2 <= 0; value: 0 d -6*v2 -3*v3 + 12 = 0; value: 0 0: 2 4 5 1: 1 3 2: 1 4 5 2 3: 2 5 1 0: 0 -> 0 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -3*v2 -2*v3 + 17 = 0; value: 0 a v1 + v2 -5 = 0; value: 0 a -1*v1 <= 0; value: 0 a 2*v3 -3 <= 0; value: -1 a v0 -5*v1 -6*v2 + 30 = 0; value: 0 0: 5 1: 2 3 5 2: 1 2 5 3: 1 4 optimal: 0 a <= 0; value: 0 d -3*v2 -2*v3 + 17 = 0; value: 0 d v1 + v2 -5 = 0; value: 0 d v0 <= 0; value: 0 a -1 <= 0; value: -1 d v0 + 2/3*v3 -2/3 = 0; value: 0 0: 5 3 4 1: 2 3 5 2: 1 2 5 3 3: 1 4 5 3 0: 0 -> 0 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v2 + 2*v3 + 8 <= 0; value: 0 a 3*v0 + 6*v2 + 5*v3 -28 <= 0; value: -16 a -3*v0 + 6*v1 + 3*v3 -8 <= 0; value: -20 a v1 + 3*v3 <= 0; value: 0 a -2*v0 + 3*v2 + 8 = 0; value: 0 0: 1 2 3 5 1: 3 4 2: 1 2 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v2 + 2*v3 + 8 <= 0; value: 0 a 3*v0 + 6*v2 + 5*v3 -28 <= 0; value: -16 a -3*v0 + 6*v1 + 3*v3 -8 <= 0; value: -20 a v1 + 3*v3 <= 0; value: 0 a -2*v0 + 3*v2 + 8 = 0; value: 0 0: 1 2 3 5 1: 3 4 2: 1 2 5 3: 1 2 3 4 0: 4 -> 4 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 2*v2 + 2*v3 -2 <= 0; value: 0 a 2*v1 -3*v2 + 2*v3 -13 = 0; value: 0 a 2*v2 + 5*v3 -51 <= 0; value: -24 a v1 + 3*v2 -10 <= 0; value: -4 a v0 -6*v1 -12 < 0; value: -28 0: 1 5 1: 2 4 5 2: 1 2 3 4 3: 1 2 3 optimal: (2966/279 -e*1) a + 2966/279 < 0; value: 2966/279 d -5*v0 + 2*v2 + 2*v3 -2 <= 0; value: 0 d 2*v1 -3*v2 + 2*v3 -13 = 0; value: 0 d 93/10*v0 -37 <= 0; value: 0 a -2122/279 < 0; value: -2122/279 d 16*v0 -15*v2 -45 < 0; value: -170/93 0: 1 5 3 4 1: 2 4 5 2: 1 2 3 4 5 3: 1 2 3 5 4 0: 2 -> 370/93 1: 3 -> -32/31 2: 1 -> 127/93 3: 5 -> 297/31 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 + v1 + 1 = 0; value: 0 a -1*v2 + 4 = 0; value: 0 a 2*v0 + 2*v1 -17 <= 0; value: -11 a 3*v0 -2*v1 <= 0; value: -1 a v0 -1 = 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3: optimal: -2 a -2 <= 0; value: -2 d -3*v0 + v1 + 1 = 0; value: 0 a -1*v2 + 4 = 0; value: 0 a -11 <= 0; value: -11 a -1 <= 0; value: -1 d v0 -1 = 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3: 0: 1 -> 1 1: 2 -> 2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -1*v1 -4*v3 <= 0; value: 0 a v0 -2*v1 <= 0; value: 0 a 3*v0 -4*v2 + 2 <= 0; value: -2 a v2 + v3 -1 <= 0; value: 0 0: 3 4 1: 2 3 2: 1 4 5 3: 2 5 optimal: 0 a <= 0; value: 0 d -1*v2 + 1 = 0; value: 0 d -1*v1 -4*v3 <= 0; value: 0 d v0 <= 0; value: 0 a -2 <= 0; value: -2 d v2 + v3 -1 <= 0; value: 0 0: 3 4 1: 2 3 2: 1 4 5 3 3: 2 5 3 0: 0 -> 0 1: 0 -> 0 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -1*v3 <= 0; value: 0 a -1*v1 + v3 -4 <= 0; value: -2 a v2 -4 <= 0; value: -2 a -1*v1 <= 0; value: -2 a -3*v1 + 6*v2 -10 < 0; value: -4 0: 1: 1 2 4 5 2: 3 5 3: 1 2 optimal: oo a 2*v0 < 0; value: 10 a -1*v3 < 0; value: -4 a v3 -4 <= 0; value: 0 a -7/3 <= 0; value: -7/3 d -2*v2 + 10/3 <= 0; value: 0 d -3*v1 + 6*v2 -10 < 0; value: -3 0: 1: 1 2 4 5 2: 3 5 4 2 1 3: 1 2 0: 5 -> 5 1: 2 -> 1 2: 2 -> 5/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a v0 -4*v3 < 0; value: -8 a -3*v1 -2*v2 + 5 <= 0; value: -4 a 4*v3 -35 <= 0; value: -23 a 2*v1 -5*v3 -7 <= 0; value: -16 a -4*v0 -1*v1 + 3 <= 0; value: -16 0: 1 5 1: 2 4 5 2: 2 3: 1 3 4 optimal: (344 -e*1) a + 344 < 0; value: 344 d v0 -4*v3 < 0; value: -1 d -3*v1 -2*v2 + 5 <= 0; value: 0 d 4*v3 -35 <= 0; value: 0 a -1299/4 < 0; value: -1299/4 d -4*v0 + 2/3*v2 + 4/3 <= 0; value: 0 0: 1 5 4 1: 2 4 5 2: 2 5 4 3: 1 3 4 0: 4 -> 34 1: 3 -> -133 2: 0 -> 202 3: 3 -> 35/4 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 -1 < 0; value: -4 a -5*v1 -2*v3 <= 0; value: -2 a 5*v0 -4*v2 -3*v3 -4 <= 0; value: 0 a v0 -3 <= 0; value: 0 a 2*v0 + 3*v1 -14 < 0; value: -8 0: 1 3 4 5 1: 2 5 2: 3 3: 2 3 optimal: oo a 2*v0 + 4/5*v3 <= 0; value: 34/5 a -1*v0 -1 < 0; value: -4 d -5*v1 -2*v3 <= 0; value: 0 a 5*v0 -4*v2 -3*v3 -4 <= 0; value: 0 a v0 -3 <= 0; value: 0 a 2*v0 -6/5*v3 -14 < 0; value: -46/5 0: 1 3 4 5 1: 2 5 2: 3 3: 2 3 5 0: 3 -> 3 1: 0 -> -2/5 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -1 <= 0; value: -5 a v1 -2*v2 + 1 <= 0; value: 0 a 3*v0 -5*v3 + 11 <= 0; value: -8 a 5*v2 -6*v3 + 20 = 0; value: 0 a -5*v1 -3*v3 + 5 <= 0; value: -25 0: 1 3 1: 2 5 2: 2 4 3: 3 4 5 optimal: oo a 2*v0 + v2 + 2 <= 0; value: 8 a -2*v0 -1 <= 0; value: -5 a -5/2*v2 <= 0; value: -5 a 3*v0 -25/6*v2 -17/3 <= 0; value: -8 d 5*v2 -6*v3 + 20 = 0; value: 0 d -5*v1 -3*v3 + 5 <= 0; value: 0 0: 1 3 1: 2 5 2: 2 4 3 3: 3 4 5 2 0: 2 -> 2 1: 3 -> -2 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 2*v0 -2*v1 + 3 < 0; value: -5 a -2*v0 -4*v3 -5 <= 0; value: -11 a -2*v1 + v3 + 3 <= 0; value: -6 a 4*v1 -1*v2 -30 <= 0; value: -11 a -1*v2 + 1 = 0; value: 0 0: 1 2 1: 1 3 4 2: 4 5 3: 2 3 optimal: (-3 -e*1) a -3 < 0; value: -3 d 2*v0 -2*v1 + 3 < 0; value: -2 a -2*v0 -4*v3 -5 <= 0; value: -11 a -2*v0 + v3 <= 0; value: -1 a 4*v0 -1*v2 -24 < 0; value: -21 a -1*v2 + 1 = 0; value: 0 0: 1 2 3 4 1: 1 3 4 2: 4 5 3: 2 3 0: 1 -> 1 1: 5 -> 7/2 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 -2 <= 0; value: -6 a -3*v0 -5*v3 + 28 = 0; value: 0 a v0 -1 <= 0; value: 0 a -2*v0 -5*v1 + 15 <= 0; value: -7 0: 2 3 4 1: 1 4 2: 3: 2 optimal: -16/5 a -16/5 <= 0; value: -16/5 a -23/5 <= 0; value: -23/5 d -3*v0 -5*v3 + 28 = 0; value: 0 d -5/3*v3 + 25/3 <= 0; value: 0 d -2*v0 -5*v1 + 15 <= 0; value: 0 0: 2 3 4 1 1: 1 4 2: 3: 2 3 1 0: 1 -> 1 1: 4 -> 13/5 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a v1 + 3*v3 -39 < 0; value: -21 a 2*v0 -3*v1 + 4*v2 -1 <= 0; value: 0 a -5*v0 + 4*v1 + 3 = 0; value: 0 a -1*v0 + 3*v1 -6*v3 + 12 <= 0; value: -12 a 5*v0 -2*v1 -4*v2 -5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 5 2: 2 5 3: 1 4 optimal: 0 a <= 0; value: 0 a 3*v3 -36 < 0; value: -21 d 2*v0 -3*v1 + 4*v2 -1 <= 0; value: 0 d 3/5*v0 -9/5 = 0; value: 0 a -6*v3 + 18 <= 0; value: -12 d 11/3*v0 -20/3*v2 -13/3 = 0; value: 0 0: 2 3 4 5 1 1: 1 2 3 4 5 2: 2 5 3 1 4 3: 1 4 0: 3 -> 3 1: 3 -> 3 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 -1*v2 + 6*v3 + 17 = 0; value: 0 a 5*v0 + 6*v2 + v3 -54 <= 0; value: -28 a v3 = 0; value: 0 a -1*v1 -2*v3 + 2 = 0; value: 0 a -3*v0 + 2*v2 -6*v3 + 10 = 0; value: 0 0: 1 2 5 1: 4 2: 1 2 5 3: 1 2 3 4 5 optimal: 4 a + 4 <= 0; value: 4 d -4*v0 -1*v2 + 6*v3 + 17 = 0; value: 0 a -28 <= 0; value: -28 d 11/6*v0 -22/3 = 0; value: 0 d -1*v1 -2*v3 + 2 = 0; value: 0 d -7*v0 + v2 + 27 = 0; value: 0 0: 1 2 5 3 1: 4 2: 1 2 5 3 3: 1 2 3 4 5 0: 4 -> 4 1: 2 -> 2 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -3*v2 -3*v3 + 16 = 0; value: 0 a -1*v0 + 4 = 0; value: 0 a -1*v0 + 5*v2 -2*v3 -1 <= 0; value: 0 a -3*v1 + 3*v2 -4 <= 0; value: -1 a v0 -4*v3 + 3 <= 0; value: -13 0: 2 3 5 1: 1 4 2: 1 3 4 3: 1 3 5 optimal: 66/13 a + 66/13 <= 0; value: 66/13 d 4*v1 -3*v2 -3*v3 + 16 = 0; value: 0 d -1*v0 + 4 = 0; value: 0 d -1*v0 + 5*v2 -2*v3 -1 <= 0; value: 0 d 9/8*v0 -39/8*v2 + 73/8 <= 0; value: 0 a -427/39 <= 0; value: -427/39 0: 2 3 5 4 1: 1 4 2: 1 3 4 5 3: 1 3 5 4 0: 4 -> 4 1: 2 -> 19/13 2: 3 -> 109/39 3: 5 -> 175/39 a 2*v0 -2*v1 <= 0; value: 6 a -4*v1 -6*v2 -1*v3 + 14 = 0; value: 0 a v3 <= 0; value: 0 a -1*v3 <= 0; value: 0 a 2*v2 -3 < 0; value: -1 a 5*v0 -2*v2 -54 < 0; value: -31 0: 5 1: 1 2: 1 4 5 3: 1 2 3 optimal: (203/10 -e*1) a + 203/10 < 0; value: 203/10 d -4*v1 -6*v2 -1*v3 + 14 = 0; value: 0 d v3 <= 0; value: 0 a <= 0; value: 0 d 2*v2 -3 < 0; value: -1/2 d 5*v0 -57 < 0; value: -5 0: 5 1: 1 2: 1 4 5 3: 1 2 3 0: 5 -> 52/5 1: 2 -> 13/8 2: 1 -> 5/4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 3*v2 -29 <= 0; value: -17 a v0 + 3*v2 -6*v3 -5 = 0; value: 0 a v0 + 4*v1 -21 = 0; value: 0 a -2*v0 + v2 -2*v3 -8 <= 0; value: -18 a -3*v1 + 4 < 0; value: -8 0: 2 3 4 1: 3 5 2: 1 2 4 3: 2 4 optimal: (86/3 -e*1) a + 86/3 < 0; value: 86/3 a 3*v2 -29 <= 0; value: -17 d v0 + 3*v2 -6*v3 -5 = 0; value: 0 d v0 + 4*v1 -21 = 0; value: 0 a -386/9 < 0; value: -386/9 d -9/4*v2 + 9/2*v3 -8 < 0; value: -4 0: 2 3 4 5 1: 3 5 2: 1 2 4 5 3: 2 4 5 0: 5 -> 31/3 1: 4 -> 8/3 2: 4 -> 4 3: 2 -> 26/9 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -1*v1 + 6*v2 + 16 = 0; value: 0 a 2*v1 -17 <= 0; value: -9 a v0 + 3*v1 -16 = 0; value: 0 a 2*v0 + 2*v3 -19 < 0; value: -11 a 5*v1 + 5*v3 -49 < 0; value: -29 0: 1 3 4 1: 1 2 3 5 2: 1 3: 4 5 optimal: oo a -8/3*v3 + 44/3 < 0; value: 44/3 d -3*v0 -1*v1 + 6*v2 + 16 = 0; value: 0 a 2/3*v3 -38/3 < 0; value: -38/3 d -8*v0 + 18*v2 + 32 = 0; value: 0 d 2*v0 + 2*v3 -19 < 0; value: -2 a 20/3*v3 -229/6 < 0; value: -229/6 0: 1 3 4 2 5 1: 1 2 3 5 2: 1 3 2 5 3: 4 5 2 0: 4 -> 17/2 1: 4 -> 5/2 2: 0 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a v3 <= 0; value: 0 a -1*v2 <= 0; value: 0 a -2*v0 + 6*v3 + 1 < 0; value: -7 a v3 <= 0; value: 0 a -1*v1 = 0; value: 0 0: 3 1: 5 2: 2 3: 1 3 4 optimal: oo a 2*v0 <= 0; value: 8 a v3 <= 0; value: 0 a -1*v2 <= 0; value: 0 a -2*v0 + 6*v3 + 1 < 0; value: -7 a v3 <= 0; value: 0 d -1*v1 = 0; value: 0 0: 3 1: 5 2: 2 3: 1 3 4 0: 4 -> 4 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a v2 + v3 -12 < 0; value: -6 a v1 = 0; value: 0 a v1 -2*v2 + 8 = 0; value: 0 a 6*v0 + 5*v1 -2*v3 -28 <= 0; value: -14 a 4*v0 -5*v1 -1*v3 -10 = 0; value: 0 0: 4 5 1: 2 3 4 5 2: 1 3 3: 1 4 5 optimal: (9 -e*1) a + 9 < 0; value: 9 d v2 + v3 -12 < 0; value: -1 d v1 = 0; value: 0 d -2*v2 + 8 = 0; value: 0 a -17 < 0; value: -17 d 4*v0 -1*v3 -10 = 0; value: 0 0: 4 5 1: 2 3 4 5 2: 1 3 4 3: 1 4 5 0: 3 -> 17/4 1: 0 -> 0 2: 4 -> 4 3: 2 -> 7 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 -5*v3 -25 = 0; value: 0 a -2*v2 + v3 -8 < 0; value: -17 a -1*v2 + 5*v3 <= 0; value: 0 a v1 -9 < 0; value: -5 a v2 -5 = 0; value: 0 0: 1 1: 4 2: 2 3 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 -5*v3 -25 = 0; value: 0 a -2*v2 + v3 -8 < 0; value: -17 a -1*v2 + 5*v3 <= 0; value: 0 a v1 -9 < 0; value: -5 a v2 -5 = 0; value: 0 0: 1 1: 4 2: 2 3 5 3: 1 2 3 0: 5 -> 5 1: 4 -> 4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 -1*v2 -15 < 0; value: -4 a v3 -10 < 0; value: -5 a -5*v0 -4*v1 -3*v3 -27 <= 0; value: -56 a 4*v2 + v3 -25 <= 0; value: -16 a -2*v0 -1*v3 -1 <= 0; value: -10 0: 1 3 5 1: 3 2: 1 4 3: 2 3 4 5 optimal: (681/16 -e*1) a + 681/16 < 0; value: 681/16 d 6*v0 -1*v2 -15 < 0; value: -27/8 d v3 -10 < 0; value: -1 d -5*v0 -4*v1 -3*v3 -27 <= 0; value: 0 d 4*v2 -15 <= 0; value: 0 a -69/4 < 0; value: -69/4 0: 1 3 5 1: 3 2: 1 4 5 3: 2 3 4 5 0: 2 -> 41/16 1: 1 -> -1069/64 2: 1 -> 15/4 3: 5 -> 9 a 2*v0 -2*v1 <= 0; value: -8 a -5*v0 -5*v1 -1*v3 + 15 <= 0; value: -5 a -3*v2 + 2*v3 <= 0; value: 0 a -2*v0 + 3*v3 <= 0; value: 0 a -6*v1 + 5*v3 + 24 = 0; value: 0 a -6*v0 + 5*v1 + 5*v2 -38 <= 0; value: -18 0: 1 3 5 1: 1 4 5 2: 2 5 3: 1 2 3 4 optimal: oo a 112/31*v0 -198/31 <= 0; value: -198/31 d -5*v0 -31/6*v3 -5 <= 0; value: 0 a -60/31*v0 -3*v2 -60/31 <= 0; value: -60/31 a -152/31*v0 -90/31 <= 0; value: -90/31 d -6*v1 + 5*v3 + 24 = 0; value: 0 a -311/31*v0 + 5*v2 -683/31 <= 0; value: -683/31 0: 1 3 5 2 1: 1 4 5 2: 2 5 3: 1 2 3 4 5 0: 0 -> 0 1: 4 -> 99/31 2: 0 -> 0 3: 0 -> -30/31 a 2*v0 -2*v1 <= 0; value: -8 a -2*v1 -3*v2 + 3 <= 0; value: -13 a v1 + 6*v2 -40 <= 0; value: -23 a 6*v0 + 5*v1 -31 = 0; value: 0 a -1*v1 -3*v2 + 11 = 0; value: 0 a 5*v1 -4*v2 -1*v3 -26 <= 0; value: -11 0: 3 1: 1 2 3 4 5 2: 1 2 4 5 3: 5 optimal: 119/3 a + 119/3 <= 0; value: 119/3 d 3*v2 -19 <= 0; value: 0 a -10 <= 0; value: -10 d 6*v0 + 5*v1 -31 = 0; value: 0 d 6/5*v0 -3*v2 + 24/5 = 0; value: 0 a -1*v3 -274/3 <= 0; value: -280/3 0: 3 1 4 2 5 1: 1 2 3 4 5 2: 1 2 4 5 3: 5 0: 1 -> 71/6 1: 5 -> -8 2: 2 -> 19/3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 + 2*v2 + 2*v3 -5 < 0; value: -15 a -4*v2 + 4*v3 -1 <= 0; value: -5 a -1*v0 -6*v1 -1*v2 + 13 = 0; value: 0 a 2*v0 + v1 -9 = 0; value: 0 a -2*v1 + v3 <= 0; value: 0 0: 1 3 4 1: 3 4 5 2: 1 2 3 3: 1 2 5 optimal: (16 -e*1) a + 16 < 0; value: 16 d -9/4*v3 -21/2 < 0; value: -9/4 a -105 < 0; value: -105 d -1*v0 -6*v1 -1*v2 + 13 = 0; value: 0 d 11/6*v0 -1/6*v2 -41/6 = 0; value: 0 d 4*v0 + v3 -18 <= 0; value: 0 0: 1 3 4 5 2 1: 3 4 5 2: 1 2 3 4 5 3: 1 2 5 0: 4 -> 65/12 1: 1 -> -11/6 2: 3 -> 223/12 3: 2 -> -11/3 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 + 6*v1 -13 <= 0; value: -5 a -5*v1 + 2 < 0; value: -18 a 4*v0 + 6*v3 -69 <= 0; value: -41 a -1*v1 + 4 <= 0; value: 0 a 4*v1 -4*v2 + 5*v3 -19 < 0; value: -5 0: 1 3 1: 1 2 4 5 2: 5 3: 3 5 optimal: oo a -3*v3 + 53/2 <= 0; value: 41/2 a 6*v3 -58 <= 0; value: -46 a -18 < 0; value: -18 d 4*v0 + 6*v3 -69 <= 0; value: 0 d -1*v1 + 4 <= 0; value: 0 a -4*v2 + 5*v3 -3 < 0; value: -5 0: 1 3 1: 1 2 4 5 2: 5 3: 3 5 1 0: 4 -> 57/4 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 5*v2 -47 < 0; value: -27 a v0 -7 <= 0; value: -4 a 5*v3 -48 <= 0; value: -28 a -1*v0 + v1 -3*v2 + 9 < 0; value: -1 a -6*v1 -1*v3 -31 <= 0; value: -65 0: 2 4 1: 4 5 2: 1 4 3: 3 5 optimal: 413/15 a + 413/15 <= 0; value: 413/15 a 5*v2 -47 < 0; value: -27 d v0 -7 <= 0; value: 0 d 5*v3 -48 <= 0; value: 0 a -3*v2 -143/30 < 0; value: -503/30 d -6*v1 -1*v3 -31 <= 0; value: 0 0: 2 4 1: 4 5 2: 1 4 3: 3 5 4 0: 3 -> 7 1: 5 -> -203/30 2: 4 -> 4 3: 4 -> 48/5 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 + 6*v1 -5*v2 + 1 <= 0; value: 0 a -4*v1 -5*v2 -17 <= 0; value: -36 a -6*v1 + 3*v2 -8 <= 0; value: -5 a -3*v3 -1 <= 0; value: -16 a 6*v1 -3*v2 -6*v3 -17 <= 0; value: -50 0: 1 1: 1 2 3 5 2: 1 2 3 5 3: 4 5 optimal: oo a v0 + 37/6 <= 0; value: 61/6 d 2*v0 -2*v2 -7 <= 0; value: 0 a -7*v0 + 77/6 <= 0; value: -91/6 d -6*v1 + 3*v2 -8 <= 0; value: 0 a -3*v3 -1 <= 0; value: -16 a -6*v3 -25 <= 0; value: -55 0: 1 2 1: 1 2 3 5 2: 1 2 3 5 3: 4 5 0: 4 -> 4 1: 1 -> -13/12 2: 3 -> 1/2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 + 3*v2 + 1 = 0; value: 0 a -2*v0 + v2 + 3 <= 0; value: -2 a -3*v0 -4*v3 + 9 < 0; value: -12 a -1*v0 + v2 + 2 = 0; value: 0 a 5*v1 -2*v2 -8 <= 0; value: 0 0: 2 3 4 1: 1 5 2: 1 2 4 5 3: 3 optimal: 4 a + 4 <= 0; value: 4 d -2*v1 + 3*v2 + 1 = 0; value: 0 d -1*v0 + 1 <= 0; value: 0 a -4*v3 + 6 < 0; value: -6 d -1*v0 + v2 + 2 = 0; value: 0 a -11 <= 0; value: -11 0: 2 3 4 5 1: 1 5 2: 1 2 4 5 3: 3 0: 3 -> 1 1: 2 -> -1 2: 1 -> -1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + v2 -1*v3 + 2 = 0; value: 0 a 3*v0 + 6*v2 -46 <= 0; value: -13 a 4*v1 + 3*v2 -62 <= 0; value: -41 a 5*v0 -5*v1 + 5*v2 -66 <= 0; value: -41 a 5*v0 + v1 + 5*v3 -113 <= 0; value: -75 0: 2 4 5 1: 1 3 4 5 2: 1 2 3 4 3: 1 5 optimal: oo a -2*v2 + 132/5 <= 0; value: 102/5 d -1*v1 + v2 -1*v3 + 2 = 0; value: 0 a 3*v0 + 6*v2 -46 <= 0; value: -13 a 4*v0 + 7*v2 -574/5 <= 0; value: -369/5 d 5*v0 + 5*v3 -76 <= 0; value: 0 a v0 + v2 -251/5 <= 0; value: -211/5 0: 2 4 5 3 1: 1 3 4 5 2: 1 2 3 4 5 3: 1 5 4 3 0: 5 -> 5 1: 3 -> -26/5 2: 3 -> 3 3: 2 -> 51/5 a 2*v0 -2*v1 <= 0; value: 8 a -6*v0 + v1 -14 < 0; value: -38 a v2 <= 0; value: 0 a -2*v1 -3*v3 -4 < 0; value: -10 a -1*v3 + 2 <= 0; value: 0 a v0 -6*v2 -7 <= 0; value: -3 0: 1 5 1: 1 3 2: 2 5 3: 3 4 optimal: oo a 2*v0 + 3*v3 + 4 < 0; value: 18 a -6*v0 -3/2*v3 -16 < 0; value: -43 a v2 <= 0; value: 0 d -2*v1 -3*v3 -4 < 0; value: -2 a -1*v3 + 2 <= 0; value: 0 a v0 -6*v2 -7 <= 0; value: -3 0: 1 5 1: 1 3 2: 2 5 3: 3 4 1 0: 4 -> 4 1: 0 -> -4 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 -6 < 0; value: -1 a v3 -3 < 0; value: -1 a -5*v1 -4*v3 -20 <= 0; value: -43 a -3*v0 + 2*v1 + v3 <= 0; value: -1 a 2*v1 -2*v2 -5*v3 + 6 = 0; value: 0 0: 4 1: 3 4 5 2: 1 5 3: 2 3 4 5 optimal: oo a 2*v0 + 64/5 < 0; value: 94/5 a -121/2 < 0; value: -121/2 d -10/33*v2 -109/33 < 0; value: -10/33 d -5*v2 -33/2*v3 -5 <= 0; value: 0 a -3*v0 -49/5 < 0; value: -94/5 d 2*v1 -2*v2 -5*v3 + 6 = 0; value: 0 0: 4 1: 3 4 5 2: 1 5 3 4 2 3: 2 3 4 5 0: 3 -> 3 1: 3 -> -1016/165 2: 1 -> -99/10 3: 2 -> 89/33 a 2*v0 -2*v1 <= 0; value: 10 a -2*v0 + 4*v3 -29 <= 0; value: -19 a -3*v0 -2*v1 -3 <= 0; value: -18 a -2*v1 -6*v2 + 3 <= 0; value: -15 a -1*v0 + 3*v1 + 4 < 0; value: -1 a 3*v0 -3*v1 -4*v3 -2 <= 0; value: -7 0: 1 2 4 5 1: 2 3 4 5 2: 3 3: 1 5 optimal: oo a 4/3*v0 + 62/3 <= 0; value: 82/3 d v0 + 9*v2 -71/2 <= 0; value: 0 a -11/3*v0 + 53/3 <= 0; value: -2/3 d -2*v0 -6*v2 + 8/3*v3 + 13/3 <= 0; value: 0 a -27 < 0; value: -27 d 3*v0 -3*v1 -4*v3 -2 <= 0; value: 0 0: 1 2 4 5 3 1: 2 3 4 5 2: 3 2 1 4 3: 1 5 2 3 4 0: 5 -> 5 1: 0 -> -26/3 2: 3 -> 61/18 3: 5 -> 39/4 a 2*v0 -2*v1 <= 0; value: 2 a v0 + 2*v3 -3 <= 0; value: -1 a 2*v1 + 2*v3 -5 <= 0; value: -3 a 2*v0 + 6*v3 -7 <= 0; value: -3 a -5*v1 + v2 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 0: 1 3 5 1: 2 4 2: 4 3: 1 2 3 optimal: oo a 2*v0 -2/5*v2 -4/5 <= 0; value: 2 a v0 + 2*v3 -3 <= 0; value: -1 a 2/5*v2 + 2*v3 -21/5 <= 0; value: -3 a 2*v0 + 6*v3 -7 <= 0; value: -3 d -5*v1 + v2 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 0: 1 3 5 1: 2 4 2: 4 2 3: 1 2 3 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a -1*v0 -2*v2 + 15 = 0; value: 0 a 2*v1 -1*v3 + 1 <= 0; value: -2 a -1*v2 + v3 + 1 <= 0; value: -1 a v3 -3 = 0; value: 0 0: 1 1: 2 2: 1 3 3: 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a -1*v0 -2*v2 + 15 = 0; value: 0 a 2*v1 -1*v3 + 1 <= 0; value: -2 a -1*v2 + v3 + 1 <= 0; value: -1 a v3 -3 = 0; value: 0 0: 1 1: 2 2: 1 3 3: 2 3 4 0: 5 -> 5 1: 0 -> 0 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 -4*v1 -3*v2 -4 <= 0; value: -23 a 6*v0 + 5*v1 + 2*v3 -39 = 0; value: 0 a v0 -2*v2 + 4 = 0; value: 0 a 2*v1 + v2 -20 < 0; value: -7 a -5*v0 + 3*v2 + 1 <= 0; value: 0 0: 1 2 3 5 1: 1 2 4 2: 1 3 4 5 3: 2 optimal: (68/9 -e*1) a + 68/9 < 0; value: 68/9 d 49/5*v0 -3*v2 + 8/5*v3 -176/5 <= 0; value: 0 d 6*v0 + 5*v1 + 2*v3 -39 = 0; value: 0 d v0 -2*v2 + 4 = 0; value: 0 d 9/4*v0 -23 < 0; value: -9/4 a -259/9 < 0; value: -259/9 0: 1 2 3 5 4 1: 1 2 4 2: 1 3 4 5 3: 2 1 4 0: 2 -> 83/9 1: 5 -> 401/72 2: 3 -> 119/18 3: 1 -> -3181/144 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + 2*v2 + v3 -36 <= 0; value: -20 a -1*v0 + 3*v2 -5*v3 -2 < 0; value: -1 a 2*v1 + 3*v2 -37 < 0; value: -18 a -1*v1 + v3 <= 0; value: 0 a -4*v1 -1*v2 + 3 <= 0; value: -10 0: 2 1: 1 3 4 5 2: 1 2 3 5 3: 1 2 4 optimal: (574/5 -e*1) a + 574/5 < 0; value: 574/5 a -16 <= 0; value: -16 d -1*v0 + 3*v2 -5*v3 -2 < 0; value: -5 d 10/17*v0 -546/17 < 0; value: -10/17 d -1*v1 + v3 <= 0; value: 0 d 4/5*v0 -17/5*v2 + 23/5 <= 0; value: 0 0: 2 5 1 3 1: 1 3 4 5 2: 1 2 3 5 3: 1 2 4 5 3 0: 4 -> 268/5 1: 2 -> -148/85 2: 5 -> 1187/85 3: 2 -> -148/85 a 2*v0 -2*v1 <= 0; value: -8 a 2*v2 + v3 -9 <= 0; value: -4 a -5*v1 + 6*v2 -6*v3 + 19 = 0; value: 0 a v1 -5 = 0; value: 0 a 5*v2 -1*v3 -22 <= 0; value: -13 a 6*v0 + 2*v2 + v3 -29 <= 0; value: -18 0: 5 1: 2 3 2: 1 2 4 5 3: 1 2 4 5 optimal: oo a -1*v2 <= 0; value: -2 a 3*v2 -10 <= 0; value: -4 d -5*v1 + 6*v2 -6*v3 + 19 = 0; value: 0 d 6/5*v2 -6/5*v3 -6/5 = 0; value: 0 a 4*v2 -21 <= 0; value: -13 d 6*v0 + 3*v2 -30 <= 0; value: 0 0: 5 1: 2 3 2: 1 2 4 5 3 3: 1 2 4 5 3 0: 1 -> 4 1: 5 -> 5 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + v3 -16 <= 0; value: -8 a -3*v0 + 4*v1 + 4*v2 -38 < 0; value: -21 a -4*v0 + v1 -4*v2 -18 <= 0; value: -55 a v1 -1*v2 -4*v3 -8 < 0; value: -18 a v1 -2*v2 + 2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2 3 4 5 2: 2 3 4 5 3: 1 4 5 optimal: oo a 2*v0 -4*v2 + 4*v3 + 6 <= 0; value: 4 a 4*v2 -3*v3 -22 <= 0; value: -8 a -3*v0 + 12*v2 -8*v3 -50 < 0; value: -21 a -4*v0 -2*v2 -2*v3 -21 <= 0; value: -55 a v2 -6*v3 -11 < 0; value: -18 d v1 -2*v2 + 2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2 3 4 5 2: 2 3 4 5 1 3: 1 4 5 2 3 0: 5 -> 5 1: 3 -> 3 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -10 a -3*v0 + 5*v3 -28 <= 0; value: -18 a -1*v0 <= 0; value: 0 a 3*v0 + 3*v1 -34 < 0; value: -19 a v2 -1*v3 -1 < 0; value: -3 a 5*v2 + 4*v3 -21 <= 0; value: -13 0: 1 2 3 1: 3 2: 4 5 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a -3*v0 + 5*v3 -28 <= 0; value: -18 a -1*v0 <= 0; value: 0 a 3*v0 + 3*v1 -34 < 0; value: -19 a v2 -1*v3 -1 < 0; value: -3 a 5*v2 + 4*v3 -21 <= 0; value: -13 0: 1 2 3 1: 3 2: 4 5 3: 1 4 5 0: 0 -> 0 1: 5 -> 5 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a v1 -2 < 0; value: -1 a 5*v1 -2*v3 -7 <= 0; value: -2 a -3*v0 -2*v1 < 0; value: -2 a -3*v1 -6*v2 + 4*v3 + 31 <= 0; value: -2 a 2*v1 -3*v3 -4 <= 0; value: -2 0: 3 1: 1 2 3 4 5 2: 4 3: 2 4 5 optimal: oo a 60*v2 -770/3 < 0; value: 130/3 a -18*v2 + 75 < 0; value: -15 a -66*v2 + 278 < 0; value: -52 d -3*v0 + 4*v2 -8/3*v3 -62/3 < 0; value: -8/3 d -3*v1 -6*v2 + 4*v3 + 31 <= 0; value: 0 d 3/8*v0 -9/2*v2 + 77/4 <= 0; value: 0 0: 3 5 2 1 1: 1 2 3 4 5 2: 4 3 1 2 5 1 3: 2 4 5 3 1 0: 0 -> 26/3 1: 1 -> -35/3 2: 5 -> 5 3: 0 -> -9 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 5*v1 + 6*v2 -100 <= 0; value: -45 a -4*v0 -1*v1 + 4 < 0; value: -17 a v0 -5*v2 + 3*v3 + 1 < 0; value: -1 a 4*v0 -23 <= 0; value: -7 a 2*v0 -6*v3 -3 < 0; value: -13 0: 1 2 3 4 5 1: 1 2 2: 1 3 3: 3 5 optimal: (99/2 -e*1) a + 99/2 < 0; value: 99/2 a 6*v2 -711/4 < 0; value: -639/4 d -4*v0 -1*v1 + 4 < 0; value: -1 d v0 -5*v2 + 3*v3 + 1 < 0; value: -7/8 d 20*v2 -12*v3 -27 <= 0; value: 0 a -10*v2 + 22 <= 0; value: -8 0: 1 2 3 4 5 1: 1 2 2: 1 3 4 5 3: 3 5 4 1 0: 4 -> 39/8 1: 5 -> -29/2 2: 3 -> 3 3: 3 -> 11/4 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -5 <= 0; value: -11 a 2*v1 -17 < 0; value: -11 a 2*v0 -5*v3 -3 <= 0; value: -7 a -6*v0 + 3*v2 + 1 <= 0; value: -17 a 3*v3 -11 < 0; value: -5 0: 1 3 4 1: 2 2: 4 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -5 <= 0; value: -11 a 2*v1 -17 < 0; value: -11 a 2*v0 -5*v3 -3 <= 0; value: -7 a -6*v0 + 3*v2 + 1 <= 0; value: -17 a 3*v3 -11 < 0; value: -5 0: 1 3 4 1: 2 2: 4 3: 3 5 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 -4*v3 -3 < 0; value: -18 a 2*v0 -15 <= 0; value: -5 a 4*v1 -4*v2 -3*v3 -8 = 0; value: 0 a v0 -6*v2 -6*v3 -6 < 0; value: -1 a 3*v0 + v2 -15 = 0; value: 0 0: 1 2 4 5 1: 3 2: 3 4 5 3: 1 3 4 optimal: (115/8 -e*1) a + 115/8 < 0; value: 115/8 a -113/2 <= 0; value: -113/2 d 2*v0 -15 <= 0; value: 0 d 4*v1 -4*v2 -3*v3 -8 = 0; value: 0 d v0 -6*v2 -6*v3 -6 < 0; value: -6 d 3*v0 + v2 -15 = 0; value: 0 0: 1 2 4 5 1: 3 2: 3 4 5 1 3: 1 3 4 0: 5 -> 15/2 1: 2 -> 17/16 2: 0 -> -15/2 3: 0 -> 35/4 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -4*v2 -5*v3 + 1 <= 0; value: -8 a 3*v0 -17 <= 0; value: -2 a -1*v0 + 2*v2 + 3*v3 -20 <= 0; value: -11 a -5*v0 + 4*v2 -1*v3 + 25 = 0; value: 0 a -2*v0 + 6*v1 -1*v3 -10 = 0; value: 0 0: 1 2 3 4 5 1: 5 2: 1 3 4 3: 1 3 4 5 optimal: 92/27 a + 92/27 <= 0; value: 92/27 d 28*v0 -24*v2 -124 <= 0; value: 0 d 3*v0 -17 <= 0; value: 0 a -139/9 <= 0; value: -139/9 d -5*v0 + 4*v2 -1*v3 + 25 = 0; value: 0 d -2*v0 + 6*v1 -1*v3 -10 = 0; value: 0 0: 1 2 3 4 5 1: 5 2: 1 3 4 3: 1 3 4 5 0: 5 -> 17/3 1: 4 -> 107/27 2: 1 -> 13/9 3: 4 -> 22/9 a 2*v0 -2*v1 <= 0; value: 4 a -4*v1 -2*v2 + 3 < 0; value: -19 a 4*v0 -1*v1 -17 = 0; value: 0 a -1*v2 -2*v3 + 7 <= 0; value: 0 a v0 + 6*v1 -45 <= 0; value: -22 a 4*v2 + v3 -33 < 0; value: -12 0: 2 4 1: 1 2 4 2: 1 3 5 3: 3 5 optimal: (767/56 -e*1) a + 767/56 < 0; value: 767/56 d -16*v0 -2*v2 + 71 < 0; value: -82/7 d 4*v0 -1*v1 -17 = 0; value: 0 d -7/4*v3 -5/4 < 0; value: -3/2 a -6989/112 < 0; value: -6989/112 d 4*v2 + v3 -33 < 0; value: -4 0: 2 4 1 1: 1 2 4 2: 1 3 5 4 3: 3 5 4 0: 5 -> 239/56 1: 3 -> 1/14 2: 5 -> 101/14 3: 1 -> 1/7 a 2*v0 -2*v1 <= 0; value: -4 a -6*v1 -1*v2 -4 < 0; value: -36 a -5*v0 + 5*v1 + 2*v2 -14 = 0; value: 0 a 3*v1 -35 < 0; value: -20 a -1*v0 + 2 <= 0; value: -1 a v0 -3 = 0; value: 0 0: 2 4 5 1: 1 2 3 2: 1 2 3: optimal: (116/7 -e*1) a + 116/7 < 0; value: 116/7 d -6*v0 + 7/5*v2 -104/5 < 0; value: -7/5 d -5*v0 + 5*v1 + 2*v2 -14 = 0; value: 0 a -356/7 < 0; value: -356/7 a -1 <= 0; value: -1 d v0 -3 = 0; value: 0 0: 2 4 5 1 3 1: 1 2 3 2: 1 2 3 3: 0: 3 -> 3 1: 5 -> -171/35 2: 2 -> 187/7 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 4*v2 -11 = 0; value: 0 a -4*v0 + 5*v3 -16 <= 0; value: -36 a 4*v1 -3*v2 -8 = 0; value: 0 a -1*v0 + v1 <= 0; value: 0 a 5*v1 + v2 -68 <= 0; value: -39 0: 1 2 4 1: 3 4 5 2: 1 3 5 3: 2 optimal: 1014/19 a + 1014/19 <= 0; value: 1014/19 d -1*v0 + 4*v2 -11 = 0; value: 0 a 5*v3 -3180/19 <= 0; value: -3180/19 d 4*v1 -3*v2 -8 = 0; value: 0 a -507/19 <= 0; value: -507/19 d 19/16*v0 -719/16 <= 0; value: 0 0: 1 2 4 5 1: 3 4 5 2: 1 3 5 4 3: 2 0: 5 -> 719/19 1: 5 -> 212/19 2: 4 -> 232/19 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 + 4*v2 -26 <= 0; value: -14 a 6*v2 + 5*v3 -94 < 0; value: -56 a -6*v1 -1*v3 + 2 < 0; value: -20 a v1 -3 = 0; value: 0 a 5*v0 -1*v1 + 3*v2 -6 <= 0; value: 0 0: 1 5 1: 3 4 5 2: 1 2 5 3: 2 3 optimal: oo a -6/5*v2 -12/5 <= 0; value: -6 a v2 -17 <= 0; value: -14 a 6*v2 + 5*v3 -94 < 0; value: -56 a -1*v3 -16 < 0; value: -20 d v1 -3 = 0; value: 0 d 5*v0 + 3*v2 -9 <= 0; value: 0 0: 1 5 1: 3 4 5 2: 1 2 5 3: 2 3 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v2 -6*v3 + 1 <= 0; value: -5 a 3*v0 -5*v2 + 6 <= 0; value: -2 a 5*v1 + 3*v2 + 6*v3 -74 <= 0; value: -34 a 3*v2 + 2*v3 -47 <= 0; value: -29 a -6*v0 -2*v1 -3*v3 -9 <= 0; value: -46 0: 2 5 1: 3 5 2: 1 2 3 4 3: 1 3 4 5 optimal: 1499/9 a + 1499/9 <= 0; value: 1499/9 d 36/5*v0 -628/5 <= 0; value: 0 d 3*v0 -5*v2 + 6 <= 0; value: 0 a -1993/6 <= 0; value: -1993/6 d 3*v2 + 2*v3 -47 <= 0; value: 0 d -6*v0 -2*v1 -3*v3 -9 <= 0; value: 0 0: 2 5 3 1 1: 3 5 2: 1 2 3 4 3: 1 3 4 5 0: 4 -> 157/9 1: 2 -> -395/6 2: 4 -> 35/3 3: 3 -> 6 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 + 4*v1 + 3*v3 -10 <= 0; value: 0 a -2*v1 -1*v3 + 12 = 0; value: 0 a -1*v1 -1 <= 0; value: -5 a -3*v2 + 2*v3 -3 < 0; value: -7 a -1*v0 <= 0; value: -3 0: 1 5 1: 1 2 3 2: 4 3: 1 2 4 optimal: (34/3 -e*1) a + 34/3 < 0; value: 34/3 d -6*v0 + v3 + 14 <= 0; value: 0 d -2*v1 -1*v3 + 12 = 0; value: 0 d 3/4*v2 -25/4 <= 0; value: 0 d 12*v0 -3*v2 -31 < 0; value: -10 a -14/3 < 0; value: -14/3 0: 1 5 4 3 1: 1 2 3 2: 4 3 5 3: 1 2 4 3 0: 3 -> 23/6 1: 4 -> 3/2 2: 4 -> 25/3 3: 4 -> 9 a 2*v0 -2*v1 <= 0; value: -4 a -1*v3 + 2 <= 0; value: 0 a v1 + v2 -13 <= 0; value: -4 a -5*v1 -2*v3 + 29 = 0; value: 0 a 5*v0 -21 <= 0; value: -6 a -5*v1 -2*v2 -7 <= 0; value: -40 0: 4 1: 2 3 5 2: 2 5 3: 1 3 optimal: 152/5 a + 152/5 <= 0; value: 152/5 a -40 <= 0; value: -40 d 3/5*v2 -72/5 <= 0; value: 0 d -5*v1 -2*v3 + 29 = 0; value: 0 d 5*v0 -21 <= 0; value: 0 d -2*v2 + 2*v3 -36 <= 0; value: 0 0: 4 1: 2 3 5 2: 2 5 1 3: 1 3 5 2 0: 3 -> 21/5 1: 5 -> -11 2: 4 -> 24 3: 2 -> 42 a 2*v0 -2*v1 <= 0; value: 4 a 4*v0 -4*v1 + 5*v2 -31 <= 0; value: -3 a -1*v1 -3*v2 + 8 <= 0; value: -6 a 6*v2 -3*v3 -13 <= 0; value: -4 a 6*v1 + v2 + 3*v3 -31 = 0; value: 0 a -3*v1 -1*v3 + 9 <= 0; value: -2 0: 1 1: 1 2 4 5 2: 1 2 3 4 3: 3 4 5 optimal: 321/22 a + 321/22 <= 0; value: 321/22 d 4*v0 + 17/3*v2 + 2*v3 -155/3 <= 0; value: 0 d -1*v0 -17/4*v2 + 63/4 <= 0; value: 0 d 44/17*v0 -625/17 <= 0; value: 0 d 6*v1 + v2 + 3*v3 -31 = 0; value: 0 a -268/33 <= 0; value: -268/33 0: 1 2 5 3 1: 1 2 4 5 2: 1 2 3 4 5 3: 3 4 5 2 1 0: 4 -> 625/44 1: 2 -> 76/11 2: 4 -> 4/11 3: 5 -> -119/33 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -1*v0 -5*v3 -5 <= 0; value: -22 a 3*v1 -3*v2 + 2*v3 -9 = 0; value: 0 a 5*v0 + v2 + 5*v3 -36 <= 0; value: -10 a -3*v0 -5*v1 + 5*v2 -9 <= 0; value: -20 0: 1 2 4 5 1: 3 5 2: 3 4 5 3: 2 3 4 optimal: 48 a + 48 <= 0; value: 48 d -1*v0 + 2 = 0; value: 0 a -52 <= 0; value: -52 d 3*v1 -3*v2 + 2*v3 -9 = 0; value: 0 d 5*v0 + v2 + 5*v3 -36 <= 0; value: 0 d -19/3*v0 -2/3*v2 <= 0; value: 0 0: 1 2 4 5 1: 3 5 2: 3 4 5 5 2 3: 2 3 4 5 0: 2 -> 2 1: 2 -> -22 2: 1 -> -19 3: 3 -> 9 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 3 = 0; value: 0 a 3*v0 + v1 -7 <= 0; value: -3 a -1*v1 -1*v2 + 1 < 0; value: -3 a -5*v1 + 4 < 0; value: -1 a 5*v0 + 6*v2 + v3 -29 <= 0; value: -3 0: 2 5 1: 2 3 4 2: 3 5 3: 1 5 optimal: (38/15 -e*1) a + 38/15 < 0; value: 38/15 d -1*v3 + 3 = 0; value: 0 d -18/5*v2 + 47/5 < 0; value: -7/10 a -217/90 <= 0; value: -217/90 d -5*v1 + 4 < 0; value: -1/2 d 5*v0 + 6*v2 + v3 -29 <= 0; value: 0 0: 2 5 1: 2 3 4 2: 3 5 2 3: 1 5 2 0: 1 -> 11/6 1: 1 -> 9/10 2: 3 -> 101/36 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 + 4*v2 + 3*v3 <= 0; value: 0 a -1*v1 + v2 + 2 <= 0; value: 0 a -6*v1 + 5 <= 0; value: -7 a -4*v0 -6*v3 + 5 < 0; value: -11 a v1 -2 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 2 3: 1 4 optimal: oo a 2*v0 -4 <= 0; value: -2 d -3*v1 + 4*v2 + 3*v3 <= 0; value: 0 d -1/3*v2 -1*v3 + 2 <= 0; value: 0 a -7 <= 0; value: -7 a -4*v0 -7 < 0; value: -11 d v2 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 2 3 5 4 3: 1 4 2 3 5 0: 1 -> 1 1: 2 -> 2 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v2 -3*v3 + 8 <= 0; value: -7 a -6*v1 + 5*v2 + 4*v3 -20 = 0; value: 0 a -4*v2 -1*v3 + 4 <= 0; value: -1 a -1*v1 <= 0; value: 0 a 6*v0 + v2 -36 <= 0; value: -18 0: 5 1: 2 4 2: 1 2 3 5 3: 1 2 3 optimal: 400/33 a + 400/33 <= 0; value: 400/33 a -96/11 <= 0; value: -96/11 d -6*v1 + 5*v2 + 4*v3 -20 = 0; value: 0 d -11/4*v2 -1 <= 0; value: 0 d -5/6*v2 -2/3*v3 + 10/3 <= 0; value: 0 d 6*v0 + v2 -36 <= 0; value: 0 0: 5 1: 2 4 2: 1 2 3 5 4 3: 1 2 3 4 0: 3 -> 200/33 1: 0 -> 0 2: 0 -> -4/11 3: 5 -> 60/11 a 2*v0 -2*v1 <= 0; value: -8 a -1*v1 -6*v2 + 11 = 0; value: 0 a v2 -3*v3 + 14 = 0; value: 0 a -2*v1 -1*v3 + 8 <= 0; value: -7 a 5*v2 -14 < 0; value: -9 a 4*v1 -3*v2 -47 < 0; value: -30 0: 1: 1 3 5 2: 1 2 4 5 3: 2 3 optimal: oo a 2*v0 -14/5 <= 0; value: -4/5 d -1*v1 -6*v2 + 11 = 0; value: 0 d v2 -3*v3 + 14 = 0; value: 0 d 35*v3 -182 <= 0; value: 0 a -6 < 0; value: -6 a -231/5 < 0; value: -231/5 0: 1: 1 3 5 2: 1 2 4 5 3 3: 2 3 4 5 0: 1 -> 1 1: 5 -> 7/5 2: 1 -> 8/5 3: 5 -> 26/5 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + 1 = 0; value: 0 a -6*v0 + v1 + 3 = 0; value: 0 a -5*v0 + 5*v1 -11 <= 0; value: -1 a 4*v2 -3*v3 -16 <= 0; value: -5 a -2*v1 + 2*v2 -11 <= 0; value: -7 0: 1 2 3 1: 2 3 5 2: 4 5 3: 4 optimal: -4 a -4 <= 0; value: -4 d -1*v0 + 1 = 0; value: 0 d -6*v0 + v1 + 3 = 0; value: 0 a -1 <= 0; value: -1 a 4*v2 -3*v3 -16 <= 0; value: -5 a 2*v2 -17 <= 0; value: -7 0: 1 2 3 5 1: 2 3 5 2: 4 5 3: 4 0: 1 -> 1 1: 3 -> 3 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -1*v1 + 1 = 0; value: 0 a 5*v1 -1*v2 + 2*v3 -11 <= 0; value: -3 a -2*v1 + v2 <= 0; value: 0 a -4*v1 -1*v2 -6*v3 + 6 <= 0; value: -18 a -1*v1 <= 0; value: 0 0: 1 1: 1 2 3 4 5 2: 2 3 4 3: 2 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 -1*v1 + 1 = 0; value: 0 a 2*v3 -11 <= 0; value: -3 d 2*v0 + v2 -2 <= 0; value: 0 a -6*v3 + 6 <= 0; value: -18 d -1/2*v2 <= 0; value: 0 0: 1 3 4 5 2 1: 1 2 3 4 5 2: 2 3 4 5 3: 2 4 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 -1*v3 -2 < 0; value: -20 a -4*v1 -1*v2 + 3*v3 -1 <= 0; value: -13 a -3*v0 + 2*v2 -3*v3 + 14 = 0; value: 0 a -1*v0 + 4*v1 -5*v2 -7 <= 0; value: -21 a 3*v3 -16 <= 0; value: -7 0: 1 3 4 1: 2 4 2: 2 3 4 3: 1 2 3 5 optimal: oo a 4*v0 -29/4 <= 0; value: 51/4 a -4/3*v0 -23/3 < 0; value: -43/3 d -4*v1 -1*v2 + 3*v3 -1 <= 0; value: 0 d -3*v0 + 2*v2 -3*v3 + 14 = 0; value: 0 d -4*v0 -4*v2 + 6 <= 0; value: 0 a -5*v0 + 1 <= 0; value: -24 0: 1 3 4 5 1: 2 4 2: 2 3 4 1 5 3: 1 2 3 5 4 0: 5 -> 5 1: 4 -> -11/8 2: 5 -> -7/2 3: 3 -> -8/3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + v2 + 3 = 0; value: 0 a v0 + 3*v1 + 2*v3 -24 <= 0; value: 0 a 2*v1 -4*v2 + v3 -6 <= 0; value: -2 a v0 -9 <= 0; value: -4 a -3*v0 + 5*v2 -3 < 0; value: -8 0: 2 4 5 1: 1 2 3 2: 1 3 5 3: 2 3 optimal: oo a 2*v0 -1*v3 -6 <= 0; value: 2 d -1*v1 + v2 + 3 = 0; value: 0 a v0 + 7/2*v3 -15 <= 0; value: -3 d -2*v2 + v3 <= 0; value: 0 a v0 -9 <= 0; value: -4 a -3*v0 + 5/2*v3 -3 < 0; value: -13 0: 2 4 5 1: 1 2 3 2: 1 3 5 2 3: 2 3 5 0: 5 -> 5 1: 5 -> 4 2: 2 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 + 5*v2 -41 < 0; value: -18 a 2*v0 + 4*v3 -45 < 0; value: -25 a 5*v0 -4*v3 -14 <= 0; value: -6 a -1*v1 + 2*v2 -5 = 0; value: 0 a -5*v2 -8 < 0; value: -23 0: 1 2 3 1: 4 2: 1 4 5 3: 2 3 optimal: (1164/35 -e*1) a + 1164/35 < 0; value: 1164/35 a -225/7 <= 0; value: -225/7 d 28/5*v3 -197/5 < 0; value: -28/5 d 5*v0 -4*v3 -14 <= 0; value: 0 d -1*v1 + 2*v2 -5 = 0; value: 0 d -5*v2 -8 < 0; value: -5 0: 1 2 3 1: 4 2: 1 4 5 3: 2 3 1 0: 4 -> 267/35 1: 1 -> -31/5 2: 3 -> -3/5 3: 3 -> 169/28 a 2*v0 -2*v1 <= 0; value: 0 a 2*v2 -25 < 0; value: -15 a -5*v0 + 3*v1 + 6*v2 -57 <= 0; value: -33 a -1*v2 + 5 = 0; value: 0 a v1 -1*v3 -3 = 0; value: 0 a 3*v1 -5*v2 -13 <= 0; value: -29 0: 2 1: 2 4 5 2: 1 2 3 5 3: 4 optimal: oo a 2*v0 -2*v3 -6 <= 0; value: 0 a 2*v2 -25 < 0; value: -15 a -5*v0 + 6*v2 + 3*v3 -48 <= 0; value: -33 a -1*v2 + 5 = 0; value: 0 d v1 -1*v3 -3 = 0; value: 0 a -5*v2 + 3*v3 -4 <= 0; value: -29 0: 2 1: 2 4 5 2: 1 2 3 5 3: 4 2 5 0: 3 -> 3 1: 3 -> 3 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a v0 -5 = 0; value: 0 a v0 -3*v3 + 10 <= 0; value: 0 a -4*v0 -6*v1 -5*v2 + 25 = 0; value: 0 a -5*v2 + v3 <= 0; value: 0 a -3*v0 -3*v1 + 2*v3 -4 < 0; value: -9 0: 1 2 3 5 1: 3 5 2: 3 4 3: 2 4 5 optimal: (16 -e*1) a + 16 < 0; value: 16 d v0 -5 = 0; value: 0 d v0 -3*v3 + 10 <= 0; value: 0 d -4*v0 -6*v1 -5*v2 + 25 = 0; value: 0 a -18 < 0; value: -18 d -1*v0 + 5/2*v2 + 2*v3 -33/2 < 0; value: -5/2 0: 1 2 3 5 4 1: 3 5 2: 3 4 5 3: 2 4 5 0: 5 -> 5 1: 0 -> -13/6 2: 1 -> 18/5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -3*v2 -5 <= 0; value: -20 a -3*v1 + v2 -3*v3 -8 < 0; value: -24 a -4*v0 -5*v2 -3*v3 + 39 = 0; value: 0 a -4*v2 -1*v3 -12 <= 0; value: -34 a -1*v1 -6*v2 + 2*v3 + 17 < 0; value: -14 0: 3 1: 2 5 2: 1 2 3 4 5 3: 2 3 4 5 optimal: (1289/55 -e*1) a + 1289/55 < 0; value: 1289/55 a -128/55 <= 0; value: -128/55 d -3*v1 + v2 -3*v3 -8 < 0; value: -39/55 d -4*v0 -5*v2 -3*v3 + 39 = 0; value: 0 d 110/51*v0 -1891/51 <= 0; value: 0 d -4*v0 -34/3*v2 + 176/3 <= 0; value: 0 0: 3 5 4 1 1: 2 5 2: 1 2 3 4 5 3: 2 3 4 5 0: 2 -> 1891/110 1: 5 -> 314/55 2: 5 -> -49/55 3: 2 -> -464/55 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 6*v2 -14 = 0; value: 0 a v0 -3*v1 -6*v2 + 17 = 0; value: 0 a 6*v0 -2*v2 -23 <= 0; value: -5 a -3*v1 -4*v2 + 15 = 0; value: 0 a 4*v2 -3*v3 -6 <= 0; value: -3 0: 1 2 3 1: 2 4 2: 1 2 3 4 5 3: 5 optimal: 6 a + 6 <= 0; value: 6 d -1*v0 + 6*v2 -14 = 0; value: 0 d v0 -3*v1 -6*v2 + 17 = 0; value: 0 a -5 <= 0; value: -5 d -2/3*v0 + 8/3 = 0; value: 0 a -3*v3 + 6 <= 0; value: -3 0: 1 2 3 4 5 1: 2 4 2: 1 2 3 4 5 3: 5 0: 4 -> 4 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + v1 <= 0; value: 0 a -5*v0 + 4*v3 <= 0; value: 0 a -1*v0 -1*v1 <= 0; value: 0 a -1*v0 + v1 + v3 <= 0; value: 0 a v0 <= 0; value: 0 0: 1 2 3 4 5 1: 1 3 4 2: 3: 2 4 optimal: 0 a <= 0; value: 0 a <= 0; value: 0 a 4*v3 <= 0; value: 0 d -1*v0 -1*v1 <= 0; value: 0 a v3 <= 0; value: 0 d v0 <= 0; value: 0 0: 1 2 3 4 5 1: 1 3 4 2: 3: 2 4 0: 0 -> 0 1: 0 -> 0 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -3*v3 + 1 < 0; value: -2 a -5*v0 + 3*v3 -3 <= 0; value: -15 a -1*v0 -1*v2 -6 < 0; value: -13 a -2*v0 + 4*v1 + 3 <= 0; value: -3 a -4*v1 + v3 -2 < 0; value: -1 0: 2 3 4 1: 1 4 5 2: 3 3: 1 2 5 optimal: oo a 2*v0 + 1 < 0; value: 7 d -5/2*v3 < 0; value: -5/4 a -5*v0 -3 < 0; value: -18 a -1*v0 -1*v2 -6 < 0; value: -13 a -2*v0 + 1 < 0; value: -5 d -4*v1 + v3 -2 < 0; value: -3/4 0: 2 3 4 1: 1 4 5 2: 3 3: 1 2 5 4 0: 3 -> 3 1: 0 -> -3/16 2: 4 -> 4 3: 1 -> 1/2 a 2*v0 -2*v1 <= 0; value: -8 a 2*v1 + v2 -18 <= 0; value: -3 a v0 + 3*v2 + 3*v3 -44 <= 0; value: -28 a -4*v0 -1*v2 -4*v3 -7 <= 0; value: -16 a v0 -1 <= 0; value: 0 a 3*v2 -2*v3 -15 = 0; value: 0 0: 2 3 4 1: 1 2: 1 2 3 5 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a 2*v1 + v2 -18 <= 0; value: -3 a v0 + 3*v2 + 3*v3 -44 <= 0; value: -28 a -4*v0 -1*v2 -4*v3 -7 <= 0; value: -16 a v0 -1 <= 0; value: 0 a 3*v2 -2*v3 -15 = 0; value: 0 0: 2 3 4 1: 1 2: 1 2 3 5 3: 2 3 5 0: 1 -> 1 1: 5 -> 5 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 + 5*v3 -14 = 0; value: 0 a -3*v2 -5*v3 -31 <= 0; value: -66 a 3*v2 -2*v3 -16 <= 0; value: -9 a -1*v0 -4*v1 + 23 = 0; value: 0 a -1*v1 + 5 = 0; value: 0 0: 1 4 1: 4 5 2: 2 3 3: 1 2 3 optimal: -4 a -4 <= 0; value: -4 d -2*v0 + 5*v3 -14 = 0; value: 0 a -3*v2 -51 <= 0; value: -66 a 3*v2 -24 <= 0; value: -9 d -1*v0 -4*v1 + 23 = 0; value: 0 d 5/8*v3 -5/2 = 0; value: 0 0: 1 4 5 1: 4 5 2: 2 3 3: 1 2 3 5 0: 3 -> 3 1: 5 -> 5 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 2*v2 -18 < 0; value: -11 a 2*v2 -3 <= 0; value: -1 a -3*v1 + 2*v2 -2 <= 0; value: -9 a -6*v0 -5*v1 -2*v3 < 0; value: -23 a -1*v2 < 0; value: -1 0: 1 4 1: 3 4 2: 1 2 3 5 3: 4 optimal: (128/15 -e*1) a + 128/15 < 0; value: 128/15 d 5*v0 -18 < 0; value: -5 a -3 < 0; value: -3 d -3*v1 + 2*v2 -2 <= 0; value: 0 a -2*v3 -274/15 < 0; value: -304/15 d -1*v2 < 0; value: -1/2 0: 1 4 1: 3 4 2: 1 2 3 5 4 3: 4 0: 1 -> 13/5 1: 3 -> -1/3 2: 1 -> 1/2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 -3*v3 -7 < 0; value: -34 a -1*v0 -6*v1 + 2*v2 + 19 = 0; value: 0 a 6*v1 -31 < 0; value: -13 a -3*v1 + 2*v2 -1 <= 0; value: -6 a -3*v3 + 11 <= 0; value: -1 0: 1 2 1: 2 3 4 2: 2 4 3: 1 5 optimal: oo a 7/3*v0 -2/3*v2 -19/3 <= 0; value: 4 a -3*v0 -3*v3 -7 < 0; value: -34 d -1*v0 -6*v1 + 2*v2 + 19 = 0; value: 0 a -1*v0 + 2*v2 -12 < 0; value: -13 a 1/2*v0 + v2 -21/2 <= 0; value: -6 a -3*v3 + 11 <= 0; value: -1 0: 1 2 4 3 1: 2 3 4 2: 2 4 3 3: 1 5 0: 5 -> 5 1: 3 -> 3 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -6*v2 -3 <= 0; value: -9 a -6*v0 + 3*v1 + v3 + 8 = 0; value: 0 a -2*v0 -2*v1 -7 <= 0; value: -17 a -5*v2 + 4 < 0; value: -11 a 3*v0 + v2 -13 <= 0; value: -1 0: 1 2 3 5 1: 2 3 2: 1 4 5 3: 2 optimal: 239/11 a + 239/11 <= 0; value: 239/11 d -22/3*v2 + 43/3 <= 0; value: 0 d -6*v0 + 3*v1 + v3 + 8 = 0; value: 0 d -6*v0 + 2/3*v3 -5/3 <= 0; value: 0 a -127/22 < 0; value: -127/22 d 3*v0 + v2 -13 <= 0; value: 0 0: 1 2 3 5 1: 2 3 2: 1 4 5 3: 2 3 0: 3 -> 81/22 1: 2 -> -79/11 2: 3 -> 43/22 3: 4 -> 392/11 a 2*v0 -2*v1 <= 0; value: 8 a v0 + 2*v1 + 5*v3 -34 <= 0; value: -10 a 2*v2 -7 <= 0; value: -3 a -5*v0 -1*v2 + 22 = 0; value: 0 a v0 -3*v2 -4*v3 + 5 <= 0; value: -13 a -3*v3 + 4 < 0; value: -8 0: 1 3 4 1: 1 2: 2 3 4 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v0 + 2*v1 + 5*v3 -34 <= 0; value: -10 a 2*v2 -7 <= 0; value: -3 a -5*v0 -1*v2 + 22 = 0; value: 0 a v0 -3*v2 -4*v3 + 5 <= 0; value: -13 a -3*v3 + 4 < 0; value: -8 0: 1 3 4 1: 1 2: 2 3 4 3: 1 4 5 0: 4 -> 4 1: 0 -> 0 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a 4*v0 -3*v1 <= 0; value: -12 a v1 -1*v2 = 0; value: 0 a 6*v0 -1*v2 -1 <= 0; value: -5 a 5*v0 -5*v2 + 19 <= 0; value: -1 a -6*v2 -6*v3 + 19 <= 0; value: -17 0: 1 3 4 1: 1 2 2: 2 3 4 5 3: 5 optimal: -38/5 a -38/5 <= 0; value: -38/5 a v0 -57/5 <= 0; value: -57/5 d v1 -1*v2 = 0; value: 0 a 5*v0 -24/5 <= 0; value: -24/5 d 5*v0 -5*v2 + 19 <= 0; value: 0 a -6*v0 -6*v3 -19/5 <= 0; value: -79/5 0: 1 3 4 5 1: 1 2 2: 2 3 4 5 1 3: 5 0: 0 -> 0 1: 4 -> 19/5 2: 4 -> 19/5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -2*v3 -3 <= 0; value: -7 a v3 -2 <= 0; value: -1 a v1 + 5*v2 -22 < 0; value: -11 a -5*v0 + v2 + 7 <= 0; value: -1 a -5*v0 -1*v2 -6*v3 -16 < 0; value: -34 0: 1 4 5 1: 3 2: 3 4 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -2*v3 -3 <= 0; value: -7 a v3 -2 <= 0; value: -1 a v1 + 5*v2 -22 < 0; value: -11 a -5*v0 + v2 + 7 <= 0; value: -1 a -5*v0 -1*v2 -6*v3 -16 < 0; value: -34 0: 1 4 5 1: 3 2: 3 4 5 3: 1 2 5 0: 2 -> 2 1: 1 -> 1 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -1*v1 -4*v3 -4 <= 0; value: -23 a -6*v0 -1*v1 + 3 = 0; value: 0 a -2*v1 -6*v2 -5*v3 + 7 <= 0; value: -19 a -1*v0 + 3*v3 -33 <= 0; value: -21 a -2*v0 + 6*v1 -33 < 0; value: -15 0: 1 2 4 5 1: 1 2 3 5 2: 3 3: 1 3 4 optimal: 1011/10 a + 1011/10 <= 0; value: 1011/10 d 120/31*v2 -501/31 <= 0; value: 0 d -6*v0 -1*v1 + 3 = 0; value: 0 d 12*v0 -6*v2 -5*v3 + 1 <= 0; value: 0 d -1/2*v2 + 31/12*v3 -395/12 <= 0; value: 0 a -3057/10 < 0; value: -3057/10 0: 1 2 4 5 3 1: 1 2 3 5 2: 3 1 4 5 3: 1 3 4 5 0: 0 -> 153/20 1: 3 -> -429/10 2: 0 -> 167/40 3: 4 -> 271/20 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 -1*v2 + 10 = 0; value: 0 a v0 -5*v2 + 2*v3 -7 < 0; value: -15 a 5*v0 -1*v2 -16 <= 0; value: 0 a 2*v1 -17 <= 0; value: -11 a v3 -7 < 0; value: -3 0: 2 3 1: 1 4 2: 1 2 3 3: 2 5 optimal: oo a 2*v0 + v2 -10 <= 0; value: 2 d -2*v1 -1*v2 + 10 = 0; value: 0 a v0 -5*v2 + 2*v3 -7 < 0; value: -15 a 5*v0 -1*v2 -16 <= 0; value: 0 a -1*v2 -7 <= 0; value: -11 a v3 -7 < 0; value: -3 0: 2 3 1: 1 4 2: 1 2 3 4 3: 2 5 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 -4*v2 + 31 = 0; value: 0 a -6*v0 + 5*v1 -5*v2 -5 <= 0; value: -40 a 4*v0 + v2 + 4*v3 -24 = 0; value: 0 a 6*v0 + v2 -5*v3 -34 = 0; value: 0 a -3*v1 + 5*v2 -11 = 0; value: 0 0: 1 2 3 4 1: 2 5 2: 1 2 3 4 5 3: 3 4 optimal: 4 a + 4 <= 0; value: 4 d -3*v0 -4*v2 + 31 = 0; value: 0 a -40 <= 0; value: -40 d 13/4*v0 + 4*v3 -65/4 = 0; value: 0 d -149/13*v3 = 0; value: 0 d -3*v1 + 5*v2 -11 = 0; value: 0 0: 1 2 3 4 1: 2 5 2: 1 2 3 4 5 3: 3 4 2 0: 5 -> 5 1: 3 -> 3 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 -3*v1 + v3 + 8 < 0; value: -2 a v0 + v1 -11 <= 0; value: -6 a -3*v0 + 5*v1 -5*v3 -5 < 0; value: -3 a 6*v1 + 5*v2 -80 <= 0; value: -41 a -1*v3 + 3 = 0; value: 0 0: 1 2 3 1: 1 2 3 4 2: 4 3: 1 3 5 optimal: (22 -e*1) a + 22 < 0; value: 22 d -1*v0 -3*v1 + v3 + 8 < 0; value: -3 d 2/3*v0 -22/3 < 0; value: -2/3 a -53 < 0; value: -53 a 5*v2 -80 < 0; value: -65 d -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 1: 1 2 3 4 2: 4 3: 1 3 5 2 4 0: 1 -> 10 1: 4 -> 4/3 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a 4*v1 + 3*v3 -67 < 0; value: -40 a -5*v2 -5*v3 -26 <= 0; value: -76 a 5*v3 -56 <= 0; value: -31 a 4*v1 + 3*v3 -27 = 0; value: 0 a -3*v3 -13 < 0; value: -28 0: 1: 1 4 2: 2 3: 1 2 3 4 5 optimal: oo a 2*v0 + 33/10 <= 0; value: 33/10 a -40 < 0; value: -40 a -5*v2 -82 <= 0; value: -107 d 5*v3 -56 <= 0; value: 0 d 4*v1 + 3*v3 -27 = 0; value: 0 a -233/5 < 0; value: -233/5 0: 1: 1 4 2: 2 3: 1 2 3 4 5 0: 0 -> 0 1: 3 -> -33/20 2: 5 -> 5 3: 5 -> 56/5 a 2*v0 -2*v1 <= 0; value: 8 a 5*v0 -1*v1 + 6*v3 -90 < 0; value: -52 a 5*v0 + 2*v1 + 5*v3 -55 < 0; value: -20 a -6*v0 + 2*v1 + 5*v2 + 9 = 0; value: 0 a 3*v0 + 2*v2 + 6*v3 -49 < 0; value: -13 a 4*v0 + 5*v3 -31 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 3 2: 3 4 3: 1 2 4 5 optimal: (51 -e*1) a + 51 < 0; value: 51 a -473/10 < 0; value: -473/10 d 5/2*v0 -125/2 < 0; value: -5/2 d -6*v0 + 2*v1 + 5*v2 + 9 = 0; value: 0 d 3*v0 + 2*v2 + 6*v3 -49 < 0; value: -2 d 4*v0 + 5*v3 -31 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 3 2: 3 4 1 2 3: 1 2 4 5 0: 4 -> 24 1: 0 -> 5/4 2: 3 -> 53/2 3: 3 -> -13 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -4*v1 -5*v3 + 6 = 0; value: 0 a -4*v1 -5*v3 + 2 <= 0; value: -6 a -1*v3 <= 0; value: 0 a 2*v1 + v2 + v3 -19 <= 0; value: -12 a -5*v0 -6*v3 + 5 = 0; value: 0 0: 1 5 1: 1 2 4 2: 4 3: 1 2 3 4 5 optimal: 5/4 a + 5/4 <= 0; value: 5/4 d 2*v0 -4*v1 -5*v3 + 6 = 0; value: 0 d -2*v0 -4 <= 0; value: 0 a -5/2 <= 0; value: -5/2 a v2 -87/4 <= 0; value: -75/4 d -5*v0 -6*v3 + 5 = 0; value: 0 0: 1 5 2 4 3 1: 1 2 4 2: 4 3: 1 2 3 4 5 0: 1 -> -2 1: 2 -> -21/8 2: 3 -> 3 3: 0 -> 5/2 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 + 6*v3 -25 = 0; value: 0 a 5*v1 -6*v3 + 20 = 0; value: 0 a v0 -3*v3 + 15 = 0; value: 0 a -2*v0 -4*v1 + v3 + 3 = 0; value: 0 a v2 + 3*v3 -20 = 0; value: 0 0: 3 4 1: 2 4 2: 1 5 3: 1 2 3 4 5 optimal: -4 a -4 <= 0; value: -4 d -1*v2 + 6*v3 -25 = 0; value: 0 d 5*v1 -6*v3 + 20 = 0; value: 0 d v0 = 0; value: 0 a = 0; value: 0 d 3/2*v2 -15/2 = 0; value: 0 0: 3 4 1: 2 4 2: 1 5 3 4 3: 1 2 3 4 5 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 3*v1 -5*v3 + 9 = 0; value: 0 a -1*v3 <= 0; value: 0 a v0 -7 <= 0; value: -3 a -1*v0 + 3 <= 0; value: -1 a v0 + 6*v2 + 6*v3 -41 <= 0; value: -7 0: 1 3 4 5 1: 1 2: 5 3: 1 2 5 optimal: 6 a + 6 <= 0; value: 6 d -3*v0 + 3*v1 -5*v3 + 9 = 0; value: 0 d -1*v3 <= 0; value: 0 a v0 -7 <= 0; value: -3 a -1*v0 + 3 <= 0; value: -1 a v0 + 6*v2 -41 <= 0; value: -7 0: 1 3 4 5 1: 1 2: 5 3: 1 2 5 0: 4 -> 4 1: 1 -> 1 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 = 0; value: 0 a -3*v0 + 2*v3 -5 < 0; value: -3 a -2*v2 -1 < 0; value: -3 a -4*v0 -2*v1 -2*v2 + 3 < 0; value: -7 0: 1 2 4 1: 4 2: 3 4 3: 2 optimal: oo a 6*v0 + 2*v2 -3 < 0; value: -1 a -1*v0 = 0; value: 0 a -3*v0 + 2*v3 -5 < 0; value: -3 a -2*v2 -1 < 0; value: -3 d -4*v0 -2*v1 -2*v2 + 3 < 0; value: -2 0: 1 2 4 1: 4 2: 3 4 3: 2 0: 0 -> 0 1: 4 -> 3/2 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -4*v0 -5*v3 -23 <= 0; value: -63 a v1 + 2*v3 -19 <= 0; value: -10 a -5*v2 -2 <= 0; value: -17 a 3*v0 + 4*v1 -28 < 0; value: -9 a -5*v0 -3*v2 -5*v3 + 3 <= 0; value: -51 0: 1 4 5 1: 2 4 2: 3 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a -4*v0 -5*v3 -23 <= 0; value: -63 a v1 + 2*v3 -19 <= 0; value: -10 a -5*v2 -2 <= 0; value: -17 a 3*v0 + 4*v1 -28 < 0; value: -9 a -5*v0 -3*v2 -5*v3 + 3 <= 0; value: -51 0: 1 4 5 1: 2 4 2: 3 5 3: 1 2 5 0: 5 -> 5 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 + 2*v2 + 6*v3 -105 <= 0; value: -65 a v0 -2*v1 + v3 -3 = 0; value: 0 a -2*v0 -2*v1 + 3*v2 -13 = 0; value: 0 a -2*v1 -3*v2 -6*v3 + 47 = 0; value: 0 a -4*v1 + v2 -1 <= 0; value: 0 0: 1 2 3 1: 2 3 4 5 2: 1 3 4 5 3: 1 2 4 optimal: 577/4 a + 577/4 <= 0; value: 577/4 d 2/3*v0 -65 <= 0; value: 0 d v0 -2*v1 + v3 -3 = 0; value: 0 d -20/7*v0 + 24/7*v2 -120/7 = 0; value: 0 d -1*v0 -3*v2 -7*v3 + 50 = 0; value: 0 a -65/4 <= 0; value: -65/4 0: 1 2 3 4 5 1: 2 3 4 5 2: 1 3 4 5 3: 1 2 4 3 5 0: 0 -> 195/2 1: 1 -> 203/8 2: 5 -> 345/4 3: 5 -> -175/4 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 -1*v2 + 1 < 0; value: -3 a -6*v1 + 5*v2 -16 < 0; value: -8 a 3*v1 + 2*v2 -23 < 0; value: -9 a -1*v1 + 4*v2 -31 < 0; value: -17 a -5*v0 + 3*v1 -11 < 0; value: -5 0: 1 5 1: 2 3 4 5 2: 1 2 3 4 3: optimal: oo a 11/3*v0 + 11/3 < 0; value: 11/3 d -1*v0 -1*v2 + 1 < 0; value: -1 d -6*v1 + 5*v2 -16 < 0; value: -6 a -9/2*v0 -53/2 < 0; value: -53/2 a -19/6*v0 -151/6 < 0; value: -151/6 a -15/2*v0 -33/2 < 0; value: -33/2 0: 1 5 3 4 1: 2 3 4 5 2: 1 2 3 4 5 3: 0: 0 -> 0 1: 2 -> 0 2: 4 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 -2*v2 -6*v3 + 22 <= 0; value: -14 a v1 -4*v2 -6*v3 + 5 <= 0; value: -11 a -1*v3 + 2 <= 0; value: 0 a 6*v0 -5*v2 -39 < 0; value: -25 a 5*v0 + 2*v1 + v3 -72 <= 0; value: -42 0: 4 5 1: 1 2 5 2: 1 2 4 3: 1 2 3 5 optimal: oo a 2*v0 + 4/5*v2 + 12/5*v3 -44/5 <= 0; value: 28/5 d -5*v1 -2*v2 -6*v3 + 22 <= 0; value: 0 a -22/5*v2 -36/5*v3 + 47/5 <= 0; value: -69/5 a -1*v3 + 2 <= 0; value: 0 a 6*v0 -5*v2 -39 < 0; value: -25 a 5*v0 -4/5*v2 -7/5*v3 -316/5 <= 0; value: -238/5 0: 4 5 1: 1 2 5 2: 1 2 4 5 3: 1 2 3 5 0: 4 -> 4 1: 4 -> 6/5 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -6*v1 -1*v2 + 18 = 0; value: 0 a -6*v0 -6*v1 + 4*v2 + 23 <= 0; value: -25 a 3*v0 -5*v1 + 6*v2 = 0; value: 0 a 3*v0 -19 < 0; value: -4 a -5*v2 + 3*v3 -18 <= 0; value: -6 0: 2 3 4 1: 1 2 3 2: 1 2 3 5 3: 5 optimal: (796/123 -e*1) a + 796/123 < 0; value: 796/123 d -6*v1 -1*v2 + 18 = 0; value: 0 a -1473/41 < 0; value: -1473/41 d 3*v0 + 41/6*v2 -15 = 0; value: 0 d 3*v0 -19 < 0; value: -2 a 3*v3 -618/41 <= 0; value: -126/41 0: 2 3 4 5 1: 1 2 3 2: 1 2 3 5 3: 5 0: 5 -> 17/3 1: 3 -> 125/41 2: 0 -> -12/41 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -3*v2 -6*v3 -4 <= 0; value: -16 a 4*v0 + 5*v1 -59 <= 0; value: -22 a -1*v3 <= 0; value: 0 a 3*v1 -2*v2 -15 < 0; value: -8 a 6*v0 -2*v1 -11 <= 0; value: -3 0: 2 5 1: 2 4 5 2: 1 4 3: 1 3 optimal: oo a -4*v0 + 11 <= 0; value: -1 a -3*v2 -6*v3 -4 <= 0; value: -16 a 19*v0 -173/2 <= 0; value: -59/2 a -1*v3 <= 0; value: 0 a 9*v0 -2*v2 -63/2 < 0; value: -25/2 d 6*v0 -2*v1 -11 <= 0; value: 0 0: 2 5 4 1: 2 4 5 2: 1 4 3: 1 3 0: 3 -> 3 1: 5 -> 7/2 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a -3*v1 + v2 + 5 <= 0; value: -2 a v0 + 2*v1 -16 <= 0; value: -8 a -2*v0 -3*v3 + 9 < 0; value: -3 a 3*v2 + 6*v3 -62 < 0; value: -23 a -1*v0 -2*v1 + 4*v3 -8 <= 0; value: 0 0: 2 3 5 1: 1 2 5 2: 1 4 3: 3 4 5 optimal: oo a 17/3*v0 -4 < 0; value: -4 d 3/2*v0 + v2 -6*v3 + 17 <= 0; value: 0 a -8/3*v0 -12 < 0; value: -12 d -11/4*v0 -1/2*v2 + 1/2 < 0; value: -1/2 a -41/2*v0 -41 < 0; value: -41 d -1*v0 -2*v1 + 4*v3 -8 <= 0; value: 0 0: 2 3 5 1 4 2 1: 1 2 5 2: 1 4 3 2 3: 3 4 5 1 2 0: 0 -> 0 1: 4 -> 7/3 2: 5 -> 2 3: 4 -> 19/6 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 3*v2 + 2*v3 = 0; value: 0 a v3 = 0; value: 0 a 2*v2 -19 <= 0; value: -11 a -6*v1 -5*v2 -18 < 0; value: -38 a 5*v1 -3*v2 + 9 < 0; value: -3 0: 1 1: 4 5 2: 1 3 4 5 3: 1 2 optimal: (245/6 -e*1) a + 245/6 < 0; value: 245/6 d -3*v0 + 3*v2 + 2*v3 = 0; value: 0 d v3 = 0; value: 0 d 2*v0 -19 <= 0; value: 0 d -6*v1 -5*v2 -18 < 0; value: -6 a -889/12 < 0; value: -889/12 0: 1 3 5 1: 4 5 2: 1 3 4 5 3: 1 2 3 5 0: 4 -> 19/2 1: 0 -> -119/12 2: 4 -> 19/2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a 2*v0 -3*v3 + 13 = 0; value: 0 a -4*v1 + 5*v3 -8 < 0; value: -3 a 3*v1 + 3*v2 + 3*v3 -59 < 0; value: -29 a 4*v1 + 2*v3 -63 <= 0; value: -33 a -3*v0 + 3*v3 -17 <= 0; value: -5 0: 1 5 1: 2 3 4 2: 3 3: 1 2 3 4 5 optimal: (-55/14 -e*1) a -55/14 < 0; value: -55/14 d 2*v0 -3*v3 + 13 = 0; value: 0 d -4*v1 + 5*v3 -8 < 0; value: -4 d 9/2*v0 + 3*v2 -143/4 < 0; value: -9/2 d -28/9*v2 -97/27 <= 0; value: 0 a -89/7 < 0; value: -89/7 0: 1 5 3 4 1: 2 3 4 2: 3 4 5 3: 1 2 3 4 5 0: 1 -> 54/7 1: 5 -> 911/84 2: 0 -> -97/84 3: 5 -> 199/21 a 2*v0 -2*v1 <= 0; value: 4 a v3 -3 = 0; value: 0 a 5*v0 + 2*v1 -36 <= 0; value: -19 a -2*v0 + v1 + 4 <= 0; value: -1 a -3*v1 -1*v2 + 2*v3 <= 0; value: -2 a v0 -2*v1 -6*v3 + 17 = 0; value: 0 0: 2 3 5 1: 2 3 4 5 2: 4 3: 1 4 5 optimal: 43/6 a + 43/6 <= 0; value: 43/6 d v3 -3 = 0; value: 0 d 6*v0 -37 <= 0; value: 0 a -23/4 <= 0; value: -23/4 a -1*v2 -7/4 <= 0; value: -27/4 d v0 -2*v1 -6*v3 + 17 = 0; value: 0 0: 2 3 5 4 1: 2 3 4 5 2: 4 3: 1 4 5 2 3 0: 3 -> 37/6 1: 1 -> 31/12 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 3*v3 -5 = 0; value: 0 a 6*v0 -1*v2 -1*v3 -4 <= 0; value: 0 a -1*v3 + 2 = 0; value: 0 a 5*v1 + v2 -27 <= 0; value: -17 a -3*v0 + 4*v1 -5 = 0; value: 0 0: 1 2 5 1: 4 5 2: 2 4 3: 1 2 3 optimal: -2 a -2 <= 0; value: -2 d -1*v0 + 3*v3 -5 = 0; value: 0 d -1*v2 + 17*v3 -34 <= 0; value: 0 d -1/17*v2 = 0; value: 0 a -17 <= 0; value: -17 d -3*v0 + 4*v1 -5 = 0; value: 0 0: 1 2 5 4 1: 4 5 2: 2 4 3 3: 1 2 3 4 0: 1 -> 1 1: 2 -> 2 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a v1 + 2*v3 -9 = 0; value: 0 a 3*v2 -25 < 0; value: -13 a 4*v0 + 3*v1 -25 = 0; value: 0 a 2*v0 -5*v2 -11 <= 0; value: -23 a 5*v1 -2*v3 -10 <= 0; value: -1 0: 3 4 1: 1 3 5 2: 2 4 3: 1 5 optimal: (956/9 -e*1) a + 956/9 < 0; value: 956/9 d v1 + 2*v3 -9 = 0; value: 0 d 3*v2 -25 < 0; value: -3 d 4*v0 -6*v3 + 2 = 0; value: 0 d 2*v0 -5*v2 -11 <= 0; value: 0 a -539/3 < 0; value: -539/3 0: 3 4 5 1: 1 3 5 2: 2 4 5 3: 1 5 3 0: 4 -> 143/6 1: 3 -> -211/9 2: 4 -> 22/3 3: 3 -> 146/9 a 2*v0 -2*v1 <= 0; value: 2 a -3*v3 -7 <= 0; value: -22 a 3*v2 + 3*v3 -37 <= 0; value: -7 a 6*v2 + v3 -35 = 0; value: 0 a -6*v0 -1*v1 -1*v2 -7 <= 0; value: -25 a -1*v1 + v2 -4 <= 0; value: 0 0: 4 1: 4 5 2: 2 3 4 5 3: 1 2 3 optimal: oo a 2*v0 -16/15 <= 0; value: 44/15 a -152/5 <= 0; value: -152/5 d 5/2*v3 -39/2 <= 0; value: 0 d 6*v2 + v3 -35 = 0; value: 0 a -6*v0 -181/15 <= 0; value: -361/15 d -1*v1 + v2 -4 <= 0; value: 0 0: 4 1: 4 5 2: 2 3 4 5 3: 1 2 3 4 0: 2 -> 2 1: 1 -> 8/15 2: 5 -> 68/15 3: 5 -> 39/5 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -3*v3 <= 0; value: 0 a 5*v1 -2*v2 + v3 + 6 = 0; value: 0 a -1*v3 <= 0; value: 0 a 3*v1 -3*v2 + 6*v3 + 8 < 0; value: -1 d = 0; value: 0 0: 1: 1 2 4 2: 2 4 3: 1 2 3 4 optimal: oo a 2*v0 + 4/9 < 0; value: 4/9 a -4/9 <= 0; value: -4/9 d 5*v1 -2*v2 + v3 + 6 = 0; value: 0 d -1/3*v2 + 22/27 < 0; value: -5/54 d -9/5*v2 + 27/5*v3 + 22/5 < 0; value: -1/4 d = 0; value: 0 0: 1: 1 2 4 2: 2 4 1 3 3: 1 2 3 4 0: 0 -> 0 1: 0 -> -13/108 2: 3 -> 49/18 3: 0 -> 5/108 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 -1*v3 + 9 = 0; value: 0 a -2*v0 -4*v1 -6*v2 -9 <= 0; value: -41 a 5*v0 + v3 -23 = 0; value: 0 a v0 -3*v2 -1 <= 0; value: -3 a -2*v2 + 5*v3 -11 = 0; value: 0 0: 2 3 4 1: 1 2 2: 2 4 5 3: 1 3 5 optimal: oo a 6/25*v2 + 38/25 <= 0; value: 2 d -2*v1 -1*v3 + 9 = 0; value: 0 a -126/25*v2 -773/25 <= 0; value: -41 d 5*v0 + v3 -23 = 0; value: 0 a -77/25*v2 + 79/25 <= 0; value: -3 d -25*v0 -2*v2 + 104 = 0; value: 0 0: 2 3 4 5 1: 1 2 2: 2 4 5 3: 1 3 5 2 0: 4 -> 4 1: 3 -> 3 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a v0 -4 = 0; value: 0 a 5*v0 + 5*v1 -2*v3 -67 <= 0; value: -37 a v1 + 2*v2 + 2*v3 -8 <= 0; value: -2 a -6*v0 -5*v1 + 4*v3 -21 <= 0; value: -55 a 5*v0 -52 < 0; value: -32 0: 1 2 4 5 1: 2 3 4 2: 3 3: 2 3 4 optimal: oo a 22/5*v0 -8/5*v3 + 42/5 <= 0; value: 26 a v0 -4 = 0; value: 0 a -1*v0 + 2*v3 -88 <= 0; value: -92 a -6/5*v0 + 2*v2 + 14/5*v3 -61/5 <= 0; value: -13 d -6*v0 -5*v1 + 4*v3 -21 <= 0; value: 0 a 5*v0 -52 < 0; value: -32 0: 1 2 4 5 3 1: 2 3 4 2: 3 3: 2 3 4 0: 4 -> 4 1: 2 -> -9 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 2 = 0; value: 0 a v0 -1*v3 + 2 = 0; value: 0 a -5*v1 + v3 -11 <= 0; value: -7 a -1*v3 + 4 = 0; value: 0 a 5*v2 -11 < 0; value: -6 0: 1 2 1: 3 2: 5 3: 2 3 4 optimal: 34/5 a + 34/5 <= 0; value: 34/5 d -1*v0 + 2 = 0; value: 0 d v0 -1*v3 + 2 = 0; value: 0 d -5*v1 + v3 -11 <= 0; value: 0 a = 0; value: 0 a 5*v2 -11 < 0; value: -6 0: 1 2 4 1: 3 2: 5 3: 2 3 4 0: 2 -> 2 1: 0 -> -7/5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v1 + 11 <= 0; value: -7 a -5*v1 -6*v2 + 33 = 0; value: 0 a 6*v1 -6*v2 -2*v3 -1 <= 0; value: -11 a -3*v1 -4*v2 + 17 < 0; value: -4 a 2*v2 -1*v3 -1 = 0; value: 0 0: 1: 1 2 3 4 2: 2 3 4 5 3: 3 5 optimal: oo a 2*v0 -11/3 <= 0; value: 7/3 d 18/5*v3 -25 <= 0; value: 0 d -5*v1 -6*v2 + 33 = 0; value: 0 a -499/18 <= 0; value: -499/18 a -79/18 < 0; value: -79/18 d 2*v2 -1*v3 -1 = 0; value: 0 0: 1: 1 2 3 4 2: 2 3 4 5 1 3: 3 5 1 4 0: 3 -> 3 1: 3 -> 11/6 2: 3 -> 143/36 3: 5 -> 125/18 a 2*v0 -2*v1 <= 0; value: -6 a 6*v1 -3*v3 -49 <= 0; value: -28 a v2 -5*v3 <= 0; value: -1 a 5*v1 -43 < 0; value: -23 a -1*v1 + v2 -1*v3 <= 0; value: -1 a 2*v1 -2*v2 -4*v3 + 1 <= 0; value: -3 0: 1: 1 3 4 5 2: 2 4 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v2 + 2*v3 <= 0; value: -4 a 6*v2 -9*v3 -49 <= 0; value: -34 a v2 -5*v3 <= 0; value: -1 a 5*v2 -5*v3 -43 < 0; value: -28 d -1*v1 + v2 -1*v3 <= 0; value: 0 a -6*v3 + 1 <= 0; value: -5 0: 1: 1 3 4 5 2: 2 4 5 1 3 3: 1 2 4 5 3 0: 1 -> 1 1: 4 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -6*v1 -5 <= 0; value: -17 a 2*v0 + 2*v2 -15 <= 0; value: -3 a -1*v0 -5*v1 -4*v2 + 22 = 0; value: 0 a 6*v1 + 4*v2 -1*v3 -19 = 0; value: 0 a 3*v0 + 5*v1 + 4*v3 -30 < 0; value: -4 0: 2 3 5 1: 1 3 4 5 2: 2 3 4 3: 4 5 optimal: (100/11 -e*1) a + 100/11 < 0; value: 100/11 a -241/11 < 0; value: -241/11 d -1*v0 -5/2*v3 + 7/2 <= 0; value: 0 d -1*v0 -5*v1 -4*v2 + 22 = 0; value: 0 d -6/5*v0 -4/5*v2 -1*v3 + 37/5 = 0; value: 0 d 22/5*v0 -162/5 < 0; value: -22/5 0: 2 3 5 1 4 1: 1 3 4 5 2: 2 3 4 1 5 3: 4 5 2 1 0: 4 -> 70/11 1: 2 -> 122/55 2: 2 -> 25/22 3: 1 -> -63/55 a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 -2*v1 -3*v3 + 25 = 0; value: 0 a 6*v2 + 4*v3 -107 < 0; value: -57 a -5*v0 -4*v1 + 3*v2 + 5 = 0; value: 0 a v1 + 2*v3 -41 < 0; value: -26 a -1*v2 -1*v3 + 10 = 0; value: 0 0: 1 3 1: 1 3 4 2: 2 3 5 3: 1 2 4 5 optimal: (68 -e*1) a + 68 < 0; value: 68 d 3*v0 -2*v1 -3*v3 + 25 = 0; value: 0 a -571/5 < 0; value: -571/5 d -11*v0 -3*v2 + 15 = 0; value: 0 d 10/3*v0 -26 < 0; value: -10/3 d -1*v2 -1*v3 + 10 = 0; value: 0 0: 1 3 4 2 1: 1 3 4 2: 2 3 5 4 3: 1 2 4 5 3 0: 0 -> 34/5 1: 5 -> -111/5 2: 5 -> -299/15 3: 5 -> 449/15 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 + 5*v2 -1*v3 -22 = 0; value: 0 a -1*v0 <= 0; value: 0 a -1*v2 + 5 = 0; value: 0 a 3*v0 -3*v1 -2*v2 + 22 = 0; value: 0 a -6*v1 + 5*v2 -1 <= 0; value: 0 0: 1 2 4 1: 4 5 2: 1 3 4 5 3: 1 optimal: -8 a -8 <= 0; value: -8 d -4*v0 + 5*v2 -1*v3 -22 = 0; value: 0 a -1*v0 <= 0; value: 0 d -4/5*v0 -1/5*v3 + 3/5 = 0; value: 0 d 3*v0 -3*v1 -2*v2 + 22 = 0; value: 0 a -6*v0 <= 0; value: 0 0: 1 2 4 5 3 1: 4 5 2: 1 3 4 5 3: 1 3 5 0: 0 -> 0 1: 4 -> 4 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -10 a 6*v0 -2*v1 -5*v3 -5 <= 0; value: -20 a -6*v3 -1 < 0; value: -7 a -1*v0 -3*v3 -1 <= 0; value: -4 a -1*v1 -6*v2 + 24 <= 0; value: -5 0: 1 3 1: 1 4 2: 4 3: 1 2 3 optimal: oo a -4*v0 + 5*v3 + 5 <= 0; value: 10 d 6*v0 + 12*v2 -5*v3 -53 <= 0; value: 0 a -6*v3 -1 < 0; value: -7 a -1*v0 -3*v3 -1 <= 0; value: -4 d -1*v1 -6*v2 + 24 <= 0; value: 0 0: 1 3 1: 1 4 2: 4 1 3: 1 2 3 0: 0 -> 0 1: 5 -> -5 2: 4 -> 29/6 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 4*v2 -58 <= 0; value: -22 a 5*v0 + v2 -24 = 0; value: 0 a -3*v1 + 5*v2 + 6*v3 -49 <= 0; value: -26 a 5*v1 + 4*v2 -41 = 0; value: 0 a -1*v1 + 5*v3 -27 <= 0; value: -17 0: 1 2 1: 3 4 5 2: 1 2 3 4 3: 3 5 optimal: 34/5 a + 34/5 <= 0; value: 34/5 d -90/37*v3 -154/37 <= 0; value: 0 d 5*v0 + v2 -24 = 0; value: 0 d -37*v0 + 6*v3 + 104 <= 0; value: 0 d 5*v1 + 4*v2 -41 = 0; value: 0 a -1561/45 <= 0; value: -1561/45 0: 1 2 3 5 1: 3 4 5 2: 1 2 3 4 5 3: 3 5 1 0: 4 -> 38/15 1: 5 -> -13/15 2: 4 -> 34/3 3: 3 -> -77/45 a 2*v0 -2*v1 <= 0; value: 4 a v1 -1*v2 <= 0; value: 0 a 5*v0 -3*v2 -12 <= 0; value: -2 a -5*v0 + 3*v1 + 5*v3 + 3 < 0; value: -7 a -1*v1 <= 0; value: 0 a 3*v1 + 5*v2 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 2 5 3: 3 optimal: 24/5 a + 24/5 <= 0; value: 24/5 a <= 0; value: 0 d 5*v0 -3*v2 -12 <= 0; value: 0 a 5*v3 -9 < 0; value: -9 d -1*v1 <= 0; value: 0 d 5*v2 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 2 5 3 3: 3 0: 2 -> 12/5 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -3*v2 -4 = 0; value: 0 a -1*v0 -1*v3 + 7 = 0; value: 0 a -3*v1 -6*v2 + 2*v3 -18 < 0; value: -38 a 3*v0 -17 <= 0; value: -2 a -2*v0 -1*v1 -6 <= 0; value: -20 0: 1 2 4 5 1: 3 5 2: 1 3 3: 2 3 optimal: (94/3 -e*1) a + 94/3 < 0; value: 94/3 d 2*v0 -3*v2 -4 = 0; value: 0 d -1*v0 -1*v3 + 7 = 0; value: 0 d -3*v1 -6*v2 + 2*v3 -18 < 0; value: -3 d 3*v0 -17 <= 0; value: 0 a -22/3 <= 0; value: -22/3 0: 1 2 4 5 1: 3 5 2: 1 3 5 3: 2 3 5 0: 5 -> 17/3 1: 4 -> -9 2: 2 -> 22/9 3: 2 -> 4/3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v3 -3 < 0; value: -1 a -3*v0 -4*v1 -1*v3 -7 <= 0; value: -32 a -1*v0 -2 < 0; value: -6 a v0 + 2*v2 -8 <= 0; value: 0 a 2*v0 -6*v1 -5*v2 -14 <= 0; value: -34 0: 2 3 4 5 1: 2 5 2: 4 5 3: 1 2 optimal: oo a 1/2*v0 + 34/3 <= 0; value: 40/3 a 2*v3 -3 < 0; value: -1 a -6*v0 -1*v3 + 47/3 <= 0; value: -28/3 a -1*v0 -2 < 0; value: -6 d v0 + 2*v2 -8 <= 0; value: 0 d 2*v0 -6*v1 -5*v2 -14 <= 0; value: 0 0: 2 3 4 5 1: 2 5 2: 4 5 2 3: 1 2 0: 4 -> 4 1: 3 -> -8/3 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -5*v1 -3*v3 + 7 <= 0; value: -14 a -1*v3 + 2 = 0; value: 0 a 3*v0 -4*v3 -16 <= 0; value: -9 a -1*v0 -2*v2 + 7 = 0; value: 0 a 3*v0 -25 < 0; value: -10 0: 3 4 5 1: 1 2: 4 3: 1 2 3 optimal: 78/5 a + 78/5 <= 0; value: 78/5 d -5*v1 -3*v3 + 7 <= 0; value: 0 d -1*v3 + 2 = 0; value: 0 d -6*v2 -3 <= 0; value: 0 d -1*v0 -2*v2 + 7 = 0; value: 0 a -1 < 0; value: -1 0: 3 4 5 1: 1 2: 4 3 5 3: 1 2 3 0: 5 -> 8 1: 3 -> 1/5 2: 1 -> -1/2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a v2 -1 = 0; value: 0 a -3*v1 + v2 -4*v3 + 2 <= 0; value: -5 a 6*v1 -4*v2 + 3 <= 0; value: -1 a 5*v1 + 4*v3 -17 <= 0; value: -9 a -1*v3 -1 <= 0; value: -3 0: 1: 2 3 4 2: 1 2 3 3: 2 4 5 optimal: oo a 2*v0 -2/3*v2 + 8/3*v3 -4/3 <= 0; value: 34/3 a v2 -1 = 0; value: 0 d -3*v1 + v2 -4*v3 + 2 <= 0; value: 0 a -2*v2 -8*v3 + 7 <= 0; value: -11 a 5/3*v2 -8/3*v3 -41/3 <= 0; value: -52/3 a -1*v3 -1 <= 0; value: -3 0: 1: 2 3 4 2: 1 2 3 4 3: 2 4 5 3 0: 4 -> 4 1: 0 -> -5/3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a v2 -3*v3 + 10 = 0; value: 0 a -6*v1 -4*v3 -3 <= 0; value: -53 a 3*v0 + 3*v1 -2*v2 -50 <= 0; value: -33 a -5*v0 + 5*v1 -9 < 0; value: -4 a 3*v0 -4*v1 <= 0; value: -8 0: 3 4 5 1: 2 3 4 5 2: 1 3 3: 1 2 optimal: oo a 4/7*v3 + 20/7 <= 0; value: 40/7 d v2 -3*v3 + 10 = 0; value: 0 a -64/7*v3 -201/7 <= 0; value: -521/7 d 21/4*v0 -2*v2 -50 <= 0; value: 0 a -10/7*v3 -113/7 < 0; value: -163/7 d 3*v0 -4*v1 <= 0; value: 0 0: 3 4 5 2 1: 2 3 4 5 2: 1 3 4 2 3: 1 2 4 0: 4 -> 80/7 1: 5 -> 60/7 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 -1*v2 + 6*v3 -31 < 0; value: -19 a -2*v1 + v2 <= 0; value: 0 a -5*v0 -5*v3 -26 < 0; value: -56 a -4*v0 + v1 < 0; value: -6 a 2*v2 + 3*v3 -52 <= 0; value: -32 0: 1 3 4 1: 2 4 2: 1 2 5 3: 1 3 5 optimal: oo a 12*v0 + 311/5 < 0; value: 431/5 d -4*v0 -1*v2 + 6*v3 -31 < 0; value: -1 d -2*v1 + v2 <= 0; value: 0 d -5*v0 -5*v3 -26 < 0; value: -5 a -9*v0 -311/10 < 0; value: -491/10 a -23*v0 -192 < 0; value: -238 0: 1 3 4 5 1: 2 4 2: 1 2 5 4 3: 1 3 5 4 0: 2 -> 2 1: 2 -> -188/5 2: 4 -> -376/5 3: 4 -> -31/5 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 2*v1 -6 <= 0; value: -2 a 3*v2 -1*v3 + 1 <= 0; value: 0 a v2 -5*v3 + 1 < 0; value: -4 a -3*v1 -2*v3 + 8 = 0; value: 0 0: 1 1: 1 4 2: 2 3 3: 2 3 4 optimal: oo a 2*v0 + 4/3*v3 -16/3 <= 0; value: -4 a 5*v0 -4/3*v3 -2/3 <= 0; value: -2 a 3*v2 -1*v3 + 1 <= 0; value: 0 a v2 -5*v3 + 1 < 0; value: -4 d -3*v1 -2*v3 + 8 = 0; value: 0 0: 1 1: 1 4 2: 2 3 3: 2 3 4 1 0: 0 -> 0 1: 2 -> 2 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -3*v1 -5*v3 <= 0; value: 0 a 6*v0 -4*v2 -3*v3 + 1 <= 0; value: -1 a 3*v0 + 2*v1 -4*v2 -3 < 0; value: -8 a -1*v1 + 3 = 0; value: 0 a 4*v1 -2*v3 -29 < 0; value: -17 0: 1 2 3 1: 1 3 4 5 2: 2 3 3: 1 2 5 optimal: oo a 40/21*v2 -190/21 <= 0; value: 10/21 d 3*v0 -3*v1 -5*v3 <= 0; value: 0 d 21/5*v0 -4*v2 + 32/5 <= 0; value: 0 a -8/7*v2 -11/7 < 0; value: -51/7 d -1*v0 + 5/3*v3 + 3 = 0; value: 0 a -8/7*v2 -81/7 < 0; value: -121/7 0: 1 2 3 4 5 1: 1 3 4 5 2: 2 3 5 3: 1 2 5 4 3 0: 3 -> 68/21 1: 3 -> 3 2: 5 -> 5 3: 0 -> 1/7 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 + 6*v3 + 13 <= 0; value: -7 a -1*v2 + 2 < 0; value: -1 a -3*v0 -2*v1 -12 <= 0; value: -32 a -2*v1 + 3*v2 -1 <= 0; value: 0 a v0 -11 < 0; value: -7 0: 3 5 1: 1 3 4 2: 2 4 3: 1 optimal: (17 -e*1) a + 17 < 0; value: 17 d -15/2*v2 + 6*v3 + 31/2 <= 0; value: 0 d -4/5*v3 -1/15 < 0; value: -1/30 a -50 < 0; value: -50 d -2*v1 + 3*v2 -1 <= 0; value: 0 d v0 -11 < 0; value: -1 0: 3 5 1: 1 3 4 2: 2 4 3 1 3: 1 3 2 0: 4 -> 10 1: 4 -> 51/20 2: 3 -> 61/30 3: 0 -> -1/24 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -1*v1 -6*v3 + 18 = 0; value: 0 a 3*v0 -20 <= 0; value: -11 a -4*v1 + 6*v2 -11 < 0; value: -5 a -3*v1 + 2*v3 -1 <= 0; value: 0 a v0 -1*v2 <= 0; value: 0 0: 1 2 5 1: 1 3 4 2: 3 5 3: 1 4 optimal: (5/4 -e*1) a + 5/4 < 0; value: 5/4 d 5*v0 -1*v1 -6*v3 + 18 = 0; value: 0 a -29/4 <= 0; value: -29/4 d 4*v2 -17 < 0; value: -5/2 d -15*v0 + 20*v3 -55 <= 0; value: 0 d v0 -1*v2 <= 0; value: 0 0: 1 2 5 3 4 1: 1 3 4 2: 3 5 2 3: 1 4 3 0: 3 -> 29/8 1: 3 -> 53/16 2: 3 -> 29/8 3: 5 -> 175/32 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 2*v1 + v2 -12 <= 0; value: -6 a -3*v0 + 2*v2 -17 <= 0; value: -9 a -2*v0 -1*v2 + 4 = 0; value: 0 a -6*v0 -3*v1 + 6*v2 -40 <= 0; value: -19 a v1 -2 < 0; value: -1 0: 1 2 3 4 1: 1 4 5 2: 1 2 3 4 3: optimal: oo a 14*v0 + 32/3 <= 0; value: 32/3 a -16*v0 -56/3 <= 0; value: -56/3 a -7*v0 -9 <= 0; value: -9 d -2*v0 -1*v2 + 4 = 0; value: 0 d -6*v0 -3*v1 + 6*v2 -40 <= 0; value: 0 a -6*v0 -22/3 < 0; value: -22/3 0: 1 2 3 4 5 1: 1 4 5 2: 1 2 3 4 5 3: 0: 0 -> 0 1: 1 -> -16/3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 -6*v1 -1*v3 -1 <= 0; value: -12 a -3*v1 -5*v2 + 5*v3 -17 <= 0; value: -10 a -4*v2 -1 < 0; value: -13 a v1 -1*v2 + 6*v3 -48 <= 0; value: -20 a 6*v0 -5*v2 + 15 = 0; value: 0 0: 1 5 1: 1 2 4 2: 2 3 4 5 3: 1 2 4 optimal: 1579/328 a + 1579/328 <= 0; value: 1579/328 d 4*v0 -6*v1 -1*v3 -1 <= 0; value: 0 d -2*v0 -5*v2 + 11/2*v3 -33/2 <= 0; value: 0 a -1945/82 < 0; value: -1945/82 d 1312/165*v0 -586/33 <= 0; value: 0 d 6*v0 -5*v2 + 15 = 0; value: 0 0: 1 5 2 4 3 1: 1 2 4 2: 2 3 4 5 3: 1 2 4 0: 0 -> 1465/656 1: 1 -> -57/328 2: 3 -> 1863/328 3: 5 -> 368/41 a 2*v0 -2*v1 <= 0; value: 0 a -6*v1 -5*v2 + 4*v3 -3 <= 0; value: -9 a -1*v0 + 5*v1 + 6*v3 -8 <= 0; value: -4 a -5*v0 + 4*v3 + 1 <= 0; value: -4 a 3*v1 + v2 + 5*v3 -3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 1 4 3: 1 2 3 4 optimal: oo a 181/18*v0 -101/18 <= 0; value: 40/9 d -3*v2 + 14*v3 -9 <= 0; value: 0 a -491/36*v0 + 163/36 <= 0; value: -82/9 d -5*v0 + 6/7*v2 + 25/7 <= 0; value: 0 d 3*v1 + v2 + 5*v3 -3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 1 4 2 3 3: 1 2 3 4 0: 1 -> 1 1: 1 -> -11/9 2: 0 -> 5/3 3: 0 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -3*v3 + 11 < 0; value: -1 a 4*v0 -5*v2 + 2 <= 0; value: -3 a 5*v1 -4*v2 -3*v3 -5 < 0; value: -27 a -3*v2 + 3*v3 -1 <= 0; value: -4 a -2*v0 -9 <= 0; value: -19 0: 2 5 1: 3 2: 2 3 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a -3*v3 + 11 < 0; value: -1 a 4*v0 -5*v2 + 2 <= 0; value: -3 a 5*v1 -4*v2 -3*v3 -5 < 0; value: -27 a -3*v2 + 3*v3 -1 <= 0; value: -4 a -2*v0 -9 <= 0; value: -19 0: 2 5 1: 3 2: 2 3 4 3: 1 3 4 0: 5 -> 5 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -6*v1 + 1 <= 0; value: 0 a 3*v0 -1*v2 + 2 <= 0; value: 0 a v3 -2 = 0; value: 0 a -3*v0 -3*v1 + v3 + 4 = 0; value: 0 a 4*v1 -4*v2 + 5*v3 -3 < 0; value: -9 0: 1 2 4 1: 1 4 5 2: 2 5 3: 3 4 5 optimal: 0 a <= 0; value: 0 d 5*v0 -6*v1 + 1 <= 0; value: 0 d 3*v0 -1*v2 + 2 <= 0; value: 0 d v3 -2 = 0; value: 0 d -11/6*v2 + v3 + 43/6 = 0; value: 0 a -9 < 0; value: -9 0: 1 2 4 5 1: 1 4 5 2: 2 5 4 3: 3 4 5 0: 1 -> 1 1: 1 -> 1 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -4*v1 -5*v2 -6*v3 + 19 = 0; value: 0 a -1*v2 -1*v3 + 2 = 0; value: 0 a -4*v2 -1*v3 -2 <= 0; value: -7 a -3*v0 -8 <= 0; value: -23 a 3*v0 + 3*v1 + 5*v2 -46 <= 0; value: -20 0: 4 5 1: 1 5 2: 1 2 3 5 3: 1 2 3 optimal: 265/9 a + 265/9 <= 0; value: 265/9 d -4*v1 -5*v2 -6*v3 + 19 = 0; value: 0 d -1*v2 -1*v3 + 2 = 0; value: 0 d -3*v2 -4 <= 0; value: 0 a -677/12 <= 0; value: -677/12 d 3*v0 -581/12 <= 0; value: 0 0: 4 5 1: 1 5 2: 1 2 3 5 3: 1 2 3 5 0: 5 -> 581/36 1: 2 -> 17/12 2: 1 -> -4/3 3: 1 -> 10/3 a 2*v0 -2*v1 <= 0; value: -2 a -5*v1 -5*v3 -9 < 0; value: -39 a 6*v0 + 5*v2 -71 < 0; value: -40 a -4*v2 + v3 + 16 = 0; value: 0 a -4*v1 -5*v2 + 33 = 0; value: 0 0: 2 1: 1 4 2: 2 3 4 3: 1 3 optimal: oo a -1*v0 + 19 < 0; value: 18 a 33/2*v0 -331/2 < 0; value: -149 d 6*v0 + 5/4*v3 -51 < 0; value: -5/4 d -4*v2 + v3 + 16 = 0; value: 0 d -4*v1 -5*v2 + 33 = 0; value: 0 0: 2 1 1: 1 4 2: 2 3 4 1 3: 1 3 2 0: 1 -> 1 1: 2 -> -123/16 2: 5 -> 51/4 3: 4 -> 35 a 2*v0 -2*v1 <= 0; value: 8 a 4*v2 -45 <= 0; value: -29 a v0 -5 = 0; value: 0 a -3*v0 -5*v2 + 35 = 0; value: 0 a -6*v1 -2*v2 + 2*v3 -1 < 0; value: -13 a -3*v1 -2*v2 -1 <= 0; value: -12 0: 2 3 1: 4 5 2: 1 3 4 5 3: 4 optimal: (16 -e*1) a + 16 < 0; value: 16 a -29 <= 0; value: -29 d v0 -5 = 0; value: 0 d -3*v0 -5*v2 + 35 = 0; value: 0 d -6*v1 -2*v2 + 2*v3 -1 < 0; value: -6 d -1*v2 -1*v3 -1/2 <= 0; value: 0 0: 2 3 1 1: 4 5 2: 1 3 4 5 3: 4 5 0: 5 -> 5 1: 1 -> -2 2: 4 -> 4 3: 1 -> -9/2 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + v2 -1 = 0; value: 0 a -3*v0 -4*v1 -3*v2 + 4 < 0; value: -7 a -1*v0 <= 0; value: 0 a -2*v0 -6*v2 -3 <= 0; value: -9 a 3*v0 + 2*v1 -2*v3 + 4 = 0; value: 0 0: 1 2 3 4 5 1: 2 5 2: 1 2 4 3: 5 optimal: oo a 8*v0 -1/2 < 0; value: -1/2 d -3*v0 + v2 -1 = 0; value: 0 d 3*v0 -3*v2 -4*v3 + 12 < 0; value: -7/2 a -1*v0 <= 0; value: 0 a -20*v0 -9 <= 0; value: -9 d 3*v0 + 2*v1 -2*v3 + 4 = 0; value: 0 0: 1 2 3 4 5 1: 2 5 2: 1 2 4 3: 5 2 0: 0 -> 0 1: 2 -> 9/8 2: 1 -> 1 3: 4 -> 25/8 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + 4*v2 + 2*v3 -99 <= 0; value: -55 a -3*v0 -2*v2 -12 <= 0; value: -33 a 5*v2 + v3 -31 <= 0; value: -15 a 6*v0 + 4*v1 -5*v2 -40 <= 0; value: -13 a -4*v1 + 2*v3 -7 <= 0; value: -17 0: 1 2 4 1: 4 5 2: 1 2 3 4 3: 1 3 5 optimal: oo a 2*v0 -1*v3 + 7/2 <= 0; value: 25/2 a 6*v0 + 4*v2 + 2*v3 -99 <= 0; value: -55 a -3*v0 -2*v2 -12 <= 0; value: -33 a 5*v2 + v3 -31 <= 0; value: -15 a 6*v0 -5*v2 + 2*v3 -47 <= 0; value: -30 d -4*v1 + 2*v3 -7 <= 0; value: 0 0: 1 2 4 1: 4 5 2: 1 2 3 4 3: 1 3 5 4 0: 5 -> 5 1: 3 -> -5/4 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -4*v1 + 3*v2 + 7 < 0; value: -1 a -4*v0 -5*v2 -13 < 0; value: -53 a 3*v1 -22 <= 0; value: -7 a -2*v0 + 3*v1 -13 <= 0; value: -8 a 2*v3 -7 <= 0; value: -1 0: 2 4 1: 1 3 4 2: 1 2 3: 5 optimal: oo a 16/5*v0 + 2/5 < 0; value: 82/5 d -4*v1 + 3*v2 + 7 < 0; value: -4 d -4*v0 -5*v2 -13 < 0; value: -5 a -9/5*v0 -113/5 < 0; value: -158/5 a -19/5*v0 -68/5 < 0; value: -163/5 a 2*v3 -7 <= 0; value: -1 0: 2 4 3 1: 1 3 4 2: 1 2 3 4 3: 5 0: 5 -> 5 1: 5 -> -29/20 2: 4 -> -28/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -4*v1 + 5*v3 + 1 <= 0; value: -1 a -1*v0 + 5 = 0; value: 0 a 5*v1 + 2*v2 + v3 -51 <= 0; value: -32 a -4*v1 + 3*v2 -5*v3 -7 <= 0; value: -26 a 3*v0 + 4*v2 -19 = 0; value: 0 0: 2 5 1: 1 3 4 2: 3 4 5 3: 1 3 4 optimal: 43/4 a + 43/4 <= 0; value: 43/4 d -4*v1 + 5*v3 + 1 <= 0; value: 0 d -1*v0 + 5 = 0; value: 0 a -411/8 <= 0; value: -411/8 d 3*v2 -10*v3 -8 <= 0; value: 0 d 3*v0 + 4*v2 -19 = 0; value: 0 0: 2 5 3 1: 1 3 4 2: 3 4 5 3: 1 3 4 0: 5 -> 5 1: 3 -> -3/8 2: 1 -> 1 3: 2 -> -1/2 a 2*v0 -2*v1 <= 0; value: -4 a -5*v0 + v2 + 6*v3 -13 = 0; value: 0 a 5*v0 -5*v1 -6 <= 0; value: -16 a 2*v0 -1*v2 < 0; value: -1 a -2*v0 -3*v2 + 4*v3 -5 = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 3 4 3: 1 4 optimal: 12/5 a + 12/5 <= 0; value: 12/5 a -5*v0 + v2 + 6*v3 -13 = 0; value: 0 d 5*v0 -5*v1 -6 <= 0; value: 0 a 2*v0 -1*v2 < 0; value: -1 a -2*v0 -3*v2 + 4*v3 -5 = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 3 4 3: 1 4 0: 0 -> 0 1: 2 -> -6/5 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -2*v1 -5*v2 + 15 = 0; value: 0 a -1*v1 + 4*v2 -27 <= 0; value: -15 a -5*v0 + 3*v2 + 11 = 0; value: 0 a -5*v0 + 6*v1 + 13 < 0; value: -7 a 2*v0 -21 < 0; value: -13 0: 3 4 5 1: 1 2 4 2: 1 2 3 3: optimal: 290/13 a + 290/13 <= 0; value: 290/13 d -2*v1 -5*v2 + 15 = 0; value: 0 d 65/6*v0 -175/3 <= 0; value: 0 d -5*v0 + 3*v2 + 11 = 0; value: 0 a -631/13 < 0; value: -631/13 a -133/13 < 0; value: -133/13 0: 3 4 5 2 1: 1 2 4 2: 1 2 3 4 3: 0: 4 -> 70/13 1: 0 -> -75/13 2: 3 -> 69/13 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -3*v2 -2*v3 + 2 < 0; value: -5 a 3*v0 -2*v3 -2 = 0; value: 0 a -3*v0 + v3 + 4 <= 0; value: 0 a -5*v0 -4*v1 + 4*v2 < 0; value: -6 0: 2 3 4 1: 4 2: 1 4 3: 1 2 3 optimal: oo a 13/2*v0 -8/3 < 0; value: 31/3 d -3*v2 -2*v3 + 2 < 0; value: -5/2 d 3*v0 -2*v3 -2 = 0; value: 0 a -3/2*v0 + 3 <= 0; value: 0 d -5*v0 -4*v1 + 4*v2 < 0; value: -4 0: 2 3 4 1: 4 2: 1 4 3: 1 2 3 0: 2 -> 2 1: 0 -> -4/3 2: 1 -> 1/6 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a v1 + 3*v3 -20 <= 0; value: -4 a -2*v0 + 3*v2 = 0; value: 0 a 3*v0 -2*v3 + 8 = 0; value: 0 a v1 + v3 -8 = 0; value: 0 0: 2 3 1: 1 4 2: 2 3: 1 3 4 optimal: -4/3 a -4/3 <= 0; value: -4/3 d 9/2*v2 -4 <= 0; value: 0 d -2*v0 + 3*v2 = 0; value: 0 d 3*v0 -2*v3 + 8 = 0; value: 0 d v1 + v3 -8 = 0; value: 0 0: 2 3 1 1: 1 4 2: 2 1 3: 1 3 4 0: 0 -> 4/3 1: 4 -> 2 2: 0 -> 8/9 3: 4 -> 6 a 2*v0 -2*v1 <= 0; value: 2 a -1*v2 <= 0; value: 0 a 5*v0 -2*v1 -5*v2 -8 <= 0; value: 0 a 2*v0 + 4*v1 -4*v2 -19 <= 0; value: -11 a -1*v3 <= 0; value: -4 a 3*v0 + 3*v3 -37 < 0; value: -19 0: 2 3 5 1: 2 3 2: 1 2 3 3: 4 5 optimal: oo a -3*v0 + 5*v2 + 8 <= 0; value: 2 a -1*v2 <= 0; value: 0 d 5*v0 -2*v1 -5*v2 -8 <= 0; value: 0 a 12*v0 -14*v2 -35 <= 0; value: -11 a -1*v3 <= 0; value: -4 a 3*v0 + 3*v3 -37 < 0; value: -19 0: 2 3 5 1: 2 3 2: 1 2 3 3: 4 5 0: 2 -> 2 1: 1 -> 1 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -6*v0 -6*v3 + 1 <= 0; value: -11 a 6*v0 -3*v3 -4 <= 0; value: -1 a 4*v0 + 4*v2 + 5*v3 -58 <= 0; value: -33 a 2*v0 + 3*v1 + 4*v3 -15 = 0; value: 0 0: 1 2 3 4 1: 4 2: 3 3: 1 2 3 4 optimal: oo a 6/5*v0 -32/15*v2 + 314/15 <= 0; value: 68/5 a -6/5*v0 + 24/5*v2 -343/5 <= 0; value: -253/5 a 42/5*v0 + 12/5*v2 -194/5 <= 0; value: -104/5 d 4*v0 + 4*v2 + 5*v3 -58 <= 0; value: 0 d 2*v0 + 3*v1 + 4*v3 -15 = 0; value: 0 0: 1 2 3 4 1: 4 2: 3 1 2 3: 1 2 3 4 0: 1 -> 1 1: 3 -> -29/5 2: 4 -> 4 3: 1 -> 38/5 a 2*v0 -2*v1 <= 0; value: 2 a -2*v0 + 5*v1 + 6*v2 -16 = 0; value: 0 a 5*v0 + v3 -27 < 0; value: -11 a -2*v0 -2*v1 + 2*v2 -1 <= 0; value: -7 a -3*v1 -5*v2 + 6*v3 + 6 < 0; value: -4 a v0 + v1 -6 <= 0; value: -1 0: 1 2 3 5 1: 1 3 4 5 2: 1 3 4 3: 2 4 optimal: (128/7 -e*1) a + 128/7 < 0; value: 128/7 d -2*v0 + 5*v1 + 6*v2 -16 = 0; value: 0 d 5*v0 + v3 -27 < 0; value: -5 d -14/5*v0 + 22/5*v2 -37/5 <= 0; value: 0 a -1217/14 < 0; value: -1217/14 d -7/55*v3 -76/55 <= 0; value: 0 0: 1 2 3 5 4 1: 1 3 4 5 2: 1 3 4 5 3: 2 4 5 0: 3 -> 46/7 1: 2 -> -93/77 2: 2 -> 129/22 3: 1 -> -76/7 a 2*v0 -2*v1 <= 0; value: -4 a -4*v0 + 4*v2 + 3*v3 -2 < 0; value: -1 a 2*v1 + 5*v3 -33 < 0; value: -8 a -2*v2 + 1 <= 0; value: -1 a -2*v0 -6*v2 + 5 <= 0; value: -7 a v0 + v3 -6 = 0; value: 0 0: 1 4 5 1: 2 2: 1 3 4 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -4*v0 + 4*v2 + 3*v3 -2 < 0; value: -1 a 2*v1 + 5*v3 -33 < 0; value: -8 a -2*v2 + 1 <= 0; value: -1 a -2*v0 -6*v2 + 5 <= 0; value: -7 a v0 + v3 -6 = 0; value: 0 0: 1 4 5 1: 2 2: 1 3 4 3: 1 2 5 0: 3 -> 3 1: 5 -> 5 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a 2*v0 -2*v2 -3*v3 + 1 <= 0; value: 0 a v0 -1*v3 -4 = 0; value: 0 a -2*v0 -1*v1 + 2*v2 + 2 = 0; value: 0 a -1*v1 <= 0; value: 0 a 5*v0 -4*v2 -15 <= 0; value: -6 0: 1 2 3 5 1: 3 4 2: 1 3 5 3: 1 2 optimal: 10 a + 10 <= 0; value: 10 d 2*v0 -2*v2 -3*v3 + 1 <= 0; value: 0 d v0 -1*v3 -4 = 0; value: 0 d -2*v0 -1*v1 + 2*v2 + 2 = 0; value: 0 d 3*v0 -15 <= 0; value: 0 a -6 <= 0; value: -6 0: 1 2 3 5 4 4 1: 3 4 2: 1 3 5 4 3: 1 2 5 4 0: 5 -> 5 1: 0 -> 0 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -11 <= 0; value: -23 a -6*v1 -7 <= 0; value: -25 a 5*v0 + v2 -15 <= 0; value: 0 a v1 -6*v3 + 21 = 0; value: 0 a 3*v0 -2*v1 <= 0; value: 0 0: 1 3 5 1: 2 4 5 2: 3 3: 4 optimal: 7/9 a + 7/9 <= 0; value: 7/9 a -19/3 <= 0; value: -19/3 d -9*v0 -7 <= 0; value: 0 a v2 -170/9 <= 0; value: -125/9 d v1 -6*v3 + 21 = 0; value: 0 d 3*v0 -12*v3 + 42 <= 0; value: 0 0: 1 3 5 2 1: 2 4 5 2: 3 3: 4 2 5 0: 2 -> -7/9 1: 3 -> -7/6 2: 5 -> 5 3: 4 -> 119/36 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 -5*v1 + 1 <= 0; value: -24 a -3*v2 + 4*v3 -2 <= 0; value: -5 a 2*v2 -13 <= 0; value: -3 a -5*v1 + v3 -7 <= 0; value: -19 a v1 -1*v2 + 2 = 0; value: 0 0: 1 1: 1 4 5 2: 2 3 5 3: 2 4 optimal: oo a 2*v0 + 40/17 <= 0; value: 108/17 a -5*v0 + 117/17 <= 0; value: -53/17 d -3*v2 + 4*v3 -2 <= 0; value: 0 a -193/17 <= 0; value: -193/17 d -17/3*v3 + 19/3 <= 0; value: 0 d v1 -1*v2 + 2 = 0; value: 0 0: 1 1: 1 4 5 2: 2 3 5 1 4 3: 2 4 1 3 0: 2 -> 2 1: 3 -> -20/17 2: 5 -> 14/17 3: 3 -> 19/17 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 + v3 -8 = 0; value: 0 a -6*v1 -3*v3 + 8 <= 0; value: -10 a 5*v1 + v2 -45 <= 0; value: -29 a v0 -3*v3 -6 <= 0; value: -2 a -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 4 1: 2 3 5 2: 3 5 3: 1 2 4 optimal: 16/3 a + 16/3 <= 0; value: 16/3 d 2*v0 + v3 -8 = 0; value: 0 d 6*v2 -3*v3 -16 <= 0; value: 0 a 4*v0 -155/3 <= 0; value: -107/3 a 7*v0 -30 <= 0; value: -2 d -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 4 3 1: 2 3 5 2: 3 5 2 3: 1 2 4 3 0: 4 -> 4 1: 3 -> 4/3 2: 1 -> 8/3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -5*v1 -1*v2 + 1 <= 0; value: 0 a -3*v0 -3*v1 -1*v2 -2 < 0; value: -6 a -1*v1 + v3 -2 <= 0; value: -1 a 2*v1 + 5*v2 -13 <= 0; value: -8 a 4*v0 + 4*v2 -15 <= 0; value: -7 0: 2 5 1: 1 2 3 4 2: 1 2 4 5 3: 3 optimal: 125/46 a + 125/46 <= 0; value: 125/46 d -5*v1 -1*v2 + 1 <= 0; value: 0 a -619/92 < 0; value: -619/92 a v3 -38/23 <= 0; value: -15/23 d 23/5*v2 -63/5 <= 0; value: 0 d 4*v0 -93/23 <= 0; value: 0 0: 2 5 1: 1 2 3 4 2: 1 2 4 5 3 3: 3 0: 1 -> 93/92 1: 0 -> -8/23 2: 1 -> 63/23 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 + 1 <= 0; value: 0 a 2*v0 -3*v1 -2 < 0; value: -8 a v2 -2*v3 < 0; value: -1 a 3*v2 + 3*v3 -7 <= 0; value: -1 a 4*v0 + 5*v2 -14 < 0; value: -9 0: 2 5 1: 2 2: 1 3 4 5 3: 3 4 optimal: (17/6 -e*1) a + 17/6 < 0; value: 17/6 d -1*v2 + 1 <= 0; value: 0 d 2*v0 -3*v1 -2 < 0; value: -11/4 a -2*v3 + 1 < 0; value: -1 a 3*v3 -4 <= 0; value: -1 d 4*v0 + 5*v2 -14 < 0; value: -4 0: 2 5 1: 2 2: 1 3 4 5 3: 3 4 0: 0 -> 5/4 1: 2 -> 13/12 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -5*v2 + 4*v3 + 12 = 0; value: 0 a 3*v0 -6*v2 + 4*v3 + 10 = 0; value: 0 a -1*v1 + 2*v2 + v3 -8 <= 0; value: -3 a 2*v0 + 5*v2 + v3 -74 <= 0; value: -48 a -1*v3 + 1 < 0; value: -1 0: 2 4 1: 3 2: 1 2 3 4 3: 1 2 3 4 5 optimal: (14/3 -e*1) a + 14/3 < 0; value: 14/3 d -5*v2 + 4*v3 + 12 = 0; value: 0 d 3*v0 -1*v2 -2 = 0; value: 0 d -1*v1 + 2*v2 + v3 -8 <= 0; value: 0 a -803/15 < 0; value: -803/15 d -15/4*v0 + 13/2 < 0; value: -1/2 0: 2 4 5 1: 3 2: 1 2 3 4 5 3: 1 2 3 4 5 0: 2 -> 28/15 1: 5 -> 7/10 2: 4 -> 18/5 3: 2 -> 3/2 a 2*v0 -2*v1 <= 0; value: -4 a -4*v2 -6*v3 -3 <= 0; value: -23 a -2*v0 + 5*v3 -1 < 0; value: -5 a -1*v3 <= 0; value: 0 a -6*v0 + 5*v2 -3*v3 -37 <= 0; value: -24 a -3*v0 + 2 <= 0; value: -4 0: 2 4 5 1: 2: 1 4 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -4*v2 -6*v3 -3 <= 0; value: -23 a -2*v0 + 5*v3 -1 < 0; value: -5 a -1*v3 <= 0; value: 0 a -6*v0 + 5*v2 -3*v3 -37 <= 0; value: -24 a -3*v0 + 2 <= 0; value: -4 0: 2 4 5 1: 2: 1 4 3: 1 2 3 4 0: 2 -> 2 1: 4 -> 4 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -5*v1 + 11 < 0; value: -2 a -1*v3 -2 < 0; value: -7 a -1*v1 + v3 <= 0; value: 0 a 5*v1 -33 < 0; value: -8 a -2*v0 + 4*v2 -3*v3 -16 < 0; value: -35 0: 1 5 1: 1 3 4 2: 5 3: 2 3 5 optimal: (22/15 -e*1) a + 22/15 < 0; value: 22/15 d 3*v0 -5*v3 + 11 < 0; value: -5/2 a -43/5 < 0; value: -43/5 d -1*v1 + v3 <= 0; value: 0 d 3*v0 -22 < 0; value: -3 a 4*v2 -757/15 < 0; value: -697/15 0: 1 5 2 4 1: 1 3 4 2: 5 3: 2 3 5 1 4 0: 4 -> 19/3 1: 5 -> 13/2 2: 1 -> 1 3: 5 -> 13/2 a 2*v0 -2*v1 <= 0; value: 2 a 5*v3 -19 < 0; value: -9 a -6*v0 -3*v2 -5*v3 + 22 <= 0; value: -27 a -4*v0 + 3*v2 + 5 <= 0; value: -6 a 3*v0 -3*v3 -19 <= 0; value: -10 a -3*v2 -4*v3 -13 < 0; value: -30 0: 2 3 4 1: 2: 2 3 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 5*v3 -19 < 0; value: -9 a -6*v0 -3*v2 -5*v3 + 22 <= 0; value: -27 a -4*v0 + 3*v2 + 5 <= 0; value: -6 a 3*v0 -3*v3 -19 <= 0; value: -10 a -3*v2 -4*v3 -13 < 0; value: -30 0: 2 3 4 1: 2: 2 3 5 3: 1 2 4 5 0: 5 -> 5 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -5*v2 + 3*v3 -6 < 0; value: -14 a -2*v1 + v2 + 4*v3 -23 <= 0; value: -3 a 4*v0 + 3*v3 -20 <= 0; value: -8 a v3 -4 = 0; value: 0 a -3*v0 -2*v1 = 0; value: 0 0: 1 3 5 1: 2 5 2: 1 2 3: 1 2 3 4 optimal: 10 a + 10 <= 0; value: 10 a -3 < 0; value: -3 d 3*v0 + v2 + 4*v3 -23 <= 0; value: 0 d -4/3*v2 + 4/3 <= 0; value: 0 d v3 -4 = 0; value: 0 d -3*v0 -2*v1 = 0; value: 0 0: 1 3 5 2 1: 2 5 2: 1 2 3 3: 1 2 3 4 0: 0 -> 2 1: 0 -> -3 2: 4 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 + 2*v2 -1*v3 -7 <= 0; value: -15 a 5*v1 + 2*v2 -45 < 0; value: -28 a -3*v2 -2*v3 -8 <= 0; value: -19 a -5*v1 + 3*v2 + 3 <= 0; value: -9 d = 0; value: 0 0: 1: 1 2 4 2: 1 2 3 4 3: 1 3 optimal: oo a 2*v0 + 4/5*v3 + 2 <= 0; value: 56/5 a -23/15*v3 -31/3 <= 0; value: -247/15 a -10/3*v3 -166/3 < 0; value: -206/3 d -3*v2 -2*v3 -8 <= 0; value: 0 d -5*v1 + 3*v2 + 3 <= 0; value: 0 d = 0; value: 0 0: 1: 1 2 4 2: 1 2 3 4 3: 1 3 2 0: 3 -> 3 1: 3 -> -13/5 2: 1 -> -16/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -1*v0 -1*v3 -1 <= 0; value: -7 a 5*v0 -1*v2 + 2*v3 -39 < 0; value: -24 a -5*v0 + v2 + 1 < 0; value: -6 a -1*v0 + v1 -1*v2 + 3 = 0; value: 0 0: 1 2 3 4 5 1: 5 2: 3 4 5 3: 2 3 optimal: (76 -e*1) a + 76 < 0; value: 76 d -1*v0 + 2 = 0; value: 0 d -1*v0 -1*v3 -1 <= 0; value: 0 d 5*v0 -1*v2 + 2*v3 -39 < 0; value: -1 a -44 < 0; value: -44 d -1*v0 + v1 -1*v2 + 3 = 0; value: 0 0: 1 2 3 4 5 4 1: 5 2: 3 4 5 3: 2 3 4 0: 2 -> 2 1: 2 -> -35 2: 3 -> -34 3: 4 -> -3 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 + 3*v3 -17 <= 0; value: -1 a -2*v0 + 5*v3 = 0; value: 0 a -6*v1 -4*v2 + 5*v3 + 16 <= 0; value: -4 a -1*v0 -4*v1 -3*v3 + 18 <= 0; value: -13 a 5*v0 + 5*v1 + 4*v3 -151 <= 0; value: -93 0: 2 4 5 1: 1 3 4 5 2: 3 3: 1 2 3 4 5 optimal: 7274/77 a + 7274/77 <= 0; value: 7274/77 a -359/77 <= 0; value: -359/77 d -2*v0 + 5*v3 = 0; value: 0 d -6*v1 -4*v2 + 5*v3 + 16 <= 0; value: 0 d -53/15*v0 + 8/3*v2 + 22/3 <= 0; value: 0 d 77/20*v0 -257/2 <= 0; value: 0 0: 2 4 5 1 1: 1 3 4 5 2: 3 4 1 5 3: 1 2 3 4 5 0: 5 -> 2570/77 1: 5 -> -97/7 2: 0 -> 6387/154 3: 2 -> 1028/77 a 2*v0 -2*v1 <= 0; value: 2 a 2*v3 -3 < 0; value: -1 a -2*v1 -2*v2 -3 < 0; value: -13 a -4*v0 -1*v2 + 3 <= 0; value: -6 a v0 -3*v1 -1 <= 0; value: 0 a 3*v1 + 4*v2 + 3*v3 -28 <= 0; value: -5 0: 3 4 1: 2 4 5 2: 2 3 5 3: 1 5 optimal: oo a -16/3*v2 -4*v3 + 118/3 <= 0; value: 26/3 a 2*v3 -3 < 0; value: -1 a 2/3*v2 + 2*v3 -65/3 < 0; value: -49/3 a 15*v2 + 12*v3 -113 <= 0; value: -26 d v0 -3*v1 -1 <= 0; value: 0 d v0 + 4*v2 + 3*v3 -29 <= 0; value: 0 0: 3 4 2 5 1: 2 4 5 2: 2 3 5 3: 1 5 3 2 0: 1 -> 6 1: 0 -> 5/3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 2*v2 + 3*v3 -17 = 0; value: 0 a v1 -2*v3 + 6 = 0; value: 0 a -3*v0 + 5*v1 -3*v2 -2 = 0; value: 0 a -5*v3 -8 <= 0; value: -33 a v1 -1*v2 -5 <= 0; value: -2 0: 3 1: 2 3 5 2: 1 3 5 3: 1 2 4 optimal: 110/21 a + 110/21 <= 0; value: 110/21 d 2*v2 + 3*v3 -17 = 0; value: 0 d v1 -2*v3 + 6 = 0; value: 0 d -3*v0 -29/3*v2 + 74/3 = 0; value: 0 a -251/7 <= 0; value: -251/7 d 21/29*v0 -163/29 <= 0; value: 0 0: 3 4 5 1: 2 3 5 2: 1 3 5 4 3: 1 2 4 3 5 0: 5 -> 163/21 1: 4 -> 36/7 2: 1 -> 1/7 3: 5 -> 39/7 a 2*v0 -2*v1 <= 0; value: 8 a v1 <= 0; value: 0 a 2*v0 -3*v2 -3 <= 0; value: -1 a -1*v1 <= 0; value: 0 a 2*v0 + 4*v2 -3*v3 -1 <= 0; value: 0 a -3*v0 + 2 <= 0; value: -10 0: 2 4 5 1: 1 3 2: 2 4 3: 4 optimal: oo a 3*v2 + 3 <= 0; value: 9 a <= 0; value: 0 d -7*v2 + 3*v3 -2 <= 0; value: 0 d -1*v1 <= 0; value: 0 d 2*v0 + 4*v2 -3*v3 -1 <= 0; value: 0 a -9/2*v2 -5/2 <= 0; value: -23/2 0: 2 4 5 1: 1 3 2: 2 4 5 3: 4 2 5 0: 4 -> 9/2 1: 0 -> 0 2: 2 -> 2 3: 5 -> 16/3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 <= 0; value: -4 a -1*v0 -3*v1 + 10 = 0; value: 0 a -3*v0 + 2*v2 + 10 <= 0; value: 0 a 3*v0 + v3 -44 <= 0; value: -29 0: 1 2 3 4 1: 2 2: 3 3: 4 optimal: oo a -8/9*v3 + 292/9 <= 0; value: 268/9 a 1/3*v3 -44/3 <= 0; value: -41/3 d -1*v0 -3*v1 + 10 = 0; value: 0 a 2*v2 + v3 -34 <= 0; value: -29 d 3*v0 + v3 -44 <= 0; value: 0 0: 1 2 3 4 1: 2 2: 3 3: 4 1 3 0: 4 -> 41/3 1: 2 -> -11/9 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a v0 -1*v3 + 3 = 0; value: 0 a v0 <= 0; value: 0 a -1*v0 -6*v3 + 18 = 0; value: 0 a v3 -3 = 0; value: 0 a v0 + 2*v2 + v3 -5 = 0; value: 0 0: 1 2 3 5 1: 2: 5 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a v0 -1*v3 + 3 = 0; value: 0 a v0 <= 0; value: 0 a -1*v0 -6*v3 + 18 = 0; value: 0 a v3 -3 = 0; value: 0 a v0 + 2*v2 + v3 -5 = 0; value: 0 0: 1 2 3 5 1: 2: 5 3: 1 3 4 5 0: 0 -> 0 1: 3 -> 3 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 3*v1 -21 <= 0; value: -7 a -1*v1 -1 <= 0; value: -3 a -2*v1 + v2 + 3*v3 -13 = 0; value: 0 a -3*v0 + 6*v3 -28 < 0; value: -4 a 3*v0 + 5*v2 -16 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 3 5 3: 3 4 optimal: 14 a + 14 <= 0; value: 14 d -20/3*v2 -8/3 <= 0; value: 0 d -1/2*v2 -3/2*v3 + 11/2 <= 0; value: 0 d -2*v1 + v2 + 3*v3 -13 = 0; value: 0 a -116/5 < 0; value: -116/5 d 3*v0 + 5*v2 -16 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 3 5 2 1 4 1 3: 3 4 2 1 0: 2 -> 6 1: 2 -> -1 2: 2 -> -2/5 3: 5 -> 19/5 a 2*v0 -2*v1 <= 0; value: 6 a v2 <= 0; value: 0 a -5*v1 + 4*v3 + 6 = 0; value: 0 a -6*v0 + v1 + 23 <= 0; value: -5 a 3*v0 + 2*v3 -33 <= 0; value: -16 a -3*v1 -6*v2 -4*v3 + 6 <= 0; value: -4 0: 3 4 1: 2 3 5 2: 1 5 3: 2 4 5 optimal: 37/2 a + 37/2 <= 0; value: 37/2 d v2 <= 0; value: 0 d -5*v1 + 4*v3 + 6 = 0; value: 0 a -40 <= 0; value: -40 d 3*v0 -129/4 <= 0; value: 0 d -6*v2 -32/5*v3 + 12/5 <= 0; value: 0 0: 3 4 1: 2 3 5 2: 1 5 4 3 3: 2 4 5 3 0: 5 -> 43/4 1: 2 -> 3/2 2: 0 -> 0 3: 1 -> 3/8 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 + 6*v2 + 4*v3 -41 <= 0; value: -25 a -1*v0 + 2*v3 <= 0; value: 0 a -4*v0 + 6*v1 -1*v3 < 0; value: -9 a v2 -2 = 0; value: 0 a 2*v0 + 2*v1 + v2 -11 <= 0; value: -5 0: 2 3 5 1: 1 3 5 2: 1 4 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 + 6*v2 + 4*v3 -41 <= 0; value: -25 a -1*v0 + 2*v3 <= 0; value: 0 a -4*v0 + 6*v1 -1*v3 < 0; value: -9 a v2 -2 = 0; value: 0 a 2*v0 + 2*v1 + v2 -11 <= 0; value: -5 0: 2 3 5 1: 1 3 5 2: 1 4 5 3: 1 2 3 0: 2 -> 2 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -2*v0 -9 <= 0; value: -19 a v0 -5*v1 -3 <= 0; value: -13 a 3*v0 + 3*v2 + 4*v3 -55 < 0; value: -29 a -5*v2 -3 <= 0; value: -8 a -2*v0 + 4*v3 + 1 <= 0; value: -1 0: 1 2 3 5 1: 2 2: 3 4 3: 3 5 optimal: oo a -8/5*v2 -32/15*v3 + 458/15 < 0; value: 74/3 a 2*v2 + 8/3*v3 -137/3 < 0; value: -115/3 d v0 -5*v1 -3 <= 0; value: 0 d 3*v0 + 3*v2 + 4*v3 -55 < 0; value: -3 a -5*v2 -3 <= 0; value: -8 a 2*v2 + 20/3*v3 -107/3 < 0; value: -61/3 0: 1 2 3 5 1: 2 2: 3 4 1 5 3: 3 5 1 0: 5 -> 41/3 1: 3 -> 32/15 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -20 <= 0; value: -11 a 3*v2 -3*v3 + 1 <= 0; value: -2 a 3*v0 -1*v1 + 6*v2 -6 = 0; value: 0 a v1 -1*v2 -3*v3 <= 0; value: 0 a -4*v0 + v1 -2*v2 + 7 <= 0; value: -2 0: 1 3 5 1: 3 4 5 2: 2 3 4 5 3: 2 4 optimal: oo a -4*v0 -12*v2 + 12 <= 0; value: 0 a 3*v0 -20 <= 0; value: -11 a 3*v2 -3*v3 + 1 <= 0; value: -2 d 3*v0 -1*v1 + 6*v2 -6 = 0; value: 0 a 3*v0 + 5*v2 -3*v3 -6 <= 0; value: 0 a -1*v0 + 4*v2 + 1 <= 0; value: -2 0: 1 3 5 4 1: 3 4 5 2: 2 3 4 5 3: 2 4 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a v3 -1 = 0; value: 0 a 2*v2 -11 <= 0; value: -5 a -3*v2 + 2*v3 + 7 = 0; value: 0 a -6*v0 -3*v1 -5 <= 0; value: -23 a -2*v0 -1*v1 + 4*v2 -11 <= 0; value: -5 0: 4 5 1: 4 5 2: 2 3 5 3: 1 3 optimal: oo a 6*v0 -2 <= 0; value: 4 d v3 -1 = 0; value: 0 a -5 <= 0; value: -5 d -3*v2 + 2*v3 + 7 = 0; value: 0 a -8 <= 0; value: -8 d -2*v0 -1*v1 + 4*v2 -11 <= 0; value: 0 0: 4 5 1: 4 5 2: 2 3 5 4 3: 1 3 4 2 0: 1 -> 1 1: 4 -> -1 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -1*v3 -4 <= 0; value: 0 a 2*v0 + 3*v2 -5*v3 -4 <= 0; value: -1 a -3*v2 -5*v3 -5 <= 0; value: -24 a 3*v1 -11 <= 0; value: -2 a v0 -2*v1 + 2 <= 0; value: -2 0: 1 2 5 1: 4 5 2: 2 3 3: 1 2 3 optimal: 10/3 a + 10/3 <= 0; value: 10/3 d 3*v0 -1*v3 -4 <= 0; value: 0 a 3*v2 -160/3 <= 0; value: -133/3 a -3*v2 -65 <= 0; value: -74 d 1/2*v3 -6 <= 0; value: 0 d v0 -2*v1 + 2 <= 0; value: 0 0: 1 2 5 4 1: 4 5 2: 2 3 3: 1 2 3 4 0: 2 -> 16/3 1: 3 -> 11/3 2: 3 -> 3 3: 2 -> 12 a 2*v0 -2*v1 <= 0; value: 2 a -5*v2 + 6*v3 -1 <= 0; value: -8 a -3*v0 + v3 <= 0; value: 0 a 5*v1 + 6*v3 -25 <= 0; value: -7 a v0 + 4*v1 -1 <= 0; value: 0 a 2*v2 -17 <= 0; value: -7 0: 2 4 1: 3 4 2: 1 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -5*v2 + 6*v3 -1 <= 0; value: -8 a -3*v0 + v3 <= 0; value: 0 a 5*v1 + 6*v3 -25 <= 0; value: -7 a v0 + 4*v1 -1 <= 0; value: 0 a 2*v2 -17 <= 0; value: -7 0: 2 4 1: 3 4 2: 1 5 3: 1 2 3 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a 3*v0 -1*v2 -2 <= 0; value: -1 a 2*v0 + 3*v1 -29 < 0; value: -15 a v3 -8 < 0; value: -3 a -1*v0 + 1 = 0; value: 0 a -1*v0 -2*v2 + 4 <= 0; value: -1 0: 1 2 4 5 1: 2 2: 1 5 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a 3*v0 -1*v2 -2 <= 0; value: -1 a 2*v0 + 3*v1 -29 < 0; value: -15 a v3 -8 < 0; value: -3 a -1*v0 + 1 = 0; value: 0 a -1*v0 -2*v2 + 4 <= 0; value: -1 0: 1 2 4 5 1: 2 2: 1 5 3: 3 0: 1 -> 1 1: 4 -> 4 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 6*v1 -19 <= 0; value: -9 a 3*v1 + v3 -11 = 0; value: 0 a 3*v0 + 2*v1 -8 < 0; value: -1 a -4*v3 + 11 < 0; value: -9 a -4*v1 + 3 < 0; value: -5 0: 1 3 1: 1 2 3 5 2: 3: 2 4 optimal: (17/6 -e*1) a + 17/6 < 0; value: 17/6 a -113/6 < 0; value: -113/6 d 3*v1 + v3 -11 = 0; value: 0 d 3*v0 -13/2 < 0; value: -7/4 a -24 < 0; value: -24 d 4/3*v3 -35/3 < 0; value: -4/3 0: 1 3 1: 1 2 3 5 2: 3: 2 4 5 1 3 0: 1 -> 19/12 1: 2 -> 13/12 2: 1 -> 1 3: 5 -> 31/4 a 2*v0 -2*v1 <= 0; value: 8 a v1 + 4*v2 -2 < 0; value: -1 a -2*v2 -3*v3 -4 < 0; value: -19 a v2 <= 0; value: 0 a 2*v0 + v1 -4*v2 -14 <= 0; value: -3 a -5*v0 + 2*v3 + 12 <= 0; value: -3 0: 4 5 1: 1 4 2: 1 2 3 4 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v1 + 4*v2 -2 < 0; value: -1 a -2*v2 -3*v3 -4 < 0; value: -19 a v2 <= 0; value: 0 a 2*v0 + v1 -4*v2 -14 <= 0; value: -3 a -5*v0 + 2*v3 + 12 <= 0; value: -3 0: 4 5 1: 1 4 2: 1 2 3 4 3: 2 5 0: 5 -> 5 1: 1 -> 1 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 + 5*v2 -3*v3 + 5 < 0; value: -4 a v0 + 3*v2 -12 = 0; value: 0 a -4*v0 + 2*v1 + 7 <= 0; value: -3 a 2*v2 -3*v3 + 5 < 0; value: -1 a -4*v3 -3 <= 0; value: -19 0: 1 2 3 1: 3 2: 1 2 4 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 + 5*v2 -3*v3 + 5 < 0; value: -4 a v0 + 3*v2 -12 = 0; value: 0 a -4*v0 + 2*v1 + 7 <= 0; value: -3 a 2*v2 -3*v3 + 5 < 0; value: -1 a -4*v3 -3 <= 0; value: -19 0: 1 2 3 1: 3 2: 1 2 4 3: 1 4 5 0: 3 -> 3 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 3*v1 -2 <= 0; value: -1 a 4*v2 -1*v3 -19 = 0; value: 0 a 2*v0 -6*v1 + 5*v3 -3 <= 0; value: 0 a 6*v0 -3*v1 + 2*v3 -76 <= 0; value: -50 a 2*v1 + 3*v3 -10 <= 0; value: -3 0: 1 3 4 1: 1 3 4 5 2: 2 3: 2 3 4 5 optimal: oo a -46/3*v0 + 748/3 <= 0; value: 518/3 a 25*v0 -376 <= 0; value: -251 d 4*v2 -1*v3 -19 = 0; value: 0 d 2*v0 -6*v1 + 5*v3 -3 <= 0; value: 0 d 5*v0 -2*v2 -65 <= 0; value: 0 a 142/3*v0 -2119/3 <= 0; value: -1409/3 0: 1 3 4 5 1 1: 1 3 4 5 2: 2 4 5 1 3: 2 3 4 5 1 0: 5 -> 5 1: 2 -> -244/3 2: 5 -> -20 3: 1 -> -99 a 2*v0 -2*v1 <= 0; value: -6 a -2*v0 -3*v1 + 6 < 0; value: -3 a -5*v1 + 6*v3 + 1 <= 0; value: -14 a -1*v1 -2 < 0; value: -5 a v0 + v1 -3 = 0; value: 0 a -1*v3 <= 0; value: 0 0: 1 4 1: 1 2 3 4 2: 3: 2 5 optimal: 26/5 a + 26/5 <= 0; value: 26/5 a -1/5 < 0; value: -1/5 d 5*v0 + 6*v3 -14 <= 0; value: 0 a -11/5 < 0; value: -11/5 d v0 + v1 -3 = 0; value: 0 d -1*v3 <= 0; value: 0 0: 1 4 2 3 1: 1 2 3 4 2: 3: 2 5 1 3 0: 0 -> 14/5 1: 3 -> 1/5 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -6*v0 -5*v3 + 17 = 0; value: 0 a v2 + 2*v3 -10 < 0; value: -5 a -1*v2 + 3 <= 0; value: 0 a -2*v1 -1*v2 -9 <= 0; value: -22 a v0 + 3*v1 -33 <= 0; value: -16 0: 1 5 1: 4 5 2: 2 3 4 3: 1 2 optimal: oo a 22/5*v0 + 61/5 < 0; value: 21 d -6*v0 -5*v3 + 17 = 0; value: 0 d v2 + 2*v3 -10 < 0; value: -1 a -12/5*v0 -1/5 < 0; value: -5 d -2*v1 -1*v2 -9 <= 0; value: 0 a -13/5*v0 -513/10 < 0; value: -113/2 0: 1 5 3 1: 4 5 2: 2 3 4 5 3: 1 2 3 5 0: 2 -> 2 1: 5 -> -8 2: 3 -> 7 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a v1 + 2*v3 -9 = 0; value: 0 a 2*v3 -17 <= 0; value: -11 a 3*v1 + 4*v2 -44 <= 0; value: -27 a 2*v1 + 5*v2 -40 <= 0; value: -24 a -2*v3 -5 <= 0; value: -11 0: 1: 1 3 4 2: 3 4 3: 1 2 5 optimal: oo a 2*v0 + 16 <= 0; value: 18 d v1 + 2*v3 -9 = 0; value: 0 d 2*v3 -17 <= 0; value: 0 a 4*v2 -68 <= 0; value: -60 a 5*v2 -56 <= 0; value: -46 a -22 <= 0; value: -22 0: 1: 1 3 4 2: 3 4 3: 1 2 5 3 4 0: 1 -> 1 1: 3 -> -8 2: 2 -> 2 3: 3 -> 17/2 a 2*v0 -2*v1 <= 0; value: 0 a v2 -2*v3 + 1 <= 0; value: -5 a -1*v0 + 2*v1 -4*v2 + 13 = 0; value: 0 a -1*v3 -3 < 0; value: -8 a -1*v1 + 3 = 0; value: 0 a 5*v0 + 2*v1 -6*v3 + 9 = 0; value: 0 0: 2 5 1: 2 4 5 2: 1 2 3: 1 3 5 optimal: oo a 12/5*v3 -12 <= 0; value: 0 a -23/10*v3 + 13/2 <= 0; value: -5 d -1*v0 + 2*v1 -4*v2 + 13 = 0; value: 0 a -1*v3 -3 < 0; value: -8 d -1/2*v0 -2*v2 + 19/2 = 0; value: 0 d 5*v0 -6*v3 + 15 = 0; value: 0 0: 2 5 4 1 1: 2 4 5 2: 1 2 4 5 3: 1 3 5 0: 3 -> 3 1: 3 -> 3 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -1*v2 + v3 -13 < 0; value: -8 a 4*v0 -5*v2 -3*v3 + 31 = 0; value: 0 a -6*v0 + 3*v2 -14 <= 0; value: -8 a v0 + v1 + 3*v3 -28 < 0; value: -11 0: 1 2 3 4 1: 4 2: 1 2 3 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -1*v2 + v3 -13 < 0; value: -8 a 4*v0 -5*v2 -3*v3 + 31 = 0; value: 0 a -6*v0 + 3*v2 -14 <= 0; value: -8 a v0 + v1 + 3*v3 -28 < 0; value: -11 0: 1 2 3 4 1: 4 2: 1 2 3 3: 1 2 4 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -3*v2 + v3 + 5 = 0; value: 0 a -2*v0 + 3*v3 + 2 = 0; value: 0 a -3*v3 + 1 < 0; value: -5 a -1*v0 + v1 <= 0; value: 0 a 3*v1 -4*v2 + 8 <= 0; value: 0 0: 2 4 1: 1 4 5 2: 1 5 3: 1 2 3 optimal: oo a 8/3*v0 -3*v2 + 13/3 <= 0; value: 0 d 2*v1 -3*v2 + v3 + 5 = 0; value: 0 d -2*v0 + 3*v3 + 2 = 0; value: 0 a -2*v0 + 3 < 0; value: -5 a -4/3*v0 + 3/2*v2 -13/6 <= 0; value: 0 a -1*v0 + 1/2*v2 + 3/2 <= 0; value: 0 0: 2 4 3 5 1: 1 4 5 2: 1 5 4 3: 1 2 3 4 5 0: 4 -> 4 1: 4 -> 4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 <= 0; value: 0 a 5*v0 + v1 -5*v2 + 7 <= 0; value: -2 a -2*v0 -3*v1 + 3 <= 0; value: 0 a -3*v0 -5*v1 + v2 + 2 <= 0; value: -1 a -2*v1 -1*v3 + 5 = 0; value: 0 0: 1 2 3 4 1: 2 3 4 5 2: 2 4 3: 5 optimal: 17/9 a + 17/9 <= 0; value: 17/9 a -7/6 <= 0; value: -7/6 d -5*v2 + 13/4*v3 -7/4 <= 0; value: 0 d -2*v0 -3*v1 + 3 <= 0; value: 0 d 18/13*v2 -47/13 <= 0; value: 0 d 4/3*v0 -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 5 1: 2 3 4 5 2: 2 4 1 3: 5 4 2 1 0: 0 -> 7/6 1: 1 -> 2/9 2: 2 -> 47/18 3: 3 -> 41/9 a 2*v0 -2*v1 <= 0; value: 0 a -5*v2 + 4*v3 + 1 < 0; value: -11 a v0 + v2 -3*v3 -2 < 0; value: -1 a v3 -2 = 0; value: 0 a 5*v0 -2*v2 -13 < 0; value: -6 a -1*v1 + v3 <= 0; value: -1 0: 2 4 1: 5 2: 1 2 4 3: 1 2 3 5 optimal: (30/7 -e*1) a + 30/7 < 0; value: 30/7 a -72/7 < 0; value: -72/7 d v0 + v2 -8 < 0; value: -4/7 d v3 -2 = 0; value: 0 d -7*v2 + 27 <= 0; value: 0 d -1*v1 + v3 <= 0; value: 0 0: 2 4 1: 5 2: 1 2 4 3: 1 2 3 5 0: 3 -> 25/7 1: 3 -> 2 2: 4 -> 27/7 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 -1*v3 -1 <= 0; value: -8 a 3*v3 -22 <= 0; value: -13 a -3*v2 -2*v3 + 13 <= 0; value: -8 a -4*v1 -4*v3 + 15 < 0; value: -5 a -3*v0 + v1 -5*v2 + 29 <= 0; value: -6 0: 5 1: 1 4 5 2: 3 5 3: 1 2 3 4 optimal: oo a 2*v0 + 43/6 < 0; value: 91/6 a -7/6 <= 0; value: -7/6 d 3*v3 -22 <= 0; value: 0 a -3*v2 -5/3 <= 0; value: -50/3 d -4*v1 -4*v3 + 15 < 0; value: -4 a -3*v0 -5*v2 + 305/12 < 0; value: -139/12 0: 5 1: 1 4 5 2: 3 5 3: 1 2 3 4 5 0: 4 -> 4 1: 2 -> -31/12 2: 5 -> 5 3: 3 -> 22/3 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 -5*v3 -9 <= 0; value: -5 a 6*v0 -49 <= 0; value: -25 a 5*v0 -6*v2 + v3 -45 <= 0; value: -25 a -3*v0 -6*v1 + 3*v2 + 17 <= 0; value: -7 a v0 -6*v1 -3*v3 < 0; value: -8 0: 2 3 4 5 1: 1 4 5 2: 3 4 3: 1 3 5 optimal: (1177/63 -e*1) a + 1177/63 < 0; value: 1177/63 a -4625/126 < 0; value: -4625/126 d 6*v0 -49 <= 0; value: 0 d -3*v0 + 7*v3 -11 <= 0; value: 0 d -3*v0 -6*v1 + 3*v2 + 17 <= 0; value: 0 d 4*v0 -3*v2 -3*v3 -17 < 0; value: -19/84 0: 2 3 4 5 1 1: 1 4 5 2: 3 4 5 1 3: 1 3 5 0: 4 -> 49/6 1: 2 -> -191/168 2: 0 -> 19/84 3: 0 -> 71/14 a 2*v0 -2*v1 <= 0; value: 10 a 5*v0 -1*v1 -5*v2 -40 <= 0; value: -25 a 2*v0 + 2*v1 -2*v3 -19 <= 0; value: -9 a 5*v2 -2*v3 -27 <= 0; value: -17 a -3*v0 + v3 <= 0; value: -15 a v3 <= 0; value: 0 0: 1 2 4 1: 1 2 2: 1 3 3: 2 3 4 5 optimal: 134 a + 134 <= 0; value: 134 d 5*v0 -1*v1 -5*v2 -40 <= 0; value: 0 a -153 <= 0; value: -153 d 5*v2 -2*v3 -27 <= 0; value: 0 d -3*v0 <= 0; value: 0 d v3 <= 0; value: 0 0: 1 2 4 1: 1 2 2: 1 3 2 3: 2 3 4 5 0: 5 -> 0 1: 0 -> -67 2: 2 -> 27/5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a 5*v1 -6*v2 + 18 = 0; value: 0 a -2*v0 + v2 -5 <= 0; value: -12 a -1*v1 + 2*v2 -1*v3 -6 <= 0; value: 0 a -2*v2 -3*v3 + 6 = 0; value: 0 a -5*v0 + 3*v3 + 25 = 0; value: 0 0: 2 5 1: 1 3 2: 1 2 3 4 3: 3 4 5 optimal: oo a 8*v0 -30 <= 0; value: 10 d 5*v1 -6*v2 + 18 = 0; value: 0 a -9/2*v0 + 21/2 <= 0; value: -12 a -11/3*v0 + 55/3 <= 0; value: 0 d -2*v2 -3*v3 + 6 = 0; value: 0 d -5*v0 + 3*v3 + 25 = 0; value: 0 0: 2 5 3 1: 1 3 2: 1 2 3 4 3: 3 4 5 2 0: 5 -> 5 1: 0 -> 0 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 5*v1 -4*v2 -2 <= 0; value: -1 a -1*v1 + 1 <= 0; value: 0 a 5*v0 + 6*v2 -22 <= 0; value: -6 a -3*v0 + 5 <= 0; value: -1 a -4*v1 + 5*v2 -2 < 0; value: -1 0: 3 4 1: 1 2 5 2: 1 3 5 3: optimal: 5 a + 5 <= 0; value: 5 d -4*v2 + 3 <= 0; value: 0 d -1*v1 + 1 <= 0; value: 0 d 5*v0 + 6*v2 -22 <= 0; value: 0 a -11/2 <= 0; value: -11/2 a -9/4 < 0; value: -9/4 0: 3 4 1: 1 2 5 2: 1 3 5 4 3: 0: 2 -> 7/2 1: 1 -> 1 2: 1 -> 3/4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -6*v3 + 15 <= 0; value: -20 a v0 -1 = 0; value: 0 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a 4*v0 -1*v2 -5 <= 0; value: -1 0: 1 2 5 1: 2: 3 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -6*v3 + 15 <= 0; value: -20 a v0 -1 = 0; value: 0 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a 4*v0 -1*v2 -5 <= 0; value: -1 0: 1 2 5 1: 2: 3 4 5 3: 1 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a v3 -5 = 0; value: 0 a -2*v0 -1*v1 + 5*v3 -30 <= 0; value: -11 a -3*v1 -5*v2 + 12 = 0; value: 0 a 2*v0 -5 <= 0; value: -3 a 2*v1 -3*v3 + 7 = 0; value: 0 0: 2 4 1: 2 3 5 2: 3 3: 1 2 5 optimal: -3 a -3 <= 0; value: -3 d v3 -5 = 0; value: 0 a -14 <= 0; value: -14 d -3*v1 -5*v2 + 12 = 0; value: 0 d 2*v0 -5 <= 0; value: 0 d -10/3*v2 -3*v3 + 15 = 0; value: 0 0: 2 4 1: 2 3 5 2: 3 2 5 3: 1 2 5 0: 1 -> 5/2 1: 4 -> 4 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -4*v1 + 6*v3 -17 <= 0; value: -7 a 2*v0 + v3 -21 <= 0; value: -12 a v0 + 5*v2 -36 <= 0; value: -19 a -4*v1 -1*v2 -3 < 0; value: -26 a -2*v0 -1*v1 + 6*v3 -21 = 0; value: 0 0: 2 3 5 1: 1 4 5 2: 3 4 3: 1 2 5 optimal: 45/22 a + 45/22 <= 0; value: 45/22 d 8*v0 -18*v3 + 67 <= 0; value: 0 d 22/9*v0 -311/18 <= 0; value: 0 a 5*v2 -1273/44 <= 0; value: -613/44 a -1*v2 -299/11 < 0; value: -332/11 d -2*v0 -1*v1 + 6*v3 -21 = 0; value: 0 0: 2 3 5 4 1 1: 1 4 5 2: 3 4 3: 1 2 5 4 0: 2 -> 311/44 1: 5 -> 133/22 2: 3 -> 3 3: 5 -> 151/22 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 + 6*v3 -31 = 0; value: 0 a 4*v2 -5*v3 -20 < 0; value: -13 a -6*v0 -5*v1 -6*v2 + 40 <= 0; value: -33 a 3*v0 + v1 -45 <= 0; value: -25 a -4*v1 -3*v2 + 17 <= 0; value: -12 0: 3 4 1: 1 3 4 5 2: 2 3 5 3: 1 2 optimal: (1742/21 -e*1) a + 1742/21 < 0; value: 1742/21 d 5*v1 + 6*v3 -31 = 0; value: 0 d 7/8*v2 -225/8 < 0; value: -7/8 a -1283/7 < 0; value: -1283/7 d 3*v0 -454/7 < 0; value: -3 d -3*v2 + 24/5*v3 -39/5 <= 0; value: 0 0: 3 4 1: 1 3 4 5 2: 2 3 5 4 3: 1 2 3 5 4 0: 5 -> 433/21 1: 5 -> -535/28 2: 3 -> 218/7 3: 1 -> 1181/56 a 2*v0 -2*v1 <= 0; value: -8 a -4*v1 -4*v3 + 11 < 0; value: -21 a -5*v0 + v2 -4*v3 + 13 < 0; value: -3 a 2*v0 + 3*v3 -11 = 0; value: 0 a -3*v0 + 3*v1 -6*v3 -4 <= 0; value: -10 a 3*v0 + 3*v1 + v2 -19 = 0; value: 0 0: 2 3 4 5 1: 1 4 5 2: 2 5 3: 1 2 3 4 optimal: (161/44 -e*1) a + 161/44 < 0; value: 161/44 d 88/9*v0 -241/9 <= 0; value: 0 d -5*v0 + v2 -4*v3 + 13 < 0; value: -1 d 2*v0 + 3*v3 -11 = 0; value: 0 a -1807/88 < 0; value: -1807/88 d 3*v0 + 3*v1 + v2 -19 = 0; value: 0 0: 2 3 4 5 1 1: 1 4 5 2: 2 5 1 4 3: 1 2 3 4 0: 1 -> 241/88 1: 5 -> 41/33 2: 1 -> 621/88 3: 3 -> 81/44 a 2*v0 -2*v1 <= 0; value: -10 a -2*v0 + v1 -6*v2 -22 <= 0; value: -47 a v0 + 5*v1 -25 = 0; value: 0 a -1*v1 -2*v2 + 5 <= 0; value: -10 a 2*v2 + 5*v3 -80 < 0; value: -50 a 5*v0 + 4*v1 + 2*v3 -65 <= 0; value: -37 0: 1 2 5 1: 1 2 3 5 2: 1 3 4 3: 4 5 optimal: oo a 24*v2 -10 <= 0; value: 110 a -28*v2 -17 <= 0; value: -157 d v0 + 5*v1 -25 = 0; value: 0 d -2*v2 -2/21*v3 + 15/7 <= 0; value: 0 a -103*v2 + 65/2 < 0; value: -965/2 d 21/5*v0 + 2*v3 -45 <= 0; value: 0 0: 1 2 5 3 1: 1 2 3 5 2: 1 3 4 3: 4 5 3 1 0: 0 -> 50 1: 5 -> -5 2: 5 -> 5 3: 4 -> -165/2 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -2*v3 -11 < 0; value: -4 a -1*v3 + 4 = 0; value: 0 a v0 -5 <= 0; value: 0 a -3*v0 -2*v2 -9 <= 0; value: -24 a -5*v0 + 13 <= 0; value: -12 0: 1 3 4 5 1: 2: 4 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -2*v3 -11 < 0; value: -4 a -1*v3 + 4 = 0; value: 0 a v0 -5 <= 0; value: 0 a -3*v0 -2*v2 -9 <= 0; value: -24 a -5*v0 + 13 <= 0; value: -12 0: 1 3 4 5 1: 2: 4 3: 1 2 0: 5 -> 5 1: 2 -> 2 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -2*v2 + 5*v3 + 5 <= 0; value: 0 a 2*v0 + v3 -3 = 0; value: 0 a -5*v0 -1*v3 + 4 < 0; value: -2 a -4*v2 + 5*v3 + 11 <= 0; value: -4 a 2*v0 -1*v3 -1 = 0; value: 0 0: 2 3 5 1: 2: 1 4 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -2*v2 + 5*v3 + 5 <= 0; value: 0 a 2*v0 + v3 -3 = 0; value: 0 a -5*v0 -1*v3 + 4 < 0; value: -2 a -4*v2 + 5*v3 + 11 <= 0; value: -4 a 2*v0 -1*v3 -1 = 0; value: 0 0: 2 3 5 1: 2: 1 4 3: 1 2 3 4 5 0: 1 -> 1 1: 1 -> 1 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a v0 -4*v1 + 4 = 0; value: 0 a -3*v0 + 6*v1 -6*v3 + 11 < 0; value: -13 a -3*v1 + 2*v3 -3 <= 0; value: -1 a v3 -4 = 0; value: 0 a -1*v1 -1*v2 + 7 = 0; value: 0 0: 1 2 1: 1 2 3 5 2: 5 3: 2 3 4 optimal: oo a -6*v2 + 34 <= 0; value: 4 d v0 -4*v1 + 4 = 0; value: 0 a 6*v2 -6*v3 -19 < 0; value: -13 a 3*v2 + 2*v3 -24 <= 0; value: -1 a v3 -4 = 0; value: 0 d -1/4*v0 -1*v2 + 6 = 0; value: 0 0: 1 2 3 5 1: 1 2 3 5 2: 5 2 3 3: 2 3 4 0: 4 -> 4 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v0 + v1 -2 = 0; value: 0 a 5*v0 -4*v1 -4*v2 + 7 = 0; value: 0 a 2*v0 -3 <= 0; value: -1 a -3*v0 + v3 <= 0; value: -2 a 5*v2 -2*v3 -21 <= 0; value: -13 0: 1 2 3 4 1: 1 2 2: 2 5 3: 4 5 optimal: 2 a + 2 <= 0; value: 2 d v0 + v1 -2 = 0; value: 0 d 9*v0 -4*v2 -1 = 0; value: 0 d 8/9*v2 -25/9 <= 0; value: 0 a v3 -9/2 <= 0; value: -7/2 a -2*v3 -43/8 <= 0; value: -59/8 0: 1 2 3 4 1: 1 2 2: 2 5 3 4 3: 4 5 0: 1 -> 3/2 1: 1 -> 1/2 2: 2 -> 25/8 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a v0 -2 < 0; value: -1 a 6*v0 -3*v1 + 2*v2 <= 0; value: 0 a v0 + 6*v2 -1*v3 -36 <= 0; value: -20 a 4*v1 -1*v2 -13 = 0; value: 0 a v2 -4*v3 < 0; value: -9 0: 1 2 3 1: 2 4 2: 2 3 4 5 3: 3 5 optimal: (-8/5 -e*1) a -8/5 < 0; value: -8/5 d v0 -2 < 0; value: -1/2 d 6*v0 -3*v1 + 2*v2 <= 0; value: 0 a -1*v3 -224/5 < 0; value: -239/5 d 8*v0 + 5/3*v2 -13 = 0; value: 0 a -4*v3 -9/5 < 0; value: -69/5 0: 1 2 3 4 5 1: 2 4 2: 2 3 4 5 3: 3 5 0: 1 -> 3/2 1: 4 -> 17/5 2: 3 -> 3/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -5*v0 -6*v3 + 10 <= 0; value: -30 a -2*v1 -3 < 0; value: -11 a -5*v0 -4*v1 + 26 <= 0; value: 0 a -1*v2 + 5 = 0; value: 0 a 3*v0 -6*v2 -17 <= 0; value: -41 0: 1 3 5 1: 2 3 2: 4 5 3: 1 optimal: (79/5 -e*1) a + 79/5 < 0; value: 79/5 a -6*v3 -22 < 0; value: -52 d 5/2*v0 -16 < 0; value: -5/2 d -5*v0 -4*v1 + 26 <= 0; value: 0 a -1*v2 + 5 = 0; value: 0 a -6*v2 + 11/5 <= 0; value: -139/5 0: 1 3 5 2 1: 2 3 2: 4 5 3: 1 0: 2 -> 27/5 1: 4 -> -1/4 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v3 -10 < 0; value: -4 a 5*v2 -22 <= 0; value: -12 a -3*v0 + 4*v3 + 4 <= 0; value: 0 a -1*v0 -2*v1 + 3*v2 -1 <= 0; value: -7 a -5*v0 -2*v2 + 21 < 0; value: -3 0: 3 4 5 1: 1 4 2: 2 4 5 3: 1 3 optimal: oo a 21/2*v0 -61/2 < 0; value: 23/2 a -17/2*v0 -1*v3 + 41/2 < 0; value: -31/2 a -25/2*v0 + 61/2 < 0; value: -39/2 a -3*v0 + 4*v3 + 4 <= 0; value: 0 d -1*v0 -2*v1 + 3*v2 -1 <= 0; value: 0 d -5*v0 -2*v2 + 21 < 0; value: -3/2 0: 3 4 5 1 2 1: 1 4 2: 2 4 5 1 3: 1 3 0: 4 -> 4 1: 4 -> -5/8 2: 2 -> 5/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a v0 -1*v3 = 0; value: 0 a -6*v1 + v3 -8 < 0; value: -33 a 2*v2 + v3 -13 = 0; value: 0 a -1*v3 -1 < 0; value: -6 0: 1 1: 2 2: 3 3: 1 2 3 4 optimal: oo a -10/3*v2 + 73/3 < 0; value: 11 d v0 -1*v3 = 0; value: 0 d -6*v1 + v3 -8 < 0; value: -6 d v0 + 2*v2 -13 = 0; value: 0 a 2*v2 -14 < 0; value: -6 0: 1 3 4 1: 2 2: 3 4 3: 1 2 3 4 0: 5 -> 5 1: 5 -> 1/2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 + v2 -3 = 0; value: 0 a 2*v0 + 6*v1 -4*v3 -7 <= 0; value: -19 a 3*v1 + 4*v2 -12 = 0; value: 0 a -2*v3 -1 <= 0; value: -7 a -1*v1 <= 0; value: 0 0: 2 1: 1 2 3 5 2: 1 3 3: 2 4 optimal: oo a 4*v3 + 7 <= 0; value: 19 d -2*v1 + v2 -3 = 0; value: 0 d 2*v0 -4*v3 -7 <= 0; value: 0 d 11/2*v2 -33/2 = 0; value: 0 a -2*v3 -1 <= 0; value: -7 a <= 0; value: 0 0: 2 1: 1 2 3 5 2: 1 3 5 2 3: 2 4 0: 0 -> 19/2 1: 0 -> 0 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -4*v0 -5*v1 -8 <= 0; value: -39 a 5*v0 + v1 -25 <= 0; value: -2 a -3*v1 + 5*v3 -1 = 0; value: 0 a -2*v0 + 2*v2 + 6*v3 -25 <= 0; value: -13 a -5*v1 + 4*v2 -1 <= 0; value: 0 0: 1 2 4 1: 1 2 3 5 2: 4 5 3: 3 4 optimal: 26 a + 26 <= 0; value: 26 d -4*v0 -4*v2 -7 <= 0; value: 0 d 21/5*v0 -133/5 <= 0; value: 0 d -3*v1 + 5*v3 -1 = 0; value: 0 a -2299/30 <= 0; value: -2299/30 d 4*v2 -25/3*v3 + 2/3 <= 0; value: 0 0: 1 2 4 1: 1 2 3 5 2: 4 5 1 2 3: 3 4 1 5 2 0: 4 -> 19/3 1: 3 -> -20/3 2: 4 -> -97/12 3: 2 -> -19/5 a 2*v0 -2*v1 <= 0; value: 10 a v1 + 2*v3 -8 <= 0; value: -2 a -6*v3 -17 < 0; value: -35 a 4*v2 -27 < 0; value: -15 a -2*v2 -5*v3 -8 < 0; value: -29 a 5*v1 + v2 -6 <= 0; value: -3 0: 1: 1 5 2: 3 4 5 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a v1 + 2*v3 -8 <= 0; value: -2 a -6*v3 -17 < 0; value: -35 a 4*v2 -27 < 0; value: -15 a -2*v2 -5*v3 -8 < 0; value: -29 a 5*v1 + v2 -6 <= 0; value: -3 0: 1: 1 5 2: 3 4 5 3: 1 2 4 0: 5 -> 5 1: 0 -> 0 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a 5*v0 + 6*v2 -109 < 0; value: -71 a -1*v0 -1*v1 <= 0; value: -4 a 4*v0 + 2*v2 -61 <= 0; value: -39 a 2*v0 + 2*v1 -9 <= 0; value: -1 a 5*v0 + 2*v1 + 3*v3 -26 <= 0; value: 0 0: 1 2 3 4 5 1: 2 4 5 2: 1 3 3: 5 optimal: oo a -2*v2 + 61 <= 0; value: 55 a 7/2*v2 -131/4 < 0; value: -89/4 d -1*v0 -1*v1 <= 0; value: 0 d 2*v2 -4*v3 -79/3 <= 0; value: 0 a -9 <= 0; value: -9 d 3*v0 + 3*v3 -26 <= 0; value: 0 0: 1 2 3 4 5 1: 2 4 5 2: 1 3 3: 5 1 3 0: 4 -> 55/4 1: 0 -> -55/4 2: 3 -> 3 3: 2 -> -61/12 a 2*v0 -2*v1 <= 0; value: -6 a -1*v3 = 0; value: 0 a -1*v2 -4*v3 + 1 <= 0; value: -2 a 3*v2 + 6*v3 -16 <= 0; value: -7 a 4*v1 + 5*v2 -5*v3 -37 <= 0; value: -10 a v3 = 0; value: 0 0: 1: 4 2: 2 3 4 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -1*v3 = 0; value: 0 a -1*v2 -4*v3 + 1 <= 0; value: -2 a 3*v2 + 6*v3 -16 <= 0; value: -7 a 4*v1 + 5*v2 -5*v3 -37 <= 0; value: -10 a v3 = 0; value: 0 0: 1: 4 2: 2 3 4 3: 1 2 3 4 5 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a v0 -2*v1 -2 = 0; value: 0 a -5*v0 + 5*v3 -6 <= 0; value: -16 a -2*v0 -1*v2 -8 <= 0; value: -17 a v2 -5 = 0; value: 0 a v2 -3*v3 -6 < 0; value: -1 0: 1 2 3 1: 1 2: 3 4 5 3: 2 5 optimal: oo a v0 + 2 <= 0; value: 4 d v0 -2*v1 -2 = 0; value: 0 a -5*v0 + 5*v3 -6 <= 0; value: -16 a -2*v0 -1*v2 -8 <= 0; value: -17 a v2 -5 = 0; value: 0 a v2 -3*v3 -6 < 0; value: -1 0: 1 2 3 1: 1 2: 3 4 5 3: 2 5 0: 2 -> 2 1: 0 -> 0 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -1*v1 + 5 <= 0; value: 0 a -5*v1 + 11 <= 0; value: -14 a 3*v0 -2*v3 -1 <= 0; value: -7 a v0 + 6*v2 -38 <= 0; value: -14 d <= 0; value: 0 0: 3 4 1: 1 2 2: 4 3: 3 optimal: oo a -12*v2 + 66 <= 0; value: 18 d -1*v1 + 5 <= 0; value: 0 a -14 <= 0; value: -14 d 3*v0 -2*v3 -1 <= 0; value: 0 d 6*v2 + 2/3*v3 -113/3 <= 0; value: 0 d <= 0; value: 0 0: 3 4 1: 1 2 2: 4 3: 3 4 0: 0 -> 14 1: 5 -> 5 2: 4 -> 4 3: 3 -> 41/2 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 + 3*v2 -9 = 0; value: 0 a 2*v0 -1*v2 + 1 = 0; value: 0 a -1*v0 < 0; value: -2 a 2*v1 -3*v2 <= 0; value: -9 a v1 -3 = 0; value: 0 0: 2 3 1: 1 4 5 2: 1 2 4 3: optimal: -2 a -2 <= 0; value: -2 d -2*v1 + 3*v2 -9 = 0; value: 0 d 2*v0 -1*v2 + 1 = 0; value: 0 a -2 < 0; value: -2 a -9 <= 0; value: -9 d 3*v0 -6 = 0; value: 0 0: 2 3 5 1: 1 4 5 2: 1 2 4 5 3: 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a v0 + 4*v3 -7 = 0; value: 0 a 2*v3 -5 <= 0; value: -3 a 2*v3 -3 <= 0; value: -1 a -6*v2 + 6*v3 -5 <= 0; value: -11 a 2*v0 + v2 -8 <= 0; value: 0 0: 1 5 1: 2: 4 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a v0 + 4*v3 -7 = 0; value: 0 a 2*v3 -5 <= 0; value: -3 a 2*v3 -3 <= 0; value: -1 a -6*v2 + 6*v3 -5 <= 0; value: -11 a 2*v0 + v2 -8 <= 0; value: 0 0: 1 5 1: 2: 4 5 3: 1 2 3 4 0: 3 -> 3 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a v1 -2 = 0; value: 0 a -5*v0 + 3*v1 -3*v3 <= 0; value: 0 a 5*v0 + v2 + 6*v3 -13 = 0; value: 0 a 4*v2 + 4*v3 -33 <= 0; value: -21 a -1*v0 + v3 -2 = 0; value: 0 0: 2 3 5 1: 1 2 2: 3 4 3: 2 3 4 5 optimal: oo a -2/11*v2 -42/11 <= 0; value: -4 d v1 -2 = 0; value: 0 a 8/11*v2 -8/11 <= 0; value: 0 d 5*v0 + v2 + 6*v3 -13 = 0; value: 0 a 40/11*v2 -271/11 <= 0; value: -21 d 1/5*v2 + 11/5*v3 -23/5 = 0; value: 0 0: 2 3 5 1: 1 2 2: 3 4 5 2 3: 2 3 4 5 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 -11 < 0; value: -2 a v0 -5*v1 -2*v3 + 18 = 0; value: 0 a -5*v1 + 2*v3 -6 <= 0; value: -13 a v1 + 2*v3 -11 = 0; value: 0 a -3*v2 -5*v3 + 31 <= 0; value: -1 0: 2 1: 1 2 3 4 2: 5 3: 2 3 4 5 optimal: (8 -e*1) a + 8 < 0; value: 8 d 18/5*v2 -76/5 < 0; value: -2/5 d v0 -5*v1 -2*v3 + 18 = 0; value: 0 a -17 < 0; value: -17 d 1/5*v0 + 8/5*v3 -37/5 = 0; value: 0 d 5/8*v0 -3*v2 + 63/8 <= 0; value: 0 0: 2 3 4 1 5 1: 1 2 3 4 2: 5 1 3 3: 2 3 4 5 1 0: 5 -> 107/15 1: 3 -> 53/15 2: 4 -> 37/9 3: 4 -> 56/15 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -6*v2 -1 < 0; value: -4 a -2*v3 -5 < 0; value: -15 a 4*v0 -5*v2 -8 < 0; value: -4 a 5*v0 -1*v2 -14 <= 0; value: -9 a 2*v1 + v3 -16 <= 0; value: -7 0: 1 3 4 1: 5 2: 1 3 4 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -6*v2 -1 < 0; value: -4 a -2*v3 -5 < 0; value: -15 a 4*v0 -5*v2 -8 < 0; value: -4 a 5*v0 -1*v2 -14 <= 0; value: -9 a 2*v1 + v3 -16 <= 0; value: -7 0: 1 3 4 1: 5 2: 1 3 4 3: 2 5 0: 1 -> 1 1: 2 -> 2 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a -4*v1 -1*v2 + 3*v3 -6 <= 0; value: -13 a -1*v0 <= 0; value: -1 a 5*v1 + 6*v2 -46 < 0; value: -25 a -1*v2 -1*v3 + 2 <= 0; value: -1 a -3*v0 + 6*v3 -22 <= 0; value: -13 0: 2 5 1: 1 3 2: 1 3 4 3: 1 4 5 optimal: oo a 2*v0 + 92 < 0; value: 94 d -4*v1 -1*v2 + 3*v3 -6 <= 0; value: 0 a -1*v0 <= 0; value: -1 d v2 -46 < 0; value: -1 d -1*v2 -1*v3 + 2 <= 0; value: 0 a -3*v0 -286 < 0; value: -289 0: 2 5 1: 1 3 2: 1 3 4 5 3: 1 4 5 3 0: 1 -> 1 1: 3 -> -45 2: 1 -> 45 3: 2 -> -43 a 2*v0 -2*v1 <= 0; value: -8 a -2*v0 -2*v2 + 5*v3 -51 < 0; value: -31 a 4*v2 -1*v3 + 4 = 0; value: 0 a -5*v0 + 3*v1 -12 <= 0; value: 0 a -1*v2 -2*v3 + 8 = 0; value: 0 a -4*v0 -1*v3 -3 <= 0; value: -7 0: 1 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -2*v0 -2*v2 + 5*v3 -51 < 0; value: -31 a 4*v2 -1*v3 + 4 = 0; value: 0 a -5*v0 + 3*v1 -12 <= 0; value: 0 a -1*v2 -2*v3 + 8 = 0; value: 0 a -4*v0 -1*v3 -3 <= 0; value: -7 0: 1 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 0: 0 -> 0 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -29 <= 0; value: -14 a -2*v0 -3*v1 + 2*v2 <= 0; value: -14 a -1*v2 + 1 = 0; value: 0 a -1*v1 + 5*v2 -1 <= 0; value: 0 a -3*v0 + v2 + 5 = 0; value: 0 0: 2 5 1: 2 4 2: 2 3 4 5 3: 1 optimal: -4 a -4 <= 0; value: -4 a 3*v3 -29 <= 0; value: -14 a -14 <= 0; value: -14 d -1*v2 + 1 = 0; value: 0 d -1*v1 + 5*v2 -1 <= 0; value: 0 d -3*v0 + 6 = 0; value: 0 0: 2 5 1: 2 4 2: 2 3 4 5 3: 1 0: 2 -> 2 1: 4 -> 4 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 3*v3 -16 <= 0; value: -9 a -5*v0 -6*v1 + 14 < 0; value: -3 a -2*v0 -1*v3 -4 < 0; value: -10 a -1*v0 + 5*v1 -3*v3 + 1 <= 0; value: -2 a 5*v1 + 2*v2 -6*v3 + 2 <= 0; value: -2 0: 1 2 3 4 1: 2 4 5 2: 5 3: 1 3 4 5 optimal: oo a 11/3*v0 -14/3 < 0; value: -1 a -5*v0 + 3*v3 -16 <= 0; value: -9 d -5*v0 -6*v1 + 14 < 0; value: -3/2 a -2*v0 -1*v3 -4 < 0; value: -10 a -31/6*v0 -3*v3 + 38/3 < 0; value: -9/2 a -25/6*v0 + 2*v2 -6*v3 + 41/3 < 0; value: -9/2 0: 1 2 3 4 5 1: 2 4 5 2: 5 3: 1 3 4 5 0: 1 -> 1 1: 2 -> 7/4 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v2 + v3 -9 < 0; value: -3 a -1*v0 -1*v1 + 1 <= 0; value: -1 a -3*v0 + v2 -1 < 0; value: -3 a 4*v0 -5*v1 + 1 <= 0; value: 0 a -2*v1 -1 < 0; value: -3 0: 2 3 4 1: 2 4 5 2: 1 3 3: 1 optimal: oo a 2/5*v0 -2/5 <= 0; value: 0 a 2*v2 + v3 -9 < 0; value: -3 a -9/5*v0 + 4/5 <= 0; value: -1 a -3*v0 + v2 -1 < 0; value: -3 d 4*v0 -5*v1 + 1 <= 0; value: 0 a -8/5*v0 -7/5 < 0; value: -3 0: 2 3 4 5 1: 2 4 5 2: 1 3 3: 1 0: 1 -> 1 1: 1 -> 1 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a 6*v0 -5*v2 -1*v3 <= 0; value: -29 a v0 + 4*v1 + 2*v3 -59 <= 0; value: -39 a 6*v1 -5*v2 + 5 <= 0; value: -2 a v0 -1*v1 + 3 = 0; value: 0 a 4*v2 -53 <= 0; value: -33 0: 1 2 4 1: 2 3 4 2: 1 3 5 3: 1 2 optimal: -6 a -6 <= 0; value: -6 a 6*v0 -5*v2 -1*v3 <= 0; value: -29 a 5*v0 + 2*v3 -47 <= 0; value: -39 a 6*v0 -5*v2 + 23 <= 0; value: -2 d v0 -1*v1 + 3 = 0; value: 0 a 4*v2 -53 <= 0; value: -33 0: 1 2 4 3 1: 2 3 4 2: 1 3 5 3: 1 2 0: 0 -> 0 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + 5*v1 -15 <= 0; value: -3 a v0 -3*v3 -3 < 0; value: -1 a 2*v2 -19 <= 0; value: -11 a 2*v0 -4*v1 -5*v3 -7 <= 0; value: -3 a -2*v1 -4*v2 -7 <= 0; value: -23 0: 1 2 4 1: 1 4 5 2: 3 5 3: 2 4 optimal: 175/2 a + 175/2 <= 0; value: 175/2 d 6*v0 -255/2 <= 0; value: 0 a -1141/20 < 0; value: -1141/20 d 2*v2 -19 <= 0; value: 0 d 2*v0 -4*v1 -5*v3 -7 <= 0; value: 0 d -1*v0 -4*v2 + 5/2*v3 -7/2 <= 0; value: 0 0: 1 2 4 5 1: 1 4 5 2: 3 5 2 1 3: 2 4 5 1 0: 2 -> 85/4 1: 0 -> -45/2 2: 4 -> 19/2 3: 0 -> 251/10 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 + v3 -2 < 0; value: -1 a 3*v1 + v3 -46 <= 0; value: -30 a v0 -3 <= 0; value: 0 a 2*v0 + v2 -2*v3 -9 < 0; value: -5 a 3*v0 + 4*v2 + 2*v3 -12 < 0; value: -1 0: 3 4 5 1: 2 2: 1 4 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 + v3 -2 < 0; value: -1 a 3*v1 + v3 -46 <= 0; value: -30 a v0 -3 <= 0; value: 0 a 2*v0 + v2 -2*v3 -9 < 0; value: -5 a 3*v0 + 4*v2 + 2*v3 -12 < 0; value: -1 0: 3 4 5 1: 2 2: 1 4 5 3: 1 2 4 5 0: 3 -> 3 1: 5 -> 5 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a 3*v2 + 4*v3 -31 < 0; value: -19 a 2*v0 -2*v3 + 3 <= 0; value: -1 a 3*v0 + 3*v2 + 5*v3 -48 <= 0; value: -30 a -1*v0 -6*v1 + 6*v3 + 12 <= 0; value: -1 a -1*v1 + 5 = 0; value: 0 0: 2 3 4 1: 4 5 2: 1 3 3: 1 2 3 4 optimal: -32/5 a -32/5 <= 0; value: -32/5 a 3*v2 -89/5 < 0; value: -89/5 d 2*v0 -2*v3 + 3 <= 0; value: 0 a 3*v2 -261/10 <= 0; value: -261/10 d 5*v3 -33/2 <= 0; value: 0 d -1*v1 + 5 = 0; value: 0 0: 2 3 4 1: 4 5 2: 1 3 3: 1 2 3 4 0: 1 -> 9/5 1: 5 -> 5 2: 0 -> 0 3: 3 -> 33/10 a 2*v0 -2*v1 <= 0; value: 8 a 4*v2 + 4*v3 -59 < 0; value: -27 a -5*v0 + 4*v1 -1*v3 + 25 = 0; value: 0 a -3*v1 -2 < 0; value: -5 a v0 + 6*v1 + 3*v2 -59 <= 0; value: -36 a -4*v1 + v2 = 0; value: 0 0: 2 4 1: 2 3 4 5 2: 1 4 5 3: 1 2 optimal: (430/3 -e*1) a + 430/3 < 0; value: 430/3 a -4201/3 < 0; value: -4201/3 d -5*v0 + 4*v1 -1*v3 + 25 = 0; value: 0 d -3/4*v2 -2 < 0; value: -3/4 d v0 -71 < 0; value: -1 d -5*v0 + v2 -1*v3 + 25 = 0; value: 0 0: 2 4 3 5 1 1: 2 3 4 5 2: 1 4 5 3 3: 1 2 3 5 4 0: 5 -> 70 1: 1 -> -5/12 2: 4 -> -5/3 3: 4 -> -980/3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v2 -4*v3 -5 <= 0; value: -1 a v1 -4 = 0; value: 0 a -4*v0 + v2 + 11 <= 0; value: -5 a -1*v1 <= 0; value: -4 a -3*v2 + 6*v3 -1 < 0; value: -7 0: 3 1: 2 4 2: 1 3 5 3: 1 5 optimal: oo a 2*v0 -8 <= 0; value: 2 a 2*v2 -4*v3 -5 <= 0; value: -1 d v1 -4 = 0; value: 0 a -4*v0 + v2 + 11 <= 0; value: -5 a -4 <= 0; value: -4 a -3*v2 + 6*v3 -1 < 0; value: -7 0: 3 1: 2 4 2: 1 3 5 3: 1 5 0: 5 -> 5 1: 4 -> 4 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 2 = 0; value: 0 a -5*v0 -3*v1 -4*v3 -20 <= 0; value: -42 a 3*v0 + 4*v2 -2*v3 -14 <= 0; value: -2 a 2*v2 -25 <= 0; value: -15 a v3 -4 = 0; value: 0 0: 2 3 1: 1 2 2: 3 4 3: 2 3 5 optimal: oo a -8/3*v2 + 32/3 <= 0; value: -8/3 d -1*v1 + 2 = 0; value: 0 a 20/3*v2 -236/3 <= 0; value: -136/3 d 3*v0 + 4*v2 -2*v3 -14 <= 0; value: 0 a 2*v2 -25 <= 0; value: -15 d v3 -4 = 0; value: 0 0: 2 3 1: 1 2 2: 3 4 2 3: 2 3 5 0: 0 -> 2/3 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a 3*v2 + 5*v3 -23 = 0; value: 0 a 4*v0 -5*v2 -4 < 0; value: -9 a 6*v1 -2*v3 -17 <= 0; value: -1 a -2*v1 + 3*v2 + 4 <= 0; value: -1 a -5*v1 -6*v3 + 22 <= 0; value: -22 0: 2 1: 3 4 5 2: 1 2 4 3: 1 3 5 optimal: (0 -e*1) a < 0; value: 0 d 3*v2 + 5*v3 -23 = 0; value: 0 d 4*v0 + 25/3*v3 -127/3 < 0; value: -25/3 a -55 < 0; value: -55 d -2*v1 + 3*v2 + 4 <= 0; value: 0 d -78/25*v0 -312/25 <= 0; value: 0 0: 2 5 3 1: 3 4 5 2: 1 2 4 5 3 3: 1 3 5 2 0: 0 -> -4 1: 4 -> -3/2 2: 1 -> -7/3 3: 4 -> 6 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -7 <= 0; value: -3 a -2*v2 + 5*v3 -15 <= 0; value: -8 a -1*v3 + 3 = 0; value: 0 a -1*v2 -1 <= 0; value: -5 a 3*v1 -2*v3 <= 0; value: 0 0: 1: 1 5 2: 2 4 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -7 <= 0; value: -3 a -2*v2 + 5*v3 -15 <= 0; value: -8 a -1*v3 + 3 = 0; value: 0 a -1*v2 -1 <= 0; value: -5 a 3*v1 -2*v3 <= 0; value: 0 0: 1: 1 5 2: 2 4 3: 2 3 5 0: 5 -> 5 1: 2 -> 2 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 -1*v1 + 7 < 0; value: -1 a v0 -4 = 0; value: 0 a -1*v0 -1*v2 + 1 < 0; value: -3 a -1*v1 -1*v3 + 5 = 0; value: 0 a 6*v0 -4*v2 -29 < 0; value: -5 0: 1 2 3 5 1: 1 4 2: 3 5 3: 4 optimal: (2 -e*1) a + 2 < 0; value: 2 d -1*v0 + v3 + 2 < 0; value: -1/2 d v0 -4 = 0; value: 0 a -1*v2 -3 < 0; value: -3 d -1*v1 -1*v3 + 5 = 0; value: 0 a -4*v2 -5 < 0; value: -5 0: 1 2 3 5 1: 1 4 2: 3 5 3: 4 1 0: 4 -> 4 1: 4 -> 7/2 2: 0 -> 0 3: 1 -> 3/2 a 2*v0 -2*v1 <= 0; value: -6 a -5*v1 + 5*v2 + 2*v3 + 23 = 0; value: 0 a 5*v0 -19 <= 0; value: -9 a v1 + 3*v3 -12 <= 0; value: -4 a -1*v2 <= 0; value: 0 a 5*v0 -6*v2 -24 < 0; value: -14 0: 2 5 1: 1 3 2: 1 4 5 3: 1 3 optimal: oo a 2*v0 -2*v2 -4/5*v3 -46/5 <= 0; value: -6 d -5*v1 + 5*v2 + 2*v3 + 23 = 0; value: 0 a 5*v0 -19 <= 0; value: -9 a v2 + 17/5*v3 -37/5 <= 0; value: -4 a -1*v2 <= 0; value: 0 a 5*v0 -6*v2 -24 < 0; value: -14 0: 2 5 1: 1 3 2: 1 4 5 3 3: 1 3 0: 2 -> 2 1: 5 -> 5 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v1 + 6*v3 -41 < 0; value: -14 a -2*v0 -5*v3 + 26 = 0; value: 0 a -5*v0 + 2*v1 + 9 <= 0; value: 0 a 2*v1 -1*v2 -1 = 0; value: 0 0: 2 3 1: 1 3 4 2: 4 3: 1 2 optimal: oo a 2*v0 -1*v2 -1 <= 0; value: 0 a 1/2*v2 + 6*v3 -81/2 < 0; value: -14 a -2*v0 -5*v3 + 26 = 0; value: 0 a -5*v0 + v2 + 10 <= 0; value: 0 d 2*v1 -1*v2 -1 = 0; value: 0 0: 2 3 1: 1 3 4 2: 4 1 3 3: 1 2 0: 3 -> 3 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 6*v2 -19 <= 0; value: -5 a -3*v0 -4*v2 -2 < 0; value: -24 a -1*v2 -6*v3 + 2 < 0; value: -20 a -2*v1 -5*v2 + 26 <= 0; value: 0 0: 1 2 1: 4 2: 1 2 3 4 3: 3 optimal: oo a 37/6*v0 -61/6 <= 0; value: 13/6 d -5*v0 + 6*v2 -19 <= 0; value: 0 a -19/3*v0 -44/3 < 0; value: -82/3 a -5/6*v0 -6*v3 -7/6 < 0; value: -125/6 d -2*v1 -5*v2 + 26 <= 0; value: 0 0: 1 2 3 1: 4 2: 1 2 3 4 3: 3 0: 2 -> 2 1: 3 -> 11/12 2: 4 -> 29/6 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v2 -6*v3 -2 <= 0; value: -14 a -1*v0 + 2 = 0; value: 0 a -2*v0 -1*v1 + v3 + 3 < 0; value: -1 a 2*v3 -9 <= 0; value: -5 a 5*v0 + 4*v1 -21 <= 0; value: -3 0: 2 3 5 1: 3 5 2: 1 3: 1 3 4 optimal: oo a 6*v0 + v2 -16/3 < 0; value: 20/3 d -3*v2 -6*v3 -2 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 d -2*v0 -1*v1 + v3 + 3 < 0; value: -1 a -1*v2 -29/3 <= 0; value: -29/3 a -3*v0 -2*v2 -31/3 < 0; value: -49/3 0: 2 3 5 1: 3 5 2: 1 4 5 3: 1 3 4 5 0: 2 -> 2 1: 2 -> -1/3 2: 0 -> 0 3: 2 -> -1/3 a 2*v0 -2*v1 <= 0; value: 4 a 6*v2 + 2*v3 -29 <= 0; value: -1 a 5*v1 -3*v3 -4 = 0; value: 0 a v0 + v2 -17 <= 0; value: -9 a -3*v2 -4*v3 + 11 < 0; value: -9 a 3*v0 + 4*v1 + 3*v2 -47 <= 0; value: -15 0: 3 5 1: 2 5 2: 1 3 4 5 3: 1 2 4 optimal: (919/45 -e*1) a + 919/45 < 0; value: 919/45 d 9/2*v2 -47/2 < 0; value: -11/4 d 5*v1 -3*v3 -4 = 0; value: 0 a -22/15 <= 0; value: -22/15 d -3*v2 -4*v3 + 11 < 0; value: -4 d 3*v0 -464/15 <= 0; value: 0 0: 3 5 1: 2 5 2: 1 3 4 5 3: 1 2 4 5 0: 4 -> 464/45 1: 2 -> 39/40 2: 4 -> 83/18 3: 2 -> 7/24 a 2*v0 -2*v1 <= 0; value: 10 a -1*v2 <= 0; value: 0 a 2*v0 + 5*v2 -10 = 0; value: 0 a 4*v0 -2*v1 -3*v2 -32 <= 0; value: -12 a v0 + v1 -11 < 0; value: -6 a -4*v0 -5*v1 + 4*v2 + 7 <= 0; value: -13 0: 2 3 4 5 1: 3 4 5 2: 1 2 3 5 3: optimal: 76/5 a + 76/5 <= 0; value: 76/5 d -1*v2 <= 0; value: 0 d 2*v0 -10 = 0; value: 0 a -34/5 <= 0; value: -34/5 a -43/5 < 0; value: -43/5 d -4*v0 -5*v1 + 4*v2 + 7 <= 0; value: 0 0: 2 3 4 5 1: 3 4 5 2: 1 2 3 5 4 3: 0: 5 -> 5 1: 0 -> -13/5 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 + v2 + 4 <= 0; value: -1 a -1*v1 + 4 = 0; value: 0 a 6*v0 + v1 -32 <= 0; value: -10 a 3*v1 -2*v2 -10 <= 0; value: -6 a -1*v1 + 6*v2 -6*v3 -14 = 0; value: 0 0: 1 3 1: 2 3 4 5 2: 1 4 5 3: 5 optimal: 4/3 a + 4/3 <= 0; value: 4/3 a v2 -10 <= 0; value: -6 d -1*v1 + 4 = 0; value: 0 d 6*v0 -28 <= 0; value: 0 a -2*v2 + 2 <= 0; value: -6 a 6*v2 -6*v3 -18 = 0; value: 0 0: 1 3 1: 2 3 4 5 2: 1 4 5 3: 5 0: 3 -> 14/3 1: 4 -> 4 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 6*v1 -1*v3 -6 < 0; value: -15 a -1*v0 + 2*v1 + 1 <= 0; value: 0 a 3*v0 -2*v3 + 5 = 0; value: 0 a 5*v2 + 6*v3 -49 = 0; value: 0 a 3*v1 -2*v3 -2 < 0; value: -10 0: 1 2 3 1: 1 2 5 2: 4 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 6*v1 -1*v3 -6 < 0; value: -15 a -1*v0 + 2*v1 + 1 <= 0; value: 0 a 3*v0 -2*v3 + 5 = 0; value: 0 a 5*v2 + 6*v3 -49 = 0; value: 0 a 3*v1 -2*v3 -2 < 0; value: -10 0: 1 2 3 1: 1 2 5 2: 4 3: 1 3 4 5 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -2*v2 -37 <= 0; value: -23 a -4*v0 -2*v2 + 7 <= 0; value: -15 a -3*v0 + 2*v1 -2*v2 -2 <= 0; value: -10 a -1*v1 -4 < 0; value: -9 0: 1 2 3 1: 3 4 2: 1 2 3 3: optimal: oo a 4/5*v2 + 114/5 < 0; value: 126/5 d 5*v0 -2*v2 -37 <= 0; value: 0 a -18/5*v2 -113/5 <= 0; value: -167/5 a -16/5*v2 -161/5 < 0; value: -209/5 d -1*v1 -4 < 0; value: -1 0: 1 2 3 1: 3 4 2: 1 2 3 3: 0: 4 -> 43/5 1: 5 -> -3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 2*v3 -1 < 0; value: -6 a -1*v0 -5*v2 + 26 <= 0; value: 0 a -5*v0 -2 <= 0; value: -7 a 3*v0 + 2*v3 -4 <= 0; value: -1 0: 2 3 4 1: 2: 1 2 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 2*v3 -1 < 0; value: -6 a -1*v0 -5*v2 + 26 <= 0; value: 0 a -5*v0 -2 <= 0; value: -7 a 3*v0 + 2*v3 -4 <= 0; value: -1 0: 2 3 4 1: 2: 1 2 3: 1 4 0: 1 -> 1 1: 1 -> 1 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a 6*v0 -1*v1 + 6*v2 -59 < 0; value: -11 a -4*v0 -3*v2 + 22 <= 0; value: -7 a v0 + 5*v1 -5 = 0; value: 0 a -3*v1 -4*v3 + 3 <= 0; value: -13 a -1*v0 + v3 <= 0; value: -1 0: 1 2 3 5 1: 1 3 4 2: 1 2 3: 4 5 optimal: oo a 16*v3 -2 < 0; value: 62 d 31/5*v0 + 6*v2 -60 < 0; value: -31/5 a -6*v3 -8 < 0; value: -32 d v0 + 5*v1 -5 = 0; value: 0 d -18/31*v2 -4*v3 + 180/31 <= 0; value: 0 a -17/3*v3 < 0; value: -68/3 0: 1 2 3 5 4 1: 1 3 4 2: 1 2 4 5 3: 4 5 2 0: 5 -> 77/3 1: 0 -> -62/15 2: 3 -> -158/9 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 + v3 <= 0; value: -1 a -2*v1 + 2*v2 -9 <= 0; value: -3 a -1*v0 -6*v3 + 6 = 0; value: 0 a v0 -5*v1 + 2 < 0; value: -3 a v0 <= 0; value: 0 0: 3 4 5 1: 1 2 4 2: 2 3: 1 3 optimal: -1 a -1 <= 0; value: -1 d -2*v1 + v3 <= 0; value: 0 a 2*v2 -10 <= 0; value: -2 d -1*v0 -6*v3 + 6 = 0; value: 0 a -1/2 < 0; value: -1/2 d v0 <= 0; value: 0 0: 3 4 5 2 1: 1 2 4 2: 2 3: 1 3 2 4 0: 0 -> 0 1: 1 -> 1/2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 -1*v2 + 8 <= 0; value: 0 a 5*v1 -1*v2 + v3 -28 <= 0; value: -18 a 3*v0 -6*v1 -14 < 0; value: -32 a 3*v1 -4*v2 -3*v3 + 11 = 0; value: 0 a -6*v1 + 4*v2 -5 <= 0; value: -3 0: 3 1: 1 2 3 4 5 2: 1 2 4 5 3: 2 4 optimal: (221/15 -e*1) a + 221/15 < 0; value: 221/15 d -1*v1 -1*v2 + 8 <= 0; value: 0 a -41/2 <= 0; value: -41/2 d 3*v0 -151/5 < 0; value: -3 d -7*v2 -3*v3 + 35 = 0; value: 0 d -30/7*v3 -3 <= 0; value: 0 0: 3 1: 1 2 3 4 5 2: 1 2 4 5 3 3: 2 4 5 3 0: 0 -> 136/15 1: 3 -> 27/10 2: 5 -> 53/10 3: 0 -> -7/10 a 2*v0 -2*v1 <= 0; value: 0 a 6*v2 + 3*v3 -35 < 0; value: -17 a -5*v1 -6*v2 -1 <= 0; value: -23 a 4*v0 + 6*v3 -41 <= 0; value: -21 a v0 -2 = 0; value: 0 a -4*v3 -3 <= 0; value: -11 0: 3 4 1: 2 2: 1 2 3: 1 3 5 optimal: (193/10 -e*1) a + 193/10 < 0; value: 193/10 d 6*v2 + 3*v3 -35 < 0; value: -6 d -5*v1 -6*v2 -1 <= 0; value: 0 a -75/2 <= 0; value: -75/2 d v0 -2 = 0; value: 0 d -4*v3 -3 <= 0; value: 0 0: 3 4 1: 2 2: 1 2 3: 1 3 5 0: 2 -> 2 1: 2 -> -129/20 2: 2 -> 125/24 3: 2 -> -3/4 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -6*v3 + 10 <= 0; value: -14 a 6*v3 -35 <= 0; value: -11 a -5*v0 -1*v3 + 2 <= 0; value: -2 a 6*v0 -1*v1 < 0; value: -1 a -1*v0 -5*v1 -5*v2 + 15 < 0; value: -10 0: 1 3 4 5 1: 4 5 2: 5 3: 1 2 3 optimal: (23/3 -e*1) a + 23/3 < 0; value: 23/3 a -173/6 <= 0; value: -173/6 d 6*v3 -35 <= 0; value: 0 d 25/31*v2 -1*v3 -13/31 <= 0; value: 0 d 6*v0 -1*v1 < 0; value: -1 d -31*v0 -5*v2 + 15 <= 0; value: 0 0: 1 3 4 5 1: 4 5 2: 5 3 1 3: 1 2 3 0: 0 -> -23/30 1: 1 -> -18/5 2: 4 -> 1163/150 3: 4 -> 35/6 a 2*v0 -2*v1 <= 0; value: -8 a -4*v1 + 4*v2 -1 < 0; value: -5 a -3*v0 + 4*v1 + v2 -50 <= 0; value: -31 a -4*v0 + 3*v1 + v3 -31 < 0; value: -19 a 6*v0 -2*v1 + 3 < 0; value: -5 a 3*v1 + 5*v2 -27 = 0; value: 0 0: 2 3 4 1: 1 2 3 4 5 2: 1 2 5 3: 3 optimal: (-127/24 -e*1) a -127/24 < 0; value: -127/24 d 32/3*v2 -37 < 0; value: -5/2 a -283/8 < 0; value: -283/8 a v3 -2269/96 < 0; value: -2269/96 d 6*v0 -55/16 <= 0; value: 0 d 3*v1 + 5*v2 -27 = 0; value: 0 0: 2 3 4 1: 1 2 3 4 5 2: 1 2 5 4 3 3: 3 0: 0 -> 55/96 1: 4 -> 231/64 2: 3 -> 207/64 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a v0 -5 = 0; value: 0 a -1*v0 -2*v2 + 3*v3 <= 0; value: -2 a -6*v1 -1*v2 -2 <= 0; value: -8 a 3*v1 + 3*v2 -4*v3 <= 0; value: -1 a -6*v0 + 3*v2 -3*v3 + 31 <= 0; value: -2 0: 1 2 5 1: 3 4 2: 2 3 4 5 3: 2 4 5 optimal: 12 a + 12 <= 0; value: 12 d v0 -5 = 0; value: 0 d -5*v0 + v3 + 62/3 <= 0; value: 0 d -6*v1 -1*v2 -2 <= 0; value: 0 a -25/3 <= 0; value: -25/3 d -6*v0 + 3*v2 -3*v3 + 31 <= 0; value: 0 0: 1 2 5 4 1: 3 4 2: 2 3 4 5 3: 2 4 5 0: 5 -> 5 1: 1 -> -1 2: 0 -> 4 3: 1 -> 13/3 a 2*v0 -2*v1 <= 0; value: -8 a -1*v3 + 3 = 0; value: 0 a 3*v2 -14 < 0; value: -2 a -2*v0 -1*v3 -3 <= 0; value: -8 a 2*v0 -3*v1 + 3 <= 0; value: -10 a -3*v0 -4*v2 -3*v3 + 28 = 0; value: 0 0: 3 4 5 1: 4 2: 2 5 3: 1 3 5 optimal: oo a -8/9*v2 + 20/9 <= 0; value: -4/3 d -1*v3 + 3 = 0; value: 0 a 3*v2 -14 < 0; value: -2 a 8/3*v2 -56/3 <= 0; value: -8 d 2*v0 -3*v1 + 3 <= 0; value: 0 d -3*v0 -4*v2 -3*v3 + 28 = 0; value: 0 0: 3 4 5 1: 4 2: 2 5 3 3: 1 3 5 0: 1 -> 1 1: 5 -> 5/3 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v2 + 4 <= 0; value: 0 a -5*v1 + 4 < 0; value: -1 a 5*v0 -16 < 0; value: -6 a 6*v1 + 5*v2 -44 <= 0; value: -18 a v1 + v2 -5 = 0; value: 0 0: 3 1: 2 4 5 2: 1 4 5 3: optimal: (24/5 -e*1) a + 24/5 < 0; value: 24/5 a -1/5 < 0; value: -1/5 d 5*v2 -21 < 0; value: -1/2 d 5*v0 -16 < 0; value: -3 a -91/5 < 0; value: -91/5 d v1 + v2 -5 = 0; value: 0 0: 3 1: 2 4 5 2: 1 4 5 2 3: 0: 2 -> 13/5 1: 1 -> 9/10 2: 4 -> 41/10 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v0 + 3*v1 + 5*v3 -35 <= 0; value: -20 a -1*v0 -2*v3 + 4 <= 0; value: -2 a -1*v0 -5*v3 -13 <= 0; value: -28 a 6*v1 + 5*v2 -25 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 3 5 1: 1 4 2: 4 3: 1 2 3 optimal: oo a 2*v0 + 5/3*v2 -25/3 <= 0; value: 0 a -6*v0 -5/2*v2 + 5*v3 -45/2 <= 0; value: -20 a -1*v0 -2*v3 + 4 <= 0; value: -2 a -1*v0 -5*v3 -13 <= 0; value: -28 d 6*v1 + 5*v2 -25 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 3 5 1: 1 4 2: 4 1 3: 1 2 3 0: 0 -> 0 1: 0 -> 0 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 3*v2 -5 <= 0; value: -2 a 3*v0 -2*v3 -3 = 0; value: 0 a -3*v0 -1*v1 -3*v3 -15 <= 0; value: -37 a 2*v3 -7 <= 0; value: -1 a -5*v1 -4*v2 -3 < 0; value: -27 0: 2 3 1: 3 5 2: 1 5 3: 2 3 4 optimal: (158/15 -e*1) a + 158/15 < 0; value: 158/15 d 3*v2 -5 <= 0; value: 0 d 3*v0 -2*v3 -3 = 0; value: 0 a -1007/30 <= 0; value: -1007/30 d 2*v3 -7 <= 0; value: 0 d -5*v1 -4*v2 -3 < 0; value: -5 0: 2 3 1: 3 5 2: 1 5 3 3: 2 3 4 0: 3 -> 10/3 1: 4 -> -14/15 2: 1 -> 5/3 3: 3 -> 7/2 a 2*v0 -2*v1 <= 0; value: -2 a v0 + v1 + 3*v3 -65 < 0; value: -43 a 2*v0 -5*v1 + 3*v2 -5 < 0; value: -19 a 5*v0 + 2*v3 -66 <= 0; value: -41 a 2*v1 + v3 -36 < 0; value: -23 a -2*v0 -1*v2 -3 <= 0; value: -9 0: 1 2 3 5 1: 1 2 4 2: 2 5 3: 1 3 4 optimal: oo a -36/25*v3 + 1328/25 < 0; value: 1148/25 a 73/25*v3 -1629/25 < 0; value: -1264/25 d 2*v0 -5*v1 + 3*v2 -5 < 0; value: -5 d 5*v0 + 2*v3 -66 <= 0; value: 0 a 41/25*v3 -1568/25 < 0; value: -1363/25 d -2*v0 -1*v2 -3 <= 0; value: 0 0: 1 2 3 5 4 1: 1 2 4 2: 2 5 1 4 3: 1 3 4 0: 3 -> 56/5 1: 4 -> -269/25 2: 0 -> -127/5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 + 3*v3 -10 = 0; value: 0 a -4*v1 + 5 <= 0; value: -3 a -6*v0 -1*v3 + 20 = 0; value: 0 a -1*v0 + 2*v2 + v3 -8 <= 0; value: -3 a -3*v1 -5*v2 -5*v3 + 10 <= 0; value: -21 0: 3 4 1: 1 2 5 2: 4 5 3: 1 3 4 5 optimal: 10/3 a + 10/3 <= 0; value: 10/3 d 2*v1 + 3*v3 -10 = 0; value: 0 d -36*v0 + 105 <= 0; value: 0 d -6*v0 -1*v3 + 20 = 0; value: 0 a 2*v2 -101/12 <= 0; value: -29/12 a -5*v2 -25/4 <= 0; value: -85/4 0: 3 4 2 5 1: 1 2 5 2: 4 5 3: 1 3 4 5 2 0: 3 -> 35/12 1: 2 -> 5/4 2: 3 -> 3 3: 2 -> 5/2 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 -4*v1 -3*v2 -7 <= 0; value: -2 a 2*v1 + 3*v2 -2*v3 -1 = 0; value: 0 a -2*v2 + 5*v3 -18 = 0; value: 0 a -1*v0 -1*v2 -4 <= 0; value: -9 a -1*v0 + 4*v3 -34 <= 0; value: -22 0: 1 4 5 1: 1 2 2: 1 2 3 4 3: 2 3 5 optimal: 1050/47 a + 1050/47 <= 0; value: 1050/47 d 5*v0 + 7/5*v2 -117/5 <= 0; value: 0 d 2*v1 + 3*v2 -2*v3 -1 = 0; value: 0 d -2*v2 + 5*v3 -18 = 0; value: 0 a -845/47 <= 0; value: -845/47 d -47/7*v0 + 50/7 <= 0; value: 0 0: 1 4 5 1: 1 2 2: 1 2 3 4 5 3: 2 3 5 1 0: 4 -> 50/47 1: 3 -> -475/47 2: 1 -> 607/47 3: 4 -> 412/47 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -6*v3 -10 <= 0; value: -22 a 2*v1 + 3*v2 -21 = 0; value: 0 a v0 <= 0; value: 0 a 6*v1 + 5*v2 -79 <= 0; value: -36 a 4*v2 -3*v3 -21 < 0; value: -7 0: 1 3 1: 2 4 2: 2 4 5 3: 1 5 optimal: oo a 2*v0 + 9/4*v3 -21/4 < 0; value: -3/4 a -3*v0 -6*v3 -10 <= 0; value: -22 d 2*v1 + 3*v2 -21 = 0; value: 0 a v0 <= 0; value: 0 a -3*v3 -37 < 0; value: -43 d 4*v2 -3*v3 -21 < 0; value: -7/2 0: 1 3 1: 2 4 2: 2 4 5 3: 1 5 4 0: 0 -> 0 1: 3 -> 27/16 2: 5 -> 47/8 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -2*v1 -1*v3 + 4 = 0; value: 0 a 4*v0 + 3*v2 -53 < 0; value: -21 a -2*v0 + v3 + 8 <= 0; value: -2 a -3*v0 + v2 + 2*v3 -10 < 0; value: -21 a v1 -3*v2 + 10 = 0; value: 0 0: 2 3 4 1: 1 5 2: 2 4 5 3: 1 3 4 optimal: (112/3 -e*1) a + 112/3 < 0; value: 112/3 d -2*v1 -1*v3 + 4 = 0; value: 0 d 3*v0 -37 < 0; value: -3 d -2*v0 -6*v2 + 32 <= 0; value: 0 a -112/9 <= 0; value: -112/9 d -3*v2 -1/2*v3 + 12 = 0; value: 0 0: 2 3 4 1: 1 5 2: 2 4 5 3 3: 1 3 4 5 0: 5 -> 34/3 1: 2 -> -16/3 2: 4 -> 14/9 3: 0 -> 44/3 a 2*v0 -2*v1 <= 0; value: -2 a -3*v3 -5 <= 0; value: -20 a v0 -1*v3 + 2 = 0; value: 0 a -5*v0 + 6*v1 -9 <= 0; value: 0 a -2*v1 + 1 <= 0; value: -7 a 3*v1 -31 < 0; value: -19 0: 2 3 1: 3 4 5 2: 3: 1 2 optimal: oo a 2*v3 -5 <= 0; value: 5 a -3*v3 -5 <= 0; value: -20 d v0 -1*v3 + 2 = 0; value: 0 a -5*v3 + 4 <= 0; value: -21 d -2*v1 + 1 <= 0; value: 0 a -59/2 < 0; value: -59/2 0: 2 3 1: 3 4 5 2: 3: 1 2 3 0: 3 -> 3 1: 4 -> 1/2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a v0 -1*v2 + 3 = 0; value: 0 a -1*v1 + 4*v2 -6*v3 + 1 <= 0; value: 0 a -4*v2 + 6*v3 + 1 <= 0; value: -1 a 6*v0 + 4*v2 + 2*v3 -73 <= 0; value: -35 a -5*v0 + 4*v2 -29 <= 0; value: -19 0: 1 4 5 1: 2 2: 1 2 3 4 5 3: 2 3 4 optimal: 104/17 a + 104/17 <= 0; value: 104/17 d v0 -1*v2 + 3 = 0; value: 0 d -1*v1 + 4*v2 -6*v3 + 1 <= 0; value: 0 d -4*v2 + 6*v3 + 1 <= 0; value: 0 d 34/3*v2 -274/3 <= 0; value: 0 a -375/17 <= 0; value: -375/17 0: 1 4 5 1: 2 2: 1 2 3 4 5 3: 2 3 4 0: 2 -> 86/17 1: 3 -> 2 2: 5 -> 137/17 3: 3 -> 177/34 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 6*v2 + 2 = 0; value: 0 a -4*v0 -5*v1 -18 <= 0; value: -44 a v3 -3 <= 0; value: 0 a -6*v0 -6*v1 + 5*v3 + 21 <= 0; value: 0 a v0 -3*v1 -2*v3 -4 <= 0; value: -12 0: 2 4 5 1: 1 2 4 5 2: 1 3: 3 4 5 optimal: 16 a + 16 <= 0; value: 16 d -1*v1 + 6*v2 + 2 = 0; value: 0 a -41 <= 0; value: -41 d 8/9*v0 -56/9 <= 0; value: 0 d -6*v0 -36*v2 + 5*v3 + 9 <= 0; value: 0 d 4*v0 -9/2*v3 -29/2 <= 0; value: 0 0: 2 4 5 3 1: 1 2 4 5 2: 1 2 4 5 3: 3 4 5 2 0: 4 -> 7 1: 2 -> -1 2: 0 -> -1/2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a -1*v1 -4*v3 + 8 = 0; value: 0 a -4*v0 -1*v2 -2*v3 + 24 = 0; value: 0 a -5*v0 + 3*v1 -5*v3 + 35 = 0; value: 0 a 3*v1 + 2*v3 -4 <= 0; value: 0 a 3*v0 + 4*v3 -43 <= 0; value: -20 0: 2 3 5 1: 1 3 4 2: 2 3: 1 2 3 4 5 optimal: oo a -6/17*v0 + 200/17 <= 0; value: 10 d -1*v1 -4*v3 + 8 = 0; value: 0 d -4*v0 -1*v2 -2*v3 + 24 = 0; value: 0 d 29*v0 + 17/2*v2 -145 = 0; value: 0 a 50/17*v0 -250/17 <= 0; value: 0 a 31/17*v0 -495/17 <= 0; value: -20 0: 2 3 5 4 1: 1 3 4 2: 2 3 5 4 3: 1 2 3 4 5 0: 5 -> 5 1: 0 -> 0 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 -6*v1 -6*v2 + 4 <= 0; value: -53 a -1*v3 + 2 = 0; value: 0 a -5*v0 -1*v1 + 6*v2 + 2 <= 0; value: 0 a -1*v1 -4*v2 -3*v3 + 23 = 0; value: 0 a -6*v0 -3*v1 + 14 < 0; value: -19 0: 1 3 5 1: 1 3 4 5 2: 1 3 4 3: 2 4 optimal: 49 a + 49 <= 0; value: 49 d 6*v0 -71 <= 0; value: 0 d -1*v3 + 2 = 0; value: 0 d -5*v0 -1*v1 + 6*v2 + 2 <= 0; value: 0 d 5*v0 -10*v2 -3*v3 + 21 = 0; value: 0 a -19 < 0; value: -19 0: 1 3 5 4 1: 1 3 4 5 2: 1 3 4 5 3: 2 4 1 5 0: 3 -> 71/6 1: 5 -> -38/3 2: 3 -> 89/12 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 -1*v2 -12 = 0; value: 0 a -1*v0 + 4*v1 -6*v3 -20 < 0; value: -9 a v0 -2*v3 -2 <= 0; value: -1 0: 2 3 1: 1 2 2: 1 3: 2 3 optimal: oo a 2*v0 -1/2*v2 -6 <= 0; value: -4 d 4*v1 -1*v2 -12 = 0; value: 0 a -1*v0 + v2 -6*v3 -8 < 0; value: -9 a v0 -2*v3 -2 <= 0; value: -1 0: 2 3 1: 1 2 2: 1 2 3: 2 3 0: 1 -> 1 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 5 = 0; value: 0 a -1*v1 + 2*v2 -9 = 0; value: 0 a -2*v1 -1 <= 0; value: -3 a 6*v1 + v3 -23 <= 0; value: -14 a 3*v2 + v3 -52 <= 0; value: -34 0: 1: 2 3 4 2: 1 2 5 3: 4 5 optimal: oo a 2*v0 -2 <= 0; value: -2 d -1*v2 + 5 = 0; value: 0 d -1*v1 + 2*v2 -9 = 0; value: 0 a -3 <= 0; value: -3 a v3 -17 <= 0; value: -14 a v3 -37 <= 0; value: -34 0: 1: 2 3 4 2: 1 2 5 3 4 3: 4 5 0: 0 -> 0 1: 1 -> 1 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 + 1 = 0; value: 0 a -5*v0 -4*v2 + 9 = 0; value: 0 a -3*v1 -5*v2 + 11 <= 0; value: -9 a -4*v0 -4*v1 -3*v2 + 10 <= 0; value: -17 a 5*v1 -2*v2 -33 <= 0; value: -10 0: 1 2 4 1: 3 4 5 2: 2 3 4 5 3: optimal: -2 a -2 <= 0; value: -2 d -1*v0 + 1 = 0; value: 0 d -5*v0 -4*v2 + 9 = 0; value: 0 d -3*v1 -5*v2 + 11 <= 0; value: 0 a -5 <= 0; value: -5 a -25 <= 0; value: -25 0: 1 2 4 5 1: 3 4 5 2: 2 3 4 5 3: 0: 1 -> 1 1: 5 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + 4*v1 -4*v3 -9 <= 0; value: -4 a -2*v1 + 6*v2 -1*v3 -49 < 0; value: -29 a -1*v1 -2*v2 + 6 < 0; value: -4 a 3*v0 + 5*v2 -2*v3 -72 < 0; value: -43 a 2*v0 -1*v3 -6 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 2 3 4 3: 1 2 4 5 optimal: oo a 14/5*v0 + 10 < 0; value: 92/5 a -53/5*v0 -5 < 0; value: -184/5 d 10*v2 -1*v3 -61 <= 0; value: 0 d -1*v1 -2*v2 + 6 < 0; value: -1 a -65/2 < 0; value: -65/2 d 2*v0 -1*v3 -6 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 2 3 4 1 3: 1 2 4 5 0: 3 -> 3 1: 2 -> -26/5 2: 4 -> 61/10 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a -6*v1 -3*v2 -1 <= 0; value: -7 a v0 + 6*v1 -1*v2 -6 <= 0; value: -3 a -2*v0 -3*v1 -2*v2 + 14 = 0; value: 0 a 3*v1 + v3 -3 <= 0; value: -1 a v1 = 0; value: 0 0: 2 3 1: 1 2 3 4 5 2: 1 2 3 3: 4 optimal: 13 a + 13 <= 0; value: 13 a -5/2 <= 0; value: -5/2 d 2*v0 -13 <= 0; value: 0 d -2*v0 -3*v1 -2*v2 + 14 = 0; value: 0 a v3 -3 <= 0; value: -1 d -2/3*v0 -2/3*v2 + 14/3 = 0; value: 0 0: 2 3 1 5 4 1: 1 2 3 4 5 2: 1 2 3 5 4 3: 4 0: 5 -> 13/2 1: 0 -> 0 2: 2 -> 1/2 3: 2 -> 2 10 x: 5 y: 5 z: 5 u: 6 10 oo (10 -e*1) x: 4 y: 5 z: 5 u: 6 v3 d <= 0; value: 0 a v0 -1*v3 <= 0; value: -3 a v0 -1*v2 <= 0; value: -2 d v1 -1*v3 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 0: 1 2 1: 1 3 2: 2 4 3: 3 4 1 + 3 d <= 0; value: 0 a v0 -1*v3 <= 0; value: -3 a v0 -1*v2 <= 0; value: -2 d v1 -1*v3 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 0: 1 2 1: 1 3 2: 2 4 3: 3 4 1 v3 -1 d <= 0; value: 0 a v0 -1*v3 <= 0; value: -3 a v0 -1*v3 + 1 <= 0; value: -2 d v1 -1*v3 <= 0; value: -2 d v2 -1*v3 + 1 <= 0; value: 0 0: 1 2 1: 1 3 2: 2 4 3: 3 4 1 2 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -2 a v1 -1*v2 <= 0; value: -1 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 a v2 -1*v6 + 1 <= 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 v1 d <= 0; value: 0 a v0 -1*v1 <= 0; value: -1 d v1 -1*v2 <= 0; value: -1 a v1 -1*v4 <= 0; value: -3 a v1 -1*v3 + 1 <= 0; value: -1 a v1 -1*v5 + 1 <= 0; value: -3 a v1 -1*v6 + 1 <= 0; value: -3 0: 1 1: 2 3 4 5 6 1 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -1 a v1 -1*v2 < 0; value: -2 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 a v2 -1*v6 + 1 < 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 v0 d <= 0; value: 0 d v0 -1*v2 <= 0; value: -1 a -1*v0 + v1 < 0; value: -1 a v0 -1*v4 <= 0; value: -3 a v0 -1*v3 + 1 <= 0; value: -1 a v0 -1*v5 + 1 <= 0; value: -3 a v0 -1*v6 + 1 < 0; value: -3 0: 1 3 4 5 6 2 1: 2 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -1 a v1 -1*v2 < 0; value: -2 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v0 d <= 0; value: 0 a v0 -1*v5 + 1 <= 0; value: -3 a v1 -1*v5 + 1 < 0; value: -4 d v2 -1*v4 <= 0; value: -2 d v2 -1*v3 + 1 <= 0; value: 0 d v2 -1*v5 + 1 <= 0; value: -2 a v0 -1*v4 <= 0; value: -3 a v1 -1*v4 < 0; value: -4 a v0 -1*v3 + 1 <= 0; value: -1 a v1 -1*v3 + 1 < 0; value: -2 0: 1 6 8 1: 2 7 9 2: 1 2 3 4 5 6 7 8 9 3: 4 8 9 4: 3 6 7 5: 5 1 2 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -1 a v1 -1*v2 + 1 <= 0; value: -1 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v0 d <= 0; value: 0 a v0 -1*v5 + 1 <= 0; value: -3 a v1 -1*v5 + 2 <= 0; value: -3 d v2 -1*v4 <= 0; value: -2 d v2 -1*v3 + 1 <= 0; value: 0 d v2 -1*v5 + 1 <= 0; value: -2 a v0 -1*v4 <= 0; value: -3 a v1 -1*v4 + 1 <= 0; value: -3 a v0 -1*v3 + 1 <= 0; value: -1 a v1 -1*v3 + 2 <= 0; value: -1 0: 1 6 8 1: 2 7 9 2: 1 2 3 4 5 6 7 8 9 3: 4 8 9 4: 3 6 7 5: 5 1 2 d <= 0; value: 0 a v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v2 <= 0; value: -1 0: 1 1: 1 2 2: 2 v2 / 2 d <= 0; value: 0 a 2*v0 -2*v2 + 1 <= 0; value: -1 d 2*v1 -1*v2 <= 0; value: -1 0: 1 1: 1 2 2: 2 1 d <= 0; value: 0 a v0 -2*v1 <= 0; value: -1 a 2*v1 -1*v2 <= 0; value: 0 0: 1 1: 1 2 2: 2 v2 / 2 d <= 0; value: 0 a 2*v0 -2*v2 + 1 <= 0; value: -1 d 2*v1 -1*v2 <= 0; value: 0 0: 1 1: 1 2 2: 2 1 PASS (test model_based_opt :time 0.05 :before-memory 17.68 :after-memory 17.68) d <= 0; value: 0 a v0 -2*v2 <= 0; value: -4 a v1 -2*v2 + 1 <= 0; value: -4 a 3*v2 -4*v4 <= 0; value: -11 a 3*v2 -5*v3 + 1 <= 0; value: -10 a 3*v2 -6*v5 + 1 <= 0; value: -26 0: 1 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v0 + 1 / 2 d <= 0; value: 0 d v0 -2*v2 <= 0; value: -4 a -1*v0 + v1 + 1 <= 0; value: 0 a 3*v0 -8*v4 + 2 <= 0; value: -32 a 3*v0 -10*v3 + 4 <= 0; value: -30 a 3*v0 -12*v5 + 4 <= 0; value: -62 0: 1 3 4 5 2 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v1 + 1 d <= 0; value: 0 a 3*v1 -8*v4 + 5 <= 0; value: -32 a 3*v1 -12*v5 + 7 <= 0; value: -62 d 3*v0 -8*v4 + 2 <= 0; value: -32 d 3*v0 -10*v3 + 4 <= 0; value: -30 d 3*v0 -12*v5 + 4 <= 0; value: -62 a 3*v1 -10*v3 + 7 <= 0; value: -30 0: 1 3 4 5 2 1 6 1: 2 1 6 2: 1 2 3 4 5 3: 4 6 4: 3 1 5: 5 2 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 + 5*v2 -31 < 0; value: -1 a -1*v1 + 4*v2 + 2*v3 -45 <= 0; value: -26 a 5*v1 + v3 -42 <= 0; value: -13 a -1*v2 -3 < 0; value: -7 a v3 -4 = 0; value: 0 0: 1: 1 2 3 2: 1 2 4 3: 2 3 5 optimal: oo a 2*v0 + 98 < 0; value: 108 a -144 < 0; value: -144 d -1*v1 + 4*v2 + 2*v3 -45 <= 0; value: 0 a -283 < 0; value: -283 d -1*v2 -3 < 0; value: -1 d v3 -4 = 0; value: 0 0: 1: 1 2 3 2: 1 2 4 3 3: 2 3 5 1 0: 5 -> 5 1: 5 -> -45 2: 4 -> -2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -3*v2 -4*v3 + 11 <= 0; value: -2 a 3*v0 + 5*v2 -43 <= 0; value: -16 a -3*v1 + 2*v3 + 7 = 0; value: 0 a 3*v0 + 2*v3 -25 <= 0; value: -11 a 4*v2 -19 < 0; value: -7 0: 2 4 1: 3 2: 1 2 5 3: 1 3 4 optimal: (37/4 -e*1) a + 37/4 < 0; value: 37/4 d -3*v2 -4*v3 + 11 <= 0; value: 0 d 3*v0 -77/4 <= 0; value: 0 d -3*v1 + 2*v3 + 7 = 0; value: 0 a -59/8 < 0; value: -59/8 d 4*v2 -19 < 0; value: -7/2 0: 2 4 1: 3 2: 1 2 5 4 3: 1 3 4 0: 4 -> 77/12 1: 3 -> 107/48 2: 3 -> 31/8 3: 1 -> -5/32 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 -1*v1 <= 0; value: 0 a 5*v2 -1*v3 -27 <= 0; value: -14 a v2 -8 <= 0; value: -5 a -1*v1 <= 0; value: 0 0: 1 1: 1 4 2: 2 3 3: 2 optimal: 0 a <= 0; value: 0 d -1*v0 -1*v1 <= 0; value: 0 a 5*v2 -1*v3 -27 <= 0; value: -14 a v2 -8 <= 0; value: -5 d v0 <= 0; value: 0 0: 1 4 1: 1 4 2: 2 3 3: 2 0: 0 -> 0 1: 0 -> 0 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 6*v1 + 5*v2 -77 <= 0; value: -40 a -2*v1 + 3*v2 + 2*v3 -28 <= 0; value: -17 a -5*v0 -6*v1 + 2*v2 -4 <= 0; value: -11 a -4*v0 + v2 -1 <= 0; value: 0 a -1*v2 -3*v3 -3 <= 0; value: -8 0: 3 4 1: 1 2 3 2: 1 2 3 4 5 3: 2 5 optimal: oo a 11/3*v0 + 2*v3 + 10/3 <= 0; value: 7 a -5*v0 -21*v3 -102 <= 0; value: -107 a 5/3*v0 -5*v3 -101/3 <= 0; value: -32 d -5*v0 -6*v1 + 2*v2 -4 <= 0; value: 0 a -4*v0 -3*v3 -4 <= 0; value: -8 d -1*v2 -3*v3 -3 <= 0; value: 0 0: 3 4 2 1 1: 1 2 3 2: 1 2 3 4 5 3: 2 5 1 4 0: 1 -> 1 1: 2 -> -5/2 2: 5 -> -3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + 3 = 0; value: 0 a 2*v1 -3*v3 -2 <= 0; value: -1 a v0 -3 = 0; value: 0 a -1*v1 + 2 = 0; value: 0 a 2*v2 -4*v3 -17 < 0; value: -11 0: 1 3 1: 2 4 2: 5 3: 2 5 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 + 3 = 0; value: 0 a -3*v3 + 2 <= 0; value: -1 a = 0; value: 0 d -1*v1 + 2 = 0; value: 0 a 2*v2 -4*v3 -17 < 0; value: -11 0: 1 3 1: 2 4 2: 5 3: 2 5 0: 3 -> 3 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v0 -3*v2 + 2 <= 0; value: -3 a v1 + 2*v2 -4*v3 -2 <= 0; value: 0 a -1*v0 + 1 <= 0; value: -3 a -2*v1 + v3 + 4 <= 0; value: -2 a -3*v0 + 4*v1 -5 <= 0; value: -1 0: 1 3 5 1: 2 4 5 2: 1 2 3: 2 4 optimal: oo a 38/21*v0 -92/21 <= 0; value: 20/7 d v0 -3*v2 + 2 <= 0; value: 0 d 2*v2 -7/2*v3 <= 0; value: 0 a -1*v0 + 1 <= 0; value: -3 d -2*v1 + v3 + 4 <= 0; value: 0 a -55/21*v0 + 79/21 <= 0; value: -47/7 0: 1 3 5 1: 2 4 5 2: 1 2 5 3: 2 4 5 0: 4 -> 4 1: 4 -> 18/7 2: 3 -> 2 3: 2 -> 8/7 a 2*v0 -2*v1 <= 0; value: -2 a v1 -3 = 0; value: 0 a -1*v2 + 4*v3 + 3 <= 0; value: -1 a 2*v1 -9 < 0; value: -3 a -5*v1 -6*v2 -15 <= 0; value: -54 0: 1: 1 3 4 2: 2 4 3: 2 optimal: oo a 2*v0 -6 <= 0; value: -2 d v1 -3 = 0; value: 0 a -1*v2 + 4*v3 + 3 <= 0; value: -1 a -3 < 0; value: -3 a -6*v2 -30 <= 0; value: -54 0: 1: 1 3 4 2: 2 4 3: 2 0: 2 -> 2 1: 3 -> 3 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 -3*v2 + 4 < 0; value: -1 a v0 + v2 + 5*v3 -19 <= 0; value: -12 a -5*v1 + v2 -5 < 0; value: -25 a 4*v0 + 4*v1 -3*v3 -28 = 0; value: 0 a v3 <= 0; value: 0 0: 1 2 4 1: 3 4 2: 1 2 3 3: 2 4 5 optimal: (46/5 -e*1) a + 46/5 < 0; value: 46/5 d 5*v0 -3*v2 + 4 < 0; value: -3 a -11/5 <= 0; value: -11/5 d 5*v0 + v2 -15/4*v3 -40 < 0; value: -17/6 d 4*v0 + 4*v1 -3*v3 -28 = 0; value: 0 d 16/9*v0 -464/45 < 0; value: -16/9 0: 1 2 4 3 5 1: 3 4 2: 1 2 3 5 3: 2 4 5 3 0: 2 -> 24/5 1: 5 -> 49/30 2: 5 -> 31/3 3: 0 -> -34/45 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 + 4*v1 -21 < 0; value: -7 a -1*v0 -1*v3 + 5 = 0; value: 0 a -6*v1 + 3*v2 + v3 -7 = 0; value: 0 a 4*v2 -2*v3 -19 <= 0; value: -7 a -5*v0 + 1 <= 0; value: -4 0: 1 2 5 1: 1 3 2: 3 4 3: 2 3 4 optimal: oo a 7/3*v0 -1*v2 + 2/3 <= 0; value: -2 a 16/3*v0 + 2*v2 -67/3 < 0; value: -7 d -1*v0 -1*v3 + 5 = 0; value: 0 d -6*v1 + 3*v2 + v3 -7 = 0; value: 0 a 2*v0 + 4*v2 -29 <= 0; value: -7 a -5*v0 + 1 <= 0; value: -4 0: 1 2 5 4 1: 1 3 2: 3 4 1 3: 2 3 4 1 0: 1 -> 1 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 2*v2 -22 <= 0; value: -12 a 4*v2 + v3 -18 <= 0; value: 0 a 6*v0 -4*v2 + 3*v3 + 2 < 0; value: -2 a v3 -5 <= 0; value: -3 a -3*v1 + 2 <= 0; value: -4 0: 3 1: 1 5 2: 1 2 3 3: 2 3 4 optimal: oo a 4/3*v2 -1*v3 -2 < 0; value: 4/3 a 2*v2 -64/3 <= 0; value: -40/3 a 4*v2 + v3 -18 <= 0; value: 0 d 6*v0 -4*v2 + 3*v3 + 2 < 0; value: -1 a v3 -5 <= 0; value: -3 d -3*v1 + 2 <= 0; value: 0 0: 3 1: 1 5 2: 1 2 3 3: 2 3 4 0: 1 -> 7/6 1: 2 -> 2/3 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v3 -3 = 0; value: 0 a -2*v1 -1*v2 -2 < 0; value: -7 a 2*v0 -5*v1 -6*v2 + 14 <= 0; value: -1 a 3*v0 -4*v3 <= 0; value: 0 0: 3 4 1: 2 3 2: 2 3 3: 1 4 optimal: (124/7 -e*1) a + 124/7 < 0; value: 124/7 d v3 -3 = 0; value: 0 d -4/5*v0 + 7/5*v2 -38/5 < 0; value: -7/5 d 2*v0 -5*v1 -6*v2 + 14 <= 0; value: 0 d 3*v0 -4*v3 <= 0; value: 0 0: 3 4 2 1: 2 3 2: 2 3 3: 1 4 0: 4 -> 4 1: 1 -> -128/35 2: 3 -> 47/7 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -1*v2 -6*v3 + 18 = 0; value: 0 a -6*v1 + 7 <= 0; value: -5 a -1*v0 + v1 + 4*v2 -3 <= 0; value: -1 a -1*v3 + 1 <= 0; value: -2 a 4*v2 -5*v3 + 10 <= 0; value: -5 0: 1 3 1: 2 3 2: 1 3 5 3: 1 4 5 optimal: 131/12 a + 131/12 <= 0; value: 131/12 d -2*v0 -1*v2 -6*v3 + 18 = 0; value: 0 d -6*v1 + 7 <= 0; value: 0 a -323/24 <= 0; value: -323/24 d -4/5*v2 -1 <= 0; value: 0 d 4*v2 -5*v3 + 10 <= 0; value: 0 0: 1 3 1: 2 3 2: 1 3 5 4 3: 1 4 5 3 0: 0 -> 53/8 1: 2 -> 7/6 2: 0 -> -5/4 3: 3 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 6*v1 + v3 -1 <= 0; value: 0 a 5*v0 + 4*v1 -10 = 0; value: 0 a -2*v1 + 3*v3 -3 <= 0; value: 0 a 3*v0 -2*v2 -2 = 0; value: 0 a -1*v2 -2*v3 + 4 = 0; value: 0 0: 2 4 1: 1 2 3 2: 4 5 3: 1 3 5 optimal: 4 a + 4 <= 0; value: 4 a <= 0; value: 0 d 5*v0 + 4*v1 -10 = 0; value: 0 d -1/3*v3 + 1/3 <= 0; value: 0 d 3*v0 -2*v2 -2 = 0; value: 0 d -1*v2 -2*v3 + 4 = 0; value: 0 0: 2 4 3 1 1: 1 2 3 2: 4 5 3 1 3: 1 3 5 0: 2 -> 2 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 + v2 + 6 = 0; value: 0 a 3*v0 -6*v1 -6*v2 + 14 < 0; value: -28 a -4*v0 -1*v3 + 19 = 0; value: 0 a -5*v1 -3*v3 + 34 = 0; value: 0 a v0 + 3*v3 -13 = 0; value: 0 0: 2 3 5 1: 1 2 4 2: 1 2 3: 3 4 5 optimal: -2 a -2 <= 0; value: -2 d -2*v1 + v2 + 6 = 0; value: 0 a -28 < 0; value: -28 d -4*v0 -1*v3 + 19 = 0; value: 0 d -5/2*v2 -3*v3 + 19 = 0; value: 0 d -11*v0 + 44 = 0; value: 0 0: 2 3 5 1: 1 2 4 2: 1 2 4 3: 3 4 5 2 0: 4 -> 4 1: 5 -> 5 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v1 + 5*v3 -30 <= 0; value: -10 a 5*v1 -3*v2 + 5*v3 -20 = 0; value: 0 a -5*v2 + 2*v3 -8 <= 0; value: 0 a 3*v0 -1*v1 -3 <= 0; value: 0 a -1*v1 = 0; value: 0 0: 4 1: 1 2 4 5 2: 2 3 3: 1 2 3 optimal: 2 a + 2 <= 0; value: 2 a -10 <= 0; value: -10 d 5*v1 -3*v2 + 5*v3 -20 = 0; value: 0 d -5*v2 + 2*v3 -8 <= 0; value: 0 d 3*v0 + 19/10*v2 -3 <= 0; value: 0 d -3*v0 + 3 = 0; value: 0 0: 4 5 1 1: 1 2 4 5 2: 2 3 4 5 1 3: 1 2 3 4 5 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 -1*v2 + 2*v3 -22 < 0; value: -13 a -4*v0 -1*v1 + 6*v3 = 0; value: 0 a 5*v1 -2*v3 + 4 <= 0; value: 0 a 4*v0 -17 < 0; value: -5 a 5*v0 + 3*v3 -45 <= 0; value: -24 0: 1 2 4 5 1: 2 3 2: 1 3: 1 2 3 5 optimal: oo a 10*v0 -12*v3 <= 0; value: 6 a 2*v0 -1*v2 + 2*v3 -22 < 0; value: -13 d -4*v0 -1*v1 + 6*v3 = 0; value: 0 a -20*v0 + 28*v3 + 4 <= 0; value: 0 a 4*v0 -17 < 0; value: -5 a 5*v0 + 3*v3 -45 <= 0; value: -24 0: 1 2 4 5 3 1: 2 3 2: 1 3: 1 2 3 5 0: 3 -> 3 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -1*v2 + v3 -17 <= 0; value: -9 a -3*v0 -2*v2 -9 < 0; value: -26 a -1*v1 <= 0; value: -4 a 3*v1 + 2*v2 -20 = 0; value: 0 a 3*v0 -5*v2 -1*v3 -3 <= 0; value: -17 0: 1 2 5 1: 3 4 2: 1 2 4 5 3: 1 5 optimal: 80/3 a + 80/3 <= 0; value: 80/3 d 3*v0 + v3 -27 <= 0; value: 0 a -69 < 0; value: -69 d 2/3*v2 -20/3 <= 0; value: 0 d 3*v1 + 2*v2 -20 = 0; value: 0 d -2*v3 -26 <= 0; value: 0 0: 1 2 5 1: 3 4 2: 1 2 4 5 3 3: 1 5 2 0: 3 -> 40/3 1: 4 -> 0 2: 4 -> 10 3: 3 -> -13 a 2*v0 -2*v1 <= 0; value: 8 a 5*v0 + v2 -50 <= 0; value: -26 a v0 -6*v1 -4 = 0; value: 0 a 3*v0 -5*v2 -4 < 0; value: -12 a -1*v0 -6*v1 <= 0; value: -4 a v2 -2*v3 + 1 < 0; value: -3 0: 1 2 3 4 1: 2 4 2: 1 3 5 3: 5 optimal: (691/42 -e*1) a + 691/42 < 0; value: 691/42 d 28/3*v2 -130/3 <= 0; value: 0 d v0 -6*v1 -4 = 0; value: 0 d 3*v0 -5*v2 -4 < 0; value: -3 a -99/7 < 0; value: -99/7 a -2*v3 + 79/14 < 0; value: -33/14 0: 1 2 3 4 1: 2 4 2: 1 3 5 4 3: 5 0: 4 -> 113/14 1: 0 -> 19/28 2: 4 -> 65/14 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -1*v2 -5 <= 0; value: -13 a -2*v1 -3*v3 -5 < 0; value: -18 a -4*v0 + 3*v3 -5 = 0; value: 0 a 5*v0 + 4*v1 -1*v2 -18 <= 0; value: -7 a -3*v0 -4*v1 + 2*v3 -3 <= 0; value: -8 0: 3 4 5 1: 1 2 4 5 2: 1 4 3: 2 3 5 optimal: oo a 13/28*v2 + 225/28 <= 0; value: 251/28 a -53/56*v2 -241/56 <= 0; value: -347/56 a -23/28*v2 -691/28 < 0; value: -737/28 d -4*v0 + 3*v3 -5 = 0; value: 0 d 14/3*v0 -1*v2 -53/3 <= 0; value: 0 d -3*v0 -4*v1 + 2*v3 -3 <= 0; value: 0 0: 3 4 5 2 1 1: 1 2 4 5 2: 1 4 2 3: 2 3 5 1 4 0: 1 -> 59/14 1: 2 -> -15/56 2: 2 -> 2 3: 3 -> 51/7 a 2*v0 -2*v1 <= 0; value: 6 a 5*v0 + 2*v3 -47 <= 0; value: -19 a 5*v0 -5*v2 -3*v3 -1 < 0; value: -8 a 4*v1 -3*v3 + 8 <= 0; value: 0 a 2*v0 + v3 -27 <= 0; value: -15 a -1*v0 -2*v1 -3*v3 -1 < 0; value: -19 0: 1 2 4 5 1: 3 5 2: 2 3: 1 2 3 4 5 optimal: (103 -e*1) a + 103 < 0; value: 103 d 5*v0 + 2*v3 -47 <= 0; value: 0 a -5*v2 -159 < 0; value: -174 a -349 < 0; value: -349 d -1/2*v0 -7/2 <= 0; value: 0 d -1*v0 -2*v1 -3*v3 -1 < 0; value: -2 0: 1 2 4 5 3 1: 3 5 2: 2 3: 1 2 3 4 5 0: 4 -> -7 1: 1 -> -115/2 2: 3 -> 3 3: 4 -> 41 a 2*v0 -2*v1 <= 0; value: -8 a v0 + 2*v2 -1*v3 + 4 = 0; value: 0 a -2*v0 + 3*v2 = 0; value: 0 a v2 -2*v3 + 8 = 0; value: 0 a 5*v2 -2*v3 -3 <= 0; value: -11 a 3*v1 -16 <= 0; value: -4 0: 1 2 1: 5 2: 1 2 3 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a v0 + 2*v2 -1*v3 + 4 = 0; value: 0 a -2*v0 + 3*v2 = 0; value: 0 a v2 -2*v3 + 8 = 0; value: 0 a 5*v2 -2*v3 -3 <= 0; value: -11 a 3*v1 -16 <= 0; value: -4 0: 1 2 1: 5 2: 1 2 3 4 3: 1 3 4 0: 0 -> 0 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 3*v3 -11 = 0; value: 0 a v0 + 4*v3 -9 = 0; value: 0 a 5*v0 -2*v1 -4*v2 -8 <= 0; value: -25 a -6*v0 -3*v2 + 16 < 0; value: -2 a 4*v0 + 6*v2 -4*v3 -55 < 0; value: -35 0: 1 2 3 4 5 1: 3 2: 3 4 5 3: 1 2 5 optimal: (133/3 -e*1) a + 133/3 < 0; value: 133/3 d 5*v0 + 3*v3 -11 = 0; value: 0 d -17/3*v0 + 17/3 = 0; value: 0 d 5*v0 -2*v1 -4*v2 -8 <= 0; value: 0 a -39/2 < 0; value: -39/2 d 4*v0 + 6*v2 -4*v3 -55 < 0; value: -6 0: 1 2 3 4 5 1: 3 2: 3 4 5 3: 1 2 5 4 0: 1 -> 1 1: 3 -> -115/6 2: 4 -> 53/6 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 6*v0 -4*v1 + 1 < 0; value: -3 a v2 <= 0; value: 0 a 2*v1 -11 <= 0; value: -3 a -6*v0 + 2*v2 + 7 <= 0; value: -5 a 5*v0 + v1 -38 <= 0; value: -24 0: 1 4 5 1: 1 3 5 2: 2 4 3: optimal: oo a -1/3*v2 -5/3 < 0; value: -5/3 d 6*v0 -4*v1 + 1 < 0; value: -4 a v2 <= 0; value: 0 a v2 -7 < 0; value: -7 d -6*v0 + 2*v2 + 7 <= 0; value: 0 a 13/6*v2 -181/6 < 0; value: -181/6 0: 1 4 5 3 1: 1 3 5 2: 2 4 5 3 3: 0: 2 -> 7/6 1: 4 -> 3 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 1 = 0; value: 0 a -3*v0 -5*v2 + 10 < 0; value: -4 a v0 -7 <= 0; value: -4 a 6*v2 + 5*v3 -60 <= 0; value: -39 a 4*v0 + 6*v2 + v3 -52 < 0; value: -31 0: 2 3 5 1: 1 2: 2 4 5 3: 4 5 optimal: 12 a + 12 <= 0; value: 12 d -1*v1 + 1 = 0; value: 0 a -5*v2 -11 < 0; value: -16 d v0 -7 <= 0; value: 0 a 6*v2 + 5*v3 -60 <= 0; value: -39 a 6*v2 + v3 -24 < 0; value: -15 0: 2 3 5 1: 1 2: 2 4 5 3: 4 5 0: 3 -> 7 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -5*v3 + 9 = 0; value: 0 a 3*v2 -4*v3 <= 0; value: 0 a -1*v0 + v2 + 3 = 0; value: 0 a v0 -3*v3 -4 <= 0; value: -1 a 4*v0 + 6*v2 -3*v3 -34 < 0; value: -22 0: 1 3 4 5 1: 2: 2 3 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -5*v3 + 9 = 0; value: 0 a 3*v2 -4*v3 <= 0; value: 0 a -1*v0 + v2 + 3 = 0; value: 0 a v0 -3*v3 -4 <= 0; value: -1 a 4*v0 + 6*v2 -3*v3 -34 < 0; value: -22 0: 1 3 4 5 1: 2: 2 3 5 3: 1 2 4 5 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -1*v1 + 2*v2 -17 <= 0; value: -8 a -3*v0 -1*v2 -4 < 0; value: -14 a 4*v0 + 3*v1 -3*v2 -7 <= 0; value: -2 a -2*v1 + 6*v2 -3*v3 -43 <= 0; value: -25 a v1 -4 <= 0; value: -1 0: 1 2 3 1: 1 3 4 5 2: 1 2 3 4 3: 4 optimal: (750 -e*1) a + 750 < 0; value: 750 d 2*v0 -1*v1 + 2*v2 -17 <= 0; value: 0 d -3*v0 -1*v2 -4 < 0; value: -1 d v0 -70 < 0; value: -1 a -3*v3 -717 < 0; value: -717 a -309 < 0; value: -309 0: 1 2 3 4 5 1: 1 3 4 5 2: 1 2 3 4 5 3: 4 0: 2 -> 69 1: 3 -> -299 2: 4 -> -210 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 + 2*v3 -71 <= 0; value: -40 a v2 + 2*v3 -11 = 0; value: 0 a -3*v0 -4*v1 -3*v2 + 20 < 0; value: -2 a -3*v2 -3*v3 -19 <= 0; value: -43 a 3*v0 + 2*v1 + 5*v3 -20 <= 0; value: 0 0: 3 5 1: 3 5 2: 1 2 3 4 3: 1 2 4 5 optimal: (335/3 -e*1) a + 335/3 < 0; value: 335/3 d -8*v3 -16 <= 0; value: 0 d v2 + 2*v3 -11 = 0; value: 0 d -3*v0 -4*v1 -3*v2 + 20 < 0; value: -4 a -58 <= 0; value: -58 d 3/2*v0 -85/2 < 0; value: -3/2 0: 3 5 1: 3 5 2: 1 2 3 4 5 3: 1 2 4 5 0: 1 -> 82/3 1: 1 -> -103/4 2: 5 -> 15 3: 3 -> -2 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 3*v1 + 1 <= 0; value: 0 a 6*v0 -3*v1 + 5*v3 -35 < 0; value: -9 a 2*v0 + v1 + 6*v3 -15 <= 0; value: 0 a -5*v0 + 5*v1 + 2*v2 -6 < 0; value: -13 a 5*v0 + 6*v3 -55 <= 0; value: -29 0: 1 2 3 4 5 1: 1 2 3 4 2: 4 3: 2 3 5 optimal: oo a -2*v0 -10/3*v3 + 70/3 < 0; value: 12 a 5*v0 + 5*v3 -34 < 0; value: -9 d 6*v0 -3*v1 + 5*v3 -35 < 0; value: -3 a 4*v0 + 23/3*v3 -80/3 < 0; value: -3 a 5*v0 + 2*v2 + 25/3*v3 -193/3 < 0; value: -28 a 5*v0 + 6*v3 -55 <= 0; value: -29 0: 1 2 3 4 5 1: 1 2 3 4 2: 4 3: 2 3 5 1 4 0: 4 -> 4 1: 1 -> -1 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 + 4*v2 -3*v3 -39 <= 0; value: -22 a v2 -3*v3 -3 <= 0; value: 0 a 6*v0 -2*v3 -39 < 0; value: -15 a -2*v2 + 5*v3 + 3 < 0; value: -3 a -5*v1 + v2 + 2 <= 0; value: 0 0: 3 1: 1 5 2: 1 2 4 5 3: 1 2 3 4 optimal: (63/5 -e*1) a + 63/5 < 0; value: 63/5 a -58 < 0; value: -58 d -1/2*v3 -3/2 < 0; value: -1/2 d 6*v0 -33 <= 0; value: 0 d -2*v2 + 5*v3 + 3 < 0; value: -2 d -5*v1 + v2 + 2 <= 0; value: 0 0: 3 1: 1 5 2: 1 2 4 5 3: 1 2 3 4 0: 4 -> 11/2 1: 1 -> -1/10 2: 3 -> -5/2 3: 0 -> -2 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 + 3*v1 -4 <= 0; value: -2 a 5*v0 + v1 -6*v3 -13 <= 0; value: -8 a -1*v1 = 0; value: 0 a v1 = 0; value: 0 a -1*v0 -4*v2 + 2*v3 + 1 = 0; value: 0 0: 1 2 5 1: 1 2 3 4 2: 5 3: 2 5 optimal: 4 a + 4 <= 0; value: 4 d -8*v2 + 4*v3 -2 <= 0; value: 0 a -12*v2 -6 <= 0; value: -6 d -1*v1 = 0; value: 0 a = 0; value: 0 d -1*v0 -4*v2 + 2*v3 + 1 = 0; value: 0 0: 1 2 5 1: 1 2 3 4 2: 5 2 1 3: 2 5 1 0: 1 -> 2 1: 0 -> 0 2: 0 -> 0 3: 0 -> 1/2 a 2*v0 -2*v1 <= 0; value: 10 a -1*v0 -1*v1 + 5 = 0; value: 0 a 5*v0 -5*v2 -6*v3 -22 <= 0; value: -7 a -4*v0 -1*v2 + 17 < 0; value: -5 a -5*v0 -2*v1 + v2 + 21 <= 0; value: -2 a v0 + 5*v1 + v2 -9 <= 0; value: -2 0: 1 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 2 optimal: oo a 4*v2 + 24/5*v3 + 38/5 <= 0; value: 78/5 d -1*v0 -1*v1 + 5 = 0; value: 0 d 5*v0 -5*v2 -6*v3 -22 <= 0; value: 0 a -5*v2 -24/5*v3 -3/5 < 0; value: -53/5 a -2*v2 -18/5*v3 -11/5 <= 0; value: -31/5 a -3*v2 -24/5*v3 -8/5 <= 0; value: -38/5 0: 1 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 2 3 4 5 0: 5 -> 32/5 1: 0 -> -7/5 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -2*v2 + v3 + 1 <= 0; value: 0 a 4*v0 + 3*v1 -2*v2 -18 < 0; value: -11 a v0 -2*v2 + 4 <= 0; value: -1 a -3*v0 + 6*v3 -59 <= 0; value: -32 a 5*v0 -2*v2 + v3 -6 <= 0; value: -2 0: 2 3 4 5 1: 2 2: 1 2 3 5 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -2*v2 + v3 + 1 <= 0; value: 0 a 4*v0 + 3*v1 -2*v2 -18 < 0; value: -11 a v0 -2*v2 + 4 <= 0; value: -1 a -3*v0 + 6*v3 -59 <= 0; value: -32 a 5*v0 -2*v2 + v3 -6 <= 0; value: -2 0: 2 3 4 5 1: 2 2: 1 2 3 5 3: 1 4 5 0: 1 -> 1 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + 5*v1 -27 <= 0; value: -15 a -1*v0 -1*v2 + 6 = 0; value: 0 a 6*v0 + v1 + 6*v3 -104 <= 0; value: -65 a v2 + v3 -10 <= 0; value: 0 a -1*v1 + 3*v2 -19 < 0; value: -7 0: 1 2 3 1: 1 3 5 2: 2 4 5 3: 3 4 optimal: oo a -16*v3 + 282 < 0; value: 202 a 36*v3 -662 < 0; value: -482 d -1*v0 -1*v2 + 6 = 0; value: 0 d 3*v0 + 6*v3 -105 < 0; value: -3 a 3*v3 -39 < 0; value: -24 d -1*v1 + 3*v2 -19 < 0; value: -1 0: 1 2 3 4 1: 1 3 5 2: 2 4 5 1 3 3: 3 4 1 0: 1 -> 24 1: 3 -> -72 2: 5 -> -18 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 + 2*v3 -4 = 0; value: 0 a -1*v0 -1*v2 + 2*v3 -2 <= 0; value: 0 a 3*v0 + 3*v2 -4*v3 + 1 <= 0; value: -1 a 2*v1 + 5*v2 -6*v3 <= 0; value: -2 a v1 -1*v3 -1 < 0; value: -3 0: 2 3 1: 1 4 5 2: 2 3 4 3: 1 2 3 4 5 optimal: oo a 2*v0 + 2/3 <= 0; value: 2/3 d 3*v1 + 2*v3 -4 = 0; value: 0 d -1*v0 -1*v2 + 2*v3 -2 <= 0; value: 0 d v0 + v2 -3 <= 0; value: 0 a -5*v0 -2/3 <= 0; value: -2/3 a -23/6 < 0; value: -23/6 0: 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 1 2 3 4 5 0: 0 -> 0 1: 0 -> -1/3 2: 2 -> 3 3: 2 -> 5/2 a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v3 -65 <= 0; value: -38 a -5*v0 + 4*v1 -1 <= 0; value: 0 a 5*v3 -34 <= 0; value: -9 a -1*v0 -3*v2 + 18 = 0; value: 0 a -1*v3 + 3 < 0; value: -2 0: 1 2 4 1: 1 2 2: 4 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v3 -65 <= 0; value: -38 a -5*v0 + 4*v1 -1 <= 0; value: 0 a 5*v3 -34 <= 0; value: -9 a -1*v0 -3*v2 + 18 = 0; value: 0 a -1*v3 + 3 < 0; value: -2 0: 1 2 4 1: 1 2 2: 4 3: 1 3 5 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 + 3*v1 + 3*v2 -38 < 0; value: -23 a -3*v0 -2*v1 -3*v2 + 13 <= 0; value: -1 a -3*v3 + 1 <= 0; value: -2 a -1*v3 + 1 = 0; value: 0 a 6*v0 + 5*v1 -3*v2 -6 <= 0; value: -13 0: 1 2 5 1: 1 2 5 2: 1 2 5 3: 3 4 optimal: oo a 5*v0 + 3*v2 -13 <= 0; value: -1 a 3/2*v0 -3/2*v2 -37/2 < 0; value: -49/2 d -3*v0 -2*v1 -3*v2 + 13 <= 0; value: 0 a -3*v3 + 1 <= 0; value: -2 a -1*v3 + 1 = 0; value: 0 a -3/2*v0 -21/2*v2 + 53/2 <= 0; value: -31/2 0: 1 2 5 1: 1 2 5 2: 1 2 5 3: 3 4 0: 0 -> 0 1: 1 -> 1/2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + 6*v1 -6*v3 -13 <= 0; value: -43 a -1*v0 + 2 = 0; value: 0 a -6*v1 -5*v3 + 1 <= 0; value: -30 a 3*v2 -4*v3 -10 < 0; value: -27 a 3*v2 + v3 -12 <= 0; value: -4 0: 1 2 1: 1 3 2: 4 5 3: 1 3 4 5 optimal: oo a 2*v0 -5*v2 + 59/3 <= 0; value: 56/3 a -3*v0 + 33*v2 -144 <= 0; value: -117 a -1*v0 + 2 = 0; value: 0 d -6*v1 -5*v3 + 1 <= 0; value: 0 a 15*v2 -58 < 0; value: -43 d 3*v2 + v3 -12 <= 0; value: 0 0: 1 2 1: 1 3 2: 4 5 1 3: 1 3 4 5 0: 2 -> 2 1: 1 -> -22/3 2: 1 -> 1 3: 5 -> 9 a 2*v0 -2*v1 <= 0; value: 0 a -4*v1 -2*v2 -4*v3 -5 <= 0; value: -25 a 2*v0 + 4*v2 -17 <= 0; value: -11 a -3*v0 -4*v1 -6*v3 + 32 < 0; value: -1 a -4*v1 -4*v2 -3 < 0; value: -15 a 5*v0 + 5*v2 + 4*v3 -23 = 0; value: 0 0: 2 3 5 1: 1 3 4 2: 1 2 4 5 3: 1 3 5 optimal: (391/26 -e*1) a + 391/26 < 0; value: 391/26 d 52/23*v0 -582/23 <= 0; value: 0 a -160/13 <= 0; value: -160/13 d -3*v0 -4*v1 -6*v3 + 32 < 0; value: -35/26 d -9/2*v0 -23/2*v2 -1/2 <= 0; value: 0 d 5*v0 + 5*v2 + 4*v3 -23 = 0; value: 0 0: 2 3 5 1 4 1: 1 3 4 2: 1 2 4 5 3: 1 3 5 4 0: 3 -> 291/26 1: 3 -> 417/104 2: 0 -> -115/26 3: 2 -> -141/52 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 <= 0; value: 0 a 3*v1 -2*v2 -8 <= 0; value: -5 a -2*v0 -1*v3 + 4 <= 0; value: 0 a -1*v0 + 2*v2 = 0; value: 0 a 3*v1 -4*v3 + 8 < 0; value: -5 0: 3 4 1: 2 5 2: 1 2 4 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 <= 0; value: 0 a 3*v1 -2*v2 -8 <= 0; value: -5 a -2*v0 -1*v3 + 4 <= 0; value: 0 a -1*v0 + 2*v2 = 0; value: 0 a 3*v1 -4*v3 + 8 < 0; value: -5 0: 3 4 1: 2 5 2: 1 2 4 3: 3 5 0: 0 -> 0 1: 1 -> 1 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + 2 <= 0; value: -4 a v1 + v3 -25 <= 0; value: -15 a -5*v1 -12 <= 0; value: -37 a -3*v1 -4*v3 + 35 = 0; value: 0 a -5*v0 -1*v3 -6 <= 0; value: -21 0: 1 5 1: 2 3 4 2: 3: 2 4 5 optimal: oo a 2*v0 + 24/5 <= 0; value: 44/5 a -3*v0 + 2 <= 0; value: -4 a -337/20 <= 0; value: -337/20 d 20/3*v3 -211/3 <= 0; value: 0 d -3*v1 -4*v3 + 35 = 0; value: 0 a -5*v0 -331/20 <= 0; value: -531/20 0: 1 5 1: 2 3 4 2: 3: 2 4 5 3 0: 2 -> 2 1: 5 -> -12/5 2: 4 -> 4 3: 5 -> 211/20 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -5*v2 -1*v3 -11 < 0; value: -3 a 3*v0 + 5*v1 -4*v3 -25 <= 0; value: -3 a -1*v0 + 4*v2 + 2 <= 0; value: -2 a -6*v0 + v2 -1*v3 -6 <= 0; value: -30 a -1*v3 <= 0; value: 0 0: 2 3 4 1: 1 2 2: 1 3 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -5*v2 -1*v3 -11 < 0; value: -3 a 3*v0 + 5*v1 -4*v3 -25 <= 0; value: -3 a -1*v0 + 4*v2 + 2 <= 0; value: -2 a -6*v0 + v2 -1*v3 -6 <= 0; value: -30 a -1*v3 <= 0; value: 0 0: 2 3 4 1: 1 2 2: 1 3 4 3: 1 2 4 5 0: 4 -> 4 1: 2 -> 2 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 2*v1 + 2 <= 0; value: -1 a v3 -4 = 0; value: 0 a -3*v0 + 4*v1 -2*v3 + 9 <= 0; value: -8 a 4*v1 -1*v2 -4*v3 -8 < 0; value: -27 a -5*v0 -4*v1 + 2 < 0; value: -13 0: 1 3 5 1: 1 3 4 5 2: 4 3: 2 3 4 optimal: oo a 9/2*v0 -1 < 0; value: 25/2 a -7/2*v0 + 3 < 0; value: -15/2 a v3 -4 = 0; value: 0 a -8*v0 -2*v3 + 11 < 0; value: -21 a -5*v0 -1*v2 -4*v3 -6 < 0; value: -40 d -5*v0 -4*v1 + 2 < 0; value: -4 0: 1 3 5 4 1: 1 3 4 5 2: 4 3: 2 3 4 0: 3 -> 3 1: 0 -> -9/4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a 4*v0 -4*v2 -4*v3 -1 <= 0; value: -21 a -5*v0 -3*v1 + 2*v2 -4 <= 0; value: -16 a v0 + 6*v1 -40 < 0; value: -16 a -2*v2 + 3*v3 -37 <= 0; value: -22 0: 1 2 3 1: 2 3 2: 1 2 4 3: 1 4 optimal: oo a 68/15*v0 + 191/15 <= 0; value: 191/15 d 4*v0 -4*v2 -4*v3 -1 <= 0; value: 0 d -5*v0 -3*v1 + 2*v2 -4 <= 0; value: 0 a -33/5*v0 -391/5 < 0; value: -391/5 d -2*v0 + 5*v3 -73/2 <= 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 2 4 3 3: 1 4 3 0: 0 -> 0 1: 4 -> -191/30 2: 0 -> -151/20 3: 5 -> 73/10 a 2*v0 -2*v1 <= 0; value: -4 a v0 -1*v2 + 2*v3 -13 <= 0; value: -8 a -2*v0 -5*v2 -1*v3 + 16 <= 0; value: -2 a 2*v0 + 4*v1 -75 <= 0; value: -49 a v1 -4*v2 -2*v3 -1 <= 0; value: -8 a -5*v0 + 3*v1 -4*v3 + 6 <= 0; value: -2 0: 1 2 3 5 1: 3 4 5 2: 1 2 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v0 -1*v2 + 2*v3 -13 <= 0; value: -8 a -2*v0 -5*v2 -1*v3 + 16 <= 0; value: -2 a 2*v0 + 4*v1 -75 <= 0; value: -49 a v1 -4*v2 -2*v3 -1 <= 0; value: -8 a -5*v0 + 3*v1 -4*v3 + 6 <= 0; value: -2 0: 1 2 3 5 1: 3 4 5 2: 1 2 4 3: 1 2 4 5 0: 3 -> 3 1: 5 -> 5 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -4*v0 + 6*v1 -7 <= 0; value: -19 a -1*v1 -6*v2 + 2 <= 0; value: -16 a -4*v2 + 3*v3 -2 <= 0; value: -5 a -6*v1 -5*v2 -5*v3 + 3 < 0; value: -27 a 3*v0 + 4*v2 -43 < 0; value: -22 0: 1 5 1: 1 2 4 2: 2 3 4 5 3: 3 4 optimal: oo a -11/12*v0 + 503/12 < 0; value: 235/6 a 19/4*v0 -531/4 < 0; value: -237/2 a 73/24*v0 -997/24 < 0; value: -389/12 d -4*v2 + 3*v3 -2 <= 0; value: 0 d -6*v1 -5*v2 -5*v3 + 3 < 0; value: -6 d 3*v0 + 4*v2 -43 < 0; value: -4 0: 1 5 2 1: 1 2 4 2: 2 3 4 5 1 3: 3 4 2 1 0: 3 -> 3 1: 0 -> -491/36 2: 3 -> 15/2 3: 3 -> 32/3 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 + v3 <= 0; value: 0 a -2*v0 + 3*v2 -14 <= 0; value: -8 a -5*v1 -5*v2 -13 <= 0; value: -33 a -1*v1 <= 0; value: 0 a v2 -4 <= 0; value: 0 0: 2 1: 3 4 2: 1 2 3 5 3: 1 optimal: oo a 2*v0 <= 0; value: 6 a -1*v2 + v3 <= 0; value: 0 a -2*v0 + 3*v2 -14 <= 0; value: -8 a -5*v2 -13 <= 0; value: -33 d -1*v1 <= 0; value: 0 a v2 -4 <= 0; value: 0 0: 2 1: 3 4 2: 1 2 3 5 3: 1 0: 3 -> 3 1: 0 -> 0 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 5*v1 -5 <= 0; value: -3 a -4*v0 -3*v1 -1*v3 + 16 = 0; value: 0 a 3*v0 + v3 -24 <= 0; value: -14 a 2*v2 + 2*v3 -11 < 0; value: -7 a 3*v0 -4*v1 -5*v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2 5 2: 4 3: 2 3 4 5 optimal: (592/29 -e*1) a + 592/29 < 0; value: 592/29 a -969/29 < 0; value: -969/29 d -4*v0 -3*v1 -1*v3 + 16 = 0; value: 0 d 3*v0 -1*v2 -37/2 <= 0; value: 0 d 2*v2 + 2*v3 -11 < 0; value: -2 d 58/3*v0 -328/3 < 0; value: -58/3 0: 1 2 3 5 1: 1 2 5 2: 4 3 5 1 3: 2 3 4 5 1 0: 3 -> 135/29 1: 1 -> -338/87 2: 1 -> -263/58 3: 1 -> 262/29 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -2*v2 <= 0; value: 0 a v2 + 3*v3 <= 0; value: 0 a -1*v0 -1*v2 <= 0; value: 0 a -1*v1 = 0; value: 0 a -1*v1 <= 0; value: 0 0: 1 3 1: 4 5 2: 1 2 3 3: 2 optimal: oo a 2*v0 <= 0; value: 0 a -3*v0 -2*v2 <= 0; value: 0 a v2 + 3*v3 <= 0; value: 0 a -1*v0 -1*v2 <= 0; value: 0 d -1*v1 = 0; value: 0 a <= 0; value: 0 0: 1 3 1: 4 5 2: 1 2 3 3: 2 0: 0 -> 0 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -1*v2 + 1 <= 0; value: 0 a -1*v1 -1*v3 + 9 = 0; value: 0 a 2*v2 -5 <= 0; value: -3 a -4*v2 -5*v3 + 9 <= 0; value: -15 a 3*v0 + 2*v1 -12 <= 0; value: -2 0: 5 1: 2 5 2: 1 3 4 3: 2 4 optimal: oo a 2*v0 + 2*v3 -18 <= 0; value: -10 a -1*v2 + 1 <= 0; value: 0 d -1*v1 -1*v3 + 9 = 0; value: 0 a 2*v2 -5 <= 0; value: -3 a -4*v2 -5*v3 + 9 <= 0; value: -15 a 3*v0 -2*v3 + 6 <= 0; value: -2 0: 5 1: 2 5 2: 1 3 4 3: 2 4 5 0: 0 -> 0 1: 5 -> 5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 6*v1 -10 <= 0; value: -1 a 4*v0 + v1 -4*v3 + 1 = 0; value: 0 a -4*v0 -1*v1 + 5*v3 -13 <= 0; value: -8 a -2*v0 -4*v1 + 15 <= 0; value: -3 a -1*v1 -6*v3 + 27 = 0; value: 0 0: 1 2 3 4 1: 1 2 3 4 5 2: 3: 2 3 5 optimal: 51/19 a + 51/19 <= 0; value: 51/19 a -299/38 <= 0; value: -299/38 d 4*v0 + v1 -4*v3 + 1 = 0; value: 0 a -149/19 <= 0; value: -149/19 d 38/5*v0 -129/5 <= 0; value: 0 d 4*v0 -10*v3 + 28 = 0; value: 0 0: 1 2 3 4 5 3 1: 1 2 3 4 5 2: 3: 2 3 5 4 1 0: 3 -> 129/38 1: 3 -> 39/19 2: 5 -> 5 3: 4 -> 79/19 a 2*v0 -2*v1 <= 0; value: -10 a v0 <= 0; value: 0 a 2*v0 + 2*v1 -2*v2 -21 < 0; value: -13 a -2*v0 -3*v1 -7 <= 0; value: -22 a 2*v1 -3*v2 -18 < 0; value: -11 a 5*v1 + 4*v2 -29 = 0; value: 0 0: 1 2 3 1: 2 3 4 5 2: 2 4 5 3: optimal: 14/3 a + 14/3 <= 0; value: 14/3 d v0 <= 0; value: 0 a -46 < 0; value: -46 d -2*v0 + 12/5*v2 -122/5 <= 0; value: 0 a -319/6 < 0; value: -319/6 d 5*v1 + 4*v2 -29 = 0; value: 0 0: 1 2 3 4 1: 2 3 4 5 2: 2 4 5 3 3: 0: 0 -> 0 1: 5 -> -7/3 2: 1 -> 61/6 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a v0 + 2*v2 + 3*v3 -11 = 0; value: 0 a 2*v0 + v3 -16 <= 0; value: -10 a 5*v1 + 4*v2 -21 = 0; value: 0 a 3*v1 -7 < 0; value: -4 a -1*v1 + 5*v2 -56 <= 0; value: -37 0: 1 2 1: 3 4 5 2: 1 3 5 3: 1 2 optimal: 908/29 a + 908/29 <= 0; value: 908/29 d v0 + 2*v2 + 3*v3 -11 = 0; value: 0 d 5/3*v0 -1675/87 <= 0; value: 0 d 5*v1 + 4*v2 -21 = 0; value: 0 a -560/29 < 0; value: -560/29 d -29/10*v0 -87/10*v3 -283/10 <= 0; value: 0 0: 1 2 5 4 1: 3 4 5 2: 1 3 5 4 3: 1 2 5 4 0: 3 -> 335/29 1: 1 -> -119/29 2: 4 -> 301/29 3: 0 -> -206/29 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + 4*v3 -15 <= 0; value: -7 a -4*v1 + 6*v2 -1*v3 -16 = 0; value: 0 a -5*v0 + 2*v1 -1*v2 + 8 = 0; value: 0 a -2*v0 -4*v3 -3 < 0; value: -13 a 6*v0 + 2*v2 -3*v3 -17 <= 0; value: -11 0: 3 4 5 1: 1 2 3 2: 2 3 5 3: 1 2 4 5 optimal: (1941/91 -e*1) a + 1941/91 < 0; value: 1941/91 d -91/16*v0 -445/32 < 0; value: -91/16 d -4*v1 + 6*v2 -1*v3 -16 = 0; value: 0 d -5*v0 + 2*v2 -1/2*v3 = 0; value: 0 d 38*v0 -16*v2 -3 < 0; value: -16 a -586/13 < 0; value: -586/13 0: 3 4 5 1 1: 1 2 3 2: 2 3 5 1 4 3: 1 2 4 5 3 0: 1 -> -263/182 1: 0 -> -12991/1456 2: 3 -> -1907/728 3: 2 -> 723/182 a 2*v0 -2*v1 <= 0; value: -2 a v1 -1*v3 -3 = 0; value: 0 a -1*v0 -3*v2 + 14 <= 0; value: -5 a -1*v3 + 1 <= 0; value: -1 a 4*v0 -5*v1 -4*v3 + 17 = 0; value: 0 a 6*v0 -4*v1 + 3*v2 -54 <= 0; value: -35 0: 2 4 5 1: 1 4 5 2: 2 5 3: 1 3 4 optimal: 342/29 a + 342/29 <= 0; value: 342/29 d v1 -1*v3 -3 = 0; value: 0 d -87/38*v2 -35/19 <= 0; value: 0 a -189/29 <= 0; value: -189/29 d 4*v0 -9*v3 + 2 = 0; value: 0 d 38/9*v0 + 3*v2 -602/9 <= 0; value: 0 0: 2 4 5 3 1: 1 4 5 2: 2 5 3 3: 1 3 4 5 0: 4 -> 476/29 1: 5 -> 305/29 2: 5 -> -70/87 3: 2 -> 218/29 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + 2*v2 + 2*v3 -29 = 0; value: 0 a 3*v0 -1*v2 -11 = 0; value: 0 a -2*v1 -3*v3 -7 <= 0; value: -26 a 2*v2 -19 <= 0; value: -11 a -5*v2 + 8 <= 0; value: -12 0: 1 2 1: 3 2: 1 2 4 5 3: 1 3 optimal: 176/5 a + 176/5 <= 0; value: 176/5 d 3*v0 + 2*v2 + 2*v3 -29 = 0; value: 0 d 3*v0 -1*v2 -11 = 0; value: 0 d -2*v1 -3*v3 -7 <= 0; value: 0 a -79/5 <= 0; value: -79/5 d -15*v0 + 63 <= 0; value: 0 0: 1 2 5 4 1: 3 2: 1 2 4 5 3: 1 3 0: 5 -> 21/5 1: 5 -> -67/5 2: 4 -> 8/5 3: 3 -> 33/5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -15 <= 0; value: -9 a 6*v0 -6*v2 + 1 <= 0; value: -5 a -5*v1 + 2*v3 -2 < 0; value: -7 a 4*v1 -5*v2 -6 < 0; value: -19 a -1*v0 -1*v1 + 7 = 0; value: 0 0: 2 5 1: 1 3 4 5 2: 2 4 3: 3 optimal: oo a -8/5*v3 + 78/5 < 0; value: 38/5 a 4/5*v3 -79/5 < 0; value: -59/5 d 6*v0 -6*v2 + 1 <= 0; value: 0 d 5*v2 + 2*v3 -227/6 < 0; value: -17/12 a 18/5*v3 -1363/30 < 0; value: -823/30 d -1*v0 -1*v1 + 7 = 0; value: 0 0: 2 5 3 1 4 1: 1 3 4 5 2: 2 4 3 1 3: 3 4 1 0: 4 -> 307/60 1: 3 -> 113/60 2: 5 -> 317/60 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v1 -1 = 0; value: 0 a -1*v3 + 2 <= 0; value: 0 a -4*v0 -5*v2 -4 <= 0; value: -14 a 2*v0 -6*v1 -5*v3 + 3 <= 0; value: -13 a -1*v1 + 1 = 0; value: 0 0: 1 3 4 1: 1 4 5 2: 3 3: 2 4 optimal: -2 a -2 <= 0; value: -2 d -2*v0 + v1 -1 = 0; value: 0 a -1*v3 + 2 <= 0; value: 0 a -5*v2 -4 <= 0; value: -14 a -5*v3 -3 <= 0; value: -13 d -2*v0 = 0; value: 0 0: 1 3 4 5 1: 1 4 5 2: 3 3: 2 4 0: 0 -> 0 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v2 + 3 < 0; value: -1 a -1*v1 -1*v3 -1 <= 0; value: -5 a v1 + 3*v3 -19 <= 0; value: -7 a -5*v0 + 4*v2 -44 <= 0; value: -28 a -1*v1 + 3*v2 -12 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 4 5 3: 2 3 optimal: oo a 2*v0 + 22 <= 0; value: 22 a -58/3 < 0; value: -58/3 d -3*v2 -1*v3 + 11 <= 0; value: 0 d 2*v3 -20 <= 0; value: 0 a -5*v0 -128/3 <= 0; value: -128/3 d -1*v1 + 3*v2 -12 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 4 5 2 3 3: 2 3 1 4 0: 0 -> 0 1: 0 -> -11 2: 4 -> 1/3 3: 4 -> 10 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 -4*v2 -6*v3 -55 < 0; value: -113 a 6*v0 + 5*v1 -40 <= 0; value: -16 a 3*v0 -2*v3 -4 <= 0; value: -2 a 6*v1 -1*v3 -4 <= 0; value: -9 a -3*v1 + v3 -5 = 0; value: 0 0: 1 2 3 1: 2 4 5 2: 1 3: 1 3 4 5 optimal: 548/51 a + 548/51 <= 0; value: 548/51 a -4*v2 -5603/51 < 0; value: -6623/51 d 17/2*v0 -155/3 <= 0; value: 0 d 3*v0 -2*v3 -4 <= 0; value: 0 a -117/17 <= 0; value: -117/17 d -3*v1 + v3 -5 = 0; value: 0 0: 1 2 3 4 1: 2 4 5 2: 1 3: 1 3 4 5 2 0: 4 -> 310/51 1: 0 -> 12/17 2: 5 -> 5 3: 5 -> 121/17 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -2*v2 + 2*v3 -17 = 0; value: 0 a 3*v0 + 2*v3 -49 <= 0; value: -30 a 2*v0 + 5*v1 -1*v2 -25 = 0; value: 0 a 4*v2 + 5*v3 -48 <= 0; value: -19 a v0 -6*v1 -5*v2 -7 <= 0; value: -33 0: 1 2 3 5 1: 3 5 2: 1 3 4 5 3: 1 2 4 optimal: 1628/17 a + 1628/17 <= 0; value: 1628/17 d 3*v0 -2*v2 + 2*v3 -17 = 0; value: 0 d 34/31*v0 -1362/31 <= 0; value: 0 d 2*v0 + 5*v1 -1*v2 -25 = 0; value: 0 a -2753/17 <= 0; value: -2753/17 d -59/10*v0 -31/5*v3 + 157/10 <= 0; value: 0 0: 1 2 3 5 4 1: 3 5 2: 1 3 4 5 3: 1 2 4 5 0: 3 -> 681/17 1: 4 -> -133/17 2: 1 -> 16 3: 5 -> -605/17 a 2*v0 -2*v1 <= 0; value: 10 a -2*v0 -1*v3 -3 <= 0; value: -14 a -1*v0 + 4 < 0; value: -1 a -5*v0 -5*v1 -2*v3 + 27 = 0; value: 0 a 6*v0 + v2 -60 < 0; value: -25 a 6*v0 + 3*v2 -85 <= 0; value: -40 0: 1 2 3 4 5 1: 3 2: 4 5 3: 1 3 optimal: oo a 4*v0 + 4/5*v3 -54/5 <= 0; value: 10 a -2*v0 -1*v3 -3 <= 0; value: -14 a -1*v0 + 4 < 0; value: -1 d -5*v0 -5*v1 -2*v3 + 27 = 0; value: 0 a 6*v0 + v2 -60 < 0; value: -25 a 6*v0 + 3*v2 -85 <= 0; value: -40 0: 1 2 3 4 5 1: 3 2: 4 5 3: 1 3 0: 5 -> 5 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 -4*v3 -7 <= 0; value: -22 a -1*v0 -4*v2 + 13 = 0; value: 0 a 6*v1 -5*v2 + 4*v3 -8 <= 0; value: -5 a -1*v1 -2*v2 + 9 = 0; value: 0 0: 2 1: 1 3 4 2: 2 3 4 3: 1 3 optimal: 80/7 a + 80/7 <= 0; value: 80/7 d -28/17*v3 -424/17 <= 0; value: 0 d -1*v0 -4*v2 + 13 = 0; value: 0 d 17/4*v0 + 4*v3 -37/4 <= 0; value: 0 d -1*v1 -2*v2 + 9 = 0; value: 0 0: 2 1 3 1: 1 3 4 2: 2 3 4 1 3: 1 3 0: 1 -> 115/7 1: 3 -> 75/7 2: 3 -> -6/7 3: 0 -> -106/7 a 2*v0 -2*v1 <= 0; value: -8 a v0 -4*v2 -5*v3 -15 <= 0; value: -39 a 5*v2 + 2*v3 -67 <= 0; value: -40 a 5*v0 -1*v1 + 2*v3 -2 <= 0; value: 0 a -3*v0 -2*v1 + 13 = 0; value: 0 a -1*v1 -6*v2 -6*v3 + 38 < 0; value: -3 0: 1 3 4 1: 3 4 5 2: 1 2 5 3: 1 2 3 5 optimal: (249/22 -e*1) a + 249/22 < 0; value: 249/22 a -2151/88 <= 0; value: -2151/88 d 22/7*v2 -793/14 < 0; value: -22/7 d 5*v0 -1*v1 + 2*v3 -2 <= 0; value: 0 d -13*v0 -4*v3 + 17 = 0; value: 0 d 21*v0 -6*v2 + 6 < 0; value: -21 0: 1 3 4 5 2 1: 3 4 5 2: 1 2 5 3: 1 2 3 5 4 0: 1 -> 551/154 1: 5 -> 349/308 2: 5 -> 749/44 3: 1 -> -4545/616 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -5*v1 -1 < 0; value: -11 a 2*v2 -13 <= 0; value: -3 a 5*v0 + 3*v2 -21 <= 0; value: -6 a 6*v3 -41 <= 0; value: -11 a -1*v1 <= 0; value: -2 0: 1 3 1: 1 5 2: 2 3 3: 4 optimal: oo a -6/5*v2 + 42/5 <= 0; value: 12/5 a 6/5*v2 -47/5 < 0; value: -17/5 a 2*v2 -13 <= 0; value: -3 d 5*v0 + 3*v2 -21 <= 0; value: 0 a 6*v3 -41 <= 0; value: -11 d -1*v1 <= 0; value: 0 0: 1 3 1: 1 5 2: 2 3 1 3: 4 0: 0 -> 6/5 1: 2 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 3*v2 + 3 < 0; value: -1 a 2*v0 + 3*v3 -2 <= 0; value: 0 a v3 <= 0; value: 0 a v0 -3*v2 -1 <= 0; value: 0 a 3*v1 -26 < 0; value: -14 0: 1 2 4 1: 5 2: 1 4 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 3*v2 + 3 < 0; value: -1 a 2*v0 + 3*v3 -2 <= 0; value: 0 a v3 <= 0; value: 0 a v0 -3*v2 -1 <= 0; value: 0 a 3*v1 -26 < 0; value: -14 0: 1 2 4 1: 5 2: 1 4 3: 2 3 0: 1 -> 1 1: 4 -> 4 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 -1*v3 -1 <= 0; value: -4 a 5*v1 + 2*v2 -47 < 0; value: -16 a v0 -3*v1 + 12 = 0; value: 0 a 2*v0 + v1 -22 <= 0; value: -11 a -5*v1 + 3*v3 + 2 <= 0; value: -23 0: 1 3 4 1: 2 3 4 5 2: 2 3: 1 5 optimal: 16/7 a + 16/7 <= 0; value: 16/7 a -1*v3 -61/7 <= 0; value: -61/7 a 2*v2 -99/7 < 0; value: -57/7 d v0 -3*v1 + 12 = 0; value: 0 d 7/3*v0 -18 <= 0; value: 0 a 3*v3 -216/7 <= 0; value: -216/7 0: 1 3 4 5 2 1: 2 3 4 5 2: 2 3: 1 5 0: 3 -> 54/7 1: 5 -> 46/7 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -2*v2 + v3 + 4 <= 0; value: -3 a v1 -3 = 0; value: 0 a -5*v0 + v3 -6 < 0; value: -15 a 3*v1 + 2*v3 -11 = 0; value: 0 a 5*v2 -36 <= 0; value: -16 0: 3 1: 2 4 2: 1 5 3: 1 3 4 optimal: oo a 2*v0 -6 <= 0; value: -2 a -2*v2 + v3 + 4 <= 0; value: -3 d v1 -3 = 0; value: 0 a -5*v0 + v3 -6 < 0; value: -15 a 2*v3 -2 = 0; value: 0 a 5*v2 -36 <= 0; value: -16 0: 3 1: 2 4 2: 1 5 3: 1 3 4 0: 2 -> 2 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v1 = 0; value: 0 a -2*v0 -1*v2 + 7 = 0; value: 0 a 2*v0 + v2 -7 <= 0; value: 0 a v0 -3*v2 -4*v3 + 15 < 0; value: -3 a -2*v0 + 5*v1 + 2 = 0; value: 0 0: 2 3 4 5 1: 1 5 2: 2 3 4 3: 4 optimal: 2 a + 2 <= 0; value: 2 d v1 = 0; value: 0 d -2*v0 -1*v2 + 7 = 0; value: 0 a <= 0; value: 0 a -4*v3 + 1 < 0; value: -3 d v2 -5 = 0; value: 0 0: 2 3 4 5 1: 1 5 2: 2 3 4 5 3: 4 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + v1 + 2 = 0; value: 0 a -1*v2 -1*v3 + 3 <= 0; value: 0 a -2*v0 + 2*v2 + 3*v3 <= 0; value: -2 a 3*v0 -6*v1 -5*v2 + 7 <= 0; value: -1 a v2 + 3*v3 -13 <= 0; value: -6 0: 1 3 4 1: 1 4 2: 2 3 4 5 3: 2 3 5 optimal: 4 a + 4 <= 0; value: 4 d -1*v0 + v1 + 2 = 0; value: 0 a -1*v2 -1*v3 + 3 <= 0; value: 0 a -2*v0 + 2*v2 + 3*v3 <= 0; value: -2 a -3*v0 -5*v2 + 19 <= 0; value: -1 a v2 + 3*v3 -13 <= 0; value: -6 0: 1 3 4 1: 1 4 2: 2 3 4 5 3: 2 3 5 0: 5 -> 5 1: 3 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -3*v2 + 3*v3 -25 <= 0; value: -15 a v1 -6 <= 0; value: -3 a 6*v0 -1*v2 -11 = 0; value: 0 a v1 -2*v2 -2 <= 0; value: -1 a -2*v1 -3*v2 + 5 <= 0; value: -4 0: 1 3 1: 2 4 5 2: 1 3 4 5 3: 1 optimal: oo a 20*v0 -38 <= 0; value: 2 a -13*v0 + 3*v3 + 8 <= 0; value: -15 a -9*v0 + 13 <= 0; value: -5 d 6*v0 -1*v2 -11 = 0; value: 0 a -21*v0 + 39 <= 0; value: -3 d -2*v1 -3*v2 + 5 <= 0; value: 0 0: 1 3 4 2 1: 2 4 5 2: 1 3 4 5 2 3: 1 0: 2 -> 2 1: 3 -> 1 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 10 a v0 -1*v1 + 6*v3 -11 = 0; value: 0 a v1 -5*v2 -5*v3 + 11 < 0; value: -4 a v1 <= 0; value: 0 a -3*v0 -2*v2 + 19 = 0; value: 0 a v1 -2*v2 -1 < 0; value: -5 0: 1 4 1: 1 2 3 5 2: 2 4 5 3: 1 2 optimal: oo a -12*v3 + 22 <= 0; value: 10 d v0 -1*v1 + 6*v3 -11 = 0; value: 0 a v0 -5*v2 + v3 < 0; value: -4 a v0 + 6*v3 -11 <= 0; value: 0 a -3*v0 -2*v2 + 19 = 0; value: 0 a v0 -2*v2 + 6*v3 -12 < 0; value: -5 0: 1 4 2 3 5 1: 1 2 3 5 2: 2 4 5 3: 1 2 3 5 0: 5 -> 5 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -10 a v1 -5 = 0; value: 0 a -3*v0 -2*v2 + 8 = 0; value: 0 a 2*v0 + v1 -13 < 0; value: -8 a -4*v0 + 3*v3 -3 = 0; value: 0 a -2*v0 + 2*v2 -3*v3 -12 <= 0; value: -7 0: 2 3 4 5 1: 1 3 2: 2 5 3: 4 5 optimal: (-2 -e*1) a -2 < 0; value: -2 d v1 -5 = 0; value: 0 d -3*v0 -2*v2 + 8 = 0; value: 0 d 3/2*v3 -19/2 < 0; value: -3/2 d 8/3*v2 + 3*v3 -41/3 = 0; value: 0 a -43 < 0; value: -43 0: 2 3 4 5 1: 1 3 2: 2 5 3 4 3: 4 5 3 0: 0 -> 13/4 1: 5 -> 5 2: 4 -> -7/8 3: 1 -> 16/3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 5*v2 + 6*v3 -105 <= 0; value: -64 a 5*v2 -3*v3 + 4 <= 0; value: 0 a 6*v0 + 6*v1 -5*v2 -25 = 0; value: 0 a 6*v0 -2*v3 -23 <= 0; value: -11 a -1*v2 + 4*v3 -24 < 0; value: -13 0: 1 3 4 1: 3 2: 1 2 3 5 3: 1 2 4 5 optimal: oo a -16*v0 + 325/3 < 0; value: 181/3 a 84*v0 -524 < 0; value: -272 a 51*v0 -623/2 < 0; value: -317/2 d 6*v0 + 6*v1 -5*v2 -25 = 0; value: 0 d 6*v0 -2*v3 -23 <= 0; value: 0 d -1*v2 + 4*v3 -24 < 0; value: -1 0: 1 3 4 2 1: 3 2: 1 2 3 5 3: 1 2 4 5 0: 3 -> 3 1: 2 -> -79/3 2: 1 -> -33 3: 3 -> -5/2 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 -1*v2 -1*v3 <= 0; value: -8 a 3*v0 -4*v1 + 5*v2 -21 <= 0; value: -7 a -3*v0 -3*v1 + v2 <= 0; value: -3 a 5*v1 + 2*v2 + 2*v3 -40 <= 0; value: -21 a -5*v0 -4*v1 -3*v2 -17 <= 0; value: -35 0: 2 3 5 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 1 4 optimal: 53/2 a + 53/2 <= 0; value: 53/2 d v0 -4/3*v2 -1*v3 <= 0; value: 0 d 80/13*v0 -460/13 <= 0; value: 0 d -3*v0 -3*v1 + v2 <= 0; value: 0 a -125/2 <= 0; value: -125/2 d -17/4*v0 + 13/4*v3 -17 <= 0; value: 0 0: 2 3 5 1 4 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 1 4 5 2 0: 1 -> 23/4 1: 1 -> -15/2 2: 3 -> -21/4 3: 4 -> 51/4 a 2*v0 -2*v1 <= 0; value: -10 a 2*v0 + 3*v1 -3*v2 -7 < 0; value: -1 a 6*v0 + 5*v2 -26 <= 0; value: -11 a 4*v0 + v3 <= 0; value: 0 a -4*v1 + v3 + 20 = 0; value: 0 a 2*v1 + v3 -22 <= 0; value: -12 0: 1 2 3 1: 1 4 5 2: 1 2 3: 3 4 5 optimal: oo a 2*v0 -1/2*v3 -10 <= 0; value: -10 a 2*v0 -3*v2 + 3/4*v3 + 8 < 0; value: -1 a 6*v0 + 5*v2 -26 <= 0; value: -11 a 4*v0 + v3 <= 0; value: 0 d -4*v1 + v3 + 20 = 0; value: 0 a 3/2*v3 -12 <= 0; value: -12 0: 1 2 3 1: 1 4 5 2: 1 2 3: 3 4 5 1 0: 0 -> 0 1: 5 -> 5 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + v2 <= 0; value: 0 a 3*v0 -25 <= 0; value: -13 a -4*v0 + v1 + 1 <= 0; value: -12 a -3*v0 + 6*v2 -10 <= 0; value: -4 0: 2 3 4 1: 1 3 2: 1 4 3: optimal: oo a 2*v0 -2*v2 <= 0; value: 2 d -1*v1 + v2 <= 0; value: 0 a 3*v0 -25 <= 0; value: -13 a -4*v0 + v2 + 1 <= 0; value: -12 a -3*v0 + 6*v2 -10 <= 0; value: -4 0: 2 3 4 1: 1 3 2: 1 4 3 3: 0: 4 -> 4 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 <= 0; value: 0 a -5*v0 + v3 -21 <= 0; value: -46 a -5*v1 -1*v2 -2*v3 + 5 <= 0; value: -10 a -1*v1 -2*v2 + 3 = 0; value: 0 a -6*v0 -4*v1 + 2*v2 + 7 <= 0; value: -35 0: 2 5 1: 3 4 5 2: 1 3 4 5 3: 2 3 optimal: oo a 22/5*v0 -4 <= 0; value: 18 a -3/5*v0 -1/2 <= 0; value: -7/2 a -23/10*v0 -95/4 <= 0; value: -141/4 d 9*v2 -2*v3 -10 <= 0; value: 0 d -1*v1 -2*v2 + 3 = 0; value: 0 d -6*v0 + 20/9*v3 + 55/9 <= 0; value: 0 0: 2 5 1 1: 3 4 5 2: 1 3 4 5 3: 2 3 5 1 0: 5 -> 5 1: 3 -> -4 2: 0 -> 7/2 3: 0 -> 43/4 a 2*v0 -2*v1 <= 0; value: 8 a 3*v1 + 6*v2 -40 <= 0; value: -16 a -1*v0 + 4*v2 -12 = 0; value: 0 a -2*v1 -5*v2 -2*v3 + 20 <= 0; value: -4 a -2*v0 -1 <= 0; value: -9 a 4*v0 + 2*v3 -53 < 0; value: -33 0: 2 4 5 1: 1 3 2: 1 2 3 3: 3 5 optimal: (387/8 -e*1) a + 387/8 < 0; value: 387/8 a -1549/16 < 0; value: -1549/16 d -1*v0 + 4*v2 -12 = 0; value: 0 d -2*v1 -5*v2 -2*v3 + 20 <= 0; value: 0 d -2*v0 -1 <= 0; value: 0 d 4*v0 + 2*v3 -53 < 0; value: -2 0: 2 4 5 1 1: 1 3 2: 1 2 3 3: 3 5 1 0: 4 -> -1/2 1: 0 -> -379/16 2: 4 -> 23/8 3: 2 -> 53/2 a 2*v0 -2*v1 <= 0; value: 0 a -6*v0 -3*v3 + 19 < 0; value: -17 a v0 -2*v2 -2 <= 0; value: -7 a 4*v1 + 4*v3 -45 <= 0; value: -17 a -5*v1 -2*v3 -11 < 0; value: -40 a -3*v0 + 2*v2 + 5 = 0; value: 0 0: 1 2 5 1: 3 4 2: 2 5 3: 1 3 4 optimal: oo a 4/3*v2 + 77/3 < 0; value: 97/3 a -4*v2 -233/4 < 0; value: -313/4 a -4/3*v2 -1/3 <= 0; value: -7 d 12/5*v3 -269/5 < 0; value: -12/5 d -5*v1 -2*v3 -11 < 0; value: -5 d -3*v0 + 2*v2 + 5 = 0; value: 0 0: 1 2 5 1: 3 4 2: 2 5 1 3: 1 3 4 0: 5 -> 5 1: 5 -> -293/30 2: 5 -> 5 3: 2 -> 257/12 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -6*v2 + 3 < 0; value: -5 a -2*v1 + 3*v2 -1*v3 -3 = 0; value: 0 a 5*v0 + v3 -8 <= 0; value: -2 a -5*v2 -3*v3 + 13 = 0; value: 0 a -2*v0 -1*v3 + 3 = 0; value: 0 0: 1 3 5 1: 2 2: 1 2 4 3: 2 3 4 5 optimal: (45/8 -e*1) a + 45/8 < 0; value: 45/8 d -16/5*v0 -9/5 < 0; value: -5/2 d -2*v1 + 3*v2 -1*v3 -3 = 0; value: 0 a -107/16 < 0; value: -107/16 d -5*v2 -3*v3 + 13 = 0; value: 0 d -2*v0 + 5/3*v2 -4/3 = 0; value: 0 0: 1 3 5 1: 2 2: 1 2 4 3 5 3: 2 3 4 5 0: 1 -> 7/32 1: 1 -> -19/16 2: 2 -> 17/16 3: 1 -> 41/16 a 2*v0 -2*v1 <= 0; value: 8 a 6*v0 + 2*v3 -67 <= 0; value: -35 a -5*v0 + v2 + 19 = 0; value: 0 a -1*v0 + 1 < 0; value: -3 a 3*v0 + v1 + 4*v3 -67 <= 0; value: -39 a v1 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 2 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a 6*v0 + 2*v3 -67 <= 0; value: -35 a -5*v0 + v2 + 19 = 0; value: 0 a -1*v0 + 1 < 0; value: -3 a 3*v0 + v1 + 4*v3 -67 <= 0; value: -39 a v1 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 2 3: 1 4 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a v1 <= 0; value: 0 a 5*v1 -6*v3 + 11 <= 0; value: -7 a 2*v0 -3*v1 + 3*v2 -4 = 0; value: 0 a 3*v2 + 2*v3 -14 <= 0; value: -8 a 3*v0 -4*v1 -4*v2 -6 = 0; value: 0 0: 3 5 1: 1 2 3 5 2: 3 4 5 3: 2 4 optimal: 4 a + 4 <= 0; value: 4 d 17/24*v0 -17/12 <= 0; value: 0 a -6*v3 + 11 <= 0; value: -7 d 2*v0 -3*v1 + 3*v2 -4 = 0; value: 0 a 2*v3 -14 <= 0; value: -8 d 1/3*v0 -8*v2 -2/3 = 0; value: 0 0: 3 5 1 2 4 1: 1 2 3 5 2: 3 4 5 1 2 3: 2 4 0: 2 -> 2 1: 0 -> 0 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v3 -31 <= 0; value: -19 a v0 + 2*v3 -15 <= 0; value: -7 a -4*v0 + 3*v2 <= 0; value: -4 a v1 + v2 -19 < 0; value: -12 a -3*v2 + 4*v3 -3 <= 0; value: -7 0: 2 3 1: 4 2: 3 4 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v3 -31 <= 0; value: -19 a v0 + 2*v3 -15 <= 0; value: -7 a -4*v0 + 3*v2 <= 0; value: -4 a v1 + v2 -19 < 0; value: -12 a -3*v2 + 4*v3 -3 <= 0; value: -7 0: 2 3 1: 4 2: 3 4 5 3: 1 2 5 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 -5*v2 -16 <= 0; value: -66 a -1*v3 + 2 = 0; value: 0 a -1*v0 + 2*v2 -7 < 0; value: -2 a -5*v1 -2*v2 + 7 <= 0; value: -13 a -2*v2 -5 <= 0; value: -15 0: 1 3 1: 4 2: 1 3 4 5 3: 2 optimal: oo a 12/5*v0 < 0; value: 12 a -15/2*v0 -67/2 < 0; value: -71 a -1*v3 + 2 = 0; value: 0 d -1*v0 + 2*v2 -7 < 0; value: -1 d -5*v1 -2*v2 + 7 <= 0; value: 0 a -1*v0 -12 < 0; value: -17 0: 1 3 5 1: 4 2: 1 3 4 5 3: 2 0: 5 -> 5 1: 2 -> -4/5 2: 5 -> 11/2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 + 6*v3 -7 < 0; value: -1 a -2*v3 -1 <= 0; value: -3 a 4*v1 + 3*v3 -37 < 0; value: -18 a 6*v0 -3*v1 -4*v3 + 8 <= 0; value: -8 a -5*v0 -6*v2 + 5*v3 + 12 <= 0; value: -1 0: 1 4 5 1: 3 4 2: 5 3: 1 2 3 4 5 optimal: (-5/3 -e*1) a -5/3 < 0; value: -5/3 d -4*v0 + 6*v3 -7 < 0; value: -21/10 d 24/5*v2 -88/5 < 0; value: -8/5 a -271/6 < 0; value: -271/6 d 6*v0 -3*v1 -4*v3 + 8 <= 0; value: 0 d -5/3*v0 -6*v2 + 107/6 <= 0; value: 0 0: 1 4 5 3 2 1: 3 4 2: 5 2 3 3: 1 2 3 4 5 0: 0 -> -13/10 1: 4 -> 2/15 2: 3 -> 10/3 3: 1 -> -1/20 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 5*v2 -1*v3 -18 = 0; value: 0 a v2 -4 = 0; value: 0 a -3*v0 + 2 <= 0; value: -1 a -1*v2 + 4 = 0; value: 0 a -5*v1 + 6*v2 -3*v3 + 1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 4 5 3: 1 5 optimal: oo a 28/5*v0 -38/5 <= 0; value: -2 d 3*v0 + 5*v2 -1*v3 -18 = 0; value: 0 d v2 -4 = 0; value: 0 a -3*v0 + 2 <= 0; value: -1 a = 0; value: 0 d -5*v1 + 6*v2 -3*v3 + 1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 4 5 3: 1 5 0: 1 -> 1 1: 2 -> 2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -2*v0 + 3*v3 -22 <= 0; value: -14 a 6*v0 + 3*v3 -56 <= 0; value: -32 a 6*v0 + 3*v2 -37 < 0; value: -13 a -6*v0 -4*v1 -4*v2 -11 <= 0; value: -39 a v0 + 3*v2 -14 <= 0; value: 0 0: 1 2 3 4 5 1: 4 2: 3 4 5 3: 1 2 optimal: (1043/30 -e*1) a + 1043/30 < 0; value: 1043/30 a 3*v3 -156/5 < 0; value: -96/5 a 3*v3 -142/5 <= 0; value: -82/5 d 5*v0 -23 < 0; value: -5 d -6*v0 -4*v1 -4*v2 -11 <= 0; value: 0 d v0 + 3*v2 -14 <= 0; value: 0 0: 1 2 3 4 5 1: 4 2: 3 4 5 3: 1 2 0: 2 -> 18/5 1: 0 -> -697/60 2: 4 -> 52/15 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a v0 -5*v2 + 25 = 0; value: 0 a 2*v1 + 5*v2 -35 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a -5*v0 -1*v3 <= 0; value: -2 a -1*v1 + 5 = 0; value: 0 0: 1 4 1: 2 5 2: 1 2 3: 3 4 optimal: -10 a -10 <= 0; value: -10 d v0 -5*v2 + 25 = 0; value: 0 d 2*v1 + 5*v2 -35 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a -1*v3 <= 0; value: -2 d 1/2*v0 = 0; value: 0 0: 1 4 5 1: 2 5 2: 1 2 5 3: 3 4 0: 0 -> 0 1: 5 -> 5 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v0 -1*v2 -2 <= 0; value: 0 a v1 + 5*v2 -17 = 0; value: 0 a -5*v1 + 6*v3 -42 <= 0; value: -22 a -1*v1 + 6*v2 -22 <= 0; value: -6 a -3*v0 -3*v1 -3*v3 + 4 <= 0; value: -32 0: 1 5 1: 2 3 4 5 2: 1 2 4 3: 3 5 optimal: 138/11 a + 138/11 <= 0; value: 138/11 d v0 -61/11 <= 0; value: 0 d v1 + 5*v2 -17 = 0; value: 0 a 6*v3 -422/11 <= 0; value: -92/11 d 11*v2 -39 <= 0; value: 0 a -3*v3 -115/11 <= 0; value: -280/11 0: 1 5 1: 2 3 4 5 2: 1 2 4 3 5 3: 3 5 0: 5 -> 61/11 1: 2 -> -8/11 2: 3 -> 39/11 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 8 a -4*v0 + v1 -1*v3 + 21 = 0; value: 0 a v0 + v1 -6 = 0; value: 0 a 4*v0 -5*v1 -5*v2 -15 = 0; value: 0 a 5*v0 + 4*v1 -31 < 0; value: -2 a -3*v0 + 3*v1 -6*v2 + 1 <= 0; value: -11 0: 1 2 3 4 5 1: 1 2 3 4 5 2: 3 5 3: 1 optimal: (16 -e*1) a + 16 < 0; value: 16 d -4*v0 + v1 -1*v3 + 21 = 0; value: 0 d 5*v0 + v3 -27 = 0; value: 0 d 9*v0 -5*v2 -45 = 0; value: 0 d 5/9*v2 -2 < 0; value: -5/9 a -223/5 < 0; value: -223/5 0: 1 2 3 4 5 1: 1 2 3 4 5 2: 3 5 4 3: 1 2 3 4 5 0: 5 -> 58/9 1: 1 -> -4/9 2: 0 -> 13/5 3: 2 -> -47/9 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 -1*v3 + 6 = 0; value: 0 a v3 -2 = 0; value: 0 a -2*v0 + 3*v2 <= 0; value: 0 d <= 0; value: 0 0: 3 1: 1 2: 3 3: 1 2 optimal: oo a 2*v0 -4 <= 0; value: 2 d -2*v1 -1*v3 + 6 = 0; value: 0 d v3 -2 = 0; value: 0 a -2*v0 + 3*v2 <= 0; value: 0 d <= 0; value: 0 0: 3 1: 1 2: 3 3: 1 2 0: 3 -> 3 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 6*v2 -7 < 0; value: -1 a 2*v1 -7 <= 0; value: -3 a v2 -1*v3 + 1 = 0; value: 0 a -1*v0 + 3*v3 -6 = 0; value: 0 a -5*v0 + 2*v1 -4 = 0; value: 0 0: 1 4 5 1: 2 5 2: 1 3 3: 3 4 optimal: oo a -9*v2 + 5 <= 0; value: -4 a 9*v2 -10 < 0; value: -1 a 15*v2 -18 <= 0; value: -3 d v2 -1*v3 + 1 = 0; value: 0 d -1*v0 + 3*v3 -6 = 0; value: 0 d -5*v0 + 2*v1 -4 = 0; value: 0 0: 1 4 5 2 1: 2 5 2: 1 3 2 3: 3 4 1 2 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + v1 + 3*v3 -55 <= 0; value: -14 a -6*v0 + 3*v1 -1*v2 + 16 < 0; value: -3 a -6*v0 -1*v1 -5*v2 + 25 < 0; value: -6 a -1*v1 + 2 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 1 2 3 4 2: 2 3 3: 1 optimal: oo a -1*v3 + 41/3 <= 0; value: 26/3 d 6*v0 + 3*v3 -53 <= 0; value: 0 a -1*v2 + 3*v3 -31 < 0; value: -17 a -5*v2 + 3*v3 -30 < 0; value: -20 d -1*v1 + 2 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 1 2 3 4 2: 2 3 3: 1 2 3 0: 4 -> 19/3 1: 2 -> 2 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 2 <= 0; value: 0 a 4*v0 -6*v1 + 6*v2 -7 < 0; value: -1 a -6*v0 -2*v1 -1*v2 + 1 < 0; value: -3 a 2*v2 -1*v3 -2 = 0; value: 0 a -2*v0 -3*v3 -1 <= 0; value: -7 0: 2 3 5 1: 2 3 2: 1 2 3 4 3: 4 5 optimal: oo a 2/3*v0 -5/3 < 0; value: -5/3 d -1*v2 + 2 <= 0; value: 0 d 4*v0 -6*v1 + 6*v2 -7 < 0; value: -1/2 a -22/3*v0 -8/3 <= 0; value: -8/3 a -1*v3 + 2 = 0; value: 0 a -2*v0 -3*v3 -1 <= 0; value: -7 0: 2 3 5 1: 2 3 2: 1 2 3 4 3: 4 5 0: 0 -> 0 1: 1 -> 11/12 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -5*v1 + 2*v2 -4 < 0; value: -1 a -5*v1 -4*v2 + 14 <= 0; value: -7 a 6*v1 + v2 -19 < 0; value: -9 a -2*v0 -1*v1 + 5*v3 -19 < 0; value: -10 a -5*v0 + v3 -4 < 0; value: -2 0: 4 5 1: 1 2 3 4 2: 1 2 3 3: 4 5 optimal: oo a 2*v0 -4/5 < 0; value: -4/5 d -5*v1 + 2*v2 -4 < 0; value: -3/2 d -6*v2 + 18 <= 0; value: 0 a -68/5 < 0; value: -68/5 a -2*v0 + 5*v3 -97/5 <= 0; value: -47/5 a -5*v0 + v3 -4 < 0; value: -2 0: 4 5 1: 1 2 3 4 2: 1 2 3 4 3: 4 5 0: 0 -> 0 1: 1 -> 7/10 2: 4 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a v2 <= 0; value: 0 a 3*v0 + 6*v3 -58 <= 0; value: -31 a 5*v1 + 2*v2 -6*v3 -8 = 0; value: 0 a 5*v0 + 5*v1 + 4*v2 -72 < 0; value: -27 a 5*v0 -4*v1 -14 < 0; value: -5 0: 2 4 5 1: 3 4 5 2: 1 3 4 3: 2 3 optimal: oo a -1/2*v0 + 7 < 0; value: 9/2 a v2 <= 0; value: 0 a 37/4*v0 + 2*v2 -167/2 < 0; value: -149/4 d 5*v1 + 2*v2 -6*v3 -8 = 0; value: 0 a 45/4*v0 + 4*v2 -179/2 < 0; value: -133/4 d 5*v0 + 8/5*v2 -24/5*v3 -102/5 < 0; value: -5/2 0: 2 4 5 1: 3 4 5 2: 1 3 4 5 2 3: 2 3 5 4 0: 5 -> 5 1: 4 -> 27/8 2: 0 -> 0 3: 2 -> 71/48 a 2*v0 -2*v1 <= 0; value: -4 a 2*v1 + 5*v3 -75 <= 0; value: -40 a -6*v0 -1*v1 -2*v3 -24 <= 0; value: -57 a -3*v0 -5*v1 -4*v3 -46 <= 0; value: -100 a 3*v0 -3*v1 -2 < 0; value: -8 a -1*v0 -1*v2 + 6 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 2: 5 3: 1 2 3 optimal: (4/3 -e*1) a + 4/3 < 0; value: 4/3 a 2*v0 + 5*v3 -229/3 < 0; value: -136/3 a -7*v0 -2*v3 -70/3 <= 0; value: -163/3 a -8*v0 -4*v3 -128/3 <= 0; value: -260/3 d 3*v0 -3*v1 -2 < 0; value: -3 a -1*v0 -1*v2 + 6 = 0; value: 0 0: 2 3 4 5 1 1: 1 2 3 4 2: 5 3: 1 2 3 0: 3 -> 3 1: 5 -> 10/3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a -6*v0 -3*v3 + 4 <= 0; value: -2 a -4*v0 + 5*v2 = 0; value: 0 a v0 <= 0; value: 0 a -3*v1 + 3*v2 + 4*v3 + 2 < 0; value: -2 a v0 -6*v2 = 0; value: 0 0: 1 2 3 5 1: 4 2: 2 4 5 3: 1 4 optimal: (-44/9 -e*1) a -44/9 < 0; value: -44/9 d -6*v0 -3*v3 + 4 <= 0; value: 0 d -4*v0 + 5*v2 = 0; value: 0 d v0 <= 0; value: 0 d -3*v1 + 3*v2 + 4*v3 + 2 < 0; value: -7/3 a = 0; value: 0 0: 1 2 3 5 1: 4 2: 2 4 5 3: 1 4 0: 0 -> 0 1: 4 -> 29/9 2: 0 -> 0 3: 2 -> 4/3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + 2*v3 <= 0; value: 0 a -5*v0 + 4*v1 + 5 = 0; value: 0 a v0 -2*v2 -1 = 0; value: 0 a 2*v1 -1*v3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 3 3: 1 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v1 + 2*v3 <= 0; value: 0 d -5*v0 + 5 = 0; value: 0 a -2*v2 = 0; value: 0 d 3*v3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 3 3: 1 4 2 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -1*v0 + 3*v2 -12 <= 0; value: 0 a 2*v0 + 4*v2 -37 <= 0; value: -21 a -6*v1 + 4*v2 -1*v3 -16 = 0; value: 0 a v0 -3*v1 <= 0; value: 0 0: 2 3 5 1: 4 5 2: 2 3 4 3: 1 4 optimal: 0 a <= 0; value: 0 d 2*v0 -4*v2 + 16 <= 0; value: 0 d v2 -4 <= 0; value: 0 a -21 <= 0; value: -21 d -6*v1 + 4*v2 -1*v3 -16 = 0; value: 0 d v0 -2*v2 + 1/2*v3 + 8 <= 0; value: 0 0: 2 3 5 1 1: 4 5 2: 2 3 4 5 1 3: 1 4 5 0: 0 -> 0 1: 0 -> 0 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a -1*v3 + 4 = 0; value: 0 a 4*v0 -6*v1 + 2*v3 -69 <= 0; value: -45 a v2 -6*v3 + 19 = 0; value: 0 a -1*v0 + v1 -2*v2 -13 <= 0; value: -27 a 6*v1 -5*v2 -4*v3 -29 <= 0; value: -70 0: 2 4 1: 2 4 5 2: 3 4 5 3: 1 2 3 5 optimal: 253/6 a + 253/6 <= 0; value: 253/6 d -1*v3 + 4 = 0; value: 0 d 4*v0 -6*v1 + 2*v3 -69 <= 0; value: 0 d v2 -5 = 0; value: 0 a -529/12 <= 0; value: -529/12 d 4*v0 -5*v2 -106 <= 0; value: 0 0: 2 4 5 1: 2 4 5 2: 3 4 5 3: 1 2 3 5 4 0: 4 -> 131/4 1: 0 -> 35/3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a 3*v2 -1*v3 -26 < 0; value: -14 a v2 -11 <= 0; value: -6 a -4*v0 -1*v2 + 3*v3 -8 <= 0; value: -4 a 5*v0 -2*v2 + 8 <= 0; value: -2 a 3*v1 + 5*v2 -2*v3 -57 < 0; value: -23 0: 3 4 1: 5 2: 1 2 3 4 5 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a 3*v2 -1*v3 -26 < 0; value: -14 a v2 -11 <= 0; value: -6 a -4*v0 -1*v2 + 3*v3 -8 <= 0; value: -4 a 5*v0 -2*v2 + 8 <= 0; value: -2 a 3*v1 + 5*v2 -2*v3 -57 < 0; value: -23 0: 3 4 1: 5 2: 1 2 3 4 5 3: 1 3 5 0: 0 -> 0 1: 5 -> 5 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 + 2 <= 0; value: -1 a 4*v1 -31 <= 0; value: -19 a -3*v2 -1*v3 + 8 = 0; value: 0 a -3*v2 + 2*v3 <= 0; value: -2 a -1*v2 + 2 <= 0; value: 0 0: 1: 1 2 2: 3 4 5 3: 3 4 optimal: oo a 2*v0 -4 <= 0; value: 0 d -1*v1 + 2 <= 0; value: 0 a -23 <= 0; value: -23 a -3*v2 -1*v3 + 8 = 0; value: 0 a -3*v2 + 2*v3 <= 0; value: -2 a -1*v2 + 2 <= 0; value: 0 0: 1: 1 2 2: 3 4 5 3: 3 4 0: 2 -> 2 1: 3 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 + 2*v2 + 6*v3 -36 <= 0; value: -11 a 2*v2 -1*v3 <= 0; value: 0 a -3*v1 + 5*v2 -1 <= 0; value: 0 a -3*v1 -1*v2 <= 0; value: -11 a -1*v0 + 2 = 0; value: 0 0: 5 1: 1 3 4 2: 1 2 3 4 3: 1 2 optimal: 37/9 a + 37/9 <= 0; value: 37/9 a 6*v3 -641/18 <= 0; value: -209/18 a -1*v3 + 1/3 <= 0; value: -11/3 d -3*v1 + 5*v2 -1 <= 0; value: 0 d -6*v2 + 1 <= 0; value: 0 d -1*v0 + 2 = 0; value: 0 0: 5 1: 1 3 4 2: 1 2 3 4 3: 1 2 0: 2 -> 2 1: 3 -> -1/18 2: 2 -> 1/6 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 4*v3 -4 = 0; value: 0 a -3*v0 -1*v3 + 4 < 0; value: -4 a 2*v1 -2*v2 -9 <= 0; value: -5 a -3*v0 + 4 <= 0; value: -2 a -1*v1 + 4*v3 -8 <= 0; value: -4 0: 2 4 1: 1 3 5 2: 3 3: 1 2 5 optimal: oo a 26*v0 -24 < 0; value: 28 d -1*v1 + 4*v3 -4 = 0; value: 0 d -3*v0 -1*v3 + 4 < 0; value: -1 a -24*v0 -2*v2 + 15 < 0; value: -37 a -3*v0 + 4 <= 0; value: -2 a -4 <= 0; value: -4 0: 2 4 3 1: 1 3 5 2: 3 3: 1 2 5 3 0: 2 -> 2 1: 4 -> -8 2: 2 -> 2 3: 2 -> -1 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -4*v1 + 5*v2 -5 < 0; value: -1 a 3*v0 + v1 + 2*v3 -51 <= 0; value: -30 a -1*v0 -1*v3 + 7 = 0; value: 0 a 2*v0 + v2 -8 = 0; value: 0 a -1*v1 -2*v3 + 15 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 1 4 3: 2 3 5 optimal: (-47/8 -e*1) a -47/8 < 0; value: -47/8 d 8*v2 -33 < 0; value: -1/2 a -483/16 < 0; value: -483/16 d -1*v0 -1*v3 + 7 = 0; value: 0 d 2*v0 + v2 -8 = 0; value: 0 d -1*v1 -2*v3 + 15 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 1 4 2 3: 2 3 5 1 0: 2 -> 63/32 1: 5 -> 79/16 2: 4 -> 65/16 3: 5 -> 161/32 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -3*v1 + 2*v3 + 1 = 0; value: 0 a v0 -4 = 0; value: 0 a -3*v1 -6*v2 -4*v3 -2 < 0; value: -17 a -2*v1 + 3 < 0; value: -3 a 3*v0 -1*v1 + 3*v2 -25 <= 0; value: -13 0: 1 2 5 1: 1 3 4 5 2: 3 5 3: 1 3 optimal: (5 -e*1) a + 5 < 0; value: 5 d 2*v0 -3*v1 + 2*v3 + 1 = 0; value: 0 d v0 -4 = 0; value: 0 a -6*v2 + 5/2 <= 0; value: -7/2 d -4/3*v0 -4/3*v3 + 7/3 < 0; value: -4/3 a 3*v2 -29/2 <= 0; value: -23/2 0: 1 2 5 3 4 1: 1 3 4 5 2: 3 5 3: 1 3 4 5 0: 4 -> 4 1: 3 -> 13/6 2: 1 -> 1 3: 0 -> -5/4 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -3*v2 -2*v3 + 17 <= 0; value: -11 a 3*v0 + 5*v2 -36 <= 0; value: -13 a v1 -3*v2 -5 <= 0; value: -15 a -1*v0 + v1 -2*v3 + 9 <= 0; value: 0 a 2*v0 + 2*v1 -7 <= 0; value: -1 0: 1 2 4 5 1: 3 4 5 2: 1 2 3 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -3*v2 -2*v3 + 17 <= 0; value: -11 a 3*v0 + 5*v2 -36 <= 0; value: -13 a v1 -3*v2 -5 <= 0; value: -15 a -1*v0 + v1 -2*v3 + 9 <= 0; value: 0 a 2*v0 + 2*v1 -7 <= 0; value: -1 0: 1 2 4 5 1: 3 4 5 2: 1 2 3 3: 1 4 0: 1 -> 1 1: 2 -> 2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -5*v1 + v2 + 7 <= 0; value: -2 a 5*v1 + 3*v3 -26 <= 0; value: -16 a -3*v1 -4*v2 -5*v3 -1 <= 0; value: -11 a 4*v1 -5*v2 -2*v3 -3 <= 0; value: 0 a v0 + v2 -2*v3 -9 <= 0; value: -3 0: 5 1: 1 2 3 4 2: 1 3 4 5 3: 2 3 4 5 optimal: 2712/53 a + 2712/53 <= 0; value: 2712/53 d -5*v1 + v2 + 7 <= 0; value: 0 d 53/21*v3 -386/21 <= 0; value: 0 a -1511/53 <= 0; value: -1511/53 d -21/5*v2 -2*v3 + 13/5 <= 0; value: 0 d v0 -1400/53 <= 0; value: 0 0: 5 1: 1 2 3 4 2: 1 3 4 5 2 3: 2 3 4 5 0: 5 -> 1400/53 1: 2 -> 44/53 2: 1 -> -151/53 3: 0 -> 386/53 a 2*v0 -2*v1 <= 0; value: 6 a 3*v1 -10 <= 0; value: -4 a -5*v0 + 6*v3 + 19 = 0; value: 0 a 6*v1 -1*v2 -32 <= 0; value: -21 a -6*v0 + v1 + 3*v3 -2 <= 0; value: -27 a 5*v0 + v3 -43 <= 0; value: -17 0: 2 4 5 1: 1 3 4 2: 3 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 3*v1 -10 <= 0; value: -4 a -5*v0 + 6*v3 + 19 = 0; value: 0 a 6*v1 -1*v2 -32 <= 0; value: -21 a -6*v0 + v1 + 3*v3 -2 <= 0; value: -27 a 5*v0 + v3 -43 <= 0; value: -17 0: 2 4 5 1: 1 3 4 2: 3 3: 2 4 5 0: 5 -> 5 1: 2 -> 2 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v1 + 4*v2 -4 <= 0; value: -9 a 5*v0 -1*v1 + 3 <= 0; value: 0 a -5*v0 + 4*v3 -16 <= 0; value: -4 a -3*v0 + 5*v1 -4*v2 -31 <= 0; value: -20 a -1*v0 + 4*v1 -33 < 0; value: -21 0: 2 3 4 5 1: 1 2 4 5 2: 1 4 3: 3 optimal: oo a -32/5*v3 + 98/5 <= 0; value: 2/5 d -15*v0 + 4*v2 -13 <= 0; value: 0 d 5*v0 -1*v1 + 3 <= 0; value: 0 d -4/3*v2 + 4*v3 -35/3 <= 0; value: 0 a 28/5*v3 -257/5 <= 0; value: -173/5 a 76/5*v3 -409/5 < 0; value: -181/5 0: 2 3 4 5 1 1: 1 2 4 5 2: 1 4 3 5 3: 3 4 5 0: 0 -> -4/5 1: 3 -> -1 2: 1 -> 1/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -5*v0 + 1 <= 0; value: -19 a -1*v0 + 2*v2 -6 = 0; value: 0 a -5*v0 + 6*v1 + 19 <= 0; value: -1 a -1*v1 <= 0; value: 0 a -5*v1 + 6*v2 -30 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 2 5 3: optimal: 8 a + 8 <= 0; value: 8 a -19 <= 0; value: -19 d -1*v0 + 2*v2 -6 = 0; value: 0 a -1 <= 0; value: -1 d -1*v1 <= 0; value: 0 d 6*v2 -30 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 2 5 1 3 3: 0: 4 -> 4 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a -5*v2 -19 <= 0; value: -39 a -2*v0 -3*v2 + 4*v3 -3 <= 0; value: -7 a -3*v0 + v1 + 2 = 0; value: 0 a 5*v1 -6*v2 -2 <= 0; value: -6 a -1*v0 -5*v1 -3*v2 <= 0; value: -34 0: 2 3 5 1: 3 4 5 2: 1 2 4 5 3: 2 optimal: oo a 3/4*v2 + 3/2 <= 0; value: 9/2 a -5*v2 -19 <= 0; value: -39 a -21/8*v2 + 4*v3 -17/4 <= 0; value: -11/4 d -3*v0 + v1 + 2 = 0; value: 0 a -141/16*v2 -21/8 <= 0; value: -303/8 d -16*v0 -3*v2 + 10 <= 0; value: 0 0: 2 3 5 4 1: 3 4 5 2: 1 2 4 5 3: 2 0: 2 -> -1/8 1: 4 -> -19/8 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 -6*v2 -9 <= 0; value: -19 a -1*v3 + 5 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -4*v0 -5*v2 + 1 <= 0; value: -7 a -2*v1 + v2 -1 <= 0; value: -5 0: 3 4 1: 1 5 2: 1 4 5 3: 2 optimal: 98/17 a + 98/17 <= 0; value: 98/17 d -17/2*v2 -13/2 <= 0; value: 0 a -1*v3 + 5 = 0; value: 0 d -1*v0 + 2 = 0; value: 0 a -54/17 <= 0; value: -54/17 d -2*v1 + v2 -1 <= 0; value: 0 0: 3 4 1: 1 5 2: 1 4 5 3: 2 0: 2 -> 2 1: 2 -> -15/17 2: 0 -> -13/17 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 + 4*v1 + 5*v2 -114 <= 0; value: -69 a -1*v0 + 6*v2 -1*v3 -56 < 0; value: -34 a -3*v1 -5*v2 + 3*v3 -13 <= 0; value: -29 a -1*v0 -1*v1 -4*v3 -16 < 0; value: -41 a -1*v0 + 2*v2 -17 < 0; value: -10 0: 1 2 4 5 1: 1 3 4 2: 1 2 3 5 3: 2 3 4 optimal: (11071/67 -e*1) a + 11071/67 < 0; value: 11071/67 d 268/85*v0 -2445/17 < 0; value: -268/85 d -4/5*v0 + 17/3*v2 -161/3 <= 0; value: 0 d -3*v1 -5*v2 + 3*v3 -13 <= 0; value: 0 d -1*v0 + 5/3*v2 -5*v3 -35/3 < 0; value: -5 a -8253/268 < 0; value: -8253/268 0: 1 2 4 5 1: 1 3 4 2: 1 2 3 5 4 3: 2 3 4 1 0: 3 -> 11957/268 1: 2 -> -811321/22780 2: 5 -> 89806/5695 3: 5 -> -113901/22780 a 2*v0 -2*v1 <= 0; value: -6 a 3*v0 + 3*v1 -32 <= 0; value: -11 a -3*v0 -5*v2 + 6 = 0; value: 0 a -1*v1 + 4*v2 + 2 < 0; value: -3 a -1*v0 -1*v1 < 0; value: -7 a -2*v0 + 5*v3 -11 <= 0; value: -5 0: 1 2 4 5 1: 1 3 4 2: 2 3 3: 5 optimal: (136/7 -e*1) a + 136/7 < 0; value: 136/7 a -32 < 0; value: -32 d -3*v0 -5*v2 + 6 = 0; value: 0 d -1*v1 + 4*v2 + 2 < 0; value: -1 d 7/5*v0 -34/5 <= 0; value: 0 a 5*v3 -145/7 <= 0; value: -75/7 0: 1 2 4 5 1: 1 3 4 2: 2 3 4 1 3: 5 0: 2 -> 34/7 1: 5 -> -27/7 2: 0 -> -12/7 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -2*v3 -3 <= 0; value: -1 a 3*v0 -2*v1 -12 <= 0; value: -7 a -1*v0 + 3*v1 -3*v2 -6 <= 0; value: -3 a -1*v2 <= 0; value: 0 a -4*v1 -5*v3 -4 <= 0; value: -17 0: 2 3 1: 1 2 3 5 2: 3 4 3: 1 5 optimal: oo a 5/6*v3 + 26/3 <= 0; value: 19/2 a -9/2*v3 -5 <= 0; value: -19/2 d 3*v0 -2*v1 -12 <= 0; value: 0 a -3*v2 -35/12*v3 -37/3 <= 0; value: -61/4 a -1*v2 <= 0; value: 0 d -6*v0 -5*v3 + 20 <= 0; value: 0 0: 2 3 5 1 1: 1 2 3 5 2: 3 4 3: 1 5 3 0: 3 -> 5/2 1: 2 -> -9/4 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 <= 0; value: -3 a -4*v0 -5*v1 + v3 + 27 = 0; value: 0 a v0 -3*v2 + 6*v3 -18 <= 0; value: 0 a -6*v2 -5*v3 + 55 = 0; value: 0 a -6*v0 -5*v2 + 43 = 0; value: 0 0: 1 2 3 5 1: 2 2: 3 4 5 3: 2 3 4 optimal: -2 a -2 <= 0; value: -2 a -3 <= 0; value: -3 d -4*v0 -5*v1 + v3 + 27 = 0; value: 0 d 331/25*v0 -993/25 <= 0; value: 0 d -6*v2 -5*v3 + 55 = 0; value: 0 d -6*v0 -5*v2 + 43 = 0; value: 0 0: 1 2 3 5 1: 2 2: 3 4 5 3: 2 3 4 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a 4*v0 + 3*v1 -22 = 0; value: 0 a 2*v0 -1*v1 -2*v3 -10 <= 0; value: -6 a 2*v0 -6*v1 -5*v3 + 9 = 0; value: 0 a v0 + 6*v1 -1*v3 -15 <= 0; value: 0 a -5*v0 -6*v2 + 24 < 0; value: -8 0: 1 2 3 4 5 1: 1 2 3 4 2: 5 3: 2 3 4 optimal: oo a 7/3*v3 + 5/3 <= 0; value: 4 d 4*v0 + 3*v1 -22 = 0; value: 0 a -1/3*v3 -17/3 <= 0; value: -6 d 10*v0 -5*v3 -35 = 0; value: 0 a -9/2*v3 + 9/2 <= 0; value: 0 a -6*v2 -5/2*v3 + 13/2 < 0; value: -8 0: 1 2 3 4 5 1: 1 2 3 4 2: 5 3: 2 3 4 5 0: 4 -> 4 1: 2 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 2*v3 -12 <= 0; value: 0 a v0 + 6*v3 -32 = 0; value: 0 a -4*v1 -6*v2 + 15 <= 0; value: -31 a -6*v0 -4*v2 + 3*v3 + 17 = 0; value: 0 a -1*v0 -2*v1 -3*v2 + 12 < 0; value: -13 0: 1 2 4 5 1: 3 5 2: 3 4 5 3: 1 2 4 optimal: (9 -e*1) a + 9 < 0; value: 9 d v0 + 2*v3 -12 <= 0; value: 0 d -2*v0 + 4 = 0; value: 0 a -5 <= 0; value: -5 d -6*v0 -4*v2 + 3*v3 + 17 = 0; value: 0 d -1*v0 -2*v1 -3*v2 + 12 < 0; value: -2 0: 1 2 4 5 3 1: 3 5 2: 3 4 5 3: 1 2 4 0: 2 -> 2 1: 4 -> -3/2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a -1*v2 -6*v3 + 2 < 0; value: -2 a -1*v2 -2*v3 + 4 <= 0; value: 0 a 3*v0 -5*v2 + 7 <= 0; value: -13 a -3*v0 -3*v1 + 2*v2 + 4 <= 0; value: 0 a v1 + 6*v3 -10 <= 0; value: -6 0: 3 4 1: 4 5 2: 1 2 3 4 3: 1 2 5 optimal: -40/9 a -40/9 <= 0; value: -40/9 a -43/6 < 0; value: -43/6 d -1*v2 -2*v3 + 4 <= 0; value: 0 d 36/7*v0 -1/7 <= 0; value: 0 d -3*v0 -3*v1 + 2*v2 + 4 <= 0; value: 0 d -1*v0 + 14/3*v3 -6 <= 0; value: 0 0: 3 4 5 1 1: 4 5 2: 1 2 3 4 5 3: 1 2 5 3 0: 0 -> 1/36 1: 4 -> 9/4 2: 4 -> 17/12 3: 0 -> 31/24 a 2*v0 -2*v1 <= 0; value: -4 a -3*v2 -4*v3 <= 0; value: 0 a -5*v0 -2*v1 + v2 -19 <= 0; value: -44 a v3 <= 0; value: 0 a 4*v0 -5*v2 -16 <= 0; value: -4 a -1*v1 + 2*v3 -2 <= 0; value: -7 0: 2 4 1: 2 5 2: 1 2 4 3: 1 3 5 optimal: oo a 23/4*v0 + 61/4 <= 0; value: 65/2 d -3*v2 -4*v3 <= 0; value: 0 d -5*v0 + 4*v2 -15 <= 0; value: 0 a -15/16*v0 -45/16 <= 0; value: -45/8 a -9/4*v0 -139/4 <= 0; value: -83/2 d -1*v1 + 2*v3 -2 <= 0; value: 0 0: 2 4 3 1: 2 5 2: 1 2 4 3 3: 1 3 5 2 0: 3 -> 3 1: 5 -> -53/4 2: 0 -> 15/2 3: 0 -> -45/8 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 + 2*v2 -5*v3 -2 < 0; value: -1 a -3*v2 -1*v3 + 2 <= 0; value: -8 a -4*v0 -5*v1 -3*v3 + 2 < 0; value: -6 a v0 + 3*v3 -3 = 0; value: 0 a v0 = 0; value: 0 0: 1 3 4 5 1: 3 2: 1 2 3: 1 2 3 4 optimal: (2/5 -e*1) a + 2/5 < 0; value: 2/5 a 2*v2 -7 < 0; value: -1 a -3*v2 + 1 <= 0; value: -8 d -4*v0 -5*v1 -3*v3 + 2 < 0; value: -3 d v0 + 3*v3 -3 = 0; value: 0 d v0 = 0; value: 0 0: 1 3 4 5 2 1: 3 2: 1 2 3: 1 2 3 4 0: 0 -> 0 1: 1 -> 2/5 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 + v1 + 2*v2 -38 <= 0; value: -24 a 2*v2 -1*v3 -8 < 0; value: -2 a -5*v0 -6*v2 -7 <= 0; value: -42 a -3*v2 + 11 <= 0; value: -4 a 2*v0 -3*v1 -3 <= 0; value: -1 0: 1 3 5 1: 1 5 2: 1 2 3 4 3: 2 optimal: 137/21 a + 137/21 <= 0; value: 137/21 d 14/3*v0 + 2*v2 -39 <= 0; value: 0 a -1*v3 -2/3 < 0; value: -14/3 a -881/14 <= 0; value: -881/14 d -3*v2 + 11 <= 0; value: 0 d 2*v0 -3*v1 -3 <= 0; value: 0 0: 1 3 5 1: 1 5 2: 1 2 3 4 3: 2 0: 1 -> 95/14 1: 0 -> 74/21 2: 5 -> 11/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -1*v2 + 4 = 0; value: 0 a v0 + 2*v1 -1*v3 -6 <= 0; value: -1 a -4*v1 -3*v2 -18 <= 0; value: -46 a -1*v0 + 6*v1 -3*v3 -43 <= 0; value: -28 a -5*v0 + 3*v3 -9 = 0; value: 0 0: 1 2 4 5 1: 2 3 4 2: 1 3 3: 2 4 5 optimal: oo a -3/2*v3 + 39/2 <= 0; value: 15 d -3*v0 -1*v2 + 4 = 0; value: 0 a 23/10*v3 -309/10 <= 0; value: -24 d -4*v1 -3*v2 -18 <= 0; value: 0 a 9/2*v3 -221/2 <= 0; value: -97 d -5*v0 + 3*v3 -9 = 0; value: 0 0: 1 2 4 5 1: 2 3 4 2: 1 3 2 4 3: 2 4 5 0: 0 -> 0 1: 4 -> -15/2 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 + 2*v2 + 5*v3 -78 < 0; value: -46 a 3*v0 -5*v1 + v2 < 0; value: -7 a -3*v1 -2*v2 + 14 = 0; value: 0 a -4*v0 + 5*v1 + 4*v3 -21 <= 0; value: -9 a -3*v0 + 4*v1 -5*v3 + 1 <= 0; value: -5 0: 2 4 5 1: 1 2 3 4 5 2: 1 2 3 3: 1 4 5 optimal: oo a -35/6*v3 + 70 < 0; value: 175/3 d 12/13*v0 + 5*v3 -804/13 < 0; value: -12/13 d 3*v0 + 13/3*v2 -70/3 < 0; value: -13/3 d -3*v1 -2*v2 + 14 = 0; value: 0 a 79/6*v3 -129 < 0; value: -308/3 a 5/4*v3 -72 < 0; value: -139/2 0: 2 4 5 1 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 1 4 5 0: 4 -> 331/6 1: 4 -> 1061/39 2: 1 -> -879/26 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a 2*v1 + 3*v2 -3*v3 -17 = 0; value: 0 a -1*v1 + 4*v3 -4 = 0; value: 0 a 6*v2 -1*v3 -28 = 0; value: 0 a -6*v0 + 4*v1 -6*v2 + 9 <= 0; value: -11 a -1*v3 + 2 = 0; value: 0 0: 4 1: 1 2 4 2: 1 3 4 3: 1 2 3 5 optimal: oo a 2*v0 -8 <= 0; value: -6 d 2*v1 + 3*v2 -3*v3 -17 = 0; value: 0 d 3/2*v2 + 5/2*v3 -25/2 = 0; value: 0 d 33/5*v2 -33 = 0; value: 0 a -6*v0 -5 <= 0; value: -11 a = 0; value: 0 0: 4 1: 1 2 4 2: 1 3 4 2 5 3: 1 2 3 5 4 0: 1 -> 1 1: 4 -> 4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 -4*v2 -3*v3 + 29 < 0; value: -3 a v1 = 0; value: 0 a 6*v1 + 3*v2 -25 <= 0; value: -10 a 6*v1 + 3*v2 -41 <= 0; value: -26 0: 1: 1 2 3 4 2: 1 3 4 3: 1 optimal: oo a 2*v0 <= 0; value: 0 a -4*v2 -3*v3 + 29 < 0; value: -3 d v1 = 0; value: 0 a 3*v2 -25 <= 0; value: -10 a 3*v2 -41 <= 0; value: -26 0: 1: 1 2 3 4 2: 1 3 4 3: 1 0: 0 -> 0 1: 0 -> 0 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -6*v0 -5*v3 -11 < 0; value: -29 a -2*v0 + 3*v1 + 2 < 0; value: -1 a -1*v2 + v3 <= 0; value: 0 a -3*v2 -2*v3 <= 0; value: 0 a v0 -1*v1 -5 < 0; value: -3 0: 1 2 5 1: 2 5 2: 3 4 3: 1 3 4 optimal: (10 -e*1) a + 10 < 0; value: 10 a -6*v0 -5*v3 -11 < 0; value: -29 a v0 -13 < 0; value: -10 a -1*v2 + v3 <= 0; value: 0 a -3*v2 -2*v3 <= 0; value: 0 d v0 -1*v1 -5 < 0; value: -1 0: 1 2 5 1: 2 5 2: 3 4 3: 1 3 4 0: 3 -> 3 1: 1 -> -1 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 <= 0; value: 0 a -4*v3 + 9 < 0; value: -3 a v1 <= 0; value: 0 a -6*v0 + v1 + 4 <= 0; value: -2 a 5*v1 + 6*v3 -37 < 0; value: -19 0: 4 1: 1 3 4 5 2: 3: 2 5 optimal: oo a 2*v0 <= 0; value: 2 d -1*v1 <= 0; value: 0 a -4*v3 + 9 < 0; value: -3 a <= 0; value: 0 a -6*v0 + 4 <= 0; value: -2 a 6*v3 -37 < 0; value: -19 0: 4 1: 1 3 4 5 2: 3: 2 5 0: 1 -> 1 1: 0 -> 0 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + v2 -14 < 0; value: -4 a -6*v2 + 6*v3 + 17 <= 0; value: -7 a v1 -4*v3 <= 0; value: -2 a -1*v0 + 1 = 0; value: 0 a 6*v1 -1*v3 -14 < 0; value: -3 0: 1 4 1: 3 5 2: 1 2 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + v2 -14 < 0; value: -4 a -6*v2 + 6*v3 + 17 <= 0; value: -7 a v1 -4*v3 <= 0; value: -2 a -1*v0 + 1 = 0; value: 0 a 6*v1 -1*v3 -14 < 0; value: -3 0: 1 4 1: 3 5 2: 1 2 3: 2 3 5 0: 1 -> 1 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 5*v3 -47 < 0; value: -27 a 5*v0 -4*v1 -5 < 0; value: -1 a 3*v0 + 2*v2 -54 < 0; value: -34 a -1*v1 -2*v2 -3*v3 + 24 = 0; value: 0 0: 2 3 1: 2 4 2: 3 4 3: 1 4 optimal: oo a 4/5*v2 + 92/25 < 0; value: 172/25 d -25/12*v0 -10/3*v2 -59/12 <= 0; value: 0 d 5*v0 + 8*v2 + 12*v3 -101 < 0; value: -12 a -14/5*v2 -1527/25 < 0; value: -1807/25 d -1*v1 -2*v2 -3*v3 + 24 = 0; value: 0 0: 2 3 1 1: 2 4 2: 3 4 2 1 3: 1 4 2 0: 4 -> -219/25 1: 4 -> -46/5 2: 4 -> 4 3: 4 -> 42/5 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 + v3 + 2 <= 0; value: 0 a 2*v0 -1*v1 -3*v2 + 6 < 0; value: -6 a 3*v1 + 3*v2 -26 <= 0; value: -2 a -6*v0 + 3*v2 -1*v3 -2 < 0; value: -1 a -1*v0 + 6*v3 -25 <= 0; value: -14 0: 1 2 4 5 1: 2 3 2: 2 3 4 3: 1 4 5 optimal: (390/23 -e*1) a + 390/23 < 0; value: 390/23 d -4*v0 + v3 + 2 <= 0; value: 0 d 2*v0 -1*v1 -3*v2 + 6 < 0; value: -1 a -702/23 < 0; value: -702/23 d -6*v0 + 3*v2 -1*v3 -2 < 0; value: -3 d 23*v0 -37 <= 0; value: 0 0: 1 2 4 5 3 1: 2 3 2: 2 3 4 3: 1 4 5 3 0: 1 -> 37/23 1: 5 -> -66/23 2: 3 -> 301/69 3: 2 -> 102/23 a 2*v0 -2*v1 <= 0; value: 6 a -2*v0 -2*v3 -7 < 0; value: -19 a v0 -1*v1 -3*v2 -1 <= 0; value: -10 a -1*v0 -1*v1 + 7 = 0; value: 0 a -1*v1 -1*v3 + 2 <= 0; value: -1 a -3*v0 + v3 -13 < 0; value: -27 0: 1 2 3 5 1: 2 3 4 2: 2 3: 1 4 5 optimal: oo a 6*v2 + 2 <= 0; value: 26 a -6*v2 -13 < 0; value: -37 d -3*v2 + 2*v3 + 2 <= 0; value: 0 d -1*v0 -1*v1 + 7 = 0; value: 0 d v0 -1*v3 -5 <= 0; value: 0 a -3*v2 -26 < 0; value: -38 0: 1 2 3 5 4 1: 2 3 4 2: 2 1 5 3: 1 4 5 2 0: 5 -> 10 1: 2 -> -3 2: 4 -> 4 3: 1 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + 3*v1 <= 0; value: 0 a -1*v1 <= 0; value: 0 a -4*v2 -3 <= 0; value: -7 a 3*v0 + 3*v2 -7 <= 0; value: -4 a -1*v1 <= 0; value: 0 0: 1 4 1: 1 2 5 2: 3 4 3: optimal: 37/6 a + 37/6 <= 0; value: 37/6 a -37/6 <= 0; value: -37/6 d -1*v1 <= 0; value: 0 d -4*v2 -3 <= 0; value: 0 d 3*v0 + 3*v2 -7 <= 0; value: 0 a <= 0; value: 0 0: 1 4 1: 1 2 5 2: 3 4 1 3: 0: 0 -> 37/12 1: 0 -> 0 2: 1 -> -3/4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -1*v3 + 4 <= 0; value: -6 a -1*v0 + 3 = 0; value: 0 a 5*v0 -1*v2 -6*v3 -18 <= 0; value: -10 a -3*v0 -6*v1 -4*v2 + 32 <= 0; value: -5 a -3*v0 -4*v3 + 5 <= 0; value: -8 0: 1 2 3 4 5 1: 4 2: 3 4 3: 1 3 5 optimal: oo a 3*v0 + 4/3*v2 -32/3 <= 0; value: -1/3 a -3*v0 -1*v3 + 4 <= 0; value: -6 a -1*v0 + 3 = 0; value: 0 a 5*v0 -1*v2 -6*v3 -18 <= 0; value: -10 d -3*v0 -6*v1 -4*v2 + 32 <= 0; value: 0 a -3*v0 -4*v3 + 5 <= 0; value: -8 0: 1 2 3 4 5 1: 4 2: 3 4 3: 1 3 5 0: 3 -> 3 1: 4 -> 19/6 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 -3*v3 -2 <= 0; value: -11 a -1*v1 -4*v2 -5 < 0; value: -23 a -1*v2 + 1 <= 0; value: -3 a -2*v0 + 5*v1 -4 = 0; value: 0 a -1*v0 -1*v2 + 7 = 0; value: 0 0: 4 5 1: 1 2 4 2: 2 3 5 3: 1 optimal: 28/5 a + 28/5 <= 0; value: 28/5 a -3*v3 + 38/5 <= 0; value: -37/5 a -61/5 < 0; value: -61/5 d -1*v2 + 1 <= 0; value: 0 d -2*v0 + 5*v1 -4 = 0; value: 0 d -1*v0 -1*v2 + 7 = 0; value: 0 0: 4 5 2 1 1: 1 2 4 2: 2 3 5 1 3: 1 0: 3 -> 6 1: 2 -> 16/5 2: 4 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 5*v3 -19 < 0; value: -9 a 2*v0 -1*v1 -5 = 0; value: 0 a -5*v1 -6*v3 + 9 <= 0; value: -18 a 4*v0 -1*v3 -16 <= 0; value: -2 a -6*v0 + v2 + 18 < 0; value: -6 0: 2 4 5 1: 2 3 2: 5 3: 1 3 4 optimal: (194/25 -e*1) a + 194/25 < 0; value: 194/25 d 5*v3 -19 < 0; value: -9/2 d 2*v0 -1*v1 -5 = 0; value: 0 d -5/3*v2 -6*v3 + 4 <= 0; value: 0 a -383/25 < 0; value: -383/25 d -6*v0 + v2 + 18 < 0; value: -6 0: 2 4 5 3 1: 2 3 2: 5 3 4 3: 1 3 4 0: 4 -> 133/50 1: 3 -> 8/25 2: 0 -> -201/25 3: 2 -> 29/10 a 2*v0 -2*v1 <= 0; value: 4 a -5*v0 -5*v1 + 32 < 0; value: -8 a -1*v3 + 4 = 0; value: 0 a v0 -9 <= 0; value: -4 a 5*v0 -3*v1 -16 = 0; value: 0 a -1*v0 + 3*v1 + 5*v3 -66 < 0; value: -42 0: 1 3 4 5 1: 1 4 5 2: 3: 2 5 optimal: (24/5 -e*1) a + 24/5 < 0; value: 24/5 d -40/3*v0 + 176/3 < 0; value: -4 a -1*v3 + 4 = 0; value: 0 a -23/5 < 0; value: -23/5 d 5*v0 -3*v1 -16 = 0; value: 0 a 5*v3 -322/5 < 0; value: -222/5 0: 1 3 4 5 1: 1 4 5 2: 3: 2 5 0: 5 -> 47/10 1: 3 -> 5/2 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 6*v0 + 3*v1 -95 <= 0; value: -59 a -1*v2 + 1 = 0; value: 0 a 5*v2 + 4*v3 -33 < 0; value: -16 a v0 -5*v3 + 10 <= 0; value: 0 a v0 -5 = 0; value: 0 0: 1 4 5 1: 1 2: 2 3 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 6*v0 + 3*v1 -95 <= 0; value: -59 a -1*v2 + 1 = 0; value: 0 a 5*v2 + 4*v3 -33 < 0; value: -16 a v0 -5*v3 + 10 <= 0; value: 0 a v0 -5 = 0; value: 0 0: 1 4 5 1: 1 2: 2 3 3: 3 4 0: 5 -> 5 1: 2 -> 2 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v2 + v3 -10 < 0; value: -2 a -3*v0 + 2*v1 + 5*v3 -6 = 0; value: 0 a v0 -1*v3 <= 0; value: 0 a 4*v0 + 4*v1 -5*v3 -3 <= 0; value: -1 a -1*v1 -6*v3 + 8 <= 0; value: -5 0: 2 3 4 1: 2 4 5 2: 1 3: 1 2 3 4 5 optimal: oo a -1*v0 -30*v2 + 44 < 0; value: 12 d 6*v2 + v3 -10 < 0; value: -1 d -3*v0 + 2*v1 + 5*v3 -6 = 0; value: 0 a v0 + 6*v2 -10 < 0; value: -2 a 10*v0 + 90*v2 -141 < 0; value: -31 a -3/2*v0 + 21*v2 -30 < 0; value: -12 0: 2 3 4 5 1: 2 4 5 2: 1 3 4 5 3: 1 2 3 4 5 0: 2 -> 2 1: 1 -> -3/2 2: 1 -> 1 3: 2 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a 4*v1 -6*v2 -7 <= 0; value: -37 a v1 + v2 -3*v3 -8 <= 0; value: -3 a v0 + 3*v1 -4*v3 -5 = 0; value: 0 a -5*v2 + 6*v3 + 3 <= 0; value: -22 a -1*v1 -6*v2 -19 <= 0; value: -49 0: 3 1: 1 2 3 5 2: 1 2 4 5 3: 2 3 4 optimal: oo a 52/17*v0 + 178/17 <= 0; value: 438/17 a -45/17*v0 -241/17 <= 0; value: -466/17 d -1/3*v0 + v2 -5/3*v3 -19/3 <= 0; value: 0 d v0 + 3*v1 -4*v3 -5 = 0; value: 0 a -45/34*v0 -282/17 <= 0; value: -789/34 d 3/5*v0 -34/5*v2 -78/5 <= 0; value: 0 0: 3 5 1 2 4 1: 1 2 3 5 2: 1 2 4 5 3: 2 3 4 5 1 0: 5 -> 5 1: 0 -> -134/17 2: 5 -> -63/34 3: 0 -> -201/34 a 2*v0 -2*v1 <= 0; value: 6 a v0 -4*v2 -2*v3 + 1 <= 0; value: -10 a 6*v0 + 6*v1 + 3*v2 -71 <= 0; value: -44 a -3*v0 + 4 <= 0; value: -5 a 4*v0 + 2*v3 -39 <= 0; value: -25 d = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 2 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a v0 -4*v2 -2*v3 + 1 <= 0; value: -10 a 6*v0 + 6*v1 + 3*v2 -71 <= 0; value: -44 a -3*v0 + 4 <= 0; value: -5 a 4*v0 + 2*v3 -39 <= 0; value: -25 d = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 2 3: 1 4 0: 3 -> 3 1: 0 -> 0 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -4*v1 -6*v2 + 3*v3 + 24 < 0; value: -13 a -6*v2 -19 <= 0; value: -49 a -3*v0 + 4*v1 + 3*v2 -76 <= 0; value: -48 a -3*v0 + 1 < 0; value: -2 a v2 -5 <= 0; value: 0 0: 3 4 1: 1 3 2: 1 2 3 5 3: 1 optimal: oo a 2*v0 + 3*v2 -3/2*v3 -12 < 0; value: 1/2 d -4*v1 -6*v2 + 3*v3 + 24 < 0; value: -4 a -6*v2 -19 <= 0; value: -49 a -3*v0 -3*v2 + 3*v3 -52 < 0; value: -61 a -3*v0 + 1 < 0; value: -2 a v2 -5 <= 0; value: 0 0: 3 4 1: 1 3 2: 1 2 3 5 3: 1 3 0: 1 -> 1 1: 4 -> 7/4 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 + 5*v1 -25 = 0; value: 0 a -1*v2 + 4 = 0; value: 0 a v0 -1*v2 -1 = 0; value: 0 a -2*v0 -3*v3 + 9 <= 0; value: -10 a v3 -8 <= 0; value: -5 0: 1 3 4 1: 1 2: 2 3 3: 4 5 optimal: 6 a + 6 <= 0; value: 6 d 3*v0 + 5*v1 -25 = 0; value: 0 d -1*v2 + 4 = 0; value: 0 d v0 -1*v2 -1 = 0; value: 0 a -3*v3 -1 <= 0; value: -10 a v3 -8 <= 0; value: -5 0: 1 3 4 1: 1 2: 2 3 4 3: 4 5 0: 5 -> 5 1: 2 -> 2 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + v1 <= 0; value: 0 a -1*v0 -1*v2 + 4 <= 0; value: 0 a 6*v0 -5*v1 -1 <= 0; value: 0 a -2*v1 -1 <= 0; value: -3 a 4*v2 + 5*v3 -12 = 0; value: 0 0: 1 2 3 1: 1 3 4 2: 2 5 3: 5 optimal: 1/2 a + 1/2 <= 0; value: 1/2 a -1/4 <= 0; value: -1/4 d -1*v0 -1*v2 + 4 <= 0; value: 0 d 6*v0 -5*v1 -1 <= 0; value: 0 d -3*v3 -3 <= 0; value: 0 d 4*v2 + 5*v3 -12 = 0; value: 0 0: 1 2 3 4 1: 1 3 4 2: 2 5 4 1 3: 5 4 1 0: 1 -> -1/4 1: 1 -> -1/2 2: 3 -> 17/4 3: 0 -> -1 a 2*v0 -2*v1 <= 0; value: 8 a -1*v1 -3*v3 + 7 = 0; value: 0 a -2*v1 -4*v3 -9 <= 0; value: -19 a 4*v2 + 5*v3 -22 = 0; value: 0 a -2*v0 -5*v2 + 25 = 0; value: 0 a 4*v1 -9 < 0; value: -5 0: 4 1: 1 2 5 2: 3 4 3: 1 2 3 optimal: 995/8 a + 995/8 <= 0; value: 995/8 d -1*v1 -3*v3 + 7 = 0; value: 0 d 16/25*v0 -111/5 <= 0; value: 0 d 4*v2 + 5*v3 -22 = 0; value: 0 d -2*v0 -5*v2 + 25 = 0; value: 0 a -119 < 0; value: -119 0: 4 2 5 1: 1 2 5 2: 3 4 2 5 3: 1 2 3 5 0: 5 -> 555/16 1: 1 -> -55/2 2: 3 -> -71/8 3: 2 -> 23/2 a 2*v0 -2*v1 <= 0; value: 8 a v2 -1 <= 0; value: 0 a -1*v2 -1*v3 + 1 <= 0; value: -1 a -1*v0 + 6*v2 -5 <= 0; value: -3 a v3 -1 = 0; value: 0 a -6*v0 + v2 -5*v3 + 28 = 0; value: 0 0: 3 5 1: 2: 1 2 3 5 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v2 -1 <= 0; value: 0 a -1*v2 -1*v3 + 1 <= 0; value: -1 a -1*v0 + 6*v2 -5 <= 0; value: -3 a v3 -1 = 0; value: 0 a -6*v0 + v2 -5*v3 + 28 = 0; value: 0 0: 3 5 1: 2: 1 2 3 5 3: 2 4 5 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 4*v1 + 4*v2 -45 <= 0; value: -9 a -3*v0 -4*v3 -4 <= 0; value: -10 a -1*v0 + 6*v2 -55 <= 0; value: -33 a v0 + 6*v3 -2 = 0; value: 0 a 6*v0 + v2 -39 <= 0; value: -23 0: 2 3 4 5 1: 1 2: 1 3 5 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a 4*v1 + 4*v2 -45 <= 0; value: -9 a -3*v0 -4*v3 -4 <= 0; value: -10 a -1*v0 + 6*v2 -55 <= 0; value: -33 a v0 + 6*v3 -2 = 0; value: 0 a 6*v0 + v2 -39 <= 0; value: -23 0: 2 3 4 5 1: 1 2: 1 3 5 3: 2 4 0: 2 -> 2 1: 5 -> 5 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 6*v1 + 5*v3 -98 < 0; value: -43 a -5*v0 -3*v3 + 28 <= 0; value: -2 a -4*v0 -5*v1 -13 < 0; value: -35 a -3*v0 + v3 + 4 = 0; value: 0 a v2 <= 0; value: 0 0: 1 2 3 4 1: 1 3 2: 5 3: 1 2 4 optimal: (314/9 -e*1) a + 314/9 < 0; value: 314/9 d 27/5*v3 -112 < 0; value: -27/5 a -6112/81 < 0; value: -6112/81 d -4*v0 -5*v1 -13 < 0; value: -5 d -3*v0 + v3 + 4 = 0; value: 0 a v2 <= 0; value: 0 0: 1 2 3 4 1: 1 3 2: 5 3: 1 2 4 0: 3 -> 641/81 1: 2 -> -3212/405 2: 0 -> 0 3: 5 -> 533/27 a 2*v0 -2*v1 <= 0; value: -2 a v0 -1*v1 + 6*v2 -20 <= 0; value: -3 a -1*v1 -2*v2 + 3*v3 + 6 <= 0; value: -1 a v0 -3 = 0; value: 0 a 5*v1 -1*v2 -18 < 0; value: -1 a 4*v1 -1*v3 -30 < 0; value: -15 0: 1 3 1: 1 2 4 5 2: 1 2 4 3: 2 5 optimal: oo a -12*v2 + 40 <= 0; value: 4 d v0 + 8*v2 -3*v3 -26 <= 0; value: 0 d -1*v1 -2*v2 + 3*v3 + 6 <= 0; value: 0 a v0 -3 = 0; value: 0 a 5*v0 + 29*v2 -118 < 0; value: -16 a 11/3*v0 + 64/3*v2 -304/3 < 0; value: -79/3 0: 1 3 5 4 1: 1 2 4 5 2: 1 2 4 5 3: 2 5 1 4 0: 3 -> 3 1: 4 -> 1 2: 3 -> 3 3: 1 -> 1/3 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -1 <= 0; value: -4 a -3*v1 + 4*v2 -2 < 0; value: -1 a 5*v0 + 4*v1 + v2 -34 <= 0; value: -5 a v1 -14 <= 0; value: -9 0: 1 3 1: 2 3 4 2: 2 3 3: optimal: oo a 2*v0 -8/3*v2 + 4/3 < 0; value: -22/3 a -3*v0 -1 <= 0; value: -4 d -3*v1 + 4*v2 -2 < 0; value: -1/2 a 5*v0 + 19/3*v2 -110/3 < 0; value: -19/3 a 4/3*v2 -44/3 < 0; value: -28/3 0: 1 3 1: 2 3 4 2: 2 3 4 3: 0: 1 -> 1 1: 5 -> 29/6 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a v3 -4 <= 0; value: -2 a -2*v2 + 3*v3 + 1 <= 0; value: -3 a -2*v2 + 9 < 0; value: -1 a -4*v2 -3*v3 -9 < 0; value: -35 a -4*v0 + 6*v2 -21 <= 0; value: -11 0: 5 1: 2: 2 3 4 5 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a v3 -4 <= 0; value: -2 a -2*v2 + 3*v3 + 1 <= 0; value: -3 a -2*v2 + 9 < 0; value: -1 a -4*v2 -3*v3 -9 < 0; value: -35 a -4*v0 + 6*v2 -21 <= 0; value: -11 0: 5 1: 2: 2 3 4 5 3: 1 2 4 0: 5 -> 5 1: 0 -> 0 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a v0 = 0; value: 0 a -1*v1 + 3*v3 -9 <= 0; value: -3 a -6*v2 -5*v3 -35 < 0; value: -80 a 4*v0 + 3*v1 + 3*v3 -51 <= 0; value: -33 a -3*v0 -2*v2 -8 <= 0; value: -18 0: 1 4 5 1: 2 4 2: 3 5 3: 2 3 4 optimal: oo a 2*v0 + 36/5*v2 + 60 < 0; value: 96 a v0 = 0; value: 0 d -1*v1 + 3*v3 -9 <= 0; value: 0 d -6*v2 -5*v3 -35 < 0; value: -5 a 4*v0 -72/5*v2 -162 < 0; value: -234 a -3*v0 -2*v2 -8 <= 0; value: -18 0: 1 4 5 1: 2 4 2: 3 5 4 3: 2 3 4 0: 0 -> 0 1: 3 -> -45 2: 5 -> 5 3: 3 -> -12 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 + v3 <= 0; value: 0 a -1*v1 + 4*v3 + 3 = 0; value: 0 a -3*v2 + 2*v3 <= 0; value: 0 a 3*v1 -1*v3 -9 = 0; value: 0 a -3*v1 -2*v2 + 9 = 0; value: 0 0: 1: 2 4 5 2: 1 3 5 3: 1 2 3 4 optimal: oo a 2*v0 -6 <= 0; value: 4 a -1*v2 <= 0; value: 0 d -1*v1 + 4*v3 + 3 = 0; value: 0 a -3*v2 <= 0; value: 0 d 11*v3 = 0; value: 0 a -2*v2 = 0; value: 0 0: 1: 2 4 5 2: 1 3 5 3: 1 2 3 4 5 0: 5 -> 5 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 3*v2 -22 < 0; value: -13 a v0 + 3*v2 -21 < 0; value: -11 a 3*v0 + 5*v2 -3*v3 -45 <= 0; value: -27 a -1*v0 + 3*v2 -11 < 0; value: -3 a -3*v0 + v1 + 3*v2 -13 < 0; value: -5 0: 2 3 4 5 1: 5 2: 1 2 3 4 5 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 3*v2 -22 < 0; value: -13 a v0 + 3*v2 -21 < 0; value: -11 a 3*v0 + 5*v2 -3*v3 -45 <= 0; value: -27 a -1*v0 + 3*v2 -11 < 0; value: -3 a -3*v0 + v1 + 3*v2 -13 < 0; value: -5 0: 2 3 4 5 1: 5 2: 1 2 3 4 5 3: 3 0: 1 -> 1 1: 2 -> 2 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a v0 -2*v3 -4 = 0; value: 0 a v0 + v1 + 2*v3 -21 <= 0; value: -13 a 2*v1 + 4*v2 -5*v3 -45 <= 0; value: -29 a 2*v0 + v2 -19 < 0; value: -9 a v3 <= 0; value: 0 0: 1 2 4 1: 2 3 2: 3 4 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a v0 -2*v3 -4 = 0; value: 0 a v0 + v1 + 2*v3 -21 <= 0; value: -13 a 2*v1 + 4*v2 -5*v3 -45 <= 0; value: -29 a 2*v0 + v2 -19 < 0; value: -9 a v3 <= 0; value: 0 0: 1 2 4 1: 2 3 2: 3 4 3: 1 2 3 5 0: 4 -> 4 1: 4 -> 4 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 + 3*v2 -6*v3 + 1 < 0; value: -26 a -3*v1 + 4*v3 -18 <= 0; value: -11 a -1*v2 + 1 = 0; value: 0 a v1 + 6*v3 -64 < 0; value: -37 a 3*v0 + v1 -5*v3 + 5 = 0; value: 0 0: 5 1: 1 2 4 5 2: 1 3 3: 1 2 4 5 optimal: (478/39 -e*1) a + 478/39 < 0; value: 478/39 d -78/11*v0 + 3*v2 + 169/11 < 0; value: -5 d 9*v0 -11*v3 -3 <= 0; value: 0 d -1*v2 + 1 = 0; value: 0 a -734/13 < 0; value: -734/13 d 3*v0 + v1 -5*v3 + 5 = 0; value: 0 0: 5 1 2 4 1: 1 2 4 5 2: 1 3 4 3: 1 2 4 5 0: 4 -> 257/78 1: 3 -> -36/13 2: 1 -> 1 3: 4 -> 63/26 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -2*v2 + 9 = 0; value: 0 a 2*v1 -3*v3 + 3 = 0; value: 0 a -3*v0 + 2*v1 + 6*v3 -50 <= 0; value: -32 a 2*v1 -5*v2 -6 = 0; value: 0 a 2*v0 + 4*v1 -1*v2 -47 <= 0; value: -31 0: 3 5 1: 1 2 3 4 5 2: 1 4 5 3: 2 3 optimal: 29 a + 29 <= 0; value: 29 d -3*v1 -2*v2 + 9 = 0; value: 0 a -3*v3 + 9 = 0; value: 0 a 6*v3 -193/2 <= 0; value: -157/2 d -19/3*v2 = 0; value: 0 d 2*v0 -35 <= 0; value: 0 0: 3 5 1: 1 2 3 4 5 2: 1 4 5 2 3 3: 2 3 0: 2 -> 35/2 1: 3 -> 3 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -2*v2 -3*v3 + 4 < 0; value: -4 a -3*v2 -1*v3 + 10 < 0; value: -2 a v1 -1 = 0; value: 0 a -3*v0 + 5*v2 -39 <= 0; value: -22 0: 5 1: 4 2: 2 3 5 3: 1 2 3 optimal: oo a 2*v0 -2 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -2*v2 -3*v3 + 4 < 0; value: -4 a -3*v2 -1*v3 + 10 < 0; value: -2 d v1 -1 = 0; value: 0 a -3*v0 + 5*v2 -39 <= 0; value: -22 0: 5 1: 4 2: 2 3 5 3: 1 2 3 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -4*v1 -5 < 0; value: -1 a 5*v1 -5*v3 -6 <= 0; value: -31 a 3*v0 -2*v2 -2 <= 0; value: -1 a v3 -7 <= 0; value: -2 a -2*v2 -1*v3 -2 <= 0; value: -9 0: 1 3 1: 1 2 2: 3 5 3: 2 4 5 optimal: (5/2 -e*1) a + 5/2 < 0; value: 5/2 d 4*v0 -4*v1 -5 < 0; value: -1/2 a 5*v0 -5*v3 -49/4 < 0; value: -129/4 a 3*v0 -2*v2 -2 <= 0; value: -1 a v3 -7 <= 0; value: -2 a -2*v2 -1*v3 -2 <= 0; value: -9 0: 1 3 2 1: 1 2 2: 3 5 3: 2 4 5 0: 1 -> 1 1: 0 -> -1/8 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 -8 = 0; value: 0 a -1*v0 + 4*v1 + 3*v2 -24 <= 0; value: -11 a -2*v0 + 5*v1 + 3*v3 -47 <= 0; value: -27 a 2*v0 -1*v2 -3 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 2 4 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 -8 = 0; value: 0 a -1*v0 + 4*v1 + 3*v2 -24 <= 0; value: -11 a -2*v0 + 5*v1 + 3*v3 -47 <= 0; value: -27 a 2*v0 -1*v2 -3 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 2 4 3: 3 0: 2 -> 2 1: 3 -> 3 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a v3 -4 = 0; value: 0 a 3*v0 + 2*v2 -19 <= 0; value: -7 a -3*v1 + 5*v2 -6 <= 0; value: -18 a -6*v1 + v3 -18 < 0; value: -38 a -1*v2 = 0; value: 0 0: 2 1: 3 4 2: 2 3 5 3: 1 4 optimal: 50/3 a + 50/3 <= 0; value: 50/3 a v3 -4 = 0; value: 0 d 3*v0 -19 <= 0; value: 0 d -3*v1 + 5*v2 -6 <= 0; value: 0 a v3 -6 < 0; value: -2 d -1*v2 = 0; value: 0 0: 2 1: 3 4 2: 2 3 5 4 3: 1 4 0: 4 -> 19/3 1: 4 -> -2 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 -4*v3 -19 <= 0; value: -11 a 6*v1 -1*v2 + 2*v3 -37 <= 0; value: -22 a 4*v0 + 5*v3 -24 <= 0; value: -11 a 5*v2 + v3 -31 < 0; value: -5 a 6*v0 -1*v2 -6*v3 -2 <= 0; value: -1 0: 1 3 5 1: 2 2: 2 4 5 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 -4*v3 -19 <= 0; value: -11 a 6*v1 -1*v2 + 2*v3 -37 <= 0; value: -22 a 4*v0 + 5*v3 -24 <= 0; value: -11 a 5*v2 + v3 -31 < 0; value: -5 a 6*v0 -1*v2 -6*v3 -2 <= 0; value: -1 0: 1 3 5 1: 2 2: 2 4 5 3: 1 2 3 4 5 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -4*v1 + v2 + 2 <= 0; value: -8 a -2*v0 + 3*v2 -4*v3 -2 <= 0; value: -12 a v0 -1*v3 + 4 = 0; value: 0 a -1*v1 + 1 < 0; value: -1 a v0 -1*v1 + 3*v3 -39 <= 0; value: -25 0: 1 2 3 5 1: 1 4 5 2: 1 2 3: 2 3 5 optimal: (12 -e*1) a + 12 < 0; value: 12 a v2 -44 <= 0; value: -40 a 3*v2 -60 <= 0; value: -48 d v0 -1*v3 + 4 = 0; value: 0 d -1*v1 + 1 < 0; value: -1/2 d 4*v3 -44 <= 0; value: 0 0: 1 2 3 5 1: 1 4 5 2: 1 2 3: 2 3 5 1 0: 1 -> 7 1: 2 -> 3/2 2: 4 -> 4 3: 5 -> 11 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 -1*v3 -14 <= 0; value: -3 a 4*v1 + 3*v2 -14 = 0; value: 0 a v0 + 5*v1 + 6*v3 -94 <= 0; value: -57 a 2*v0 + v1 -20 < 0; value: -12 a -1*v2 -1 <= 0; value: -3 0: 1 3 4 1: 2 3 4 2: 2 5 3: 1 3 optimal: oo a 2*v0 + 3/2*v2 -7 <= 0; value: 2 a 5*v0 -1*v3 -14 <= 0; value: -3 d 4*v1 + 3*v2 -14 = 0; value: 0 a v0 -15/4*v2 + 6*v3 -153/2 <= 0; value: -57 a 2*v0 -3/4*v2 -33/2 < 0; value: -12 a -1*v2 -1 <= 0; value: -3 0: 1 3 4 1: 2 3 4 2: 2 5 3 4 3: 1 3 0: 3 -> 3 1: 2 -> 2 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 -3*v2 + 1 = 0; value: 0 a v0 -3*v1 -3 <= 0; value: -9 a v0 -3*v2 + 3*v3 + 9 <= 0; value: 0 a v2 -3 = 0; value: 0 a v2 -3 = 0; value: 0 0: 2 3 1: 1 2 2: 1 3 4 5 3: 3 optimal: 14 a + 14 <= 0; value: 14 d 4*v1 -3*v2 + 1 = 0; value: 0 d v0 -9 <= 0; value: 0 d v0 -3*v2 + 3*v3 + 9 <= 0; value: 0 d 1/3*v0 + v3 = 0; value: 0 a = 0; value: 0 0: 2 3 4 5 1: 1 2 2: 1 3 4 5 2 3: 3 4 5 2 0: 0 -> 9 1: 2 -> 2 2: 3 -> 3 3: 0 -> -3 a 2*v0 -2*v1 <= 0; value: -6 a 6*v1 + 3*v2 -3*v3 -35 <= 0; value: -14 a v1 + 2*v2 -9 = 0; value: 0 a -6*v1 -5*v3 + 32 <= 0; value: -23 a -3*v0 -1*v1 -2*v3 + 21 = 0; value: 0 a -2*v0 + v3 -2 <= 0; value: -1 0: 4 5 1: 1 2 3 4 2: 1 2 3: 1 3 4 5 optimal: 6 a + 6 <= 0; value: 6 a -179/4 <= 0; value: -179/4 d v1 + 2*v2 -9 = 0; value: 0 d 32*v0 -80 <= 0; value: 0 d -3*v0 + 2*v2 -2*v3 + 12 = 0; value: 0 d -2*v0 + v3 -2 <= 0; value: 0 0: 4 5 3 1 1: 1 2 3 4 2: 1 2 3 4 3: 1 3 4 5 0: 2 -> 5/2 1: 5 -> -1/2 2: 2 -> 19/4 3: 5 -> 7 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 + 1 = 0; value: 0 a -6*v0 -4*v1 -7 < 0; value: -19 a -1*v1 <= 0; value: 0 a 2*v1 + 2*v2 -1*v3 + 2 = 0; value: 0 a v2 -2 < 0; value: -1 0: 2 1: 2 3 4 2: 1 4 5 3: 4 optimal: oo a 2*v0 <= 0; value: 4 a -1*v2 + 1 = 0; value: 0 a -6*v0 -7 < 0; value: -19 d -1*v1 <= 0; value: 0 a 2*v2 -1*v3 + 2 = 0; value: 0 a v2 -2 < 0; value: -1 0: 2 1: 2 3 4 2: 1 4 5 3: 4 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -3*v2 + 2*v3 + 7 = 0; value: 0 a -1*v1 -4*v2 + 15 = 0; value: 0 a -2*v0 -1*v1 + 2*v3 + 1 <= 0; value: -2 a -2*v1 + 3*v2 -7 <= 0; value: -4 a -4*v0 + 6*v3 -3 < 0; value: -1 0: 3 5 1: 2 3 4 2: 1 2 4 3: 1 3 5 optimal: (1/22 -e*1) a + 1/22 < 0; value: 1/22 d -3*v2 + 2*v3 + 7 = 0; value: 0 d -1*v1 -4*v2 + 15 = 0; value: 0 a -13/22 <= 0; value: -13/22 d 44/9*v0 -23/3 <= 0; value: 0 d -4*v0 + 6*v3 -3 < 0; value: -18/11 0: 3 5 4 1: 2 3 4 2: 1 2 4 3 3: 1 3 5 4 0: 1 -> 69/44 1: 3 -> 25/11 2: 3 -> 35/11 3: 1 -> 14/11 a 2*v0 -2*v1 <= 0; value: 0 a v0 -1*v1 <= 0; value: 0 a -4*v0 -6*v1 + v2 + 28 = 0; value: 0 a 2*v0 -4*v1 -5*v2 -15 <= 0; value: -31 a 3*v0 -2*v2 + 6*v3 -35 < 0; value: -18 a -1*v0 -5*v1 + 9 < 0; value: -9 0: 1 2 3 4 5 1: 1 2 3 5 2: 2 3 4 3: 4 optimal: 0 a <= 0; value: 0 d v0 -1*v1 <= 0; value: 0 a -10*v0 + v2 + 28 = 0; value: 0 a -2*v0 -5*v2 -15 <= 0; value: -31 a 3*v0 -2*v2 + 6*v3 -35 < 0; value: -18 a -6*v0 + 9 < 0; value: -9 0: 1 2 3 4 5 1: 1 2 3 5 2: 2 3 4 3: 4 0: 3 -> 3 1: 3 -> 3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a v1 + 5*v2 + 4*v3 -47 <= 0; value: -29 a v0 + v1 -3 = 0; value: 0 a -2*v0 -3*v3 <= 0; value: 0 a v1 -3 <= 0; value: 0 a -1*v0 + v1 -1*v2 <= 0; value: 0 0: 2 3 5 1: 1 2 4 5 2: 1 5 3: 1 3 optimal: oo a 4*v0 -6 <= 0; value: -6 a -1*v0 + 5*v2 + 4*v3 -44 <= 0; value: -29 d v0 + v1 -3 = 0; value: 0 a -2*v0 -3*v3 <= 0; value: 0 a -1*v0 <= 0; value: 0 a -2*v0 -1*v2 + 3 <= 0; value: 0 0: 2 3 5 1 4 1: 1 2 4 5 2: 1 5 3: 1 3 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a 3*v0 -3*v1 -1*v2 + 6 = 0; value: 0 a -6*v0 + 3*v1 -4*v3 + 13 = 0; value: 0 a v2 + v3 -6 <= 0; value: -2 a v0 -6*v1 + 5*v3 -3 = 0; value: 0 0: 1 2 4 1: 1 2 4 2: 1 3 3: 2 3 4 optimal: -37/18 a -37/18 <= 0; value: -37/18 d 3*v0 -3*v1 -1*v2 + 6 = 0; value: 0 d -3*v0 -1*v2 -4*v3 + 19 = 0; value: 0 d 8*v0 -10 <= 0; value: 0 d -11*v0 -3*v3 + 23 = 0; value: 0 0: 1 2 4 3 1: 1 2 4 2: 1 3 2 4 3: 2 3 4 0: 1 -> 5/4 1: 3 -> 41/18 2: 0 -> 35/12 3: 4 -> 37/12 a 2*v0 -2*v1 <= 0; value: -8 a v3 -8 <= 0; value: -5 a -3*v0 -6*v3 -2 <= 0; value: -20 a -2*v0 + 3*v3 -9 = 0; value: 0 a -3*v1 -2*v3 + 2 < 0; value: -16 a -1*v0 + 4*v1 + 4*v3 -29 <= 0; value: -1 0: 2 3 5 1: 4 5 2: 3: 1 2 3 4 5 optimal: (73/3 -e*1) a + 73/3 < 0; value: 73/3 d 2/3*v0 -5 <= 0; value: 0 a -145/2 <= 0; value: -145/2 d -2*v0 + 3*v3 -9 = 0; value: 0 d -3*v1 -2*v3 + 2 < 0; value: -3 a -139/6 < 0; value: -139/6 0: 2 3 5 1 1: 4 5 2: 3: 1 2 3 4 5 0: 0 -> 15/2 1: 4 -> -11/3 2: 2 -> 2 3: 3 -> 8 a 2*v0 -2*v1 <= 0; value: -6 a v0 + 6*v2 -50 <= 0; value: -24 a -3*v2 -1*v3 + 17 = 0; value: 0 a v1 -5 = 0; value: 0 0: 1 1: 3 2: 1 2 3: 2 optimal: oo a 4*v3 + 22 <= 0; value: 42 d v0 + 6*v2 -50 <= 0; value: 0 d -3*v2 -1*v3 + 17 = 0; value: 0 d v1 -5 = 0; value: 0 0: 1 1: 3 2: 1 2 3: 2 0: 2 -> 26 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 2*v3 -2 = 0; value: 0 a v0 + v3 -4 <= 0; value: -1 a -4*v0 -3*v3 -7 <= 0; value: -16 a 3*v1 -3*v3 -7 <= 0; value: -16 a v1 + 5*v3 -15 = 0; value: 0 0: 2 3 1: 4 5 2: 1 3: 1 2 3 4 5 optimal: 162 a + 162 <= 0; value: 162 d -1*v2 + 2*v3 -2 = 0; value: 0 d v0 + 1/2*v2 -3 <= 0; value: 0 d -1*v0 -19 <= 0; value: 0 a -376 <= 0; value: -376 d v1 + 5*v3 -15 = 0; value: 0 0: 2 3 4 1: 4 5 2: 1 2 3 4 3: 1 2 3 4 5 0: 0 -> -19 1: 0 -> -100 2: 4 -> 44 3: 3 -> 23 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -6*v3 -5 <= 0; value: -3 a -1*v0 + 5*v1 + v2 -10 <= 0; value: 0 a -5*v1 -6*v2 + v3 -12 < 0; value: -45 a -4*v1 + v2 -4*v3 -3 < 0; value: -11 a 2*v0 + v1 + 4*v2 -31 < 0; value: -5 0: 1 2 5 1: 2 3 4 5 2: 2 3 4 5 3: 1 3 4 optimal: (8695/247 -e*1) a + 8695/247 < 0; value: 8695/247 d 494/73*v0 -6731/73 < 0; value: -494/73 a -20537/494 <= 0; value: -20537/494 d -29/4*v2 + 6*v3 -33/4 <= 0; value: 0 d -4*v1 + v2 -4*v3 -3 < 0; value: -4 d 2*v0 + 73/24*v2 -265/8 < 0; value: -25447/11856 0: 1 2 5 1: 2 3 4 5 2: 2 3 4 5 1 3: 1 3 4 2 5 0: 4 -> 6237/494 1: 2 -> -2535535/865488 2: 4 -> 67907/36062 3: 1 -> 3159349/865488 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 1 = 0; value: 0 a -2*v1 + v3 -4 <= 0; value: -1 a 2*v0 -3*v1 -3*v2 -6 <= 0; value: -3 a -1*v0 + 3 = 0; value: 0 a -5*v0 -5*v1 -1*v2 + 18 <= 0; value: -2 0: 3 4 5 1: 1 2 3 5 2: 3 5 3: 2 optimal: 4 a + 4 <= 0; value: 4 d -1*v1 + 1 = 0; value: 0 a v3 -6 <= 0; value: -1 a -3*v2 -3 <= 0; value: -3 d -1*v0 + 3 = 0; value: 0 a -1*v2 -2 <= 0; value: -2 0: 3 4 5 1: 1 2 3 5 2: 3 5 3: 2 0: 3 -> 3 1: 1 -> 1 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -10 a -6*v1 + 5*v2 + 3*v3 -2 <= 0; value: -1 a v1 + v3 -7 = 0; value: 0 a -5*v1 -4*v2 + 45 = 0; value: 0 a -2*v0 + 5*v2 -62 < 0; value: -37 a -2*v0 + 3*v1 -4*v3 -17 <= 0; value: -10 0: 4 5 1: 1 2 3 5 2: 1 3 4 3: 1 2 5 optimal: oo a 2*v0 -602/61 <= 0; value: -602/61 d 61/5*v2 -62 <= 0; value: 0 d v1 + v3 -7 = 0; value: 0 d -4*v2 + 5*v3 + 10 = 0; value: 0 a -2*v0 -2232/61 < 0; value: -2232/61 a -2*v0 -638/61 <= 0; value: -638/61 0: 4 5 1: 1 2 3 5 2: 1 3 4 5 3: 1 2 5 3 0: 0 -> 0 1: 5 -> 301/61 2: 5 -> 310/61 3: 2 -> 126/61 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -3*v1 + 4*v3 + 26 < 0; value: -1 a -3*v1 + 1 <= 0; value: -14 a -2*v0 -1*v3 + 10 <= 0; value: -1 a -3*v1 -3*v2 + v3 -19 <= 0; value: -43 a 4*v2 -29 <= 0; value: -13 0: 1 3 1: 1 2 4 2: 4 5 3: 1 3 4 optimal: (181/21 -e*1) a + 181/21 < 0; value: 181/21 d -6*v0 -3*v1 + 4*v3 + 26 < 0; value: -3 d 14*v0 -65 <= 0; value: 0 d -2*v0 -1*v3 + 10 <= 0; value: 0 a -3*v2 -135/7 <= 0; value: -219/7 a 4*v2 -29 <= 0; value: -13 0: 1 3 2 4 1: 1 2 4 2: 4 5 3: 1 3 4 2 0: 4 -> 65/14 1: 5 -> 4/3 2: 4 -> 4 3: 3 -> 5/7 a 2*v0 -2*v1 <= 0; value: -4 a -3*v1 + 3*v3 + 5 <= 0; value: -10 a -4*v0 -1*v1 + 7 <= 0; value: -10 a 3*v0 + v3 -13 <= 0; value: -4 a -5*v1 -5*v2 -14 < 0; value: -44 a -3*v0 + 6*v1 -2*v2 -37 <= 0; value: -18 0: 2 3 5 1: 1 2 4 5 2: 4 5 3: 1 3 optimal: oo a 10*v0 -14 < 0; value: 16 d -3*v1 + 3*v3 + 5 <= 0; value: 0 d -4*v0 + v2 + 49/5 <= 0; value: 0 a -1*v0 -23/3 < 0; value: -32/3 d -5*v2 -5*v3 -67/3 < 0; value: -5 a -35*v0 + 123/5 < 0; value: -402/5 0: 2 3 5 1: 1 2 4 5 2: 4 5 2 3 3: 1 3 2 4 5 0: 3 -> 3 1: 5 -> -4 2: 1 -> 11/5 3: 0 -> -17/3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -4*v1 = 0; value: 0 a 5*v0 -3*v1 + 6*v3 -50 <= 0; value: -32 a -5*v0 -1*v3 -2 <= 0; value: -5 a -1*v0 + 4*v3 -27 <= 0; value: -15 a 2*v1 -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 3: 2 3 4 5 optimal: oo a -7/3*v3 + 7 <= 0; value: 0 d -3*v0 -4*v1 = 0; value: 0 a 7/6*v3 -71/2 <= 0; value: -32 a 7/3*v3 -12 <= 0; value: -5 a 14/3*v3 -29 <= 0; value: -15 d -3/2*v0 -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 5 2: 3: 2 3 4 5 0: 0 -> 0 1: 0 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a 4*v0 + v1 -2*v2 -11 = 0; value: 0 a -1*v0 -1*v3 + 1 < 0; value: -3 a v0 -1*v1 -4 <= 0; value: -1 a 5*v0 -6*v1 + 6*v3 -14 = 0; value: 0 a v2 -4 <= 0; value: -1 0: 1 2 3 4 1: 1 3 4 2: 1 5 3: 2 4 optimal: 8 a + 8 <= 0; value: 8 d 4*v0 + v1 -2*v2 -11 = 0; value: 0 a -7/6*v0 + 8/3 < 0; value: -2 d 1/6*v0 -1*v3 -5/3 <= 0; value: 0 d 29*v0 -12*v2 + 6*v3 -80 = 0; value: 0 a 5/2*v0 -23/2 <= 0; value: -3/2 0: 1 2 3 4 5 1: 1 3 4 2: 1 5 3 4 3: 2 4 3 5 0: 4 -> 4 1: 1 -> 0 2: 3 -> 5/2 3: 0 -> -1 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 2*v2 + 2*v3 -19 <= 0; value: -2 a v2 -1 = 0; value: 0 a 2*v0 -19 <= 0; value: -11 a 3*v1 + 3*v3 -32 <= 0; value: -2 a -1*v0 + v3 -1 <= 0; value: 0 0: 3 5 1: 1 4 2: 1 2 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v1 + 2*v2 + 2*v3 -19 <= 0; value: -2 a v2 -1 = 0; value: 0 a 2*v0 -19 <= 0; value: -11 a 3*v1 + 3*v3 -32 <= 0; value: -2 a -1*v0 + v3 -1 <= 0; value: 0 0: 3 5 1: 1 4 2: 1 2 3: 1 4 5 0: 4 -> 4 1: 5 -> 5 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 + 3*v2 -19 < 0; value: -10 a 3*v0 -22 < 0; value: -13 a 5*v1 -1*v3 -35 <= 0; value: -21 a -2*v0 + 2*v3 -1 <= 0; value: -5 a -1*v0 -5*v1 -1 <= 0; value: -19 0: 2 4 5 1: 1 3 5 2: 1 3: 3 4 optimal: (18 -e*1) a + 18 < 0; value: 18 a 3*v2 -47/3 <= 0; value: -2/3 d 3*v0 -22 < 0; value: -3 a -1*v3 -130/3 < 0; value: -133/3 a 2*v3 -47/3 < 0; value: -41/3 d -1*v0 -5*v1 -1 <= 0; value: 0 0: 2 4 5 1 3 1: 1 3 5 2: 1 3: 3 4 0: 3 -> 19/3 1: 3 -> -22/15 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 -1*v2 + 2 <= 0; value: -4 a -6*v3 -11 < 0; value: -23 a -6*v2 + 5*v3 + 5 < 0; value: -3 a -5*v2 + 11 <= 0; value: -4 a v0 + v2 -1*v3 -1 = 0; value: 0 0: 5 1: 1 2: 1 3 4 5 3: 2 3 5 optimal: oo a 2*v3 -2 <= 0; value: 2 d -1*v1 -1*v2 + 2 <= 0; value: 0 a -6*v3 -11 < 0; value: -23 a 6*v0 -1*v3 -1 < 0; value: -3 a 5*v0 -5*v3 + 6 <= 0; value: -4 d v0 + v2 -1*v3 -1 = 0; value: 0 0: 5 3 4 1: 1 2: 1 3 4 5 3: 2 3 5 4 0: 0 -> 0 1: 3 -> -1 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -1*v3 -4 < 0; value: -11 a 5*v2 + 4*v3 -27 < 0; value: -15 a -1*v0 + 4 = 0; value: 0 a -6*v0 + 5*v1 <= 0; value: -9 a 4*v1 -5*v2 + 5*v3 -62 <= 0; value: -35 0: 1 3 4 1: 4 5 2: 2 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -1*v3 -4 < 0; value: -11 a 5*v2 + 4*v3 -27 < 0; value: -15 a -1*v0 + 4 = 0; value: 0 a -6*v0 + 5*v1 <= 0; value: -9 a 4*v1 -5*v2 + 5*v3 -62 <= 0; value: -35 0: 1 3 4 1: 4 5 2: 2 5 3: 1 2 5 0: 4 -> 4 1: 3 -> 3 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + v1 -3*v3 -50 < 0; value: -30 a 4*v1 -5*v3 -17 <= 0; value: -9 a -5*v1 -1*v3 + 5 <= 0; value: -5 a 3*v1 + v2 -6*v3 -6 = 0; value: 0 a -1*v0 + 3*v2 -3*v3 -1 <= 0; value: -4 0: 1 5 1: 1 2 3 4 2: 4 5 3: 1 2 3 4 5 optimal: (3501/244 -e*1) a + 3501/244 < 0; value: 3501/244 d 122/21*v0 -997/21 < 0; value: -122/21 a -6373/488 < 0; value: -6373/488 d 5/3*v2 -11*v3 -5 <= 0; value: 0 d 3*v1 + v2 -6*v3 -6 = 0; value: 0 d -1*v0 + 28/11*v2 + 4/11 <= 0; value: 0 0: 1 5 2 1: 1 2 3 4 2: 4 5 3 1 2 3: 1 2 3 4 5 0: 3 -> 875/122 1: 2 -> 10349/10248 2: 0 -> 9137/3416 3: 0 -> -505/10248 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -1*v1 -1*v2 -34 <= 0; value: -22 a -3*v0 + 5*v3 -7 < 0; value: -2 a 5*v2 -5*v3 -2 <= 0; value: -17 a 6*v2 + 5*v3 -68 <= 0; value: -42 a -5*v1 + 5*v3 -22 <= 0; value: -12 0: 1 2 1: 1 5 2: 1 3 4 3: 2 3 4 5 optimal: oo a -1*v0 + 194/5 <= 0; value: 169/5 d 3*v0 -2*v2 -146/5 <= 0; value: 0 a 9/2*v0 -82 < 0; value: -119/2 d 5*v2 -5*v3 -2 <= 0; value: 0 a 33/2*v0 -1153/5 <= 0; value: -1481/10 d -5*v1 + 5*v3 -22 <= 0; value: 0 0: 1 2 4 1: 1 5 2: 1 3 4 2 3: 2 3 4 5 1 0: 5 -> 5 1: 2 -> -119/10 2: 1 -> -71/10 3: 4 -> -15/2 a 2*v0 -2*v1 <= 0; value: -6 a -6*v0 -3*v1 -2*v3 -7 < 0; value: -29 a 5*v0 + 5*v1 -39 <= 0; value: -14 a 4*v0 -1*v2 -5 <= 0; value: -3 a 2*v0 -1*v2 <= 0; value: 0 0: 1 2 3 4 1: 1 2 2: 3 4 3: 1 optimal: oo a 6*v0 + 4/3*v3 + 14/3 < 0; value: 40/3 d -6*v0 -3*v1 -2*v3 -7 < 0; value: -3 a -5*v0 -10/3*v3 -152/3 < 0; value: -187/3 a 4*v0 -1*v2 -5 <= 0; value: -3 a 2*v0 -1*v2 <= 0; value: 0 0: 1 2 3 4 1: 1 2 2: 3 4 3: 1 2 0: 1 -> 1 1: 4 -> -14/3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 -2 < 0; value: -5 a v0 -2*v1 + 2*v2 -6 < 0; value: -3 a 3*v0 -2*v2 -3 = 0; value: 0 a -1*v1 + 3*v3 = 0; value: 0 a 5*v2 -19 < 0; value: -4 0: 2 3 1: 2 4 2: 1 2 3 5 3: 4 optimal: (29/3 -e*1) a + 29/3 < 0; value: 29/3 d -3/2*v0 -1/2 < 0; value: -3/2 d v0 + 2*v2 -6*v3 -6 < 0; value: -6 d 3*v0 -2*v2 -3 = 0; value: 0 d -1*v1 + 3*v3 = 0; value: 0 a -29 < 0; value: -29 0: 2 3 1 5 1: 2 4 2: 1 2 3 5 3: 4 2 0: 3 -> 2/3 1: 3 -> -1/6 2: 3 -> -1/2 3: 1 -> -1/18 a 2*v0 -2*v1 <= 0; value: 8 a -2*v1 -5*v2 + 5*v3 + 3 <= 0; value: -2 a -2*v0 -6*v1 -2*v2 + 13 <= 0; value: -1 a 5*v1 -6*v2 + 14 < 0; value: -4 a -4*v0 -6*v1 + v3 + 12 < 0; value: -2 a 2*v3 -11 <= 0; value: -7 0: 2 4 1: 1 2 3 4 2: 1 2 3 3: 1 4 5 optimal: oo a 10/3*v0 -1/3*v3 -4 < 0; value: 26/3 a -11/3*v0 + 43/6*v3 -7/2 < 0; value: -23/6 d -2*v0 -6*v1 -2*v2 + 13 <= 0; value: 0 a -28/3*v0 + 23/6*v3 + 21 < 0; value: -26/3 d -2*v0 + 2*v2 + v3 -1 < 0; value: -1/2 a 2*v3 -11 <= 0; value: -7 0: 2 4 1 3 1: 1 2 3 4 2: 1 2 3 4 3: 1 4 5 3 0: 4 -> 4 1: 0 -> -1/4 2: 3 -> 13/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a v2 -3 = 0; value: 0 a 4*v0 -3*v3 -7 < 0; value: -1 a v0 + v1 -13 < 0; value: -5 a -3*v0 -4*v2 -17 < 0; value: -38 a 2*v0 + 2*v2 -2*v3 -21 <= 0; value: -13 0: 2 3 4 5 1: 3 2: 1 4 5 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v2 -3 = 0; value: 0 a 4*v0 -3*v3 -7 < 0; value: -1 a v0 + v1 -13 < 0; value: -5 a -3*v0 -4*v2 -17 < 0; value: -38 a 2*v0 + 2*v2 -2*v3 -21 <= 0; value: -13 0: 2 3 4 5 1: 3 2: 1 4 5 3: 2 5 0: 3 -> 3 1: 5 -> 5 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -1*v3 <= 0; value: 0 a -1*v1 -2*v2 <= 0; value: 0 a v0 + 4*v1 + v2 -3 <= 0; value: -1 a -3*v1 + v2 = 0; value: 0 a -2*v1 + 3*v2 + 5*v3 <= 0; value: 0 0: 3 1: 2 3 4 5 2: 2 3 4 5 3: 1 5 optimal: 6 a + 6 <= 0; value: 6 a -1*v3 <= 0; value: 0 d -1*v1 -2*v2 <= 0; value: 0 d v0 -3 <= 0; value: 0 d 7*v2 = 0; value: 0 a 5*v3 <= 0; value: 0 0: 3 1: 2 3 4 5 2: 2 3 4 5 3: 1 5 0: 2 -> 3 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a 2*v1 -1*v3 + 2 = 0; value: 0 a v0 + 2*v2 -6 = 0; value: 0 a -1*v1 <= 0; value: 0 a -2*v1 + 3*v3 -7 < 0; value: -1 0: 2 1: 1 3 4 2: 2 3: 1 4 optimal: oo a -4*v2 + 12 <= 0; value: 8 d 2*v1 -1*v3 + 2 = 0; value: 0 d v0 + 2*v2 -6 = 0; value: 0 d -1/2*v3 + 1 <= 0; value: 0 a -1 < 0; value: -1 0: 2 1: 1 3 4 2: 2 3: 1 4 3 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -69 <= 0; value: -44 a -3*v0 -5*v3 -8 <= 0; value: -38 a -5*v0 -2*v2 + 33 = 0; value: 0 a v0 + 4*v2 -27 < 0; value: -6 a -1*v0 + 5 = 0; value: 0 0: 1 2 3 4 5 1: 2: 3 4 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -69 <= 0; value: -44 a -3*v0 -5*v3 -8 <= 0; value: -38 a -5*v0 -2*v2 + 33 = 0; value: 0 a v0 + 4*v2 -27 < 0; value: -6 a -1*v0 + 5 = 0; value: 0 0: 1 2 3 4 5 1: 2: 3 4 3: 2 0: 5 -> 5 1: 3 -> 3 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -3*v1 = 0; value: 0 a 2*v0 -3*v3 <= 0; value: 0 a 4*v1 -21 <= 0; value: -13 a 5*v1 -1*v2 -5 = 0; value: 0 0: 1 2 1: 1 3 4 2: 4 3: 2 optimal: 21/4 a + 21/4 <= 0; value: 21/4 d 2*v0 -3*v1 = 0; value: 0 d 2*v0 -3*v3 <= 0; value: 0 d 4/5*v2 -17 <= 0; value: 0 d -1*v2 + 5*v3 -5 = 0; value: 0 0: 1 2 4 3 1: 1 3 4 2: 4 3 3: 2 4 3 0: 3 -> 63/8 1: 2 -> 21/4 2: 5 -> 85/4 3: 2 -> 21/4 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + v3 + 3 = 0; value: 0 a -1*v2 + 3*v3 + 2 = 0; value: 0 a 3*v1 -1*v2 -7 = 0; value: 0 a -3*v1 -3*v3 + 8 < 0; value: -7 a -2*v1 + 1 < 0; value: -7 0: 1: 1 3 4 5 2: 2 3 3: 1 2 4 optimal: oo a 2*v0 -17/3 < 0; value: 7/3 d -1*v1 + v3 + 3 = 0; value: 0 d -1*v2 + 3*v3 + 2 = 0; value: 0 a = 0; value: 0 d -2*v2 + 3 < 0; value: -2 a -14/3 <= 0; value: -14/3 0: 1: 1 3 4 5 2: 2 3 4 5 3: 1 2 4 3 5 0: 4 -> 4 1: 4 -> 19/6 2: 5 -> 5/2 3: 1 -> 1/6 a 2*v0 -2*v1 <= 0; value: -4 a 4*v0 -5*v1 -6 < 0; value: -18 a 5*v1 + 6*v2 -5*v3 -38 = 0; value: 0 a -4*v1 + 3*v3 -5 < 0; value: -21 a v1 + 4*v2 -2*v3 -38 < 0; value: -22 a -2*v0 -4*v1 -11 <= 0; value: -31 0: 1 5 1: 1 2 3 4 5 2: 2 4 3: 2 3 4 optimal: oo a 2/5*v0 + 12/5 < 0; value: 16/5 d 4*v0 + 6*v2 -5*v3 -44 < 0; value: -5 d 5*v1 + 6*v2 -5*v3 -38 = 0; value: 0 a -4/5*v0 + 18/5*v2 -133/5 <= 0; value: -87/5 a -4/5*v0 + 8/5*v2 -108/5 <= 0; value: -92/5 a -26/5*v0 -31/5 <= 0; value: -83/5 0: 1 5 4 3 1: 1 2 3 4 5 2: 2 4 1 3 5 3: 2 3 4 1 5 0: 2 -> 2 1: 4 -> 7/5 2: 3 -> 3 3: 0 -> -13/5 a 2*v0 -2*v1 <= 0; value: 8 a -1*v2 + 3 < 0; value: -1 a -5*v0 -2*v3 -11 <= 0; value: -42 a 2*v0 -1*v1 + v2 -18 <= 0; value: -5 a v1 -2 <= 0; value: -1 a v3 -3 = 0; value: 0 0: 2 3 1: 3 4 2: 1 3 3: 2 5 optimal: (184/5 -e*1) a + 184/5 < 0; value: 184/5 d -1*v2 + 3 < 0; value: -1/2 d -5*v0 -2*v3 -11 <= 0; value: 0 d 2*v0 -1*v1 + v2 -18 <= 0; value: 0 a -119/5 < 0; value: -119/5 d v3 -3 = 0; value: 0 0: 2 3 4 1: 3 4 2: 1 3 4 3: 2 5 4 0: 5 -> -17/5 1: 1 -> -213/10 2: 4 -> 7/2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 + 5*v3 -5 <= 0; value: -1 a v0 -4 = 0; value: 0 a v1 -1*v2 -1 <= 0; value: 0 a -4*v0 -5*v1 + 33 < 0; value: -3 a -3*v0 -4*v1 + 5*v2 + 6 < 0; value: -7 0: 1 2 4 5 1: 3 4 5 2: 3 5 3: 1 optimal: (6/5 -e*1) a + 6/5 < 0; value: 6/5 a 5*v3 -21 <= 0; value: -1 d v0 -4 = 0; value: 0 a -1*v2 + 12/5 < 0; value: -3/5 d -4*v0 -5*v1 + 33 < 0; value: -3/2 a 5*v2 -98/5 <= 0; value: -23/5 0: 1 2 4 5 3 1: 3 4 5 2: 3 5 3: 1 0: 4 -> 4 1: 4 -> 37/10 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v0 -5*v1 + 4 = 0; value: 0 a -1*v1 -1*v3 + 1 = 0; value: 0 a -4*v0 + 2*v2 -3 < 0; value: -1 a -1*v0 + v3 <= 0; value: -1 a -1*v3 <= 0; value: 0 0: 1 3 4 1: 1 2 2: 3 3: 2 4 5 optimal: 0 a <= 0; value: 0 d v0 -5*v1 + 4 = 0; value: 0 d -1/5*v0 -1*v3 + 1/5 = 0; value: 0 a 2*v2 -7 < 0; value: -1 a -1 <= 0; value: -1 d -1*v3 <= 0; value: 0 0: 1 3 4 2 1: 1 2 2: 3 3: 2 4 5 3 0: 1 -> 1 1: 1 -> 1 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -4*v1 + v2 + v3 + 3 <= 0; value: -9 a -1*v0 + v2 <= 0; value: 0 a v1 + v2 -16 <= 0; value: -10 a -4*v1 -6*v3 + 11 < 0; value: -17 a -6*v0 + v1 + 8 = 0; value: 0 0: 2 5 1: 1 3 4 5 2: 1 2 3 3: 1 4 optimal: (31/81 -e*1) a + 31/81 < 0; value: 31/81 d -23*v2 + v3 + 35 <= 0; value: 0 d -1*v0 + v2 <= 0; value: 0 a -2117/162 < 0; value: -2117/162 d -162/23*v3 + 149/23 < 0; value: -175/46 d -6*v0 + v1 + 8 = 0; value: 0 0: 2 5 4 1 3 1: 1 3 4 5 2: 1 2 3 4 3: 1 4 3 0: 2 -> 11813/7452 1: 4 -> 1877/1242 2: 2 -> 11813/7452 3: 2 -> 473/324 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 3*v2 -3 <= 0; value: -1 a -5*v0 -2*v2 -5*v3 -3 < 0; value: -28 a -1*v1 + 2*v2 + 2 = 0; value: 0 a 4*v0 -9 <= 0; value: -5 a -5*v0 + 4*v1 + 2*v3 -13 < 0; value: -2 0: 2 4 5 1: 1 3 5 2: 1 2 3 3: 2 5 optimal: oo a 12*v0 + 10*v3 + 2 < 0; value: 54 a -25/2*v0 -25/2*v3 -17/2 < 0; value: -71 d -5*v0 -2*v2 -5*v3 -3 < 0; value: -2 d -1*v1 + 2*v2 + 2 = 0; value: 0 a 4*v0 -9 <= 0; value: -5 a -25*v0 -18*v3 -17 < 0; value: -114 0: 2 4 5 1 1: 1 3 5 2: 1 2 3 5 3: 2 5 1 0: 1 -> 1 1: 2 -> -24 2: 0 -> -13 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -35 <= 0; value: -23 a -2*v0 + 2*v2 + 6*v3 -47 <= 0; value: -15 a -2*v0 + 5*v1 -11 <= 0; value: -7 a 4*v2 + v3 -21 = 0; value: 0 a -2*v0 + 3*v1 -5*v3 -14 < 0; value: -39 0: 1 2 3 5 1: 3 5 2: 2 4 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -35 <= 0; value: -23 a -2*v0 + 2*v2 + 6*v3 -47 <= 0; value: -15 a -2*v0 + 5*v1 -11 <= 0; value: -7 a 4*v2 + v3 -21 = 0; value: 0 a -2*v0 + 3*v1 -5*v3 -14 < 0; value: -39 0: 1 2 3 5 1: 3 5 2: 2 4 3: 2 4 5 0: 3 -> 3 1: 2 -> 2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 < 0; value: -4 a v0 + 3*v1 -15 = 0; value: 0 a v0 -3 <= 0; value: 0 a -1*v0 -3*v2 + v3 + 7 <= 0; value: -1 a -3*v1 + 4*v2 <= 0; value: 0 0: 2 3 4 1: 1 2 5 2: 4 5 3: 4 optimal: -2 a -2 <= 0; value: -2 a -4 < 0; value: -4 d v0 + 3*v1 -15 = 0; value: 0 d v0 -3 <= 0; value: 0 a -3*v2 + v3 + 4 <= 0; value: -1 a 4*v2 -12 <= 0; value: 0 0: 2 3 4 1 5 1: 1 2 5 2: 4 5 3: 4 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 -2*v1 -9 <= 0; value: -3 a -1*v0 -1*v2 + 3 < 0; value: -4 a -6*v2 -5*v3 + 19 <= 0; value: -14 a v1 -1 <= 0; value: 0 a 6*v1 + 2*v2 -5*v3 -1 <= 0; value: -4 0: 1 2 1: 1 4 5 2: 2 3 5 3: 3 5 optimal: 9 a + 9 <= 0; value: 9 d 2*v0 -2*v1 -9 <= 0; value: 0 a -1*v0 -1*v2 + 3 < 0; value: -4 a -6*v2 -5*v3 + 19 <= 0; value: -14 a v0 -11/2 <= 0; value: -3/2 a 6*v0 + 2*v2 -5*v3 -28 <= 0; value: -13 0: 1 2 4 5 1: 1 4 5 2: 2 3 5 3: 3 5 0: 4 -> 4 1: 1 -> -1/2 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v1 + v2 -20 <= 0; value: -13 a v0 + v1 -16 < 0; value: -9 a -2*v0 + 3*v2 -2*v3 -1 = 0; value: 0 a v1 -6*v2 -7 <= 0; value: -21 a -6*v0 + v1 -6 <= 0; value: -20 0: 2 3 5 1: 1 2 4 5 2: 1 3 4 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v1 + v2 -20 <= 0; value: -13 a v0 + v1 -16 < 0; value: -9 a -2*v0 + 3*v2 -2*v3 -1 = 0; value: 0 a v1 -6*v2 -7 <= 0; value: -21 a -6*v0 + v1 -6 <= 0; value: -20 0: 2 3 5 1: 1 2 4 5 2: 1 3 4 3: 3 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 + 6*v2 -75 <= 0; value: -44 a -3*v0 -5*v3 -25 < 0; value: -60 a -1*v3 + 3 < 0; value: -1 a 3*v1 -5*v2 -4 = 0; value: 0 a -1*v3 + 4 = 0; value: 0 0: 1 2 1: 4 2: 1 4 3: 2 3 5 optimal: oo a 2*v0 -10/3*v2 -8/3 <= 0; value: 4 a 5*v0 + 6*v2 -75 <= 0; value: -44 a -3*v0 -5*v3 -25 < 0; value: -60 a -1*v3 + 3 < 0; value: -1 d 3*v1 -5*v2 -4 = 0; value: 0 a -1*v3 + 4 = 0; value: 0 0: 1 2 1: 4 2: 1 4 3: 2 3 5 0: 5 -> 5 1: 3 -> 3 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 + v1 + 2*v3 -8 <= 0; value: -3 a 4*v0 -5*v2 -3*v3 -12 <= 0; value: -32 a 2*v1 + v3 -22 <= 0; value: -12 a v1 -1*v2 -2*v3 -1 <= 0; value: 0 a 5*v0 + 6*v1 + 6*v3 -33 <= 0; value: -3 0: 1 2 5 1: 1 3 4 5 2: 2 4 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 + v1 + 2*v3 -8 <= 0; value: -3 a 4*v0 -5*v2 -3*v3 -12 <= 0; value: -32 a 2*v1 + v3 -22 <= 0; value: -12 a v1 -1*v2 -2*v3 -1 <= 0; value: 0 a 5*v0 + 6*v1 + 6*v3 -33 <= 0; value: -3 0: 1 2 5 1: 1 3 4 5 2: 2 4 3: 1 2 3 4 5 0: 0 -> 0 1: 5 -> 5 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a v0 -5*v3 + 1 <= 0; value: -2 a -1*v0 -2*v1 + 6 = 0; value: 0 a 2*v0 -1*v3 -3 = 0; value: 0 a -3*v1 -5*v3 + 11 = 0; value: 0 a -5*v0 -4*v3 + 2 <= 0; value: -12 0: 1 2 3 5 1: 2 4 2: 3: 1 3 4 5 optimal: 0 a <= 0; value: 0 a -2 <= 0; value: -2 d -1*v0 -2*v1 + 6 = 0; value: 0 d 2*v0 -1*v3 -3 = 0; value: 0 d -17/4*v3 + 17/4 = 0; value: 0 a -12 <= 0; value: -12 0: 1 2 3 5 4 1: 2 4 2: 3: 1 3 4 5 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a -1*v2 + 3 = 0; value: 0 a 5*v1 + v3 -56 <= 0; value: -35 a v3 -1 = 0; value: 0 a 3*v2 -5*v3 -4 = 0; value: 0 a v0 + 3*v1 + 2*v2 -28 <= 0; value: -10 0: 5 1: 2 5 2: 1 4 5 3: 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -1*v2 + 3 = 0; value: 0 a 5*v1 + v3 -56 <= 0; value: -35 a v3 -1 = 0; value: 0 a 3*v2 -5*v3 -4 = 0; value: 0 a v0 + 3*v1 + 2*v2 -28 <= 0; value: -10 0: 5 1: 2 5 2: 1 4 5 3: 2 3 4 0: 0 -> 0 1: 4 -> 4 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 4*v2 + 8 = 0; value: 0 a -5*v0 + 4*v1 <= 0; value: 0 a -3*v2 + 5*v3 <= 0; value: -4 a -1*v1 + 4*v2 -6*v3 -2 <= 0; value: -1 d = 0; value: 0 0: 1 2 1: 2 4 2: 1 3 4 3: 3 4 optimal: oo a v0 + 28/5 <= 0; value: 48/5 d -5*v0 + 4*v2 + 8 = 0; value: 0 a -3*v0 -56/5 <= 0; value: -116/5 d -3*v2 + 5*v3 <= 0; value: 0 d -1*v1 + 4*v2 -6*v3 -2 <= 0; value: 0 d = 0; value: 0 0: 1 2 1: 2 4 2: 1 3 4 2 3: 3 4 2 0: 4 -> 4 1: 5 -> -4/5 2: 3 -> 3 3: 1 -> 9/5 a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 -6*v1 + 6*v2 -5 <= 0; value: -29 a 2*v2 -5 <= 0; value: -3 a -1*v1 -4*v2 + 6*v3 -1 <= 0; value: -10 a -5*v0 -4*v3 <= 0; value: 0 a -4*v1 + 2*v2 + 6*v3 + 9 < 0; value: -9 0: 1 4 1: 1 3 5 2: 1 2 3 5 3: 3 4 5 optimal: (10 -e*1) a + 10 < 0; value: 10 d 21/2*v0 -62/3 <= 0; value: 0 a -716/63 <= 0; value: -716/63 d -45/8*v0 -9/2*v2 -13/4 <= 0; value: 0 d -5*v0 -4*v3 <= 0; value: 0 d -4*v1 + 2*v2 + 6*v3 + 9 < 0; value: -4 0: 1 4 3 2 1: 1 3 5 2: 1 2 3 5 3: 3 4 5 1 0: 0 -> 124/63 1: 5 -> -128/63 2: 1 -> -401/126 3: 0 -> -155/63 a 2*v0 -2*v1 <= 0; value: -2 a v0 + 6*v2 -80 < 0; value: -49 a v0 -2*v1 < 0; value: -3 a v0 -1*v1 + 1 = 0; value: 0 a v2 -13 < 0; value: -8 a -3*v0 + 2*v1 + v3 -15 <= 0; value: -9 0: 1 2 3 5 1: 2 3 5 2: 1 4 3: 5 optimal: -2 a -2 <= 0; value: -2 a v0 + 6*v2 -80 < 0; value: -49 a -1*v0 -2 < 0; value: -3 d v0 -1*v1 + 1 = 0; value: 0 a v2 -13 < 0; value: -8 a -1*v0 + v3 -13 <= 0; value: -9 0: 1 2 3 5 1: 2 3 5 2: 1 4 3: 5 0: 1 -> 1 1: 2 -> 2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 -1*v2 -14 < 0; value: -7 a -6*v2 -5*v3 -36 < 0; value: -79 a 2*v0 + 4*v2 + 2*v3 -33 <= 0; value: -7 a v0 -5 <= 0; value: -3 a v3 -7 <= 0; value: -2 0: 3 4 1: 1 2: 1 2 3 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 -1*v2 -14 < 0; value: -7 a -6*v2 -5*v3 -36 < 0; value: -79 a 2*v0 + 4*v2 + 2*v3 -33 <= 0; value: -7 a v0 -5 <= 0; value: -3 a v3 -7 <= 0; value: -2 0: 3 4 1: 1 2: 1 2 3 3: 2 3 5 0: 2 -> 2 1: 2 -> 2 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -6*v1 + v2 + 3*v3 -7 < 0; value: -3 a -2*v1 -1*v3 + 4 = 0; value: 0 a -1*v0 + 4*v2 -34 <= 0; value: -20 a 5*v0 -27 <= 0; value: -17 d <= 0; value: 0 0: 3 4 1: 1 2 2: 1 3 3: 1 2 optimal: oo a 2*v0 -1/6*v2 -5/6 < 0; value: 5/2 d v2 + 6*v3 -19 < 0; value: -3/2 d -2*v1 -1*v3 + 4 = 0; value: 0 a -1*v0 + 4*v2 -34 <= 0; value: -20 a 5*v0 -27 <= 0; value: -17 d <= 0; value: 0 0: 3 4 1: 1 2 2: 1 3 3: 1 2 0: 2 -> 2 1: 1 -> 7/8 2: 4 -> 4 3: 2 -> 9/4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 + 4*v3 -7 < 0; value: -3 a 2*v2 + v3 -3 = 0; value: 0 a 6*v0 + 3*v1 + 2*v2 -16 < 0; value: -2 a v3 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 3 1: 1 3 5 2: 2 3 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 + 4*v3 -7 < 0; value: -3 a 2*v2 + v3 -3 = 0; value: 0 a 6*v0 + 3*v1 + 2*v2 -16 < 0; value: -2 a v3 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 3 1: 1 3 5 2: 2 3 3: 1 2 4 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 + 3*v2 -17 = 0; value: 0 a -5*v1 + 4*v2 + 2 <= 0; value: -2 a 5*v1 -1*v2 -16 = 0; value: 0 a 5*v0 -14 <= 0; value: -9 a -6*v1 + 5*v2 -5*v3 + 29 <= 0; value: 0 0: 1 4 1: 2 3 5 2: 1 2 3 5 3: 5 optimal: -6/5 a -6/5 <= 0; value: -6/5 d 5*v0 + 3*v2 -17 = 0; value: 0 a -11 <= 0; value: -11 d 5*v1 -1*v2 -16 = 0; value: 0 d 5*v0 -14 <= 0; value: 0 a -5*v3 + 68/5 <= 0; value: -57/5 0: 1 4 2 5 1: 2 3 5 2: 1 2 3 5 3: 5 0: 1 -> 14/5 1: 4 -> 17/5 2: 4 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -1*v1 -7 <= 0; value: -1 a -2*v0 + 3*v2 -3*v3 + 10 = 0; value: 0 a -5*v0 -6*v2 + 24 <= 0; value: -19 a 5*v1 -26 <= 0; value: -6 a -6*v1 + v2 + 2 < 0; value: -19 0: 1 2 3 1: 1 4 5 2: 2 3 5 3: 2 optimal: (502/77 -e*1) a + 502/77 < 0; value: 502/77 d 2*v0 -1*v1 -7 <= 0; value: 0 d -2*v0 + 3*v2 -3*v3 + 10 = 0; value: 0 d -77/12*v2 + 17/3 <= 0; value: 0 a -1817/77 < 0; value: -1817/77 d -17*v2 + 18*v3 -16 < 0; value: -885/77 0: 1 2 3 5 4 1: 1 4 5 2: 2 3 5 4 3: 2 3 5 4 0: 5 -> 1447/308 1: 4 -> 369/154 2: 3 -> 68/77 3: 3 -> 167/154 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -1*v1 + v2 + 4 <= 0; value: 0 a -5*v0 -4*v1 + 18 = 0; value: 0 a -6*v1 + 6*v3 -5 <= 0; value: -11 a -3*v0 -2*v2 + 2*v3 + 8 = 0; value: 0 a 3*v0 -6*v2 -1 < 0; value: -7 0: 1 2 4 5 1: 1 2 3 2: 1 4 5 3: 3 4 optimal: 33/14 a + 33/14 <= 0; value: 33/14 d -2*v0 -1*v1 + v2 + 4 <= 0; value: 0 d 9*v0 -4*v3 -14 = 0; value: 0 d 21*v0 -53 <= 0; value: 0 d -3*v0 -2*v2 + 2*v3 + 8 = 0; value: 0 a -109/14 < 0; value: -109/14 0: 1 2 4 5 3 1: 1 2 3 2: 1 4 5 2 3 3: 3 4 5 2 0: 2 -> 53/21 1: 2 -> 113/84 2: 2 -> 67/28 3: 1 -> 61/28 a 2*v0 -2*v1 <= 0; value: 8 a v1 -4*v2 + 12 = 0; value: 0 a -2*v0 + 5 < 0; value: -3 a -5*v0 -4*v2 + 2*v3 -5 < 0; value: -31 a v0 + v2 -20 < 0; value: -13 0: 2 3 4 1: 1 2: 1 3 4 3: 3 optimal: oo a 12*v0 -4*v3 + 34 < 0; value: 70 d v1 -4*v2 + 12 = 0; value: 0 a -2*v0 + 5 < 0; value: -3 d -5*v0 -4*v2 + 2*v3 -5 < 0; value: -4 a -1/4*v0 + 1/2*v3 -85/4 < 0; value: -83/4 0: 2 3 4 1: 1 2: 1 3 4 3: 3 4 0: 4 -> 4 1: 0 -> -27 2: 3 -> -15/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v3 + 1 <= 0; value: 0 a 6*v0 -4*v2 -19 < 0; value: -7 a -1*v1 + v2 -1 <= 0; value: -3 a -6*v0 + 3*v1 + 4*v2 -4 <= 0; value: -1 d <= 0; value: 0 0: 2 4 1: 3 4 2: 2 3 4 3: 1 optimal: oo a -1*v0 + 23/2 < 0; value: 15/2 a -1*v3 + 1 <= 0; value: 0 d 6*v0 -4*v2 -19 < 0; value: -7/2 d -1*v1 + v2 -1 <= 0; value: 0 a 9/2*v0 -161/4 < 0; value: -89/4 d <= 0; value: 0 0: 2 4 1: 3 4 2: 2 3 4 3: 1 0: 4 -> 4 1: 5 -> 9/8 2: 3 -> 17/8 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 5*v2 -2*v3 + 2 = 0; value: 0 a -5*v0 -4*v1 -6*v3 + 27 = 0; value: 0 a -6*v0 + 4*v1 -4*v3 -9 < 0; value: -3 a 2*v0 -5 <= 0; value: -3 0: 2 3 4 1: 2 3 2: 1 3: 1 2 3 optimal: oo a 9/2*v0 + 15/2*v2 -21/2 <= 0; value: -6 d 5*v2 -2*v3 + 2 = 0; value: 0 d -5*v0 -4*v1 -6*v3 + 27 = 0; value: 0 a -11*v0 -25*v2 + 8 < 0; value: -3 a 2*v0 -5 <= 0; value: -3 0: 2 3 4 1: 2 3 2: 1 3 3: 1 2 3 0: 1 -> 1 1: 4 -> 4 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v0 -3*v1 + v2 + 4 = 0; value: 0 a 5*v1 + 5*v2 -5*v3 -39 <= 0; value: -24 a -5*v1 -5*v2 + 33 <= 0; value: -2 a -4*v1 + v2 -4 <= 0; value: -17 a -2*v0 + 3*v2 + 5*v3 -32 <= 0; value: -13 0: 1 5 1: 1 2 3 4 2: 1 2 3 4 5 3: 2 5 optimal: oo a 3/2*v0 -53/10 <= 0; value: 11/5 d v0 -3*v1 + v2 + 4 = 0; value: 0 a -5*v3 -6 <= 0; value: -26 d -5/3*v0 -20/3*v2 + 79/3 <= 0; value: 0 a -5/4*v0 -213/20 <= 0; value: -169/10 a -11/4*v0 + 5*v3 -403/20 <= 0; value: -139/10 0: 1 5 3 4 2 1: 1 2 3 4 2: 1 2 3 4 5 3: 2 5 0: 5 -> 5 1: 4 -> 39/10 2: 3 -> 27/10 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + v2 -4 <= 0; value: -2 a 3*v0 -3*v3 + 5 <= 0; value: -4 a -1*v2 -1 <= 0; value: -3 a v2 -2*v3 + 4 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 5 1: 2: 1 3 4 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + v2 -4 <= 0; value: -2 a 3*v0 -3*v3 + 5 <= 0; value: -4 a -1*v2 -1 <= 0; value: -3 a v2 -2*v3 + 4 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 5 1: 2: 1 3 4 3: 2 4 0: 0 -> 0 1: 3 -> 3 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a 3*v0 + v2 -18 = 0; value: 0 a v1 -3*v3 -3 < 0; value: -8 a 6*v0 -37 <= 0; value: -7 a -4*v0 -6*v3 -27 <= 0; value: -59 a 3*v0 -3*v1 -22 <= 0; value: -10 0: 1 3 4 5 1: 2 5 2: 1 3: 2 4 optimal: 44/3 a + 44/3 <= 0; value: 44/3 a 3*v0 + v2 -18 = 0; value: 0 a v0 -3*v3 -31/3 < 0; value: -34/3 a 6*v0 -37 <= 0; value: -7 a -4*v0 -6*v3 -27 <= 0; value: -59 d 3*v0 -3*v1 -22 <= 0; value: 0 0: 1 3 4 5 2 1: 2 5 2: 1 3: 2 4 0: 5 -> 5 1: 1 -> -7/3 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -1*v1 + 2 = 0; value: 0 a 3*v1 + 3*v2 + 3*v3 -55 <= 0; value: -34 a -3*v0 + 2*v1 -3*v3 -6 <= 0; value: -20 a -2*v0 -2*v3 + 9 < 0; value: -3 0: 3 4 1: 1 2 3 2: 2 3: 2 3 4 optimal: oo a 2*v0 -4 <= 0; value: 6 d -1*v1 + 2 = 0; value: 0 a 3*v2 + 3*v3 -49 <= 0; value: -34 a -3*v0 -3*v3 -2 <= 0; value: -20 a -2*v0 -2*v3 + 9 < 0; value: -3 0: 3 4 1: 1 2 3 2: 2 3: 2 3 4 0: 5 -> 5 1: 2 -> 2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 + v3 -1 <= 0; value: -4 a v0 + 2*v2 -15 <= 0; value: -1 a -5*v0 -3*v3 <= 0; value: -26 a 3*v0 -1*v1 + 3*v2 -35 <= 0; value: -9 a -4*v2 + 3*v3 + 14 = 0; value: 0 0: 2 3 4 1: 4 2: 1 2 4 5 3: 1 3 5 optimal: oo a 7/2*v0 + 49 <= 0; value: 63 a -5/12*v0 -9/2 <= 0; value: -37/6 a -3/2*v0 -8 <= 0; value: -14 d -5*v0 -3*v3 <= 0; value: 0 d 3*v0 -1*v1 + 3*v2 -35 <= 0; value: 0 d -4*v2 + 3*v3 + 14 = 0; value: 0 0: 2 3 4 1 1: 4 2: 1 2 4 5 3: 1 3 5 2 0: 4 -> 4 1: 1 -> -55/2 2: 5 -> -3/2 3: 2 -> -20/3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 + 3*v2 + 3*v3 -35 <= 0; value: -19 a 4*v1 + v3 -54 < 0; value: -29 a -4*v0 -4*v3 -1 <= 0; value: -37 a v1 + 6*v3 -60 < 0; value: -25 a 3*v1 + 2*v3 -63 <= 0; value: -38 0: 3 1: 1 2 4 5 2: 1 3: 1 2 3 4 5 optimal: oo a 8*v0 -6*v2 + 143/2 <= 0; value: 183/2 d -1*v1 + 3*v2 + 3*v3 -35 <= 0; value: 0 a -13*v0 + 12*v2 -789/4 < 0; value: -901/4 d -4*v0 -4*v3 -1 <= 0; value: 0 a -9*v0 + 3*v2 -389/4 < 0; value: -509/4 a -11*v0 + 9*v2 -683/4 <= 0; value: -787/4 0: 3 2 4 5 1: 1 2 4 5 2: 1 2 4 5 3: 1 2 3 4 5 0: 4 -> 4 1: 5 -> -167/4 2: 2 -> 2 3: 5 -> -17/4 a 2*v0 -2*v1 <= 0; value: -4 a v0 + v2 -1 = 0; value: 0 a 4*v2 + 5*v3 -23 <= 0; value: -4 a 2*v2 -3*v3 + 7 = 0; value: 0 a 2*v1 + 2*v2 + 6*v3 -25 <= 0; value: -1 d <= 0; value: 0 0: 1 1: 4 2: 1 2 3 4 3: 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v0 + v2 -1 = 0; value: 0 a 4*v2 + 5*v3 -23 <= 0; value: -4 a 2*v2 -3*v3 + 7 = 0; value: 0 a 2*v1 + 2*v2 + 6*v3 -25 <= 0; value: -1 d <= 0; value: 0 0: 1 1: 4 2: 1 2 3 4 3: 2 3 4 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -5*v0 + 6*v3 -61 <= 0; value: -31 a v1 <= 0; value: 0 a v1 + v3 -5 = 0; value: 0 a -6*v0 + 5*v3 -54 < 0; value: -29 a -1*v0 -1*v1 <= 0; value: 0 0: 1 4 5 1: 2 3 5 2: 3: 1 3 4 optimal: 124 a + 124 <= 0; value: 124 d v0 -31 <= 0; value: 0 a -31 <= 0; value: -31 d v1 + v3 -5 = 0; value: 0 a -60 < 0; value: -60 d -1*v0 + v3 -5 <= 0; value: 0 0: 1 4 5 2 1: 2 3 5 2: 3: 1 3 4 5 2 0: 0 -> 31 1: 0 -> -31 2: 2 -> 2 3: 5 -> 36 a 2*v0 -2*v1 <= 0; value: 10 a -3*v0 -2*v1 + 4*v3 + 15 = 0; value: 0 a 6*v0 + 5*v2 -66 <= 0; value: -21 a 4*v2 -29 <= 0; value: -17 a 3*v0 -2*v3 -28 < 0; value: -13 a -1*v3 <= 0; value: 0 0: 1 2 4 1: 1 2: 2 3 3: 1 4 5 optimal: (95/3 -e*1) a + 95/3 < 0; value: 95/3 d -3*v0 -2*v1 + 4*v3 + 15 = 0; value: 0 d 6*v0 + 5*v2 -66 <= 0; value: 0 a -21 < 0; value: -21 d -5/2*v2 + 5 < 0; value: -5/4 d -1*v3 <= 0; value: 0 0: 1 2 4 1: 1 2: 2 3 4 3: 1 4 5 0: 5 -> 107/12 1: 0 -> -47/8 2: 3 -> 5/2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 -3*v1 + v3 + 1 <= 0; value: -3 a v0 <= 0; value: 0 a v0 -1*v1 + 3*v2 -13 <= 0; value: 0 a -1*v0 + 2*v1 + 3*v2 -19 = 0; value: 0 a -3*v0 + 4*v1 -10 <= 0; value: -2 0: 1 2 3 4 5 1: 1 3 4 5 2: 3 4 3: 1 optimal: -4 a -4 <= 0; value: -4 a v3 -5 <= 0; value: -3 d v0 <= 0; value: 0 d v0 -1*v1 + 3*v2 -13 <= 0; value: 0 d v0 + 9*v2 -45 = 0; value: 0 a -2 <= 0; value: -2 0: 1 2 3 4 5 1: 1 3 4 5 2: 3 4 1 5 3: 1 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -6*v3 + 13 <= 0; value: -17 a v0 + 3*v2 -5*v3 -2 <= 0; value: -7 a 5*v0 + v1 + 3*v3 -31 = 0; value: 0 a v3 -6 <= 0; value: -2 a 5*v3 -56 < 0; value: -36 0: 1 2 3 1: 3 2: 2 3: 1 2 3 4 5 optimal: oo a -36*v2 + 358 <= 0; value: 214 a 6*v2 -87 <= 0; value: -63 d v0 + 3*v2 -32 <= 0; value: 0 d 5*v0 + v1 + 3*v3 -31 = 0; value: 0 d v3 -6 <= 0; value: 0 a -26 < 0; value: -26 0: 1 2 3 1: 3 2: 2 1 3: 1 2 3 4 5 0: 3 -> 20 1: 4 -> -87 2: 4 -> 4 3: 4 -> 6 a 2*v0 -2*v1 <= 0; value: -10 a 3*v2 -4*v3 -10 <= 0; value: -23 a v2 + v3 -13 <= 0; value: -8 a -3*v0 -2*v1 -7 < 0; value: -17 a v1 -14 <= 0; value: -9 a v0 <= 0; value: 0 0: 3 5 1: 3 4 2: 1 2 3: 1 2 optimal: (7 -e*1) a + 7 < 0; value: 7 a 3*v2 -4*v3 -10 <= 0; value: -23 a v2 + v3 -13 <= 0; value: -8 d -3*v0 -2*v1 -7 < 0; value: -2 a -35/2 < 0; value: -35/2 d v0 <= 0; value: 0 0: 3 5 4 1: 3 4 2: 1 2 3: 1 2 0: 0 -> 0 1: 5 -> -5/2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v2 + 4*v3 + 1 < 0; value: -5 a v1 + v2 -17 <= 0; value: -9 a -3*v2 + 4*v3 -3 = 0; value: 0 a 5*v0 + 5*v1 -141 <= 0; value: -91 a 6*v0 -2*v3 -25 <= 0; value: -1 0: 4 5 1: 2 4 2: 1 2 3 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -6*v2 + 4*v3 + 1 < 0; value: -5 a v1 + v2 -17 <= 0; value: -9 a -3*v2 + 4*v3 -3 = 0; value: 0 a 5*v0 + 5*v1 -141 <= 0; value: -91 a 6*v0 -2*v3 -25 <= 0; value: -1 0: 4 5 1: 2 4 2: 1 2 3 3: 1 3 5 0: 5 -> 5 1: 5 -> 5 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a 5*v1 + 5*v2 + 2*v3 -62 < 0; value: -29 a -4*v1 -1*v2 + 4*v3 -8 <= 0; value: -3 a 5*v0 + 4*v1 -8 = 0; value: 0 a 3*v0 -6*v1 -2*v2 -4 <= 0; value: -22 a -3*v0 -1*v2 -3*v3 + 15 = 0; value: 0 0: 3 4 5 1: 1 2 3 4 2: 1 2 4 5 3: 1 2 5 optimal: (574/29 -e*1) a + 574/29 < 0; value: 574/29 d 58/21*v2 -382/7 < 0; value: -58/21 a -3203/87 < 0; value: -3203/87 d 5*v0 + 4*v1 -8 = 0; value: 0 d -11/2*v2 -21/2*v3 + 73/2 <= 0; value: 0 d -3*v0 -1*v2 -3*v3 + 15 = 0; value: 0 0: 3 4 5 2 1 1: 1 2 3 4 2: 1 2 4 5 3: 1 2 5 4 0: 0 -> 3104/609 1: 2 -> -2662/609 2: 3 -> 544/29 3: 4 -> -1289/203 a 2*v0 -2*v1 <= 0; value: 6 a v1 -2*v3 + 1 <= 0; value: -6 a v0 + 2*v1 + 4*v3 -53 <= 0; value: -31 a -3*v0 -7 <= 0; value: -19 a -1*v3 + 3 < 0; value: -1 a -3*v1 + 1 <= 0; value: -2 0: 2 3 1: 1 2 5 2: 3: 1 2 4 optimal: (80 -e*1) a + 80 < 0; value: 80 a -14/3 <= 0; value: -14/3 d v0 + 4*v3 -157/3 <= 0; value: 0 a -128 < 0; value: -128 d -1*v3 + 3 < 0; value: -1/2 d -3*v1 + 1 <= 0; value: 0 0: 2 3 1: 1 2 5 2: 3: 1 2 4 3 0: 4 -> 115/3 1: 1 -> 1/3 2: 1 -> 1 3: 4 -> 7/2 a 2*v0 -2*v1 <= 0; value: -4 a -4*v0 -1*v3 -3 <= 0; value: -11 a 3*v0 + 4*v1 + 5*v3 -53 < 0; value: -18 a v0 -2*v1 + 6*v3 -41 <= 0; value: -22 a 3*v0 + 2*v1 -1*v3 -8 <= 0; value: -3 a -3*v1 + 2*v3 <= 0; value: -1 0: 1 2 3 4 1: 2 3 4 5 2: 3: 1 2 3 4 5 optimal: 218/5 a + 218/5 <= 0; value: 218/5 d -4*v0 -1*v3 -3 <= 0; value: 0 a -1127/5 < 0; value: -1127/5 a -752/5 <= 0; value: -752/5 d 5/3*v0 -9 <= 0; value: 0 d -3*v1 + 2*v3 <= 0; value: 0 0: 1 2 3 4 1: 2 3 4 5 2: 3: 1 2 3 4 5 0: 1 -> 27/5 1: 3 -> -82/5 2: 5 -> 5 3: 4 -> -123/5 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 3*v1 -34 < 0; value: -15 a v1 + 4*v3 -13 < 0; value: -6 a -1*v3 + 1 <= 0; value: 0 a -2*v2 + 1 < 0; value: -9 a v0 + 2*v1 -23 <= 0; value: -15 0: 1 5 1: 1 2 5 2: 4 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 3*v1 -34 < 0; value: -15 a v1 + 4*v3 -13 < 0; value: -6 a -1*v3 + 1 <= 0; value: 0 a -2*v2 + 1 < 0; value: -9 a v0 + 2*v1 -23 <= 0; value: -15 0: 1 5 1: 1 2 5 2: 4 3: 2 3 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a v2 -2 <= 0; value: -1 a -3*v1 -2*v2 + 8 = 0; value: 0 a -3*v1 -2*v3 + 12 = 0; value: 0 a -3*v1 + v3 -2 < 0; value: -5 a -2*v3 -3 <= 0; value: -9 0: 1: 2 3 4 2: 1 2 3: 3 4 5 optimal: oo a 2*v0 -8/3 <= 0; value: -2/3 d v3 -4 <= 0; value: 0 d -3*v1 -2*v2 + 8 = 0; value: 0 d 2*v2 -2*v3 + 4 = 0; value: 0 a -2 < 0; value: -2 a -11 <= 0; value: -11 0: 1: 2 3 4 2: 1 2 3 4 3: 3 4 5 1 0: 1 -> 1 1: 2 -> 4/3 2: 1 -> 2 3: 3 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -5*v2 -4*v3 -34 < 0; value: -71 a -1*v0 -1*v2 + 7 = 0; value: 0 a -3*v1 + 2 < 0; value: -1 a v0 -2*v2 + 8 = 0; value: 0 a -1*v3 + 2 <= 0; value: -1 0: 2 4 1: 3 2: 1 2 4 3: 1 5 optimal: (8/3 -e*1) a + 8/3 < 0; value: 8/3 a -4*v3 -59 < 0; value: -71 d -1*v0 -1*v2 + 7 = 0; value: 0 d -3*v1 + 2 < 0; value: -1/2 d -3*v2 + 15 = 0; value: 0 a -1*v3 + 2 <= 0; value: -1 0: 2 4 1: 3 2: 1 2 4 3: 1 5 0: 2 -> 2 1: 1 -> 5/6 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + 2*v1 + v2 -28 <= 0; value: -8 a -1*v3 <= 0; value: 0 a -5*v1 + 4*v2 + 18 < 0; value: -2 a -4*v0 -1*v1 + 5*v3 + 20 = 0; value: 0 a 2*v0 -1*v2 -1*v3 -15 <= 0; value: -7 0: 1 4 5 1: 1 3 4 2: 1 3 5 3: 2 4 5 optimal: (75/7 -e*1) a + 75/7 < 0; value: 75/7 a -255/14 < 0; value: -255/14 d -1*v3 <= 0; value: 0 d 20*v0 + 4*v2 -82 < 0; value: -75/7 d -4*v0 -1*v1 + 5*v3 + 20 = 0; value: 0 d -7/5*v2 -34/5 <= 0; value: 0 0: 1 4 5 3 1: 1 3 4 2: 1 3 5 3: 2 4 5 3 1 0: 4 -> 127/28 1: 4 -> 13/7 2: 0 -> -34/7 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 2*v1 -11 <= 0; value: -7 a 2*v0 + 2*v1 -15 < 0; value: -5 a -1*v0 -6*v2 -3 < 0; value: -16 a -2*v0 -1*v2 -1*v3 <= 0; value: -4 a -5*v0 + 2*v1 -2*v2 <= 0; value: -1 0: 1 2 3 4 5 1: 1 2 5 2: 3 4 5 3: 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -4*v0 + 2*v1 -11 <= 0; value: -7 a 2*v0 + 2*v1 -15 < 0; value: -5 a -1*v0 -6*v2 -3 < 0; value: -16 a -2*v0 -1*v2 -1*v3 <= 0; value: -4 a -5*v0 + 2*v1 -2*v2 <= 0; value: -1 0: 1 2 3 4 5 1: 1 2 5 2: 3 4 5 3: 4 0: 1 -> 1 1: 4 -> 4 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 + 2*v2 -14 = 0; value: 0 a -1*v3 <= 0; value: 0 a v0 -1*v1 -2 < 0; value: -1 a -1*v0 -1*v1 + 6 <= 0; value: -3 a -4*v0 -4*v1 + 3 < 0; value: -33 0: 3 4 5 1: 1 3 4 5 2: 1 3: 2 optimal: (4 -e*1) a + 4 < 0; value: 4 d 3*v1 + 2*v2 -14 = 0; value: 0 a -1*v3 <= 0; value: 0 d v0 + 2/3*v2 -20/3 < 0; value: -1/2 a -2*v0 + 8 <= 0; value: -2 a -8*v0 + 11 <= 0; value: -29 0: 3 4 5 1: 1 3 4 5 2: 1 3 4 5 3: 2 0: 5 -> 5 1: 4 -> 7/2 2: 1 -> 7/4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a v1 -6*v3 -1 = 0; value: 0 a -6*v0 + 3*v2 + 4 <= 0; value: -20 a -2*v0 -5*v1 -10 <= 0; value: -23 a -1*v3 <= 0; value: 0 d <= 0; value: 0 0: 2 3 1: 1 3 2: 2 3: 1 4 optimal: oo a 2*v0 -2 <= 0; value: 6 d v1 -6*v3 -1 = 0; value: 0 a -6*v0 + 3*v2 + 4 <= 0; value: -20 a -2*v0 -15 <= 0; value: -23 d -1*v3 <= 0; value: 0 d <= 0; value: 0 0: 2 3 1: 1 3 2: 2 3: 1 4 3 0: 4 -> 4 1: 1 -> 1 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 7 <= 0; value: -1 a -1*v2 + 4 <= 0; value: -1 a 3*v0 -1*v3 -11 <= 0; value: -4 a -3*v3 -14 <= 0; value: -29 d <= 0; value: 0 0: 1 3 1: 2: 2 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 7 <= 0; value: -1 a -1*v2 + 4 <= 0; value: -1 a 3*v0 -1*v3 -11 <= 0; value: -4 a -3*v3 -14 <= 0; value: -29 d <= 0; value: 0 0: 1 3 1: 2: 2 3: 3 4 0: 4 -> 4 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -6*v2 -2*v3 + 1 <= 0; value: -3 a -3*v0 -2*v1 + 13 = 0; value: 0 a -3*v1 -1*v2 -4 < 0; value: -10 a 6*v0 + 4*v3 -55 <= 0; value: -29 a -1*v1 + 4*v2 + 2 <= 0; value: 0 0: 2 4 1: 2 3 5 2: 1 3 5 3: 1 4 optimal: (478/39 -e*1) a + 478/39 < 0; value: 478/39 d -6*v2 -2*v3 + 1 <= 0; value: 0 d -3*v0 -2*v1 + 13 = 0; value: 0 d 13/3*v3 -73/6 < 0; value: -7/4 a -175/13 <= 0; value: -175/13 d 3/2*v0 + 4*v2 -9/2 <= 0; value: 0 0: 2 4 3 5 1: 2 3 5 2: 1 3 5 4 3: 1 4 3 0: 3 -> 61/13 1: 2 -> -7/13 2: 0 -> -33/52 3: 2 -> 125/52 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a -2*v2 + 3*v3 -22 <= 0; value: -10 a 2*v1 + 4*v2 -2*v3 -1 <= 0; value: -7 a 6*v0 + v2 + 6*v3 -106 < 0; value: -64 0: 5 1: 4 2: 1 2 3 4 5 3: 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a -2*v2 + 3*v3 -22 <= 0; value: -10 a 2*v1 + 4*v2 -2*v3 -1 <= 0; value: -7 a 6*v0 + v2 + 6*v3 -106 < 0; value: -64 0: 5 1: 4 2: 1 2 3 4 5 3: 3 4 5 0: 3 -> 3 1: 1 -> 1 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + 2*v3 -9 < 0; value: -3 a -4*v0 + v2 -1 <= 0; value: 0 a v0 -1 <= 0; value: 0 a 3*v2 -37 <= 0; value: -22 a -2*v0 -4*v1 + 5*v2 -66 <= 0; value: -43 0: 2 3 5 1: 1 5 2: 2 4 5 3: 1 optimal: oo a 3*v0 -5/2*v2 + 33 < 0; value: 47/2 d -1*v1 + 2*v3 -9 < 0; value: -1 a -4*v0 + v2 -1 <= 0; value: 0 a v0 -1 <= 0; value: 0 a 3*v2 -37 <= 0; value: -22 d -2*v0 + 5*v2 -8*v3 -30 <= 0; value: 0 0: 2 3 5 1: 1 5 2: 2 4 5 3: 1 5 0: 1 -> 1 1: 0 -> -39/4 2: 5 -> 5 3: 3 -> -7/8 a 2*v0 -2*v1 <= 0; value: 2 a 3*v2 -7 <= 0; value: -4 a 2*v0 -3*v3 -5 <= 0; value: -13 a -6*v0 + v3 -5 <= 0; value: -13 a -1*v0 -5*v1 + 3*v2 -2 <= 0; value: -6 a 2*v0 -5*v2 -2*v3 + 9 <= 0; value: 0 0: 2 3 4 5 1: 4 2: 1 4 5 3: 2 3 5 optimal: oo a 24/5*v0 + 26/25 <= 0; value: 266/25 a -6*v0 -38/5 <= 0; value: -98/5 a -16*v0 -20 <= 0; value: -52 d -6*v0 + v3 -5 <= 0; value: 0 d -1*v0 -5*v1 + 3*v2 -2 <= 0; value: 0 d 2*v0 -5*v2 -2*v3 + 9 <= 0; value: 0 0: 2 3 4 5 1 1: 4 2: 1 4 5 3: 2 3 5 1 0: 2 -> 2 1: 1 -> -83/25 2: 1 -> -21/5 3: 4 -> 17 a 2*v0 -2*v1 <= 0; value: 0 a v3 -4 = 0; value: 0 a -5*v0 -4*v1 -3*v3 -10 < 0; value: -40 a 4*v1 + 2*v2 -25 <= 0; value: -11 a v1 + 3*v2 + 5*v3 -66 <= 0; value: -35 a -5*v0 -1*v3 + 14 = 0; value: 0 0: 2 5 1: 2 3 4 2: 3 4 3: 1 2 4 5 optimal: (20 -e*1) a + 20 < 0; value: 20 d v3 -4 = 0; value: 0 d -5*v0 -4*v1 -3*v3 -10 < 0; value: -4 a 2*v2 -57 < 0; value: -51 a 3*v2 -54 < 0; value: -45 d -5*v0 + 10 = 0; value: 0 0: 2 5 3 4 1: 2 3 4 2: 3 4 3: 1 2 4 5 3 0: 2 -> 2 1: 2 -> -7 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 -2 <= 0; value: -5 a -3*v3 + 7 <= 0; value: -5 a -2*v1 -3*v2 -18 <= 0; value: -39 a -4*v2 -9 <= 0; value: -29 a v0 -1*v3 + 2 = 0; value: 0 0: 5 1: 1 3 2: 3 4 3: 2 5 optimal: oo a 2*v3 <= 0; value: 8 d -1*v1 -2 <= 0; value: 0 a -3*v3 + 7 <= 0; value: -5 a -3*v2 -14 <= 0; value: -29 a -4*v2 -9 <= 0; value: -29 d v0 -1*v3 + 2 = 0; value: 0 0: 5 1: 1 3 2: 3 4 3: 2 5 0: 2 -> 2 1: 3 -> -2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -3*v3 -15 <= 0; value: -38 a 6*v3 -47 < 0; value: -17 a -3*v0 + v2 + 4 <= 0; value: -4 a -5*v0 + 3 <= 0; value: -17 a v0 -1*v2 -2*v3 + 2 <= 0; value: -8 0: 1 3 4 5 1: 2: 3 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -3*v3 -15 <= 0; value: -38 a 6*v3 -47 < 0; value: -17 a -3*v0 + v2 + 4 <= 0; value: -4 a -5*v0 + 3 <= 0; value: -17 a v0 -1*v2 -2*v3 + 2 <= 0; value: -8 0: 1 3 4 5 1: 2: 3 5 3: 1 2 5 0: 4 -> 4 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 5*v0 + v1 + 6*v2 -23 <= 0; value: -1 a v2 -3 = 0; value: 0 a -1*v0 -1*v2 + 2*v3 -5 = 0; value: 0 a -5*v2 -1*v3 + 19 = 0; value: 0 a -1*v0 -1*v2 <= 0; value: -3 0: 1 3 5 1: 1 2: 1 2 3 4 5 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a 5*v0 + v1 + 6*v2 -23 <= 0; value: -1 a v2 -3 = 0; value: 0 a -1*v0 -1*v2 + 2*v3 -5 = 0; value: 0 a -5*v2 -1*v3 + 19 = 0; value: 0 a -1*v0 -1*v2 <= 0; value: -3 0: 1 3 5 1: 1 2: 1 2 3 4 5 3: 3 4 0: 0 -> 0 1: 4 -> 4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 <= 0; value: -4 a -3*v0 + 3*v2 + 1 < 0; value: -2 a -5*v0 -2*v1 + 23 = 0; value: 0 a -2*v0 + 5*v1 -37 <= 0; value: -23 a -5*v2 + 6*v3 + 2 <= 0; value: -2 0: 2 3 4 1: 1 3 4 2: 2 5 3: 5 optimal: 46/5 a + 46/5 <= 0; value: 46/5 d 5/2*v0 -23/2 <= 0; value: 0 a 3*v2 -64/5 < 0; value: -34/5 d -5*v0 -2*v1 + 23 = 0; value: 0 a -231/5 <= 0; value: -231/5 a -5*v2 + 6*v3 + 2 <= 0; value: -2 0: 2 3 4 1 1: 1 3 4 2: 2 5 3: 5 0: 3 -> 23/5 1: 4 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a -6*v1 + 5*v2 -4*v3 + 1 <= 0; value: -25 a 2*v2 -1*v3 -1 = 0; value: 0 a -1*v3 + 3 <= 0; value: 0 a 5*v0 + 3*v3 -17 <= 0; value: -8 a v0 + 6*v3 -27 <= 0; value: -9 0: 4 5 1: 1 2: 1 2 3: 1 2 3 4 5 optimal: 139/54 a + 139/54 <= 0; value: 139/54 d -6*v1 + 5*v2 -4*v3 + 1 <= 0; value: 0 d 2*v2 -1*v3 -1 = 0; value: 0 a -37/27 <= 0; value: -37/27 d 9/2*v0 -7/2 <= 0; value: 0 d v0 + 12*v2 -33 <= 0; value: 0 0: 4 5 3 1: 1 2: 1 2 4 5 3 3: 1 2 3 4 5 0: 0 -> 7/9 1: 4 -> -55/108 2: 2 -> 145/54 3: 3 -> 118/27 a 2*v0 -2*v1 <= 0; value: 0 a v2 -4 = 0; value: 0 a 3*v2 -32 < 0; value: -20 a 3*v0 -4*v2 + 3 <= 0; value: -4 a v1 + 3*v3 -13 <= 0; value: -4 a -2*v0 -1*v1 -3*v3 -5 <= 0; value: -20 0: 3 5 1: 4 5 2: 1 2 3 3: 4 5 optimal: oo a 6*v0 + 6*v3 + 10 <= 0; value: 40 a v2 -4 = 0; value: 0 a 3*v2 -32 < 0; value: -20 a 3*v0 -4*v2 + 3 <= 0; value: -4 a -2*v0 -18 <= 0; value: -24 d -2*v0 -1*v1 -3*v3 -5 <= 0; value: 0 0: 3 5 4 1: 4 5 2: 1 2 3 3: 4 5 0: 3 -> 3 1: 3 -> -17 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -5*v2 -1*v3 -5 < 0; value: -3 a -1*v1 -5*v3 + 4 = 0; value: 0 a 2*v1 -21 < 0; value: -13 a -4*v1 + 5*v3 -12 <= 0; value: -28 a -5*v0 + 5*v2 -3*v3 + 1 <= 0; value: -4 0: 1 5 1: 2 3 4 2: 1 5 3: 1 2 4 5 optimal: oo a 5*v2 + 233/25 < 0; value: 233/25 d 2*v0 -5*v2 -153/25 < 0; value: -2 d -1*v1 -5*v3 + 4 = 0; value: 0 a -121/5 < 0; value: -121/5 d 25*v3 -28 <= 0; value: 0 a -15/2*v2 -883/50 < 0; value: -883/50 0: 1 5 1: 2 3 4 2: 1 5 3: 1 2 4 5 3 0: 1 -> 103/50 1: 4 -> -8/5 2: 0 -> 0 3: 0 -> 28/25 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 -3 <= 0; value: -8 a v1 -5*v2 + 6*v3 -5 < 0; value: -19 a 4*v3 -5 <= 0; value: -1 a -1*v1 -4 < 0; value: -9 a 4*v0 + 3*v3 -34 <= 0; value: -11 0: 5 1: 1 2 4 2: 2 3: 2 3 5 optimal: oo a -3/2*v3 + 23 <= 0; value: 43/2 d -1*v1 -3 <= 0; value: 0 a -5*v2 + 6*v3 -8 < 0; value: -27 a 4*v3 -5 <= 0; value: -1 a -1 < 0; value: -1 d 4*v0 + 3*v3 -34 <= 0; value: 0 0: 5 1: 1 2 4 2: 2 3: 2 3 5 0: 5 -> 31/4 1: 5 -> -3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 5*v2 -14 <= 0; value: -8 a 2*v1 + 2*v2 -23 < 0; value: -11 a 5*v1 + 2*v2 + 2*v3 -60 < 0; value: -39 a v2 -5 <= 0; value: -2 a -1*v2 + 1 < 0; value: -2 0: 1 1: 2 3 2: 1 2 3 4 5 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 5*v2 -14 <= 0; value: -8 a 2*v1 + 2*v2 -23 < 0; value: -11 a 5*v1 + 2*v2 + 2*v3 -60 < 0; value: -39 a v2 -5 <= 0; value: -2 a -1*v2 + 1 < 0; value: -2 0: 1 1: 2 3 2: 1 2 3 4 5 3: 3 0: 3 -> 3 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + 2*v1 + 4*v2 -4 <= 0; value: -9 a 4*v1 -6*v3 + 1 <= 0; value: -3 a v1 + 2*v2 + 2*v3 -6 = 0; value: 0 a -3*v1 + 5 <= 0; value: -1 a -3*v2 + v3 -3 <= 0; value: -1 0: 1 1: 1 2 3 4 2: 1 3 5 3: 2 3 5 optimal: oo a 2*v0 -10/3 <= 0; value: 8/3 a -3*v0 + 4*v2 -2/3 <= 0; value: -29/3 a 6*v2 -16/3 <= 0; value: -16/3 d v1 + 2*v2 + 2*v3 -6 = 0; value: 0 d 6*v2 + 6*v3 -13 <= 0; value: 0 a -4*v2 -5/6 <= 0; value: -5/6 0: 1 1: 1 2 3 4 2: 1 3 5 4 2 1 3: 2 3 5 4 1 0: 3 -> 3 1: 2 -> 5/3 2: 0 -> 0 3: 2 -> 13/6 a 2*v0 -2*v1 <= 0; value: -2 a v1 -6*v2 -1*v3 -8 < 0; value: -5 a -2*v0 -3*v2 + 4 = 0; value: 0 a -6*v0 -1*v2 -3*v3 + 12 = 0; value: 0 a v0 -3*v1 + 5 < 0; value: -2 a 2*v0 + 5*v1 -19 = 0; value: 0 0: 2 3 4 5 1: 1 4 5 2: 1 2 3 3: 1 3 optimal: (6/11 -e*1) a + 6/11 < 0; value: 6/11 a -1/9 <= 0; value: -1/9 d -2*v0 -3*v2 + 4 = 0; value: 0 d 8*v2 -3*v3 = 0; value: 0 d -99/80*v3 -2 < 0; value: -1 d 2*v0 + 5*v1 -19 = 0; value: 0 0: 2 3 4 5 1 1: 1 4 5 2: 1 2 3 4 3: 1 3 4 0: 2 -> 27/11 1: 3 -> 31/11 2: 0 -> -10/33 3: 0 -> -80/99 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 3*v2 -9 < 0; value: -1 a -6*v0 + v1 -1 = 0; value: 0 a -3*v0 -1*v2 -3*v3 + 7 = 0; value: 0 a -2*v1 -1*v2 + 3 <= 0; value: 0 0: 2 3 1: 1 2 4 2: 1 3 4 3: 3 optimal: (-1/3 -e*1) a -1/3 < 0; value: -1/3 d 1/2*v2 -3/2 < 0; value: -1/2 d -6*v0 + v1 -1 = 0; value: 0 d -3*v0 -1*v2 -3*v3 + 7 = 0; value: 0 d 3*v2 + 12*v3 -27 <= 0; value: 0 0: 2 3 4 1 1: 1 2 4 2: 1 3 4 3: 3 4 1 0: 0 -> -1/12 1: 1 -> 1/2 2: 1 -> 2 3: 2 -> 7/4 a 2*v0 -2*v1 <= 0; value: -6 a v0 -6*v1 -4*v3 + 8 < 0; value: -27 a 2*v0 -4*v1 -4*v3 -17 <= 0; value: -43 a -3*v1 -2*v2 + 20 = 0; value: 0 a -1*v0 -6*v2 -4*v3 + 23 < 0; value: -14 a 4*v0 -5*v1 -4*v3 -21 < 0; value: -49 0: 1 2 4 5 1: 1 2 3 5 2: 3 4 3: 1 2 4 5 optimal: oo a 5/3*v0 + 4/3*v3 -8/3 < 0; value: 3 d v0 + 4*v2 -4*v3 -32 < 0; value: -4 a 4/3*v0 -4/3*v3 -67/3 <= 0; value: -25 d -3*v1 -2*v2 + 20 = 0; value: 0 a 1/2*v0 -10*v3 -25 < 0; value: -109/2 a 19/6*v0 -2/3*v3 -83/3 <= 0; value: -53/2 0: 1 2 4 5 1: 1 2 3 5 2: 3 4 2 1 5 3: 1 2 4 5 0: 1 -> 1 1: 4 -> 1/6 2: 4 -> 39/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 2*v2 + v3 -57 <= 0; value: -18 a -6*v0 -3*v2 -38 < 0; value: -77 a 4*v1 + v2 -34 <= 0; value: -17 a 4*v1 -4*v2 + 1 <= 0; value: -7 d <= 0; value: 0 0: 1 2 1: 3 4 2: 1 2 3 4 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 + 2*v2 + v3 -57 <= 0; value: -18 a -6*v0 -3*v2 -38 < 0; value: -77 a 4*v1 + v2 -34 <= 0; value: -17 a 4*v1 -4*v2 + 1 <= 0; value: -7 d <= 0; value: 0 0: 1 2 1: 3 4 2: 1 2 3 4 3: 1 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 a 5*v0 -1*v2 -1*v3 -4 <= 0; value: 0 a -2*v1 -3*v2 -14 <= 0; value: -33 a v3 -2 <= 0; value: -1 a 3*v1 -13 <= 0; value: -7 0: 1 2 1: 3 5 2: 2 3 3: 2 4 optimal: oo a 2*v0 + 3*v2 + 14 <= 0; value: 33 a -1*v0 + 2 = 0; value: 0 a 5*v0 -1*v2 -1*v3 -4 <= 0; value: 0 d -2*v1 -3*v2 -14 <= 0; value: 0 a v3 -2 <= 0; value: -1 a -9/2*v2 -34 <= 0; value: -113/2 0: 1 2 1: 3 5 2: 2 3 5 3: 2 4 0: 2 -> 2 1: 2 -> -29/2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 + 4*v2 + 3*v3 -90 <= 0; value: -48 a 4*v2 -35 <= 0; value: -15 a 4*v2 -5*v3 <= 0; value: 0 a v2 -3*v3 <= 0; value: -7 a v0 + 3*v3 -25 <= 0; value: -8 0: 5 1: 1 2: 1 2 3 4 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 + 4*v2 + 3*v3 -90 <= 0; value: -48 a 4*v2 -35 <= 0; value: -15 a 4*v2 -5*v3 <= 0; value: 0 a v2 -3*v3 <= 0; value: -7 a v0 + 3*v3 -25 <= 0; value: -8 0: 5 1: 1 2: 1 2 3 4 3: 1 3 4 5 0: 5 -> 5 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -2*v2 -1 <= 0; value: -3 a -3*v1 -1*v3 + 2 < 0; value: -8 a -3*v0 -4*v1 + 23 = 0; value: 0 a -2*v1 + 2*v3 -9 <= 0; value: -5 a -1*v3 -2 <= 0; value: -6 0: 3 1: 2 3 4 2: 1 3: 2 4 5 optimal: (73/4 -e*1) a + 73/4 < 0; value: 73/4 a -2*v2 -1 <= 0; value: -3 d -4*v3 + 31/2 < 0; value: -1/4 d -3*v0 -4*v1 + 23 = 0; value: 0 d 3/2*v0 + 2*v3 -41/2 <= 0; value: 0 a -47/8 <= 0; value: -47/8 0: 3 2 4 1: 2 3 4 2: 1 3: 2 4 5 0: 5 -> 101/12 1: 2 -> -9/16 2: 1 -> 1 3: 4 -> 63/16 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 <= 0; value: -1 a -1*v3 + 2 = 0; value: 0 a -3*v0 + 2*v2 -6 <= 0; value: -1 a -5*v0 + 5*v2 + 2*v3 -51 < 0; value: -32 a -1*v0 + 1 = 0; value: 0 0: 3 4 5 1: 1 2: 3 4 3: 2 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v1 <= 0; value: 0 a -1*v3 + 2 = 0; value: 0 a 2*v2 -9 <= 0; value: -1 a 5*v2 + 2*v3 -56 < 0; value: -32 d -1*v0 + 1 = 0; value: 0 0: 3 4 5 1: 1 2: 3 4 3: 2 4 0: 1 -> 1 1: 1 -> 0 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 10 a -4*v0 -2*v1 + 15 <= 0; value: -5 a -4*v2 -5*v3 + 25 = 0; value: 0 a 2*v0 -4*v1 + 6*v2 -41 < 0; value: -1 a -1*v1 <= 0; value: 0 a -3*v1 + 2*v2 -5*v3 -10 < 0; value: -5 0: 1 3 1: 1 3 4 5 2: 2 3 5 3: 2 5 optimal: oo a 15/2*v3 + 7/2 < 0; value: 11 a -15*v3 + 8 < 0; value: -7 d -4*v2 -5*v3 + 25 = 0; value: 0 d 2*v0 + 6*v2 -41 < 0; value: -1/2 d -1*v1 <= 0; value: 0 a -15/2*v3 + 5/2 < 0; value: -5 0: 1 3 1: 1 3 4 5 2: 2 3 5 1 3: 2 5 1 0: 5 -> 21/4 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 3 = 0; value: 0 a -1*v1 -1*v2 -1 < 0; value: -3 a -4*v0 -3*v3 -20 <= 0; value: -41 a 5*v0 -3*v2 -33 <= 0; value: -21 a 6*v1 + 2*v2 -3*v3 + 1 <= 0; value: 0 0: 1 3 4 1: 2 5 2: 2 4 5 3: 3 5 optimal: oo a 2*v0 + 2*v2 + 2 < 0; value: 10 a -1*v0 + 3 = 0; value: 0 d -1*v1 -1*v2 -1 < 0; value: -1 a -4*v0 -3*v3 -20 <= 0; value: -41 a 5*v0 -3*v2 -33 <= 0; value: -21 a -4*v2 -3*v3 -5 < 0; value: -18 0: 1 3 4 1: 2 5 2: 2 4 5 3: 3 5 0: 3 -> 3 1: 1 -> -1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 2*v3 -4 <= 0; value: -13 a -1*v1 -1*v2 + 2 = 0; value: 0 a -1*v1 + 1 = 0; value: 0 a 2*v0 -4*v2 -11 <= 0; value: -5 a -2*v1 + 1 <= 0; value: -1 0: 1 4 1: 2 3 5 2: 2 4 3: 1 optimal: 13 a + 13 <= 0; value: 13 a 2*v3 -53/2 <= 0; value: -41/2 d -1*v1 -1*v2 + 2 = 0; value: 0 d v2 -1 = 0; value: 0 d 2*v0 -15 <= 0; value: 0 a -1 <= 0; value: -1 0: 1 4 1: 2 3 5 2: 2 4 3 5 3: 1 0: 5 -> 15/2 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v1 + 5*v2 -17 <= 0; value: -3 a -3*v0 + 4*v1 + 4*v3 -7 <= 0; value: 0 a 4*v0 -6*v1 -1*v3 + 3 <= 0; value: -9 a v1 -3*v3 -4 = 0; value: 0 a -1*v0 -5*v3 + 3 = 0; value: 0 0: 2 3 5 1: 1 2 3 4 2: 1 3: 2 3 4 5 optimal: 22/13 a + 22/13 <= 0; value: 22/13 a 5*v2 -178/13 <= 0; value: -48/13 a -93/13 <= 0; value: -93/13 d 39/5*v0 -162/5 <= 0; value: 0 d v1 -3*v3 -4 = 0; value: 0 d -1*v0 -5*v3 + 3 = 0; value: 0 0: 2 3 5 1 1: 1 2 3 4 2: 1 3: 2 3 4 5 1 0: 3 -> 54/13 1: 4 -> 43/13 2: 2 -> 2 3: 0 -> -3/13 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 -5*v3 + 30 = 0; value: 0 a v2 -4 = 0; value: 0 a -5*v1 + v2 + 21 = 0; value: 0 a -3*v0 -5*v1 -2*v2 + 48 = 0; value: 0 a -1*v0 + v1 = 0; value: 0 0: 1 4 5 1: 3 4 5 2: 2 3 4 3: 1 optimal: 0 a <= 0; value: 0 d -1*v0 -5*v3 + 30 = 0; value: 0 d v2 -4 = 0; value: 0 d -5*v1 + v2 + 21 = 0; value: 0 d 15*v3 -75 = 0; value: 0 a = 0; value: 0 0: 1 4 5 1: 3 4 5 2: 2 3 4 5 3: 1 4 5 0: 5 -> 5 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 + v1 -1*v3 -13 = 0; value: 0 a -1*v0 + 5*v1 -9 <= 0; value: -4 a 6*v1 -31 <= 0; value: -19 a 2*v1 -3*v2 + 5 = 0; value: 0 0: 1 2 1: 1 2 3 4 2: 4 3: 1 optimal: oo a 2*v0 -3*v2 + 5 <= 0; value: 6 d 3*v0 + v1 -1*v3 -13 = 0; value: 0 a -1*v0 + 15/2*v2 -43/2 <= 0; value: -4 a 9*v2 -46 <= 0; value: -19 d -6*v0 -3*v2 + 2*v3 + 31 = 0; value: 0 0: 1 2 4 3 1: 1 2 3 4 2: 4 2 3 3: 1 4 2 3 0: 5 -> 5 1: 2 -> 2 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 -3*v3 <= 0; value: 0 a -5*v1 -4*v3 -1 < 0; value: -6 a -6*v0 + 6*v1 + v2 -18 <= 0; value: -7 a 4*v0 -3*v3 <= 0; value: 0 a 2*v0 -2*v1 -3*v2 + 2 < 0; value: -15 0: 1 3 4 5 1: 2 3 5 2: 3 5 3: 1 2 4 optimal: oo a 3*v2 -2 < 0; value: 13 a -5/4*v0 -45/8*v2 + 9/2 <= 0; value: -189/8 d -5*v1 -4*v3 -1 < 0; value: -5 a -8*v2 -12 < 0; value: -52 a 31/4*v0 -45/8*v2 + 9/2 <= 0; value: -189/8 d 2*v0 -3*v2 + 8/5*v3 + 12/5 <= 0; value: 0 0: 1 3 4 5 1: 2 3 5 2: 3 5 1 4 3: 1 2 4 5 3 0: 0 -> 0 1: 1 -> -11/2 2: 5 -> 5 3: 0 -> 63/8 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 <= 0; value: 0 a v2 -2 <= 0; value: -1 a -6*v1 + 5*v2 <= 0; value: -1 a 6*v0 -6*v2 + v3 <= 0; value: -2 a -3*v0 + 4*v1 -11 <= 0; value: -7 0: 1 4 5 1: 3 5 2: 2 3 4 3: 4 optimal: oo a 1/3*v0 -5/18*v3 <= 0; value: -10/9 a -1*v0 <= 0; value: 0 a v0 + 1/6*v3 -2 <= 0; value: -4/3 d -6*v1 + 5*v2 <= 0; value: 0 d 6*v0 -6*v2 + v3 <= 0; value: 0 a 1/3*v0 + 5/9*v3 -11 <= 0; value: -79/9 0: 1 4 5 2 1: 3 5 2: 2 3 4 5 3: 4 2 5 0: 0 -> 0 1: 1 -> 5/9 2: 1 -> 2/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 2*v1 + 5*v3 + 7 <= 0; value: 0 a -5*v0 + 6*v1 -9 = 0; value: 0 a -1*v0 + 5*v2 -46 < 0; value: -24 a -1*v0 + v1 -2 <= 0; value: -1 a v1 -4 = 0; value: 0 0: 1 2 3 4 1: 1 2 4 5 2: 3 3: 1 optimal: -2 a -2 <= 0; value: -2 a 5*v3 <= 0; value: 0 d -5*v0 + 6*v1 -9 = 0; value: 0 a 5*v2 -49 < 0; value: -24 a -1 <= 0; value: -1 d 5/6*v0 -5/2 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 4 5 2: 3 3: 1 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 2*v2 -6*v3 + 3 <= 0; value: -1 a -4*v2 -3 <= 0; value: -7 a v0 -1 <= 0; value: 0 a 6*v0 -5*v1 -8 < 0; value: -2 a -1*v2 + 1 <= 0; value: 0 0: 3 4 1: 4 2: 1 2 5 3: 1 optimal: oo a -2/5*v0 + 16/5 < 0; value: 14/5 a 2*v2 -6*v3 + 3 <= 0; value: -1 a -4*v2 -3 <= 0; value: -7 a v0 -1 <= 0; value: 0 d 6*v0 -5*v1 -8 < 0; value: -1 a -1*v2 + 1 <= 0; value: 0 0: 3 4 1: 4 2: 1 2 5 3: 1 0: 1 -> 1 1: 0 -> -1/5 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -2*v2 + 1 <= 0; value: -7 a -5*v0 + 6*v1 + 4*v3 -13 = 0; value: 0 a 2*v0 -1*v3 -5 = 0; value: 0 a 2*v0 + 4*v1 -51 <= 0; value: -29 a -1*v2 + 4 = 0; value: 0 0: 2 3 4 1: 2 4 2: 1 5 3: 2 3 optimal: oo a 3*v0 -11 <= 0; value: 4 a -2*v2 + 1 <= 0; value: -7 d -5*v0 + 6*v1 + 4*v3 -13 = 0; value: 0 d 2*v0 -1*v3 -5 = 0; value: 0 a -29 <= 0; value: -29 a -1*v2 + 4 = 0; value: 0 0: 2 3 4 1: 2 4 2: 1 5 3: 2 3 4 0: 5 -> 5 1: 3 -> 3 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -5*v0 + 4*v1 + v2 -43 < 0; value: -27 a v2 + 6*v3 -32 <= 0; value: -21 a -3*v0 -4*v1 + 19 = 0; value: 0 a 3*v0 + 4*v1 -38 < 0; value: -19 a v3 -1 = 0; value: 0 0: 1 3 4 1: 1 3 4 2: 1 2 3: 2 5 optimal: oo a 7/2*v0 -19/2 <= 0; value: -6 a -8*v0 + v2 -24 < 0; value: -27 a v2 + 6*v3 -32 <= 0; value: -21 d -3*v0 -4*v1 + 19 = 0; value: 0 a -19 < 0; value: -19 a v3 -1 = 0; value: 0 0: 1 3 4 1: 1 3 4 2: 1 2 3: 2 5 0: 1 -> 1 1: 4 -> 4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + v2 + v3 + 6 = 0; value: 0 a -3*v0 -2*v3 + 9 <= 0; value: -5 a 6*v1 -6*v2 -3*v3 -35 <= 0; value: -20 a v0 -3*v3 -1 <= 0; value: 0 a 5*v0 -2*v1 + 3*v3 -31 < 0; value: -16 0: 1 2 4 5 1: 3 5 2: 1 3 3: 1 2 3 4 5 optimal: (236/11 -e*1) a + 236/11 < 0; value: 236/11 d -2*v0 + v2 + v3 + 6 = 0; value: 0 d -11/3*v0 + 29/3 <= 0; value: 0 a -853/11 < 0; value: -853/11 d -5*v0 + 3*v2 + 17 <= 0; value: 0 d 5*v0 -2*v1 + 3*v3 -31 < 0; value: -2 0: 1 2 4 5 3 1: 3 5 2: 1 3 2 4 3: 1 2 3 4 5 0: 4 -> 29/11 1: 4 -> -78/11 2: 1 -> -14/11 3: 1 -> 6/11 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 -5*v2 -19 < 0; value: -48 a -1*v0 -2*v2 -1 < 0; value: -12 a -6*v0 + 5*v2 -55 <= 0; value: -36 a 2*v0 -1*v1 + v2 -5 < 0; value: -3 0: 1 2 3 4 1: 4 2: 1 2 3 4 3: optimal: (302/17 -e*1) a + 302/17 < 0; value: 302/17 a -108/17 <= 0; value: -108/17 d -1*v0 -2*v2 -1 < 0; value: -2 d -17/2*v0 -115/2 < 0; value: -17/2 d 2*v0 -1*v1 + v2 -5 < 0; value: -1 0: 1 2 3 4 1: 4 2: 1 2 3 4 3: 0: 1 -> -98/17 1: 5 -> -413/34 2: 5 -> 115/34 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 + 2*v2 -5*v3 -16 = 0; value: 0 a -2*v0 + 3*v2 + 1 = 0; value: 0 a -4*v0 -5*v1 + 4*v3 + 45 = 0; value: 0 a -3*v1 -1*v3 -9 <= 0; value: -24 a -3*v0 + 2*v2 + 9 = 0; value: 0 0: 2 3 5 1: 1 3 4 2: 1 2 5 3: 1 3 4 optimal: 0 a <= 0; value: 0 d 2*v1 + 2*v2 -5*v3 -16 = 0; value: 0 d -2*v0 + 3*v2 + 1 = 0; value: 0 d -4*v0 + 5*v2 -17/2*v3 + 5 = 0; value: 0 a -24 <= 0; value: -24 d -5/3*v0 + 25/3 = 0; value: 0 0: 2 3 5 4 1: 1 3 4 2: 1 2 5 3 4 3: 1 3 4 0: 5 -> 5 1: 5 -> 5 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + v1 + 3*v3 -17 <= 0; value: -11 a 5*v3 -12 < 0; value: -2 a -1*v0 + 3*v1 -3*v2 + 8 < 0; value: -7 a -3*v1 -1*v3 + 2 = 0; value: 0 a -2*v1 + v3 -5 <= 0; value: -3 0: 1 3 1: 1 3 4 5 2: 3 3: 1 2 4 5 optimal: (62/9 -e*1) a + 62/9 < 0; value: 62/9 d 3*v0 -149/15 <= 0; value: 0 d 5*v3 -12 < 0; value: -1 a -3*v2 + 193/45 < 0; value: -482/45 d -3*v1 -1*v3 + 2 = 0; value: 0 a -7/3 <= 0; value: -7/3 0: 1 3 1: 1 3 4 5 2: 3 3: 1 2 4 5 3 0: 0 -> 149/45 1: 0 -> -1/15 2: 5 -> 5 3: 2 -> 11/5 a 2*v0 -2*v1 <= 0; value: -2 a v2 <= 0; value: 0 a -4*v2 + 5*v3 -6 <= 0; value: -1 a v0 + 4*v2 -3 <= 0; value: -1 a 5*v1 -5*v2 -3*v3 -12 = 0; value: 0 a -1*v3 <= 0; value: -1 0: 3 1: 4 2: 1 2 3 4 3: 2 4 5 optimal: 81/5 a + 81/5 <= 0; value: 81/5 a -3/2 <= 0; value: -3/2 d -4*v2 -6 <= 0; value: 0 d v0 -9 <= 0; value: 0 d 5*v1 -5*v2 -3*v3 -12 = 0; value: 0 d -1*v3 <= 0; value: 0 0: 3 1: 4 2: 1 2 3 4 3: 2 4 5 0: 2 -> 9 1: 3 -> 9/10 2: 0 -> -3/2 3: 1 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -3*v1 -5*v2 + 10 = 0; value: 0 a -1*v1 <= 0; value: 0 a -3*v0 -6*v2 -1*v3 + 26 = 0; value: 0 a -4*v0 -1*v2 -5*v3 + 39 = 0; value: 0 a 5*v1 -6*v2 -9 < 0; value: -21 0: 3 4 1: 1 2 5 2: 1 3 4 5 3: 3 4 optimal: (4182/473 -e*1) a + 4182/473 < 0; value: 4182/473 d -3*v1 -5*v2 + 10 = 0; value: 0 a -105/43 < 0; value: -105/43 d -3*v0 -6*v2 -1*v3 + 26 = 0; value: 0 d -7/2*v0 -29/6*v3 + 104/3 = 0; value: 0 d 473/87*v0 -1082/29 < 0; value: -473/87 0: 3 4 2 5 1: 1 2 5 2: 1 3 4 5 2 3: 3 4 2 5 0: 3 -> 2773/473 1: 0 -> 6770/3741 2: 2 -> 1140/1247 3: 5 -> 40151/13717 a 2*v0 -2*v1 <= 0; value: 8 a -3*v2 -4*v3 + 10 < 0; value: -7 a -2*v2 -1*v3 + 7 <= 0; value: -1 a 2*v1 + 5*v3 -29 < 0; value: -19 a -5*v3 + 3 <= 0; value: -7 a 2*v1 + 3*v2 -5*v3 + 1 = 0; value: 0 0: 1: 3 5 2: 1 2 5 3: 1 2 3 4 5 optimal: oo a 2*v0 + 38/5 <= 0; value: 78/5 a -2 < 0; value: -2 d -2*v2 -1*v3 + 7 <= 0; value: 0 a -168/5 < 0; value: -168/5 d 10*v2 -32 <= 0; value: 0 d 2*v1 + 3*v2 -5*v3 + 1 = 0; value: 0 0: 1: 3 5 2: 1 2 5 3 4 3: 1 2 3 4 5 0: 4 -> 4 1: 0 -> -19/5 2: 3 -> 16/5 3: 2 -> 3/5 a 2*v0 -2*v1 <= 0; value: 0 a 4*v1 + v2 -29 <= 0; value: -12 a -3*v1 + 5*v2 + 4*v3 -80 <= 0; value: -48 a 4*v0 -3*v3 <= 0; value: 0 a 6*v1 + 6*v3 -89 < 0; value: -47 a -1*v2 + 5 = 0; value: 0 0: 3 1: 1 2 4 2: 1 2 5 3: 2 3 4 optimal: oo a -14/9*v0 + 110/3 <= 0; value: 32 a 64/9*v0 -292/3 <= 0; value: -76 d -3*v1 + 5*v2 + 4*v3 -80 <= 0; value: 0 d 4*v0 -3*v3 <= 0; value: 0 a 56/3*v0 -199 < 0; value: -143 d -1*v2 + 5 = 0; value: 0 0: 3 4 1 1: 1 2 4 2: 1 2 5 4 3: 2 3 4 1 0: 3 -> 3 1: 3 -> -13 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -1*v3 + 1 <= 0; value: -4 a -5*v2 + 1 < 0; value: -4 a 3*v0 -6*v1 -22 <= 0; value: -13 a 5*v0 -1*v1 -1*v3 -28 < 0; value: -18 a 2*v0 + 6*v1 -4*v3 -1 <= 0; value: -15 0: 3 4 5 1: 1 3 4 5 2: 2 3: 1 4 5 optimal: oo a 2/9*v3 + 344/27 < 0; value: 374/27 a -7/9*v3 -25/27 <= 0; value: -130/27 a -5*v2 + 1 < 0; value: -4 d 3*v0 -6*v1 -22 <= 0; value: 0 d 9/2*v0 -1*v3 -73/3 < 0; value: -9/2 a -26/9*v3 + 109/27 <= 0; value: -281/27 0: 3 4 5 1 1: 1 3 4 5 2: 2 3: 1 4 5 0: 3 -> 149/27 1: 0 -> -49/54 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 + 6*v1 -9 < 0; value: -3 a -1*v2 -1 <= 0; value: -3 a 2*v0 + v3 <= 0; value: 0 a -4*v0 + 2*v2 + v3 -9 < 0; value: -5 a -1*v1 + 6*v3 + 1 <= 0; value: 0 0: 1 3 4 1: 1 5 2: 2 4 3: 3 4 5 optimal: oo a 2*v0 -12*v3 -2 <= 0; value: -2 a -4*v0 + 36*v3 -3 < 0; value: -3 a -1*v2 -1 <= 0; value: -3 a 2*v0 + v3 <= 0; value: 0 a -4*v0 + 2*v2 + v3 -9 < 0; value: -5 d -1*v1 + 6*v3 + 1 <= 0; value: 0 0: 1 3 4 1: 1 5 2: 2 4 3: 3 4 5 1 0: 0 -> 0 1: 1 -> 1 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -1*v3 + 1 <= 0; value: -1 a -6*v0 -1*v2 + 26 = 0; value: 0 a -1*v0 + 4 <= 0; value: 0 a 5*v1 + 2*v2 -14 < 0; value: -5 a v2 -5 <= 0; value: -3 0: 2 3 1: 4 2: 2 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a -1*v3 + 1 <= 0; value: -1 a -6*v0 -1*v2 + 26 = 0; value: 0 a -1*v0 + 4 <= 0; value: 0 a 5*v1 + 2*v2 -14 < 0; value: -5 a v2 -5 <= 0; value: -3 0: 2 3 1: 4 2: 2 4 5 3: 1 0: 4 -> 4 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a 5*v1 -56 <= 0; value: -31 a 3*v0 -1*v2 -2*v3 + 6 = 0; value: 0 a v1 + 2*v3 -15 = 0; value: 0 a 4*v0 -6*v1 -4*v3 -39 <= 0; value: -81 a 3*v0 -2*v2 -5*v3 + 23 = 0; value: 0 0: 2 4 5 1: 1 3 4 2: 2 5 3: 2 3 4 5 optimal: 69/2 a + 69/2 <= 0; value: 69/2 a -305/2 <= 0; value: -305/2 d 3*v0 -1*v2 -2*v3 + 6 = 0; value: 0 d v1 + 2*v3 -15 = 0; value: 0 d -20*v0 -41 <= 0; value: 0 d -9/2*v0 + 1/2*v2 + 8 = 0; value: 0 0: 2 4 5 1 1: 1 3 4 2: 2 5 4 1 3: 2 3 4 5 1 0: 2 -> -41/20 1: 5 -> -193/10 2: 2 -> -689/20 3: 5 -> 343/20 a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 -3*v2 -1 < 0; value: -4 a 3*v0 -5*v1 + 1 <= 0; value: -1 a 6*v1 + 5*v2 -60 <= 0; value: -39 a -2*v0 + 6*v2 + v3 -17 = 0; value: 0 a v1 -1*v2 -2*v3 + 4 = 0; value: 0 0: 1 2 4 1: 2 3 5 2: 1 3 4 5 3: 4 5 optimal: (290/279 -e*1) a + 290/279 < 0; value: 290/279 d 279/55*v0 -502/55 < 0; value: -223/110 d -17*v0 + 55*v2 -149 <= 0; value: 0 a -10043/279 <= 0; value: -10043/279 d -2*v0 + 6*v2 + v3 -17 = 0; value: 0 d v1 -1*v2 -2*v3 + 4 = 0; value: 0 0: 1 2 4 3 1: 2 3 5 2: 1 3 4 5 2 3: 4 5 2 3 0: 1 -> 781/558 1: 1 -> 967/930 2: 3 -> 96419/30690 3: 1 -> 14563/15345 a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 -65 < 0; value: -41 a -5*v0 + 5*v3 + 18 <= 0; value: -2 a 3*v1 -2*v2 -10 < 0; value: -2 a v2 -3*v3 -4 < 0; value: -2 a -1*v0 + 1 < 0; value: -3 0: 1 2 5 1: 3 2: 3 4 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 -65 < 0; value: -41 a -5*v0 + 5*v3 + 18 <= 0; value: -2 a 3*v1 -2*v2 -10 < 0; value: -2 a v2 -3*v3 -4 < 0; value: -2 a -1*v0 + 1 < 0; value: -3 0: 1 2 5 1: 3 2: 3 4 3: 2 4 0: 4 -> 4 1: 4 -> 4 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 -1*v3 -4 = 0; value: 0 a 5*v1 -2*v2 -23 <= 0; value: -12 a v0 -2*v2 -1 <= 0; value: 0 a -1*v2 -6*v3 + 22 <= 0; value: -10 a v0 -1*v1 + 3*v2 -8 = 0; value: 0 0: 3 5 1: 1 2 5 2: 2 3 4 5 3: 1 4 optimal: 424/91 a + 424/91 <= 0; value: 424/91 d 3*v1 -1*v3 -4 = 0; value: 0 a -1322/91 <= 0; value: -1322/91 d v0 -2*v2 -1 <= 0; value: 0 d -91/2*v0 + 435/2 <= 0; value: 0 d v0 + 3*v2 -1/3*v3 -28/3 = 0; value: 0 0: 3 5 4 2 1: 1 2 5 2: 2 3 4 5 3: 1 4 5 2 0: 5 -> 435/91 1: 3 -> 223/91 2: 2 -> 172/91 3: 5 -> 305/91 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -1*v2 + 5*v3 + 1 <= 0; value: 0 a -2*v1 + v3 + 4 <= 0; value: -4 a -1*v0 + 2*v2 + 3*v3 -5 = 0; value: 0 a 3*v0 -2*v3 -7 <= 0; value: -4 0: 1 3 4 1: 2 2: 1 3 3: 1 2 3 4 optimal: 26/45 a + 26/45 <= 0; value: 26/45 d 45/4*v0 -97/4 <= 0; value: 0 d -2*v1 + v3 + 4 <= 0; value: 0 d -1*v0 + 2*v2 + 3*v3 -5 = 0; value: 0 d 7/3*v0 + 4/3*v2 -31/3 <= 0; value: 0 0: 1 3 4 1: 2 2: 1 3 4 3: 1 2 3 4 0: 1 -> 97/45 1: 4 -> 28/15 2: 3 -> 179/45 3: 0 -> -4/15 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 + 3*v3 -19 <= 0; value: -10 a v0 -4*v2 + 6*v3 -17 = 0; value: 0 a -5*v0 -2*v1 + 3*v2 + 7 <= 0; value: -13 a -1*v3 -1 <= 0; value: -5 a -1*v3 + 4 <= 0; value: 0 0: 2 3 1: 3 2: 1 2 3 3: 1 2 4 5 optimal: oo a 25/4*v0 -49/4 <= 0; value: 19 a -1/4*v0 -35/4 <= 0; value: -10 d v0 -4*v2 + 6*v3 -17 = 0; value: 0 d -5*v0 -2*v1 + 3*v2 + 7 <= 0; value: 0 a -5 <= 0; value: -5 d -1*v3 + 4 <= 0; value: 0 0: 2 3 1 1: 3 2: 1 2 3 3: 1 2 4 5 0: 5 -> 5 1: 2 -> -9/2 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -4*v1 -6*v2 + 27 <= 0; value: -3 a v0 + 2*v1 -5*v2 + 7 <= 0; value: 0 a -2*v2 -1 <= 0; value: -7 a -3*v0 + 4*v2 -6 = 0; value: 0 a 3*v1 + 3*v3 -25 <= 0; value: -10 0: 2 4 1: 1 2 5 2: 1 2 3 4 3: 5 optimal: oo a 17/4*v0 -9 <= 0; value: -1/2 d -4*v1 -6*v2 + 27 <= 0; value: 0 a -5*v0 + 17/2 <= 0; value: -3/2 a -3/2*v0 -4 <= 0; value: -7 d -3*v0 + 4*v2 -6 = 0; value: 0 a -27/8*v0 + 3*v3 -23/2 <= 0; value: -49/4 0: 2 4 3 5 1: 1 2 5 2: 1 2 3 4 5 3: 5 0: 2 -> 2 1: 3 -> 9/4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 + 5 = 0; value: 0 a -1*v1 -2*v3 + 6 = 0; value: 0 a 2*v0 -5 < 0; value: -1 a -1*v1 -1*v2 + 8 < 0; value: -1 a v1 + 2*v2 + 6*v3 -29 <= 0; value: -9 0: 3 1: 2 4 5 2: 1 4 5 3: 2 5 optimal: (-1 -e*1) a -1 < 0; value: -1 d -1*v2 + 5 = 0; value: 0 d -1*v1 -2*v3 + 6 = 0; value: 0 d 2*v0 -5 < 0; value: -1/2 d -1*v2 + 2*v3 + 2 < 0; value: -1/2 a -7 <= 0; value: -7 0: 3 1: 2 4 5 2: 1 4 5 3: 2 5 4 0: 2 -> 9/4 1: 4 -> 7/2 2: 5 -> 5 3: 1 -> 5/4 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 -17 < 0; value: -9 a 3*v0 + v3 -33 <= 0; value: -18 a -1*v1 -1*v2 + 3*v3 -3 <= 0; value: 0 a v0 -4 = 0; value: 0 a -3*v2 -1*v3 + 17 <= 0; value: -1 0: 1 2 4 1: 3 2: 3 5 3: 2 3 5 optimal: oo a 2*v0 + 20*v2 -96 <= 0; value: 12 a 2*v0 -17 < 0; value: -9 a 3*v0 -3*v2 -16 <= 0; value: -19 d -1*v1 -1*v2 + 3*v3 -3 <= 0; value: 0 a v0 -4 = 0; value: 0 d -3*v2 -1*v3 + 17 <= 0; value: 0 0: 1 2 4 1: 3 2: 3 5 2 3: 2 3 5 0: 4 -> 4 1: 1 -> -2 2: 5 -> 5 3: 3 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -1*v3 = 0; value: 0 a -3*v1 -1 <= 0; value: -4 a 6*v0 -6*v2 -5*v3 -17 < 0; value: -11 a -1*v2 + 3 <= 0; value: -1 a 6*v1 -6*v2 + 5 <= 0; value: -13 0: 3 1: 2 5 2: 3 4 5 3: 1 3 optimal: oo a 2*v2 + 19/3 < 0; value: 43/3 d -1*v3 = 0; value: 0 d -3*v1 -1 <= 0; value: 0 d 6*v0 -6*v2 -5*v3 -17 < 0; value: -11/2 a -1*v2 + 3 <= 0; value: -1 a -6*v2 + 3 <= 0; value: -21 0: 3 1: 2 5 2: 3 4 5 3: 1 3 0: 5 -> 71/12 1: 1 -> -1/3 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 + v2 <= 0; value: -2 a -1*v0 -1*v1 + 7 = 0; value: 0 a v1 + v2 -7 <= 0; value: -2 a 2*v0 + v2 -2*v3 -4 <= 0; value: -10 a 5*v1 + 6*v2 -6*v3 + 4 <= 0; value: -1 0: 1 2 4 1: 2 3 5 2: 1 3 4 5 3: 4 5 optimal: oo a -2*v2 + 4*v3 -6 <= 0; value: 14 a 3/2*v2 -1*v3 -2 <= 0; value: -7 d -1*v0 -1*v1 + 7 = 0; value: 0 a 3/2*v2 -1*v3 -2 <= 0; value: -7 d 2*v0 + v2 -2*v3 -4 <= 0; value: 0 a 17/2*v2 -11*v3 + 29 <= 0; value: -26 0: 1 2 4 3 5 1: 2 3 5 2: 1 3 4 5 3: 4 5 1 3 0: 2 -> 7 1: 5 -> 0 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 + 5*v2 -4*v3 <= 0; value: 0 a -1*v3 + 5 = 0; value: 0 a 3*v0 + 3*v1 + v2 -21 < 0; value: -7 a v2 -2 = 0; value: 0 a 5*v0 -5*v1 -4*v2 + 8 = 0; value: 0 0: 1 3 5 1: 3 5 2: 1 3 4 5 3: 1 2 optimal: 0 a <= 0; value: 0 d 5*v0 + 5*v2 -4*v3 <= 0; value: 0 d -1*v3 + 5 = 0; value: 0 a -7 < 0; value: -7 d -1*v0 + 2 = 0; value: 0 d 5*v0 -5*v1 -4*v2 + 8 = 0; value: 0 0: 1 3 5 4 1: 3 5 2: 1 3 4 5 3: 1 2 4 3 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 4*v1 + 5*v3 -38 <= 0; value: -18 a -4*v1 + 4*v2 -5*v3 + 3 <= 0; value: -9 a 3*v0 + 6*v1 -3*v2 -74 < 0; value: -47 a 2*v0 -4*v1 -11 <= 0; value: -29 d <= 0; value: 0 0: 3 4 1: 1 2 3 4 2: 2 3 3: 1 2 optimal: (599/24 -e*1) a + 599/24 < 0; value: 599/24 d 4*v2 -35 <= 0; value: 0 d -4*v1 + 4*v2 -5*v3 + 3 <= 0; value: 0 d 6*v0 -3*v2 -181/2 < 0; value: -6 d 2*v0 -4*v2 + 5*v3 -14 <= 0; value: 0 d <= 0; value: 0 0: 3 4 1: 1 2 3 4 2: 2 3 4 1 3: 1 2 4 3 0: 1 -> 443/24 1: 5 -> 311/48 2: 2 -> 35/4 3: 0 -> 29/12 a 2*v0 -2*v1 <= 0; value: -2 a v3 -11 < 0; value: -6 a -4*v1 + 2*v3 -5 <= 0; value: -15 a -1*v1 + 2*v3 -5 = 0; value: 0 a -4*v1 -7 <= 0; value: -27 a 3*v0 + 4*v3 -92 < 0; value: -60 0: 5 1: 2 3 4 2: 3: 1 2 3 5 optimal: (164/3 -e*1) a + 164/3 < 0; value: 164/3 a -17/2 < 0; value: -17/2 d -6*v3 + 15 <= 0; value: 0 d -1*v1 + 2*v3 -5 = 0; value: 0 a -7 <= 0; value: -7 d 3*v0 -82 < 0; value: -3 0: 5 1: 2 3 4 2: 3: 1 2 3 5 4 0: 4 -> 79/3 1: 5 -> 0 2: 4 -> 4 3: 5 -> 5/2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + v1 + 1 = 0; value: 0 a -5*v1 + 4*v2 + v3 -10 = 0; value: 0 a 5*v2 + 2*v3 -85 <= 0; value: -50 a v0 + 2*v2 -36 < 0; value: -22 a -1*v1 + 2 <= 0; value: -1 0: 1 4 1: 1 2 5 2: 2 3 4 3: 2 3 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 + v1 + 1 = 0; value: 0 a -5*v0 + 4*v2 + v3 -5 = 0; value: 0 a 5*v2 + 2*v3 -85 <= 0; value: -50 a v0 + 2*v2 -36 < 0; value: -22 a -1*v0 + 3 <= 0; value: -1 0: 1 4 2 5 1: 1 2 5 2: 2 3 4 3: 2 3 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -1 < 0; value: -5 a 5*v1 + 3*v3 -32 <= 0; value: -16 a -2*v0 + 5*v2 -24 < 0; value: -3 a 4*v0 -6*v1 + 3 < 0; value: -1 a 6*v1 -3*v3 -16 < 0; value: -10 0: 1 3 4 1: 2 4 5 2: 3 3: 2 5 optimal: (63/22 -e*1) a + 63/22 < 0; value: 63/22 a -277/22 < 0; value: -277/22 d 11/2*v3 -56/3 <= 0; value: 0 a 5*v2 -783/22 < 0; value: -233/22 d 4*v0 -6*v1 + 3 < 0; value: -56/11 d 4*v0 -3*v3 -13 < 0; value: -4 0: 1 3 4 2 5 1: 2 4 5 2: 3 3: 2 5 1 3 0: 2 -> 211/44 1: 2 -> 50/11 2: 5 -> 5 3: 2 -> 112/33 a 2*v0 -2*v1 <= 0; value: 0 a -5*v0 + 6*v3 + 3 < 0; value: -10 a v1 -4*v2 -4 <= 0; value: -11 a v1 -13 <= 0; value: -8 a v1 + 4*v3 -13 = 0; value: 0 a 3*v1 + 5*v2 -30 = 0; value: 0 0: 1 1: 2 3 4 5 2: 2 5 3: 1 4 optimal: oo a 26/3*v0 -30 < 0; value: 40/3 d -5*v0 + 5/2*v2 + 15/2 < 0; value: -5/2 a -34/3*v0 + 23 < 0; value: -101/3 a -10/3*v0 + 2 < 0; value: -44/3 d v1 + 4*v3 -13 = 0; value: 0 d 5*v2 -12*v3 + 9 = 0; value: 0 0: 1 2 3 1: 2 3 4 5 2: 2 5 1 3 3: 1 4 5 2 3 0: 5 -> 5 1: 5 -> 0 2: 3 -> 6 3: 2 -> 13/4 a 2*v0 -2*v1 <= 0; value: -10 a -1*v1 -1*v2 -3*v3 -1 <= 0; value: -9 a -1*v1 + 5*v2 + 2 <= 0; value: -3 a v1 -3*v2 -5 = 0; value: 0 a -2*v1 + 2*v3 -5 < 0; value: -13 a 5*v0 -4*v2 <= 0; value: 0 0: 5 1: 1 2 3 4 2: 1 2 3 5 3: 1 4 optimal: (-23/65 -e*1) a -23/65 < 0; value: -23/65 d -13/3*v3 + 4 <= 0; value: 0 a -96/13 < 0; value: -96/13 d v1 -3*v2 -5 = 0; value: 0 d -15/2*v0 + 2*v3 -15 < 0; value: -171/26 d 5*v0 -4*v2 <= 0; value: 0 0: 5 1 4 2 1: 1 2 3 4 2: 1 2 3 5 4 3: 1 4 2 0: 0 -> -57/65 1: 5 -> 89/52 2: 0 -> -57/52 3: 1 -> 12/13 a 2*v0 -2*v1 <= 0; value: 4 a v0 -4 = 0; value: 0 a 5*v0 -4*v1 -3*v2 -3 = 0; value: 0 a 3*v1 + 6*v2 + v3 -40 < 0; value: -13 a -1*v3 -2 <= 0; value: -5 a 6*v0 + v3 -27 <= 0; value: 0 0: 1 2 5 1: 2 3 2: 2 3 3: 3 4 5 optimal: (56/5 -e*1) a + 56/5 < 0; value: 56/5 d v0 -4 = 0; value: 0 d 5*v0 -4*v1 -3*v2 -3 = 0; value: 0 d 15/4*v0 + 15/4*v2 + v3 -169/4 < 0; value: -15/4 d -1*v3 -2 <= 0; value: 0 a -5 <= 0; value: -5 0: 1 2 5 3 1: 2 3 2: 2 3 3: 3 4 5 0: 4 -> 4 1: 2 -> -17/20 2: 3 -> 34/5 3: 3 -> -2 a 2*v0 -2*v1 <= 0; value: -4 a -5*v2 -1*v3 + 7 <= 0; value: -13 a 3*v0 + 4*v1 -3*v3 -8 = 0; value: 0 a -1*v1 -1*v2 -3 <= 0; value: -9 a v0 + 3*v2 -21 < 0; value: -9 a 2*v0 + 6*v2 -5*v3 -38 <= 0; value: -14 0: 2 4 5 1: 2 3 2: 1 3 4 5 3: 1 2 5 optimal: 1636/71 a + 1636/71 <= 0; value: 1636/71 d -2/5*v0 -31/5*v2 + 73/5 <= 0; value: 0 d 3*v0 + 4*v1 -3*v3 -8 = 0; value: 0 d 71/124*v0 -117/31 <= 0; value: 0 a -612/71 < 0; value: -612/71 d 2*v0 + 6*v2 -5*v3 -38 <= 0; value: 0 0: 2 4 5 3 1 1: 2 3 2: 1 3 4 5 3: 1 2 5 3 0: 0 -> 468/71 1: 2 -> -350/71 2: 4 -> 137/71 3: 0 -> -188/71 a 2*v0 -2*v1 <= 0; value: -10 a 4*v0 -5*v2 + 6*v3 -1 <= 0; value: -16 a -6*v0 + v3 <= 0; value: 0 a -4*v2 + 3*v3 + 2 <= 0; value: -10 a 5*v1 -2*v3 -31 < 0; value: -6 a 3*v0 + 4*v1 + 4*v3 -20 = 0; value: 0 0: 1 2 5 1: 4 5 2: 1 3 3: 1 2 3 4 5 optimal: oo a 31/16*v2 -769/80 <= 0; value: -19/5 d 40*v0 -5*v2 -1 <= 0; value: 0 d -6*v0 + v3 <= 0; value: 0 a -7/4*v2 + 49/20 <= 0; value: -14/5 a -183/32*v2 -1143/160 < 0; value: -243/10 d 3*v0 + 4*v1 + 4*v3 -20 = 0; value: 0 0: 1 2 5 4 3 1: 4 5 2: 1 3 4 3: 1 2 3 4 5 0: 0 -> 2/5 1: 5 -> 23/10 2: 3 -> 3 3: 0 -> 12/5 a 2*v0 -2*v1 <= 0; value: -6 a -2*v1 + 2*v2 -1 <= 0; value: -3 a v1 -1*v3 <= 0; value: 0 a 4*v1 -1*v3 -15 < 0; value: -6 a v1 -3 <= 0; value: 0 a -5*v0 + 2*v3 -7 < 0; value: -1 0: 5 1: 1 2 3 4 2: 1 3: 2 3 5 optimal: oo a 2*v0 -2*v2 + 1 <= 0; value: -3 d -2*v1 + 2*v2 -1 <= 0; value: 0 a v2 -1*v3 -1/2 <= 0; value: -3/2 a 4*v2 -1*v3 -17 < 0; value: -12 a v2 -7/2 <= 0; value: -3/2 a -5*v0 + 2*v3 -7 < 0; value: -1 0: 5 1: 1 2 3 4 2: 1 2 3 4 3: 2 3 5 0: 0 -> 0 1: 3 -> 3/2 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -4*v1 + 4*v3 -5 <= 0; value: -1 a -3*v0 -5*v1 + v3 + 2 <= 0; value: -1 a 4*v0 -3*v3 + 5 < 0; value: -1 a v1 + 2*v3 -11 < 0; value: -6 a -1*v2 <= 0; value: 0 0: 2 3 1: 1 2 4 2: 5 3: 1 2 3 4 optimal: (-24/25 -e*1) a -24/25 < 0; value: -24/25 d 20/3*v0 -19/15 < 0; value: -19/30 d -3*v0 -5*v1 + v3 + 2 <= 0; value: 0 d 4*v0 -3*v3 + 5 < 0; value: -31/100 a -649/100 <= 0; value: -649/100 a -1*v2 <= 0; value: 0 0: 2 3 1 4 1: 1 2 4 2: 5 3: 1 2 3 4 0: 0 -> 19/200 1: 1 -> 2167/3000 2: 0 -> 0 3: 2 -> 569/300 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 3*v3 -45 <= 0; value: -25 a -5*v0 -4*v1 -1*v3 -37 < 0; value: -82 a v0 -3*v2 + 2*v3 + 1 < 0; value: -6 a -1*v0 + 2*v2 + 2*v3 -5 <= 0; value: -2 a -1*v2 + v3 -3 <= 0; value: -7 0: 1 2 3 4 1: 2 2: 3 4 5 3: 1 2 3 4 5 optimal: (5387/86 -e*1) a + 5387/86 < 0; value: 5387/86 d 43/10*v0 -411/10 <= 0; value: 0 d -5*v0 -4*v1 -1*v3 -37 < 0; value: -4 d 2*v0 -5*v2 + 6 < 0; value: -110/43 d -1*v0 + 2*v2 + 2*v3 -5 <= 0; value: 0 a -248/43 <= 0; value: -248/43 0: 1 2 3 4 5 1: 2 2: 3 4 5 1 3: 1 2 3 4 5 0: 5 -> 411/43 1: 5 -> -3549/172 2: 4 -> 238/43 3: 0 -> 75/43 a 2*v0 -2*v1 <= 0; value: 8 a -6*v1 -3*v3 -1 <= 0; value: -19 a 5*v1 + 4*v3 -49 < 0; value: -28 a -3*v0 -1*v2 + 10 <= 0; value: -7 a v3 -4 = 0; value: 0 a -2*v1 -3*v2 + 6*v3 -30 < 0; value: -14 0: 3 1: 1 2 5 2: 3 5 3: 1 2 4 5 optimal: oo a 2*v0 + 13/3 <= 0; value: 43/3 d -6*v1 -3*v3 -1 <= 0; value: 0 a -263/6 < 0; value: -263/6 a -3*v0 -1*v2 + 10 <= 0; value: -7 d v3 -4 = 0; value: 0 a -3*v2 -5/3 < 0; value: -23/3 0: 3 1: 1 2 5 2: 3 5 3: 1 2 4 5 0: 5 -> 5 1: 1 -> -13/6 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 -5*v2 + 3 <= 0; value: -22 a -1*v0 <= 0; value: 0 a v0 -6*v3 + 12 <= 0; value: 0 a v1 -4*v3 -4 < 0; value: -10 a -4*v0 + 4*v2 -27 <= 0; value: -15 0: 2 3 5 1: 1 4 2: 1 5 3: 3 4 optimal: oo a 24*v3 -357/10 <= 0; value: 123/10 d -5*v1 -5*v2 + 3 <= 0; value: 0 a -6*v3 + 12 <= 0; value: 0 d v0 -6*v3 + 12 <= 0; value: 0 a -10*v3 + 37/20 < 0; value: -363/20 d -4*v0 + 4*v2 -27 <= 0; value: 0 0: 2 3 5 4 1: 1 4 2: 1 5 4 3: 3 4 2 0: 0 -> 0 1: 2 -> -123/20 2: 3 -> 27/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a v2 -1*v3 + 1 <= 0; value: 0 a -3*v0 + 2*v1 + 3 <= 0; value: -1 a 2*v0 -6*v1 + 7 <= 0; value: -9 a -1*v1 -3 < 0; value: -7 a -1*v2 + 1 = 0; value: 0 0: 2 3 1: 2 3 4 2: 1 5 3: 1 optimal: oo a 4/3*v0 -7/3 <= 0; value: 3 a v2 -1*v3 + 1 <= 0; value: 0 a -7/3*v0 + 16/3 <= 0; value: -4 d 2*v0 -6*v1 + 7 <= 0; value: 0 a -1/3*v0 -25/6 < 0; value: -11/2 a -1*v2 + 1 = 0; value: 0 0: 2 3 4 1: 2 3 4 2: 1 5 3: 1 0: 4 -> 4 1: 4 -> 5/2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 5*v2 -73 <= 0; value: -48 a 3*v1 -29 < 0; value: -17 a 3*v2 -4*v3 -8 <= 0; value: -5 a v3 <= 0; value: 0 a -1*v0 + 5*v1 + 3*v2 -33 < 0; value: -13 0: 5 1: 1 2 5 2: 1 3 5 3: 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 5*v2 -73 <= 0; value: -48 a 3*v1 -29 < 0; value: -17 a 3*v2 -4*v3 -8 <= 0; value: -5 a v3 <= 0; value: 0 a -1*v0 + 5*v1 + 3*v2 -33 < 0; value: -13 0: 5 1: 1 2 5 2: 1 3 5 3: 3 4 0: 3 -> 3 1: 4 -> 4 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 4*v1 + v2 + 1 <= 0; value: -3 a 3*v0 -5*v2 -2*v3 + 2 < 0; value: -6 a -4*v1 + v2 -1 <= 0; value: -6 a 3*v0 + 4*v2 -53 <= 0; value: -26 a 2*v1 -11 <= 0; value: -7 0: 1 2 4 1: 1 3 5 2: 1 2 3 4 3: 2 optimal: oo a 17/10*v0 + 1/5*v3 + 3/10 < 0; value: 48/5 a -9/5*v0 -4/5*v3 + 4/5 < 0; value: -57/5 d 3*v0 -5*v2 -2*v3 + 2 < 0; value: -3 d -4*v1 + v2 -1 <= 0; value: 0 a 27/5*v0 -8/5*v3 -257/5 < 0; value: -154/5 a 3/10*v0 -1/5*v3 -113/10 < 0; value: -53/5 0: 1 2 4 5 1: 1 3 5 2: 1 2 3 4 5 3: 2 1 4 5 0: 5 -> 5 1: 2 -> 7/20 2: 3 -> 12/5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a v0 -1*v3 -1 <= 0; value: 0 a -2*v0 -1*v3 -6 < 0; value: -17 a -2*v1 + v2 -3 <= 0; value: 0 a -3*v2 -4*v3 + 21 = 0; value: 0 a -1*v3 + 3 <= 0; value: 0 0: 1 2 1: 3 2: 3 4 3: 1 2 4 5 optimal: oo a 2*v0 + 4/3*v3 -4 <= 0; value: 8 a v0 -1*v3 -1 <= 0; value: 0 a -2*v0 -1*v3 -6 < 0; value: -17 d -2*v1 + v2 -3 <= 0; value: 0 d -3*v2 -4*v3 + 21 = 0; value: 0 a -1*v3 + 3 <= 0; value: 0 0: 1 2 1: 3 2: 3 4 3: 1 2 4 5 0: 4 -> 4 1: 0 -> 0 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 -3*v3 + 15 = 0; value: 0 a 5*v1 + v2 -37 < 0; value: -24 a 3*v0 + v2 -3 = 0; value: 0 a -4*v1 -6*v2 + 21 <= 0; value: -5 a 2*v1 -3*v2 + 5 <= 0; value: 0 0: 1 3 1: 2 4 5 2: 2 3 4 5 3: 1 optimal: oo a 21*v3 -213/2 <= 0; value: -3/2 d -1*v0 -3*v3 + 15 = 0; value: 0 a -117/2*v3 + 1049/4 < 0; value: -121/4 d 3*v0 + v2 -3 = 0; value: 0 d -4*v1 -6*v2 + 21 <= 0; value: 0 a -54*v3 + 535/2 <= 0; value: -5/2 0: 1 3 2 5 1: 2 4 5 2: 2 3 4 5 3: 1 2 5 0: 0 -> 0 1: 2 -> 3/4 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -6*v1 + 3*v3 -3 = 0; value: 0 a -1*v1 -1 < 0; value: -3 a 6*v1 + v3 -13 = 0; value: 0 a -1*v1 -3*v2 <= 0; value: -2 0: 1 1: 1 2 3 4 2: 4 3: 1 3 optimal: oo a 5/3*v0 -3 <= 0; value: 2 d 4*v0 -6*v1 + 3*v3 -3 = 0; value: 0 a -1/6*v0 -5/2 < 0; value: -3 d 4*v0 + 4*v3 -16 = 0; value: 0 a -1/6*v0 -3*v2 -3/2 <= 0; value: -2 0: 1 2 3 4 1: 1 2 3 4 2: 4 3: 1 3 2 4 0: 3 -> 3 1: 2 -> 2 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -2*v1 + v2 -23 <= 0; value: -13 a 5*v1 + 6*v3 -88 <= 0; value: -51 a 3*v1 -20 <= 0; value: -5 a -4*v0 -6*v1 + 3*v2 + 41 <= 0; value: -9 a -6*v0 -5*v2 + 7 <= 0; value: -23 0: 1 4 5 1: 1 2 3 4 2: 1 4 5 3: 2 optimal: 161/10 a + 161/10 <= 0; value: 161/10 d 16/3*v0 -110/3 <= 0; value: 0 a 6*v3 -751/8 <= 0; value: -655/8 a -941/40 <= 0; value: -941/40 d -4*v0 -6*v1 + 3*v2 + 41 <= 0; value: 0 d -6*v0 -5*v2 + 7 <= 0; value: 0 0: 1 4 5 2 3 1: 1 2 3 4 2: 1 4 5 2 3 3: 2 0: 5 -> 55/8 1: 5 -> -47/40 2: 0 -> -137/20 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 6*v2 -15 < 0; value: -8 a 5*v1 -4*v3 + 4 = 0; value: 0 a -1*v2 + 2 <= 0; value: 0 a 3*v1 -1*v3 + 1 <= 0; value: 0 a -3*v2 + 5*v3 + 1 <= 0; value: 0 0: 1 1: 2 4 2: 1 3 5 3: 2 4 5 optimal: oo a 2*v0 -8/5*v3 + 8/5 <= 0; value: 2 a -5*v0 + 6*v2 -15 < 0; value: -8 d 5*v1 -4*v3 + 4 = 0; value: 0 a -1*v2 + 2 <= 0; value: 0 a 7/5*v3 -7/5 <= 0; value: 0 a -3*v2 + 5*v3 + 1 <= 0; value: 0 0: 1 1: 2 4 2: 1 3 5 3: 2 4 5 0: 1 -> 1 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 -4*v1 -3*v3 + 7 <= 0; value: -1 a -1*v1 -1*v3 < 0; value: -1 a 4*v0 -3*v1 -13 = 0; value: 0 a 5*v1 + 5*v3 -8 < 0; value: -3 a -4*v0 -2*v3 + 5 <= 0; value: -11 0: 1 3 5 1: 1 2 3 4 2: 3: 1 2 4 5 optimal: (34/5 -e*1) a + 34/5 < 0; value: 34/5 d -19/3*v0 -3*v3 + 73/3 <= 0; value: 0 a -8/5 < 0; value: -8/5 d 4*v0 -3*v1 -13 = 0; value: 0 d 35/19*v3 -77/19 < 0; value: -35/19 a -53/5 < 0; value: -53/5 0: 1 3 5 2 4 1: 1 2 3 4 2: 3: 1 2 4 5 0: 4 -> 311/95 1: 1 -> 3/95 2: 3 -> 3 3: 0 -> 6/5 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 + v3 -8 < 0; value: -5 a v1 <= 0; value: 0 a -1*v0 + v1 + 3*v3 -25 <= 0; value: -16 a -1*v1 -1*v3 + 3 <= 0; value: 0 a v0 + 6*v1 <= 0; value: 0 0: 1 3 5 1: 2 3 4 5 2: 3: 1 3 4 optimal: (94/7 -e*1) a + 94/7 < 0; value: 94/7 d 3*v0 + v3 -8 < 0; value: -1 a -53/7 < 0; value: -53/7 d -7*v0 -6 <= 0; value: 0 d -1*v1 -1*v3 + 3 <= 0; value: 0 a -324/7 < 0; value: -324/7 0: 1 3 5 2 1: 2 3 4 5 2: 3: 1 3 4 2 5 0: 0 -> -6/7 1: 0 -> -46/7 2: 0 -> 0 3: 3 -> 67/7 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 + 3*v3 -32 < 0; value: -16 a -4*v1 + 3*v2 + 5 = 0; value: 0 a 3*v1 + 5*v3 -85 <= 0; value: -50 a -5*v0 -1*v1 -4*v2 + 20 < 0; value: -15 0: 1 4 1: 2 3 4 2: 2 4 3: 1 3 optimal: oo a -102/19*v3 + 928/19 < 0; value: 520/19 d 2*v0 + 3*v3 -32 < 0; value: -2 d -4*v1 + 3*v2 + 5 = 0; value: 0 a 325/38*v3 -2095/19 < 0; value: -1445/19 d -5*v0 -19/4*v2 + 75/4 < 0; value: -19/4 0: 1 4 3 1: 2 3 4 2: 2 4 3 3: 1 3 0: 2 -> 9 1: 5 -> -163/76 2: 5 -> -86/19 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v0 -3*v3 + 4 < 0; value: -3 a 6*v2 -3*v3 -19 <= 0; value: -10 a 2*v2 + 5*v3 -45 <= 0; value: -24 a 4*v0 -4*v1 + 3*v3 -14 <= 0; value: -5 a 2*v0 + 5*v1 -12 <= 0; value: -5 0: 1 4 5 1: 4 5 2: 2 3 3: 1 2 3 4 optimal: oo a -3*v2 + 33/2 < 0; value: 15/2 d 2*v0 -3*v3 + 4 < 0; value: -3 d -2*v0 + 6*v2 -23 <= 0; value: 0 a 12*v2 -230/3 < 0; value: -122/3 d 4*v0 -4*v1 + 3*v3 -14 <= 0; value: 0 a 57/2*v2 -535/4 < 0; value: -193/4 0: 1 4 5 2 3 1: 4 5 2: 2 3 5 3: 1 2 3 4 5 0: 1 -> -5/2 1: 1 -> -11/2 2: 3 -> 3 3: 3 -> 2/3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 4 = 0; value: 0 a -3*v3 + 2 <= 0; value: -10 a -4*v0 -5*v1 -3*v3 -37 <= 0; value: -94 a v2 -2 <= 0; value: -1 a -3*v1 -1*v3 + 19 = 0; value: 0 0: 3 1: 3 5 2: 4 3: 1 2 3 5 optimal: oo a 2*v0 -10 <= 0; value: 0 d -1*v3 + 4 = 0; value: 0 a -10 <= 0; value: -10 a -4*v0 -74 <= 0; value: -94 a v2 -2 <= 0; value: -1 d -3*v1 -1*v3 + 19 = 0; value: 0 0: 3 1: 3 5 2: 4 3: 1 2 3 5 0: 5 -> 5 1: 5 -> 5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 + 2*v3 -40 <= 0; value: -23 a v0 -3 <= 0; value: 0 a 3*v2 -14 <= 0; value: -5 a v2 + 4*v3 -10 <= 0; value: -3 a v0 + 2*v3 -7 <= 0; value: -2 0: 2 5 1: 2: 1 3 4 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 + 2*v3 -40 <= 0; value: -23 a v0 -3 <= 0; value: 0 a 3*v2 -14 <= 0; value: -5 a v2 + 4*v3 -10 <= 0; value: -3 a v0 + 2*v3 -7 <= 0; value: -2 0: 2 5 1: 2: 1 3 4 3: 1 4 5 0: 3 -> 3 1: 3 -> 3 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -5*v2 + 3*v3 + 3 <= 0; value: -2 a -2*v2 -1 <= 0; value: -3 a -4*v0 -5*v2 + 7 < 0; value: -6 a 2*v0 -3*v3 -4 <= 0; value: 0 a 2*v0 -1*v1 -1 = 0; value: 0 0: 3 4 5 1: 5 2: 1 2 3 3: 1 4 optimal: oo a 5/2*v2 -3/2 < 0; value: 1 a -5*v2 + 3*v3 + 3 <= 0; value: -2 a -2*v2 -1 <= 0; value: -3 d -4*v0 -5*v2 + 7 < 0; value: -3 a -5/2*v2 -3*v3 -1/2 < 0; value: -3 d 2*v0 -1*v1 -1 = 0; value: 0 0: 3 4 5 1: 5 2: 1 2 3 4 3: 1 4 0: 2 -> 5/4 1: 3 -> 3/2 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 + v3 -1 <= 0; value: 0 a -6*v1 + 5*v3 -9 <= 0; value: -22 a 2*v0 -6*v2 -17 <= 0; value: -41 a v1 + 3*v2 -5*v3 -12 < 0; value: -2 0: 1 3 1: 2 4 2: 3 4 3: 1 2 4 optimal: (114/7 -e*1) a + 114/7 < 0; value: 114/7 d 56/25*v0 -157/25 < 0; value: -56/25 d -6*v1 + 5*v3 -9 <= 0; value: 0 d 2*v0 -6*v2 -17 <= 0; value: 0 d 3*v2 -25/6*v3 -27/2 < 0; value: -25/6 0: 1 3 1: 2 4 2: 3 4 1 3: 1 2 4 0: 0 -> 101/56 1: 3 -> -3953/840 2: 4 -> -125/56 3: 1 -> -2693/700 a 2*v0 -2*v1 <= 0; value: -10 a -3*v0 -6*v2 -1 <= 0; value: -31 a 5*v0 + 2*v1 + 6*v2 -86 <= 0; value: -46 a -1*v0 -1*v1 + 5 = 0; value: 0 a -5*v1 + 5*v2 -1*v3 + 4 = 0; value: 0 a v1 -7 <= 0; value: -2 0: 1 2 3 1: 2 3 4 5 2: 1 2 4 3: 4 optimal: oo a -8*v2 + 274/3 <= 0; value: 154/3 a -77 <= 0; value: -77 d 3*v2 + 3/5*v3 -317/5 <= 0; value: 0 d -1*v0 -1*v1 + 5 = 0; value: 0 d 5*v0 + 5*v2 -1*v3 -21 = 0; value: 0 a 2*v2 -82/3 <= 0; value: -52/3 0: 1 2 3 4 5 1: 2 3 4 5 2: 1 2 4 5 3: 4 2 1 5 0: 0 -> 46/3 1: 5 -> -31/3 2: 5 -> 5 3: 4 -> 242/3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -2*v1 + v2 -20 < 0; value: -10 a -6*v0 + v1 + 2*v2 + 11 <= 0; value: -10 a -2*v1 + v3 -5 <= 0; value: -11 a 6*v1 + v2 + 6*v3 -33 < 0; value: -15 a -1*v1 + 3 = 0; value: 0 0: 1 2 1: 1 2 3 4 5 2: 1 2 4 3: 3 4 optimal: oo a -1/2*v2 + 7 < 0; value: 7 d 4*v0 + v2 -26 < 0; value: -4 a 7/2*v2 -25 < 0; value: -25 a v3 -11 <= 0; value: -11 a v2 + 6*v3 -15 < 0; value: -15 d -1*v1 + 3 = 0; value: 0 0: 1 2 1: 1 2 3 4 5 2: 1 2 4 3: 3 4 0: 4 -> 11/2 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 -1 <= 0; value: -5 a -1*v1 + 2*v2 + 5*v3 -22 = 0; value: 0 a 5*v0 -1*v1 -3*v3 -10 = 0; value: 0 a -4*v0 -2*v2 + 21 <= 0; value: -3 a 3*v1 + 4*v2 -49 <= 0; value: -30 0: 3 4 1: 2 3 5 2: 1 2 4 5 3: 2 3 optimal: 24 a + 24 <= 0; value: 24 a -287/10 <= 0; value: -287/10 d -1*v1 + 2*v2 + 5*v3 -22 = 0; value: 0 d 5*v0 -2*v2 -8*v3 + 12 = 0; value: 0 d -4*v0 -2*v2 + 21 <= 0; value: 0 d -25/8*v0 -215/8 <= 0; value: 0 0: 3 4 5 1 1: 2 3 5 2: 1 2 4 5 3 3: 2 3 5 0: 4 -> -43/5 1: 1 -> -103/5 2: 4 -> 277/10 3: 3 -> -54/5 a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a v0 -2 = 0; value: 0 a v0 + 4*v2 -14 <= 0; value: -4 a -6*v0 -5*v2 + 10 <= 0; value: -12 0: 2 3 4 5 1: 2: 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a v0 -2 = 0; value: 0 a v0 + 4*v2 -14 <= 0; value: -4 a -6*v0 -5*v2 + 10 <= 0; value: -12 0: 2 3 4 5 1: 2: 4 5 3: 1 0: 2 -> 2 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 5*v1 -9 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a v1 -3*v3 + 4 <= 0; value: 0 a 6*v1 -2*v3 -21 <= 0; value: -13 a v1 + 5*v2 -7 = 0; value: 0 0: 1 1: 1 3 4 5 2: 5 3: 2 3 4 optimal: -2 a -2 <= 0; value: -2 d -1*v0 + 5*v1 -9 = 0; value: 0 d -1*v3 + 2 = 0; value: 0 d -5*v2 -3*v3 + 11 <= 0; value: 0 a -13 <= 0; value: -13 d 1/5*v0 + 5*v2 -26/5 = 0; value: 0 0: 1 5 3 4 1: 1 3 4 5 2: 5 3 4 3: 2 3 4 0: 1 -> 1 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 6*v1 -35 <= 0; value: -23 a -3*v0 + 4*v1 + 2*v3 -5 < 0; value: -3 a 4*v0 + 6*v2 -35 < 0; value: -21 a -1*v0 + 2*v1 -2 = 0; value: 0 d <= 0; value: 0 0: 2 3 4 1: 1 2 4 2: 3 3: 2 optimal: (23/3 -e*1) a + 23/3 < 0; value: 23/3 d -9/2*v2 -11/4 <= 0; value: 0 a 2*v3 -32/3 < 0; value: -32/3 d 4*v0 + 6*v2 -35 < 0; value: -4 d -1*v0 + 2*v1 -2 = 0; value: 0 d <= 0; value: 0 0: 2 3 4 1 1: 1 2 4 2: 3 1 2 3: 2 0: 2 -> 26/3 1: 2 -> 16/3 2: 1 -> -11/18 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a v1 + 6*v2 -20 = 0; value: 0 a -5*v0 + 5*v2 + 1 <= 0; value: -4 a -4*v1 + 5*v3 -48 <= 0; value: -31 a 3*v0 + 2*v1 -27 <= 0; value: -11 a 2*v1 -1*v2 -2 <= 0; value: -1 0: 2 4 1: 1 3 4 5 2: 1 2 5 3: 3 optimal: oo a -35/12*v3 + 526/15 <= 0; value: 1229/60 d v1 + 6*v2 -20 = 0; value: 0 d -5*v0 + 5*v2 + 1 <= 0; value: 0 d 24*v0 + 5*v3 -664/5 <= 0; value: 0 a 15/8*v3 -172/5 <= 0; value: -1001/40 a 65/24*v3 -94/3 <= 0; value: -427/24 0: 2 4 3 5 1: 1 3 4 5 2: 1 2 5 3 4 3: 3 4 5 0: 4 -> 539/120 1: 2 -> -23/4 2: 3 -> 103/24 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 8 a v1 + 2*v3 -25 <= 0; value: -15 a 2*v0 + 5*v3 -33 = 0; value: 0 a -1*v0 -6*v2 + 4*v3 -7 < 0; value: -15 a -1*v0 + v3 -1 <= 0; value: 0 a -1*v1 + 4*v3 -39 <= 0; value: -19 0: 2 3 4 1: 1 5 2: 3 3: 1 2 3 4 5 optimal: oo a 26/5*v0 + 126/5 <= 0; value: 46 a -12/5*v0 -122/5 <= 0; value: -34 d 2*v0 + 5*v3 -33 = 0; value: 0 a -13/5*v0 -6*v2 + 97/5 < 0; value: -15 a -7/5*v0 + 28/5 <= 0; value: 0 d -1*v1 + 4*v3 -39 <= 0; value: 0 0: 2 3 4 1 1: 1 5 2: 3 3: 1 2 3 4 5 0: 4 -> 4 1: 0 -> -19 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -4*v0 + 9 < 0; value: -11 a -4*v0 + 5*v1 + 4 < 0; value: -6 a 3*v1 + 4*v2 -16 < 0; value: -10 a 4*v0 -5*v1 -2*v3 <= 0; value: 0 0: 1 2 4 1: 2 3 4 2: 3 3: 4 optimal: oo a 2/5*v0 + 4/5*v3 <= 0; value: 6 a -4*v0 + 9 < 0; value: -11 a -2*v3 + 4 < 0; value: -6 a 12/5*v0 + 4*v2 -6/5*v3 -16 < 0; value: -10 d 4*v0 -5*v1 -2*v3 <= 0; value: 0 0: 1 2 4 3 1: 2 3 4 2: 3 3: 4 2 3 0: 5 -> 5 1: 2 -> 2 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -1*v1 = 0; value: 0 a 2*v0 -4*v1 -7 < 0; value: -1 a -3*v0 -5*v3 -13 < 0; value: -32 a 3*v1 + 4*v2 -4 = 0; value: 0 a -1*v0 + 1 < 0; value: -2 0: 2 3 5 1: 1 2 4 2: 4 3: 3 optimal: (7 -e*1) a + 7 < 0; value: 7 d -1*v1 = 0; value: 0 d 2*v0 -7 < 0; value: -1/2 a -5*v3 -47/2 < 0; value: -67/2 a 4*v2 -4 = 0; value: 0 a -5/2 < 0; value: -5/2 0: 2 3 5 1: 1 2 4 2: 4 3: 3 0: 3 -> 13/4 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 + 1 <= 0; value: -1 a 3*v0 -3*v3 -16 <= 0; value: -7 a -1*v0 -3*v3 + 2 < 0; value: -1 a -1*v2 + 5*v3 -2 <= 0; value: -5 a -1*v2 -2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2: 4 5 3: 2 3 4 5 optimal: 233/21 a + 233/21 <= 0; value: 233/21 d -2*v1 + 1 <= 0; value: 0 d 3*v0 -3*v3 -16 <= 0; value: 0 a -130/21 < 0; value: -130/21 d -7/2*v2 + 11/2 <= 0; value: 0 d -1*v2 -2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2: 4 5 3 3: 2 3 4 5 0: 3 -> 127/21 1: 1 -> 1/2 2: 3 -> 11/7 3: 0 -> 5/7 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -1*v1 + 3*v2 + 10 < 0; value: -7 a 2*v2 + v3 -9 <= 0; value: 0 a 2*v3 -19 <= 0; value: -9 a -3*v2 + 5*v3 -41 <= 0; value: -22 a -1*v1 + 2*v2 -3*v3 + 6 <= 0; value: -8 0: 1 1: 1 5 2: 1 2 4 5 3: 2 3 4 5 optimal: (3176/65 -e*1) a + 3176/65 < 0; value: 3176/65 d -5*v0 -1*v1 + 3*v2 + 10 < 0; value: -1 d 65/14*v0 -383/14 <= 0; value: 0 a -29/13 <= 0; value: -29/13 d -15*v0 + 14*v3 -29 <= 0; value: 0 d 5*v0 -1*v2 -3*v3 -4 <= 0; value: 0 0: 1 5 4 2 3 1: 1 5 2: 1 2 4 5 3: 2 3 4 5 0: 4 -> 383/65 1: 3 -> -228/13 2: 2 -> 4/13 3: 5 -> 109/13 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + v3 + 3 = 0; value: 0 a v0 -5*v1 + 22 = 0; value: 0 a -4*v0 -4*v3 + 9 <= 0; value: -3 a 5*v1 -3*v3 -49 <= 0; value: -24 a 6*v0 + 6*v1 -5*v2 -105 < 0; value: -62 0: 1 2 3 5 1: 2 4 5 2: 5 3: 1 3 4 optimal: oo a 10/9*v2 + 26/3 < 0; value: 88/9 d -1*v0 + v3 + 3 = 0; value: 0 d v0 -5*v1 + 22 = 0; value: 0 a -50/9*v2 -199/3 < 0; value: -647/9 a -25/18*v2 -239/6 < 0; value: -371/9 d -5*v2 + 36/5*v3 -57 < 0; value: -36/5 0: 1 2 3 5 4 1: 2 4 5 2: 5 3 4 3: 1 3 4 5 0: 3 -> 191/18 1: 5 -> 587/90 2: 1 -> 1 3: 0 -> 137/18 a 2*v0 -2*v1 <= 0; value: 4 a v1 + 4*v3 -32 < 0; value: -19 a -1*v1 -6*v3 -7 <= 0; value: -26 a -5*v1 -5*v2 + 5*v3 -23 <= 0; value: -13 a 2*v1 -1*v3 <= 0; value: -1 a 3*v3 -11 <= 0; value: -2 0: 1: 1 2 3 4 2: 3 3: 1 2 3 4 5 optimal: oo a 2*v0 + 58 <= 0; value: 64 a -139/3 < 0; value: -139/3 d v2 -7*v3 -12/5 <= 0; value: 0 d -5*v1 -5*v2 + 5*v3 -23 <= 0; value: 0 a -185/3 <= 0; value: -185/3 d 3/7*v2 -421/35 <= 0; value: 0 0: 1: 1 2 3 4 2: 3 2 1 4 5 3: 1 2 3 4 5 0: 3 -> 3 1: 1 -> -29 2: 0 -> 421/15 3: 3 -> 11/3 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 + 2*v2 -37 <= 0; value: -17 a -2*v0 + 3*v3 -35 <= 0; value: -22 a v2 -2*v3 + 4 <= 0; value: -2 a 5*v0 + 5*v1 -41 <= 0; value: -21 a 5*v0 -6*v1 + 13 <= 0; value: 0 0: 2 4 5 1: 1 4 5 2: 1 3 3: 2 3 optimal: -178/55 a -178/55 <= 0; value: -178/55 a 2*v2 -191/11 <= 0; value: -103/11 a 3*v3 -2287/55 <= 0; value: -1462/55 a v2 -2*v3 + 4 <= 0; value: -2 d 55/6*v0 -181/6 <= 0; value: 0 d 5*v0 -6*v1 + 13 <= 0; value: 0 0: 2 4 5 1 1: 1 4 5 2: 1 3 3: 2 3 0: 1 -> 181/55 1: 3 -> 54/11 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a 6*v1 + 5*v2 + 2*v3 -62 <= 0; value: -37 a -2*v1 + 5 <= 0; value: -1 a -5*v1 + 3*v2 + 12 = 0; value: 0 a v3 -1 <= 0; value: 0 a 4*v3 -5 < 0; value: -1 0: 1: 1 2 3 2: 1 3 3: 1 4 5 optimal: oo a 2*v0 -5 <= 0; value: -5 a 2*v3 -277/6 <= 0; value: -265/6 d -6/5*v2 + 1/5 <= 0; value: 0 d -5*v1 + 3*v2 + 12 = 0; value: 0 a v3 -1 <= 0; value: 0 a 4*v3 -5 < 0; value: -1 0: 1: 1 2 3 2: 1 3 2 3: 1 4 5 0: 0 -> 0 1: 3 -> 5/2 2: 1 -> 1/6 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 + 5*v1 + 5*v3 -42 = 0; value: 0 a -3*v0 + 4*v2 -3*v3 -5 <= 0; value: -11 a -4*v0 + 3*v3 -11 = 0; value: 0 a 6*v1 -5*v2 -17 <= 0; value: -8 a 4*v0 + 5*v1 -31 <= 0; value: -7 0: 1 2 3 5 1: 1 4 5 2: 2 4 3: 1 2 3 optimal: 334/5 a + 334/5 <= 0; value: 334/5 d -3*v0 + 5*v1 + 5*v3 -42 = 0; value: 0 a 4*v2 -170 <= 0; value: -158 d -4*v0 + 3*v3 -11 = 0; value: 0 a -5*v2 -427/5 <= 0; value: -502/5 d 1/3*v0 -22/3 <= 0; value: 0 0: 1 2 3 5 4 1: 1 4 5 2: 2 4 3: 1 2 3 4 5 0: 1 -> 22 1: 4 -> -57/5 2: 3 -> 3 3: 5 -> 33 a 2*v0 -2*v1 <= 0; value: -2 a 5*v2 + 6*v3 -10 = 0; value: 0 a 4*v0 -2*v2 -9 <= 0; value: -5 a -3*v0 -2 < 0; value: -8 a -2*v2 -3*v3 -2 <= 0; value: -6 a -5*v0 + 2*v2 + 6 = 0; value: 0 0: 2 3 5 1: 2: 1 2 4 5 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v2 + 6*v3 -10 = 0; value: 0 a 4*v0 -2*v2 -9 <= 0; value: -5 a -3*v0 -2 < 0; value: -8 a -2*v2 -3*v3 -2 <= 0; value: -6 a -5*v0 + 2*v2 + 6 = 0; value: 0 0: 2 3 5 1: 2: 1 2 4 5 3: 1 4 0: 2 -> 2 1: 3 -> 3 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -5*v0 + 3*v2 + v3 -18 <= 0; value: -4 a -6*v1 + 2*v3 + 13 <= 0; value: -13 a 3*v2 -2*v3 -18 <= 0; value: -10 a 5*v0 + 3*v1 -15 = 0; value: 0 a -6*v0 + v3 -4 <= 0; value: -2 0: 1 4 5 1: 2 4 2: 1 3 3: 1 2 3 5 optimal: oo a -8/5*v2 + 26/3 <= 0; value: 34/15 a 6*v2 -89/2 <= 0; value: -41/2 d 10*v0 + 2*v3 -17 <= 0; value: 0 d 3*v2 -2*v3 -18 <= 0; value: 0 d 5*v0 + 3*v1 -15 = 0; value: 0 a 33/10*v2 -34 <= 0; value: -104/5 0: 1 4 5 2 1: 2 4 2: 1 3 5 3: 1 2 3 5 0: 0 -> 23/10 1: 5 -> 7/6 2: 4 -> 4 3: 2 -> -3 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -3*v1 -2 = 0; value: 0 a v0 -5*v1 -3 <= 0; value: -7 a -6*v0 -5*v2 -2*v3 -15 < 0; value: -46 a -2*v2 -5 < 0; value: -11 a -2*v2 -1*v3 + 11 = 0; value: 0 0: 1 2 3 1: 1 2 2: 3 4 5 3: 3 5 optimal: 14/11 a + 14/11 <= 0; value: 14/11 d 5*v0 -3*v1 -2 = 0; value: 0 d -22/3*v0 + 1/3 <= 0; value: 0 a -5*v2 -2*v3 -168/11 < 0; value: -443/11 a -2*v2 -5 < 0; value: -11 a -2*v2 -1*v3 + 11 = 0; value: 0 0: 1 2 3 1: 1 2 2: 3 4 5 3: 3 5 0: 1 -> 1/22 1: 1 -> -13/22 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 <= 0; value: 0 a 2*v3 -17 <= 0; value: -7 a 6*v0 -3*v1 + 8 < 0; value: -1 a -3*v1 + 2*v2 + 5 = 0; value: 0 a -6*v0 -1*v1 -5*v3 + 28 = 0; value: 0 0: 1 3 5 1: 3 4 5 2: 4 3: 2 5 optimal: (-16/3 -e*1) a -16/3 < 0; value: -16/3 d -1*v0 <= 0; value: 0 a -103/15 <= 0; value: -103/15 d 24*v0 + 15*v3 -76 < 0; value: -1/2 d -3*v1 + 2*v2 + 5 = 0; value: 0 d -6*v0 -2/3*v2 -5*v3 + 79/3 = 0; value: 0 0: 1 3 5 2 1: 3 4 5 2: 4 3 5 3: 2 5 3 0: 0 -> 0 1: 3 -> 17/6 2: 2 -> 7/4 3: 5 -> 151/30 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 4*v2 -2*v3 -47 <= 0; value: -15 a -1*v1 + 4 <= 0; value: 0 a 6*v0 + v1 -5*v3 -32 < 0; value: -14 a -4*v1 + 4*v3 + 3 <= 0; value: -5 a -5*v2 + 24 <= 0; value: -1 0: 1 3 1: 2 3 4 2: 1 5 3: 1 3 4 optimal: (27/4 -e*1) a + 27/4 < 0; value: 27/4 a 4*v2 -24 <= 0; value: -4 d -1*v1 + 4 <= 0; value: 0 d 6*v0 -5*v3 -28 < 0; value: -6 d 4*v3 -13 <= 0; value: 0 a -5*v2 + 24 <= 0; value: -1 0: 1 3 1: 2 3 4 2: 1 5 3: 1 3 4 0: 4 -> 51/8 1: 4 -> 4 2: 5 -> 5 3: 2 -> 13/4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v3 -5 = 0; value: 0 a v1 -5 = 0; value: 0 a -5*v0 -4*v3 + 10 < 0; value: -35 a -1*v0 + 5*v3 -36 <= 0; value: -16 a -2*v1 + 2*v2 + 3*v3 -13 <= 0; value: -4 0: 3 4 1: 1 2 5 2: 5 3: 1 3 4 5 optimal: oo a 2*v0 -10 <= 0; value: 0 d 2*v1 -1*v3 -5 = 0; value: 0 d 1/2*v3 -5/2 = 0; value: 0 a -5*v0 -10 < 0; value: -35 a -1*v0 -11 <= 0; value: -16 a 2*v2 -8 <= 0; value: -4 0: 3 4 1: 1 2 5 2: 5 3: 1 3 4 5 2 0: 5 -> 5 1: 5 -> 5 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v2 -3 <= 0; value: -9 a -1*v0 + v2 -2 <= 0; value: 0 a 3*v0 + 2*v1 -5*v2 + 10 = 0; value: 0 a 4*v0 + 2*v1 + 5*v2 -53 < 0; value: -32 a v0 -2*v2 -1*v3 + 5 = 0; value: 0 0: 2 3 4 5 1: 3 4 2: 1 2 3 4 5 3: 5 optimal: (815/2 -e*1) a + 815/2 < 0; value: 815/2 d -1*v0 + v3 -8 <= 0; value: 0 a -163/2 < 0; value: -163/2 d 3*v0 + 2*v1 -5*v2 + 10 = 0; value: 0 d v0 -78 < 0; value: -1 d v0 -2*v2 -1*v3 + 5 = 0; value: 0 0: 2 3 4 5 1 1: 3 4 2: 1 2 3 4 5 3: 5 1 2 4 0: 1 -> 77 1: 1 -> -497/4 2: 3 -> -3/2 3: 0 -> 85 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 -1*v2 + 3*v3 -10 <= 0; value: -22 a 5*v2 + 3*v3 -38 <= 0; value: -24 a v3 -3 <= 0; value: 0 a -6*v1 -1*v2 + 6*v3 <= 0; value: -1 a 2*v1 -1*v3 -3 <= 0; value: 0 0: 1 1: 4 5 2: 1 2 4 3: 1 2 3 4 5 optimal: oo a 2*v0 + 1/3*v2 -2*v3 <= 0; value: 13/3 a -4*v0 -1*v2 + 3*v3 -10 <= 0; value: -22 a 5*v2 + 3*v3 -38 <= 0; value: -24 a v3 -3 <= 0; value: 0 d -6*v1 -1*v2 + 6*v3 <= 0; value: 0 a -1/3*v2 + v3 -3 <= 0; value: -1/3 0: 1 1: 4 5 2: 1 2 4 5 3: 1 2 3 4 5 0: 5 -> 5 1: 3 -> 17/6 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 -5*v1 + 19 = 0; value: 0 a -2*v0 -1*v3 + 9 = 0; value: 0 a 3*v2 -6*v3 + 2 <= 0; value: -4 a -2*v1 + v3 < 0; value: -1 a -3*v1 -4*v2 -3*v3 -24 <= 0; value: -55 0: 1 2 1: 1 4 5 2: 3 5 3: 2 3 4 5 optimal: 3610/357 a + 3610/357 <= 0; value: 3610/357 d -3*v0 -5*v1 + 19 = 0; value: 0 d -2*v0 -1*v3 + 9 = 0; value: 0 d 3*v2 -6*v3 + 2 <= 0; value: 0 a -1081/357 < 0; value: -1081/357 d -119/20*v2 -143/5 <= 0; value: 0 0: 1 2 4 5 1: 1 4 5 2: 3 5 4 3: 2 3 4 5 0: 3 -> 1976/357 1: 2 -> 57/119 2: 4 -> -572/119 3: 3 -> -739/357 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 -5*v3 -17 <= 0; value: -40 a 2*v1 -4*v2 -1 <= 0; value: -3 a v2 -4*v3 + 14 = 0; value: 0 a v0 + 2*v1 -25 <= 0; value: -15 a -2*v1 -1*v2 -3*v3 + 20 = 0; value: 0 0: 4 1: 1 2 4 5 2: 2 3 5 3: 1 3 5 optimal: oo a 2*v0 + 7/4*v2 -19/2 <= 0; value: 2 a -3/8*v2 -157/4 <= 0; value: -40 a -23/4*v2 + 17/2 <= 0; value: -3 d v2 -4*v3 + 14 = 0; value: 0 a v0 -7/4*v2 -31/2 <= 0; value: -15 d -2*v1 -1*v2 -3*v3 + 20 = 0; value: 0 0: 4 1: 1 2 4 5 2: 2 3 5 1 4 3: 1 3 5 2 4 0: 4 -> 4 1: 3 -> 3 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 + 3 <= 0; value: -3 a -1*v1 -3*v2 + v3 + 4 = 0; value: 0 a v1 -1*v3 -1 <= 0; value: -3 a 5*v0 -26 <= 0; value: -1 a v0 + 5*v2 -2*v3 -8 < 0; value: -3 0: 4 5 1: 1 2 3 2: 2 5 3: 2 3 5 optimal: (37/5 -e*1) a + 37/5 < 0; value: 37/5 d -1*v0 + v2 + 3 <= 0; value: 0 d -1*v1 -3*v2 + v3 + 4 = 0; value: 0 a -18/5 <= 0; value: -18/5 d 5*v0 -26 <= 0; value: 0 d v0 + 5*v2 -2*v3 -8 < 0; value: -9/10 0: 4 5 1 3 1: 1 2 3 2: 2 5 1 3 3: 2 3 5 1 0: 5 -> 26/5 1: 3 -> 39/20 2: 2 -> 11/5 3: 5 -> 91/20 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -5*v3 + 1 < 0; value: -1 a -4*v1 + 3*v3 -3 <= 0; value: -8 a -1*v1 + 1 <= 0; value: -1 a -1*v0 -4*v1 -5*v3 + 7 <= 0; value: -7 a -3*v0 -3*v3 -1 <= 0; value: -7 0: 1 4 5 1: 2 3 4 2: 3: 1 2 4 5 optimal: (46/9 -e*1) a + 46/9 < 0; value: 46/9 d 3*v0 -5*v3 + 1 < 0; value: -3 d 3*v3 -7 <= 0; value: 0 d -1*v1 + 1 <= 0; value: 0 a -110/9 < 0; value: -110/9 a -56/3 < 0; value: -56/3 0: 1 4 5 1: 2 3 4 2: 3: 1 2 4 5 0: 1 -> 23/9 1: 2 -> 1 2: 0 -> 0 3: 1 -> 7/3 a 2*v0 -2*v1 <= 0; value: -2 a v0 + 5*v1 -1*v2 -19 <= 0; value: -11 a -3*v1 + 3*v2 + 2*v3 -5 = 0; value: 0 a -1*v2 + 6*v3 -8 <= 0; value: -5 a v0 + v1 -1*v2 = 0; value: 0 a -1*v0 + 2*v1 + 2*v3 -14 <= 0; value: -9 0: 1 4 5 1: 1 2 4 5 2: 1 2 3 4 3: 2 3 5 optimal: oo a 22*v0 -14 <= 0; value: 8 a -40*v0 + 9 <= 0; value: -31 d -3*v1 + 3*v2 + 2*v3 -5 = 0; value: 0 d -9*v0 -1*v2 + 7 <= 0; value: 0 d v0 + 2/3*v3 -5/3 = 0; value: 0 a -24*v0 + 5 <= 0; value: -19 0: 1 4 5 3 1: 1 2 4 5 2: 1 2 3 4 5 3: 2 3 5 4 1 0: 1 -> 1 1: 2 -> -3 2: 3 -> -2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 3 = 0; value: 0 a v0 + 2*v2 -7 = 0; value: 0 a 4*v2 + 5*v3 -29 <= 0; value: -17 a -4*v1 -1*v3 + 12 = 0; value: 0 a -3*v0 -2*v1 + 5*v3 + 3 < 0; value: -6 0: 2 5 1: 1 4 5 2: 2 3 3: 3 4 5 optimal: oo a -4*v2 + 8 <= 0; value: -4 d -1*v1 + 3 = 0; value: 0 d v0 + 2*v2 -7 = 0; value: 0 a 4*v2 + 5*v3 -29 <= 0; value: -17 a -1*v3 = 0; value: 0 a 6*v2 + 5*v3 -24 < 0; value: -6 0: 2 5 1: 1 4 5 2: 2 3 5 3: 3 4 5 0: 1 -> 1 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 4*v2 -12 <= 0; value: -4 a -1*v1 <= 0; value: -1 a -3*v1 + v2 < 0; value: -1 a -6*v0 + 2*v1 + 6*v3 -5 < 0; value: -3 0: 1 4 1: 2 3 4 2: 1 3 3: 4 optimal: (24/5 -e*1) a + 24/5 < 0; value: 24/5 d 5*v0 -12 <= 0; value: 0 d -1/3*v2 <= 0; value: 0 d -3*v1 + v2 < 0; value: -3/2 a 6*v3 -97/5 < 0; value: -97/5 0: 1 4 1: 2 3 4 2: 1 3 2 4 3: 4 0: 0 -> 12/5 1: 1 -> 1/2 2: 2 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -2*v0 + 2*v3 -3 < 0; value: -9 a -5*v0 + v1 + 4*v3 + 1 < 0; value: -14 a 3*v1 + 2*v2 -15 < 0; value: -6 a v0 + v3 -5 = 0; value: 0 a -2*v1 + v3 <= 0; value: -1 0: 1 2 4 1: 2 3 5 2: 3 3: 1 2 4 5 optimal: oo a 3*v0 -5 <= 0; value: 7 a -4*v0 + 7 < 0; value: -9 a -19/2*v0 + 47/2 < 0; value: -29/2 a -3/2*v0 + 2*v2 -15/2 < 0; value: -15/2 d v0 + v3 -5 = 0; value: 0 d -2*v1 + v3 <= 0; value: 0 0: 1 2 4 3 1: 2 3 5 2: 3 3: 1 2 4 5 3 0: 4 -> 4 1: 1 -> 1/2 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -3*v1 -4*v3 -11 < 0; value: -28 a 4*v2 -13 < 0; value: -1 a -3*v1 -2*v3 -10 <= 0; value: -23 a -1*v0 -1*v1 + 6*v2 -13 <= 0; value: -2 a -1*v3 < 0; value: -2 0: 4 1: 1 3 4 2: 2 4 3: 1 3 5 optimal: oo a 2*v0 + 4/3*v3 + 20/3 <= 0; value: 52/3 a -2*v3 -1 < 0; value: -5 a 2/3*v0 -4/9*v3 -59/9 < 0; value: -43/9 d 3*v0 -18*v2 -2*v3 + 29 <= 0; value: 0 d -1*v0 -1*v1 + 6*v2 -13 <= 0; value: 0 a -1*v3 < 0; value: -2 0: 4 1 3 2 1: 1 3 4 2: 2 4 1 3 3: 1 3 5 2 0: 4 -> 4 1: 3 -> -14/3 2: 3 -> 37/18 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -6*v0 -1*v1 + 3 <= 0; value: -1 a 6*v1 -2*v2 + 2*v3 -31 < 0; value: -1 a 3*v0 + 6*v3 -76 <= 0; value: -46 a 3*v1 -5*v2 -2 = 0; value: 0 a -6*v3 -13 < 0; value: -43 0: 1 3 1: 1 2 4 2: 2 4 3: 2 3 5 optimal: (1228/3 -e*1) a + 1228/3 < 0; value: 1228/3 d -6*v0 -5/3*v2 + 7/3 <= 0; value: 0 a -13118/15 < 0; value: -13118/15 d 3*v0 + 6*v3 -76 <= 0; value: 0 d 3*v1 -5*v2 -2 = 0; value: 0 d -6*v3 -13 < 0; value: -6 0: 1 3 2 1: 1 2 4 2: 2 4 1 3: 2 3 5 0: 0 -> 83/3 1: 4 -> -163 2: 2 -> -491/5 3: 5 -> -7/6 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 3*v2 + 5*v3 -47 <= 0; value: -27 a -1*v1 + 2*v2 -9 = 0; value: 0 a 3*v1 -2*v2 -1*v3 + 2 < 0; value: -6 a v1 + 4*v2 + 6*v3 -58 <= 0; value: -31 a 2*v0 -3*v1 + 5*v2 -48 <= 0; value: -26 0: 1 5 1: 2 3 4 5 2: 1 2 3 4 5 3: 1 3 4 optimal: oo a -6*v0 + 102 <= 0; value: 102 a 9*v0 + 5*v3 -110 <= 0; value: -105 d -1*v1 + 2*v2 -9 = 0; value: 0 a 8*v0 -1*v3 -109 < 0; value: -110 a 12*v0 + 6*v3 -193 <= 0; value: -187 d 2*v0 -1*v2 -21 <= 0; value: 0 0: 1 5 3 4 1: 2 3 4 5 2: 1 2 3 4 5 3: 1 3 4 0: 0 -> 0 1: 1 -> -51 2: 5 -> -21 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v3 -3 <= 0; value: 0 a -3*v2 -2*v3 + 4 < 0; value: -14 a v0 -2 <= 0; value: -1 a -2*v0 + 5*v2 -35 <= 0; value: -17 a 5*v0 + 4*v3 -17 = 0; value: 0 0: 3 4 5 1: 2: 2 4 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a v3 -3 <= 0; value: 0 a -3*v2 -2*v3 + 4 < 0; value: -14 a v0 -2 <= 0; value: -1 a -2*v0 + 5*v2 -35 <= 0; value: -17 a 5*v0 + 4*v3 -17 = 0; value: 0 0: 3 4 5 1: 2: 2 4 3: 1 2 5 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a v1 + 3*v3 -7 <= 0; value: -4 a -3*v1 -6*v2 + 2 <= 0; value: -7 a 2*v1 + v2 -6 = 0; value: 0 a 6*v0 -6*v2 + 4*v3 -31 < 0; value: -13 a -1*v0 -2*v1 -1*v3 -3 <= 0; value: -12 0: 4 5 1: 1 2 3 5 2: 2 3 4 3: 1 4 5 optimal: oo a 16/5*v0 + 32/5 <= 0; value: 16 d -1/2*v0 + 5/2*v3 -17/2 <= 0; value: 0 a -27/5*v0 -314/5 <= 0; value: -79 d 2*v1 + v2 -6 = 0; value: 0 a -2/5*v0 -459/5 < 0; value: -93 d -1*v0 + v2 -1*v3 -9 <= 0; value: 0 0: 4 5 2 1 4 1: 1 2 3 5 2: 2 3 4 5 1 3: 1 4 5 2 0: 3 -> 3 1: 3 -> -5 2: 0 -> 16 3: 0 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -17 <= 0; value: -9 a -1*v0 + v1 + 2*v3 <= 0; value: 0 a -1*v2 + v3 = 0; value: 0 a v0 -4 = 0; value: 0 a v2 = 0; value: 0 0: 2 4 1: 1 2 2: 3 5 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -17 <= 0; value: -9 a -1*v0 + v1 + 2*v3 <= 0; value: 0 a -1*v2 + v3 = 0; value: 0 a v0 -4 = 0; value: 0 a v2 = 0; value: 0 0: 2 4 1: 1 2 2: 3 5 3: 2 3 0: 4 -> 4 1: 4 -> 4 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -4*v0 + 4*v1 -3 < 0; value: -15 a -6*v0 -1*v2 -2*v3 + 31 <= 0; value: -4 a 3*v0 + v1 -13 = 0; value: 0 a -3*v0 -2*v2 + 10 <= 0; value: -8 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 3 2: 2 4 3: 2 5 optimal: oo a 8*v0 -26 <= 0; value: 6 a -16*v0 + 49 < 0; value: -15 a -6*v0 -1*v2 -2*v3 + 31 <= 0; value: -4 d 3*v0 + v1 -13 = 0; value: 0 a -3*v0 -2*v2 + 10 <= 0; value: -8 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 3 2: 2 4 3: 2 5 0: 4 -> 4 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 4*v2 + 2*v3 -25 <= 0; value: -13 a 5*v0 -6*v3 + 9 = 0; value: 0 a -2*v0 + v1 -5*v3 -13 < 0; value: -37 a v2 -1 = 0; value: 0 a 2*v0 + 2*v3 -25 < 0; value: -11 0: 2 3 5 1: 3 2: 1 4 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 4*v2 + 2*v3 -25 <= 0; value: -13 a 5*v0 -6*v3 + 9 = 0; value: 0 a -2*v0 + v1 -5*v3 -13 < 0; value: -37 a v2 -1 = 0; value: 0 a 2*v0 + 2*v3 -25 < 0; value: -11 0: 2 3 5 1: 3 2: 1 4 3: 1 2 3 5 0: 3 -> 3 1: 2 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -37 <= 0; value: -22 a -1*v0 -5*v2 + 2*v3 -7 <= 0; value: -20 a -2*v3 -7 < 0; value: -17 a 3*v0 + 5*v1 -34 < 0; value: -20 0: 1 2 4 1: 4 2: 2 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 -37 <= 0; value: -22 a -1*v0 -5*v2 + 2*v3 -7 <= 0; value: -20 a -2*v3 -7 < 0; value: -17 a 3*v0 + 5*v1 -34 < 0; value: -20 0: 1 2 4 1: 4 2: 2 3: 2 3 0: 3 -> 3 1: 1 -> 1 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a v1 -4*v2 + 7 = 0; value: 0 a 2*v2 -1*v3 -1 = 0; value: 0 a 2*v0 -1*v1 -3*v3 + 8 <= 0; value: -2 a 5*v3 -17 < 0; value: -2 0: 3 1: 1 3 2: 1 2 3: 2 3 4 optimal: (2/5 -e*1) a + 2/5 < 0; value: 2/5 d v1 -4*v2 + 7 = 0; value: 0 d 2*v2 -1*v3 -1 = 0; value: 0 d 2*v0 -5*v3 + 13 <= 0; value: 0 d 2*v0 -4 < 0; value: -2 0: 3 4 1: 1 3 2: 1 2 3 3: 2 3 4 0: 0 -> 1 1: 1 -> 1 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v0 -5 < 0; value: -3 a -3*v2 -4*v3 + 2 <= 0; value: -19 a -2*v0 + v1 + 1 <= 0; value: 0 a -3*v0 -5*v1 + 4*v3 -6 <= 0; value: -15 a -3*v0 + 3*v1 + v2 -6 = 0; value: 0 0: 1 3 4 5 1: 3 4 5 2: 2 5 3: 2 4 optimal: oo a 16/5*v0 -8/5*v3 + 12/5 <= 0; value: 4 a v0 -5 < 0; value: -3 a -72/5*v0 + 16/5*v3 -134/5 <= 0; value: -46 a -13/5*v0 + 4/5*v3 -1/5 <= 0; value: -3 d -8*v0 + 5/3*v2 + 4*v3 -16 <= 0; value: 0 d -3*v0 + 3*v1 + v2 -6 = 0; value: 0 0: 1 3 4 5 2 1: 3 4 5 2: 2 5 4 3 3: 2 4 3 0: 2 -> 2 1: 3 -> 0 2: 3 -> 12 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + 6*v1 + 2*v3 -37 < 0; value: -13 a 2*v0 + 3*v1 + 2*v3 -50 <= 0; value: -28 a -5*v0 -2 <= 0; value: -12 a -2*v1 + 3*v2 -4 = 0; value: 0 0: 1 2 3 1: 1 2 4 2: 4 3: 1 2 optimal: oo a 2*v0 -3*v2 + 4 <= 0; value: -4 a -3*v0 + 9*v2 + 2*v3 -49 < 0; value: -13 a 2*v0 + 9/2*v2 + 2*v3 -56 <= 0; value: -28 a -5*v0 -2 <= 0; value: -12 d -2*v1 + 3*v2 -4 = 0; value: 0 0: 1 2 3 1: 1 2 4 2: 4 1 2 3: 1 2 0: 2 -> 2 1: 4 -> 4 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 -7 <= 0; value: -16 a -3*v0 + 4*v1 + v3 + 8 = 0; value: 0 a -1*v0 -4*v1 + 5*v2 -17 <= 0; value: -5 a -5*v2 + 6*v3 -7 <= 0; value: -16 a 5*v0 -1*v2 -28 <= 0; value: -16 0: 1 2 3 5 1: 2 3 2: 3 4 5 3: 2 4 optimal: 3167/302 a + 3167/302 <= 0; value: 3167/302 a -4138/151 <= 0; value: -4138/151 d -3*v0 + 4*v1 + v3 + 8 = 0; value: 0 d -4*v0 + 35/6*v2 -47/6 <= 0; value: 0 d -5*v2 + 6*v3 -7 <= 0; value: 0 d 151/35*v0 -1027/35 <= 0; value: 0 0: 1 2 3 5 1: 2 3 2: 3 4 5 3: 2 4 3 0: 3 -> 1027/151 1: 0 -> 941/604 2: 3 -> 907/151 3: 1 -> 932/151 a 2*v0 -2*v1 <= 0; value: 10 a -5*v0 + 2*v1 -4*v3 + 41 = 0; value: 0 a -5*v2 + 6*v3 + 1 <= 0; value: 0 a -1*v2 -1*v3 + 9 = 0; value: 0 a 4*v0 -31 <= 0; value: -11 a -5*v0 + 4*v2 + 5 = 0; value: 0 0: 1 4 5 1: 1 2: 2 3 5 3: 1 2 3 optimal: 31/2 a + 31/2 <= 0; value: 31/2 d -5*v0 + 2*v1 -4*v3 + 41 = 0; value: 0 a -605/16 <= 0; value: -605/16 d -1*v2 -1*v3 + 9 = 0; value: 0 d 4*v0 -31 <= 0; value: 0 d -5*v0 + 4*v2 + 5 = 0; value: 0 0: 1 4 5 2 1: 1 2: 2 3 5 3: 1 2 3 0: 5 -> 31/4 1: 0 -> 0 2: 5 -> 135/16 3: 4 -> 9/16 a 2*v0 -2*v1 <= 0; value: 8 a -1*v1 <= 0; value: 0 a -5*v0 + 2*v3 -1 <= 0; value: -13 a v0 -11 <= 0; value: -7 a v0 -4 <= 0; value: 0 a v0 -1*v3 <= 0; value: 0 0: 2 3 4 5 1: 1 2: 3: 2 5 optimal: 8 a + 8 <= 0; value: 8 d -1*v1 <= 0; value: 0 a 2*v3 -21 <= 0; value: -13 a -7 <= 0; value: -7 d v0 -4 <= 0; value: 0 a -1*v3 + 4 <= 0; value: 0 0: 2 3 4 5 1: 1 2: 3: 2 5 0: 4 -> 4 1: 0 -> 0 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 4*v2 <= 0; value: 0 a v2 -5 = 0; value: 0 a -3*v1 + v2 + 10 = 0; value: 0 a -3*v1 -4*v3 + 13 <= 0; value: -2 a v1 -12 <= 0; value: -7 0: 1 1: 3 4 5 2: 1 2 3 3: 4 optimal: oo a 2*v0 -10 <= 0; value: -2 a -5*v0 + 20 <= 0; value: 0 d v2 -5 = 0; value: 0 d -3*v1 + v2 + 10 = 0; value: 0 a -4*v3 -2 <= 0; value: -2 a -7 <= 0; value: -7 0: 1 1: 3 4 5 2: 1 2 3 4 5 3: 4 0: 4 -> 4 1: 5 -> 5 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a 2*v0 -2*v2 -3 < 0; value: -7 a v2 -1*v3 -2 < 0; value: -1 a -4*v1 -5*v2 + 30 = 0; value: 0 a 5*v2 + 3*v3 -27 <= 0; value: -14 0: 1 1: 3 2: 1 2 3 4 3: 2 4 optimal: (105/16 -e*1) a + 105/16 < 0; value: 105/16 d 2*v0 -45/4 < 0; value: -2 d v2 -1*v3 -2 < 0; value: -1 d -4*v1 -5*v2 + 30 = 0; value: 0 d 8*v3 -17 <= 0; value: 0 0: 1 1: 3 2: 1 2 3 4 3: 2 4 1 0: 0 -> 37/8 1: 5 -> 115/32 2: 2 -> 25/8 3: 1 -> 17/8 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + 6*v2 -37 < 0; value: -1 a -2*v0 -4*v1 -4*v2 + 1 <= 0; value: -21 a v0 + 5*v1 + v3 -18 <= 0; value: -9 a -2*v2 + 3*v3 + 3 = 0; value: 0 a 2*v3 -3 < 0; value: -1 0: 1 2 3 1: 2 3 2: 1 2 4 3: 3 4 5 optimal: (468/17 -e*1) a + 468/17 < 0; value: 468/17 d 6*v0 + 9*v3 -28 < 0; value: -9 d -2*v0 -4*v1 -4*v2 + 1 <= 0; value: 0 d 17/6*v0 -1601/36 < 0; value: -17/6 d -2*v2 + 3*v3 + 3 = 0; value: 0 a -301/17 < 0; value: -301/17 0: 1 2 3 5 1: 2 3 2: 1 2 4 3 3: 3 4 5 1 0: 3 -> 1499/102 1: 1 -> 299/102 2: 3 -> -341/34 3: 1 -> -392/51 a 2*v0 -2*v1 <= 0; value: -4 a v3 = 0; value: 0 a -2*v0 -2*v2 + 5 <= 0; value: -1 a v2 + 5*v3 -2 = 0; value: 0 a 3*v0 + v3 -7 <= 0; value: -4 a 5*v1 -22 < 0; value: -7 0: 2 4 1: 5 2: 2 3 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v3 = 0; value: 0 a -2*v0 -2*v2 + 5 <= 0; value: -1 a v2 + 5*v3 -2 = 0; value: 0 a 3*v0 + v3 -7 <= 0; value: -4 a 5*v1 -22 < 0; value: -7 0: 2 4 1: 5 2: 2 3 3: 1 3 4 0: 1 -> 1 1: 3 -> 3 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 4*v2 -2*v3 -7 <= 0; value: -3 a 6*v1 -2*v2 -3*v3 -59 <= 0; value: -37 a -5*v0 -2*v1 + 6*v2 + 18 < 0; value: -4 a 4*v0 + 6*v2 -23 < 0; value: -1 0: 3 4 1: 2 3 2: 1 2 3 4 3: 1 2 optimal: oo a 7*v0 -6*v2 -18 < 0; value: 4 a 4*v2 -2*v3 -7 <= 0; value: -3 a -15*v0 + 16*v2 -3*v3 -5 < 0; value: -49 d -5*v0 -2*v1 + 6*v2 + 18 < 0; value: -2 a 4*v0 + 6*v2 -23 < 0; value: -1 0: 3 4 2 1: 2 3 2: 1 2 3 4 3: 1 2 0: 4 -> 4 1: 4 -> 3 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + 5 = 0; value: 0 a 5*v0 -6*v1 -5*v3 + 13 <= 0; value: -1 a -3*v0 + 4*v1 + 4*v2 -47 <= 0; value: -30 a v0 -5 = 0; value: 0 a -1*v2 + v3 + 1 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 3 5 3: 2 5 optimal: 79 a + 79 <= 0; value: 79 d -1*v0 + 5 = 0; value: 0 d 5*v0 -6*v1 -5*v3 + 13 <= 0; value: 0 d 1/3*v0 + 2/3*v2 -35 <= 0; value: 0 a = 0; value: 0 d -1*v2 + v3 + 1 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 3 5 3: 2 5 3 0: 5 -> 5 1: 4 -> -69/2 2: 4 -> 50 3: 3 -> 49 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 <= 0; value: 0 a 2*v3 -11 < 0; value: -5 a 3*v0 -2*v3 -1 < 0; value: -7 a v0 -3*v2 -4 <= 0; value: -10 a 6*v0 + 4*v1 -5*v3 + 1 <= 0; value: -6 0: 1 3 4 5 1: 5 2: 4 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 <= 0; value: 0 a 2*v3 -11 < 0; value: -5 a 3*v0 -2*v3 -1 < 0; value: -7 a v0 -3*v2 -4 <= 0; value: -10 a 6*v0 + 4*v1 -5*v3 + 1 <= 0; value: -6 0: 1 3 4 5 1: 5 2: 4 3: 2 3 5 0: 0 -> 0 1: 2 -> 2 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 + 5*v3 -67 <= 0; value: -40 a v1 -3*v3 + 1 <= 0; value: -5 a 6*v0 + 2*v2 + 2*v3 -71 <= 0; value: -31 a -2*v0 -3*v3 + 3 <= 0; value: -16 a -6*v1 + 5*v3 + 2 <= 0; value: -1 0: 3 4 1: 1 2 5 2: 3 3: 1 2 3 4 5 optimal: oo a -2/3*v2 + 841/39 <= 0; value: 263/13 a -787/13 <= 0; value: -787/13 d -13/6*v3 + 4/3 <= 0; value: 0 d 6*v0 + 2*v2 -907/13 <= 0; value: 0 a 2/3*v2 -862/39 <= 0; value: -270/13 d -6*v1 + 5*v3 + 2 <= 0; value: 0 0: 3 4 1: 1 2 5 2: 3 4 3: 1 2 3 4 5 0: 5 -> 285/26 1: 3 -> 11/13 2: 2 -> 2 3: 3 -> 8/13 a 2*v0 -2*v1 <= 0; value: 2 a v3 -6 <= 0; value: -3 a 4*v1 -5*v2 + 5 = 0; value: 0 a 2*v0 + v1 -4 <= 0; value: -2 a -1*v3 + 3 = 0; value: 0 a -3*v1 + 3*v2 + v3 -16 <= 0; value: -10 0: 3 1: 2 3 5 2: 2 5 3: 1 4 5 optimal: 54 a + 54 <= 0; value: 54 a -3 <= 0; value: -3 d 4*v1 -5*v2 + 5 = 0; value: 0 d 2*v0 -62/3 <= 0; value: 0 d -1*v3 + 3 = 0; value: 0 d -3/4*v2 + v3 -49/4 <= 0; value: 0 0: 3 1: 2 3 5 2: 2 5 3 3: 1 4 5 3 0: 1 -> 31/3 1: 0 -> -50/3 2: 1 -> -37/3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v1 -2*v2 -17 < 0; value: -5 a -1*v0 + 4 = 0; value: 0 a -2*v1 + 4*v2 + v3 < 0; value: -4 a 4*v0 + 6*v1 -63 <= 0; value: -29 a -5*v0 -1*v1 + 19 < 0; value: -4 0: 2 4 5 1: 1 3 4 5 2: 1 3 3: 3 optimal: (10 -e*1) a + 10 < 0; value: 10 a -2*v2 -21 < 0; value: -21 d -1*v0 + 4 = 0; value: 0 d -2*v1 + 4*v2 + v3 < 0; value: -2 a -53 < 0; value: -53 d -5*v0 -2*v2 -1/2*v3 + 19 <= 0; value: 0 0: 2 4 5 1 1: 1 3 4 5 2: 1 3 5 4 3: 3 5 1 4 0: 4 -> 4 1: 3 -> 0 2: 0 -> 0 3: 2 -> -2 a 2*v0 -2*v1 <= 0; value: -4 a 6*v2 + 3*v3 -16 < 0; value: -7 a -3*v0 -6*v1 + 11 <= 0; value: -1 a -4*v1 -4*v2 -1*v3 + 11 = 0; value: 0 a -1*v1 + 2 = 0; value: 0 a 5*v1 + 3*v3 -27 < 0; value: -8 0: 2 1: 2 3 4 5 2: 1 3 3: 1 3 5 optimal: oo a 2*v0 -4 <= 0; value: -4 a -6*v2 -7 < 0; value: -7 a -3*v0 -1 <= 0; value: -1 d -4*v1 -4*v2 -1*v3 + 11 = 0; value: 0 d v2 + 1/4*v3 -3/4 = 0; value: 0 a -12*v2 -8 < 0; value: -8 0: 2 1: 2 3 4 5 2: 1 3 2 4 5 3: 1 3 5 2 4 0: 0 -> 0 1: 2 -> 2 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 + 4*v3 -5 = 0; value: 0 a 6*v0 + v1 -3*v2 <= 0; value: -9 a v0 -6*v1 + 3*v2 + 5 < 0; value: -1 a 4*v0 -1*v1 -2*v3 -3 < 0; value: -10 a -5*v0 -1*v1 + 4*v3 -5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 5 2: 2 3 3: 1 4 5 optimal: (-2 -e*1) a -2 < 0; value: -2 d -1*v1 + 4*v3 -5 = 0; value: 0 d 37/6*v0 -5/2*v2 + 5/6 < 0; value: -5/2 d v0 + 3*v2 -24*v3 + 35 < 0; value: -9/2 a -7 <= 0; value: -7 d -5*v0 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 5 2: 2 3 4 3: 1 4 5 3 2 0: 0 -> 0 1: 3 -> 9/4 2: 4 -> 4/3 3: 2 -> 29/16 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -4*v2 + 2 < 0; value: -13 a v3 <= 0; value: 0 a -1*v0 + 1 = 0; value: 0 a -6*v0 + v1 -6*v2 -2 <= 0; value: -22 a 3*v0 -1*v2 + 2*v3 = 0; value: 0 0: 1 3 4 5 1: 4 2: 1 4 5 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -4*v2 + 2 < 0; value: -13 a v3 <= 0; value: 0 a -1*v0 + 1 = 0; value: 0 a -6*v0 + v1 -6*v2 -2 <= 0; value: -22 a 3*v0 -1*v2 + 2*v3 = 0; value: 0 0: 1 3 4 5 1: 4 2: 1 4 5 3: 2 5 0: 1 -> 1 1: 4 -> 4 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -1*v3 <= 0; value: -5 a 6*v0 -5*v1 + 1 <= 0; value: -1 a -5*v0 -6*v2 + 33 = 0; value: 0 a -6*v1 -3*v2 -5*v3 + 58 = 0; value: 0 a 6*v0 + 5*v2 -66 < 0; value: -33 0: 2 3 5 1: 2 4 2: 3 4 5 3: 1 4 optimal: oo a 12/25*v2 -76/25 <= 0; value: -8/5 a -141/125*v2 -232/125 <= 0; value: -131/25 d 6*v0 + 5/2*v2 + 25/6*v3 -142/3 <= 0; value: 0 d -5*v0 -6*v2 + 33 = 0; value: 0 d -6*v1 -3*v2 -5*v3 + 58 = 0; value: 0 a -11/5*v2 -132/5 < 0; value: -33 0: 2 3 5 1 1: 2 4 2: 3 4 5 2 1 3: 1 4 2 0: 3 -> 3 1: 4 -> 19/5 2: 3 -> 3 3: 5 -> 131/25 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 -1*v2 + 13 = 0; value: 0 a -2*v0 -6*v1 -1*v3 + 4 < 0; value: -31 a -6*v0 + 5*v1 -2*v2 + 14 = 0; value: 0 a -1*v0 -1*v1 + 6 <= 0; value: -2 a 5*v0 -6*v3 -5 < 0; value: -3 0: 2 3 4 5 1: 1 2 3 4 2: 1 3 3: 2 5 optimal: oo a 4/5*v3 -2 < 0; value: 2/5 d -2*v1 -1*v2 + 13 = 0; value: 0 a -41/5*v3 -10 < 0; value: -173/5 d -6*v0 -9/2*v2 + 93/2 = 0; value: 0 a -2*v3 + 3 < 0; value: -3 d 5*v0 -6*v3 -5 < 0; value: -3/2 0: 2 3 4 5 1: 1 2 3 4 2: 1 3 2 4 3: 2 5 4 0: 4 -> 43/10 1: 4 -> 21/5 2: 5 -> 23/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -1*v3 -4 < 0; value: -2 a -1*v0 -4*v3 -1 <= 0; value: -20 a -2*v0 -1 <= 0; value: -7 a -2*v0 -1*v3 -4 <= 0; value: -14 a 5*v0 -1*v1 -32 < 0; value: -19 0: 1 2 3 4 5 1: 5 2: 3: 1 2 4 optimal: (68 -e*1) a + 68 < 0; value: 68 a -1*v3 -5 < 0; value: -9 a -4*v3 -1/2 <= 0; value: -33/2 d -2*v0 -1 <= 0; value: 0 a -1*v3 -3 <= 0; value: -7 d 5*v0 -1*v1 -32 < 0; value: -1 0: 1 2 3 4 5 1: 5 2: 3: 1 2 4 0: 3 -> -1/2 1: 2 -> -67/2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a v0 -5 < 0; value: -3 a v1 -3 = 0; value: 0 a 3*v3 -4 < 0; value: -1 a v2 -1 = 0; value: 0 a 5*v2 + 4*v3 -22 <= 0; value: -13 0: 1 1: 2 2: 4 5 3: 3 5 optimal: (4 -e*1) a + 4 < 0; value: 4 d v0 -5 < 0; value: -1 d v1 -3 = 0; value: 0 a 3*v3 -4 < 0; value: -1 a v2 -1 = 0; value: 0 a 5*v2 + 4*v3 -22 <= 0; value: -13 0: 1 1: 2 2: 4 5 3: 3 5 0: 2 -> 4 1: 3 -> 3 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a v2 -5 = 0; value: 0 a v0 -1*v2 + 3 = 0; value: 0 a -5*v1 -6*v3 + 8 < 0; value: -23 a -4*v1 + 3*v3 + 14 < 0; value: -3 a -1*v0 + 2*v2 -18 <= 0; value: -10 0: 2 5 1: 3 4 2: 1 2 5 3: 3 4 optimal: (-20/13 -e*1) a -20/13 < 0; value: -20/13 d v2 -5 = 0; value: 0 d v0 -1*v2 + 3 = 0; value: 0 d -39/4*v3 -19/2 <= 0; value: 0 d -4*v1 + 3*v3 + 14 < 0; value: -4 a -10 <= 0; value: -10 0: 2 5 1: 3 4 2: 1 2 5 3: 3 4 0: 2 -> 2 1: 5 -> 49/13 2: 5 -> 5 3: 1 -> -38/39 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 -1*v1 + 4 = 0; value: 0 a -5*v1 + 6*v2 -6 <= 0; value: -14 a 3*v0 + 2*v1 -8 = 0; value: 0 a -1*v1 -5*v2 + 3 <= 0; value: -11 a 6*v1 -29 <= 0; value: -5 0: 1 3 1: 1 2 3 4 5 2: 2 4 3: optimal: -8 a -8 <= 0; value: -8 d -1*v0 -1*v1 + 4 = 0; value: 0 a 6*v2 -26 <= 0; value: -14 d v0 = 0; value: 0 a -5*v2 -1 <= 0; value: -11 a -5 <= 0; value: -5 0: 1 3 2 4 5 1: 1 2 3 4 5 2: 2 4 3: 0: 0 -> 0 1: 4 -> 4 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 -1*v3 -1 < 0; value: -12 a 5*v0 + v2 -32 < 0; value: -10 a -2*v0 -2*v1 -1 < 0; value: -17 a -6*v2 + 6*v3 -13 <= 0; value: -7 a -1*v2 <= 0; value: -2 0: 2 3 1: 1 3 2: 2 4 5 3: 1 4 optimal: (431/21 -e*1) a + 431/21 < 0; value: 431/21 d -2*v1 -1*v3 -1 < 0; value: -2 d 7*v0 -205/6 < 0; value: -37/12 d -2*v0 + v2 + 13/6 <= 0; value: 0 d -6*v2 + 6*v3 -13 <= 0; value: 0 a -319/42 < 0; value: -319/42 0: 2 3 5 1: 1 3 2: 2 4 5 3 3: 1 4 3 0: 4 -> 373/84 1: 4 -> -331/84 2: 2 -> 47/7 3: 3 -> 373/42 a 2*v0 -2*v1 <= 0; value: 8 a 6*v1 + v2 -1*v3 -2 < 0; value: -1 a -1*v2 -2 <= 0; value: -6 a 3*v0 + 5*v2 -63 < 0; value: -31 a -6*v0 -2*v2 -31 < 0; value: -63 a -5*v2 -11 <= 0; value: -31 0: 3 4 1: 1 2: 1 2 3 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a 6*v1 + v2 -1*v3 -2 < 0; value: -1 a -1*v2 -2 <= 0; value: -6 a 3*v0 + 5*v2 -63 < 0; value: -31 a -6*v0 -2*v2 -31 < 0; value: -63 a -5*v2 -11 <= 0; value: -31 0: 3 4 1: 1 2: 1 2 3 4 5 3: 1 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a v2 -10 <= 0; value: -6 a -3*v1 + 5*v2 + 2*v3 -27 = 0; value: 0 a 4*v0 -7 <= 0; value: -3 a -3*v1 + 4*v2 -16 <= 0; value: -3 a -1*v0 + 5*v1 -1*v3 < 0; value: -1 0: 3 5 1: 2 4 5 2: 1 2 4 3: 2 5 optimal: oo a 2*v0 -8/3*v2 + 32/3 <= 0; value: 2 a v2 -10 <= 0; value: -6 d -3*v1 + 5*v2 + 2*v3 -27 = 0; value: 0 a 4*v0 -7 <= 0; value: -3 d -1*v2 -2*v3 + 11 <= 0; value: 0 a -1*v0 + 43/6*v2 -193/6 < 0; value: -9/2 0: 3 5 1: 2 4 5 2: 1 2 4 5 3: 2 5 4 0: 1 -> 1 1: 1 -> 0 2: 4 -> 4 3: 5 -> 7/2 a 2*v0 -2*v1 <= 0; value: -2 a v2 + 3*v3 -16 = 0; value: 0 a -1*v0 <= 0; value: 0 a -2*v0 + 6*v1 + 5*v2 -29 < 0; value: -18 a -5*v0 -6*v1 -5*v2 + 11 = 0; value: 0 a v0 -5*v3 -12 <= 0; value: -37 0: 2 3 4 5 1: 3 4 2: 1 3 4 3: 1 5 optimal: oo a 8/3*v0 + 35 <= 0; value: 35 d v2 + 3*v3 -16 = 0; value: 0 a -1*v0 <= 0; value: 0 a -7*v0 -18 < 0; value: -18 d -5*v0 -6*v1 -5*v2 + 11 = 0; value: 0 d v0 -5*v3 -12 <= 0; value: 0 0: 2 3 4 5 1: 3 4 2: 1 3 4 3: 1 5 0: 0 -> 0 1: 1 -> -35/2 2: 1 -> 116/5 3: 5 -> -12/5 a 2*v0 -2*v1 <= 0; value: 2 a v0 -5*v1 + v3 -5 <= 0; value: 0 a v1 + 2*v2 -8 = 0; value: 0 a v0 -2*v1 + 2*v3 -26 <= 0; value: -17 a 6*v1 + 3*v3 -35 < 0; value: -23 a -5*v0 -2*v1 + 4*v2 -28 <= 0; value: -17 0: 1 3 5 1: 1 2 3 4 5 2: 2 5 3: 1 3 4 optimal: oo a 9/2*v0 + 6 <= 0; value: 21/2 d v0 -5*v1 + v3 -5 <= 0; value: 0 d 1/5*v0 + 2*v2 + 1/5*v3 -9 = 0; value: 0 a -11*v0 -40 <= 0; value: -51 a -117/4*v0 -83 < 0; value: -449/4 d -5*v0 + 8*v2 -44 <= 0; value: 0 0: 1 3 5 2 4 1: 1 2 3 4 5 2: 2 5 3 4 3: 1 3 4 2 5 0: 1 -> 1 1: 0 -> -17/4 2: 4 -> 49/8 3: 4 -> -69/4 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 + 5 <= 0; value: -1 a -1*v0 -2*v1 -3*v3 + 18 <= 0; value: -5 a -1*v2 <= 0; value: 0 a 4*v0 -4*v3 -9 <= 0; value: -5 a 2*v0 -27 <= 0; value: -17 0: 2 4 5 1: 1 2 2: 3 3: 2 4 optimal: 22 a + 22 <= 0; value: 22 d -2*v1 + 5 <= 0; value: 0 a -137/4 <= 0; value: -137/4 a -1*v2 <= 0; value: 0 d 4*v0 -4*v3 -9 <= 0; value: 0 d 2*v3 -45/2 <= 0; value: 0 0: 2 4 5 1: 1 2 2: 3 3: 2 4 5 0: 5 -> 27/2 1: 3 -> 5/2 2: 0 -> 0 3: 4 -> 45/4 a 2*v0 -2*v1 <= 0; value: -4 a -3*v1 -2*v2 + 3*v3 + 10 = 0; value: 0 a -6*v0 -4*v1 + 4*v3 + 17 <= 0; value: -1 a -1*v0 -2*v2 -3*v3 -2 <= 0; value: -30 a v0 -5 < 0; value: -2 a v0 + 3*v3 -27 <= 0; value: -9 0: 2 3 4 5 1: 1 2 2: 1 3 3: 1 2 3 5 optimal: (103/3 -e*1) a + 103/3 < 0; value: 103/3 d -3*v1 -2*v2 + 3*v3 + 10 = 0; value: 0 d -6*v0 + 8/3*v2 + 11/3 <= 0; value: 0 d -1*v0 -2*v2 -3*v3 -2 <= 0; value: 0 d v0 -5 < 0; value: -1 a -195/4 < 0; value: -195/4 0: 2 3 4 5 5 1: 1 2 2: 1 3 2 5 3: 1 2 3 5 0: 3 -> 4 1: 5 -> -53/6 2: 5 -> 61/8 3: 5 -> -85/12 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 6*v1 -14 < 0; value: -9 a -6*v2 -5*v3 -1 <= 0; value: -25 a -1*v0 + 2*v1 -1*v2 -2 < 0; value: -5 a 2*v0 + 5*v1 -3*v2 <= 0; value: -5 a -1*v0 + 4*v3 + 1 <= 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3 4 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 6*v1 -14 < 0; value: -9 a -6*v2 -5*v3 -1 <= 0; value: -25 a -1*v0 + 2*v1 -1*v2 -2 < 0; value: -5 a 2*v0 + 5*v1 -3*v2 <= 0; value: -5 a -1*v0 + 4*v3 + 1 <= 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3 4 3: 2 5 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 3*v1 -12 <= 0; value: -5 a 5*v0 + 4*v3 -39 < 0; value: -7 a 6*v0 -2*v2 -25 < 0; value: -11 a 3*v0 + 2*v2 -22 = 0; value: 0 a 2*v1 + v2 -26 <= 0; value: -11 0: 1 2 3 4 1: 1 5 2: 3 4 5 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 3*v1 -12 <= 0; value: -5 a 5*v0 + 4*v3 -39 < 0; value: -7 a 6*v0 -2*v2 -25 < 0; value: -11 a 3*v0 + 2*v2 -22 = 0; value: 0 a 2*v1 + v2 -26 <= 0; value: -11 0: 1 2 3 4 1: 1 5 2: 3 4 5 3: 2 0: 4 -> 4 1: 5 -> 5 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a 4*v1 + 3*v3 -44 < 0; value: -27 a v2 <= 0; value: 0 a -6*v1 + 5*v2 -9 < 0; value: -21 a -2*v0 -1 <= 0; value: -7 a -1*v1 + 2 = 0; value: 0 0: 4 1: 1 3 5 2: 2 3 3: 1 optimal: oo a 2*v0 -4 <= 0; value: 2 a 3*v3 -36 < 0; value: -27 a v2 <= 0; value: 0 a 5*v2 -21 < 0; value: -21 a -2*v0 -1 <= 0; value: -7 d -1*v1 + 2 = 0; value: 0 0: 4 1: 1 3 5 2: 2 3 3: 1 0: 3 -> 3 1: 2 -> 2 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a -5*v0 + 6*v3 -25 <= 0; value: -6 a 5*v0 -3*v1 <= 0; value: -7 a 3*v0 -2*v1 + 5 <= 0; value: 0 a -3*v1 + 2 < 0; value: -10 a -1*v1 -3 < 0; value: -7 0: 1 2 3 1: 2 3 4 5 2: 3: 1 optimal: (-34/9 -e*1) a -34/9 < 0; value: -34/9 d -5*v0 + 6*v3 -25 <= 0; value: 0 a -73/9 < 0; value: -73/9 d 3*v0 -2*v1 + 5 <= 0; value: 0 d -27/5*v3 + 17 < 0; value: -23/10 a -11/3 <= 0; value: -11/3 0: 1 2 3 4 5 1: 2 3 4 5 2: 3: 1 4 5 2 0: 1 -> -32/45 1: 4 -> 43/30 2: 0 -> 0 3: 4 -> 193/54 a 2*v0 -2*v1 <= 0; value: -6 a -2*v1 + 5*v2 + 5*v3 -10 = 0; value: 0 a -1*v3 = 0; value: 0 a -1*v1 + 6*v2 -48 <= 0; value: -29 a v0 -2*v2 + 3 < 0; value: -3 a -5*v0 -2*v3 -4 <= 0; value: -14 0: 4 5 1: 1 3 2: 1 3 4 3: 1 2 5 optimal: (29/10 -e*1) a + 29/10 < 0; value: 29/10 d -2*v1 + 5*v2 + 5*v3 -10 = 0; value: 0 d -1*v3 = 0; value: 0 a -783/20 < 0; value: -783/20 d v0 -2*v2 + 3 < 0; value: -2 d -5*v0 -4 <= 0; value: 0 0: 4 5 3 1: 1 3 2: 1 3 4 3: 1 2 5 3 0: 2 -> -4/5 1: 5 -> 1/4 2: 4 -> 21/10 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 6*v2 + 4*v3 -69 <= 0; value: -43 a -5*v0 -2 <= 0; value: -7 a -3*v0 -4*v1 < 0; value: -7 a 4*v0 + v1 + 2*v2 -16 < 0; value: -5 a v0 -2*v1 + 1 = 0; value: 0 0: 2 3 4 5 1: 3 4 5 2: 1 4 3: 1 optimal: oo a -4/9*v2 + 22/9 < 0; value: 10/9 a 6*v2 + 4*v3 -69 <= 0; value: -43 a 20/9*v2 -173/9 < 0; value: -113/9 a 20/9*v2 -173/9 < 0; value: -113/9 d 9/2*v0 + 2*v2 -31/2 < 0; value: -5/2 d v0 -2*v1 + 1 = 0; value: 0 0: 2 3 4 5 1: 3 4 5 2: 1 4 2 3 3: 1 0: 1 -> 14/9 1: 1 -> 23/18 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 + 5*v2 -31 <= 0; value: -15 a -4*v2 -1*v3 + 16 <= 0; value: -3 a v0 + 3*v2 -13 <= 0; value: 0 a -5*v0 -6*v1 -1*v2 + 33 = 0; value: 0 a 3*v1 + 2*v2 -1*v3 -33 < 0; value: -16 0: 3 4 1: 1 4 5 2: 1 2 3 4 5 3: 2 5 optimal: oo a 8/3*v3 -6 <= 0; value: 2 a -2/3*v3 -15 <= 0; value: -17 d 4/3*v0 -1*v3 -4/3 <= 0; value: 0 d v0 + 3*v2 -13 <= 0; value: 0 d -5*v0 -6*v1 -1*v2 + 33 = 0; value: 0 a -13/4*v3 -13 < 0; value: -91/4 0: 3 4 1 5 2 1: 1 4 5 2: 1 2 3 4 5 3: 2 5 1 0: 1 -> 13/4 1: 4 -> 9/4 2: 4 -> 13/4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a 6*v2 + 4*v3 -25 < 0; value: -11 a -2*v3 -3 <= 0; value: -7 a 4*v0 + v2 + 4*v3 -35 <= 0; value: -18 a 2*v1 -1*v3 -6 = 0; value: 0 a v1 -2*v2 -2*v3 -1 <= 0; value: -3 0: 3 1: 4 5 2: 1 3 5 3: 1 2 3 4 5 optimal: 239/16 a + 239/16 <= 0; value: 239/16 a -73/4 < 0; value: -73/4 d 8/3*v2 -17/3 <= 0; value: 0 d 4*v0 -311/8 <= 0; value: 0 d 2*v1 -1*v3 -6 = 0; value: 0 d -2*v2 -3/2*v3 + 2 <= 0; value: 0 0: 3 1: 4 5 2: 1 3 5 2 3: 1 2 3 4 5 0: 2 -> 311/32 1: 4 -> 9/4 2: 1 -> 17/8 3: 2 -> -3/2 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -3*v2 -2*v3 + 24 = 0; value: 0 a -1*v1 -2 <= 0; value: -6 a v3 -4 = 0; value: 0 a -3*v0 -2*v1 + 12 <= 0; value: -2 0: 1 4 1: 2 4 2: 1 3: 1 3 optimal: 44/3 a + 44/3 <= 0; value: 44/3 d -2*v0 -3*v2 -2*v3 + 24 = 0; value: 0 d -9/4*v2 + 4 <= 0; value: 0 d v3 -4 = 0; value: 0 d -3*v0 -2*v1 + 12 <= 0; value: 0 0: 1 4 2 1: 2 4 2: 1 2 3: 1 3 2 0: 2 -> 16/3 1: 4 -> -2 2: 4 -> 16/9 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 -1*v1 + 4*v3 -26 = 0; value: 0 a -2*v0 + v2 = 0; value: 0 a 2*v0 -6*v1 -5 < 0; value: -1 a 3*v0 -6*v3 -20 <= 0; value: -44 a -1*v1 + 2*v3 -17 <= 0; value: -7 0: 1 2 3 4 1: 1 3 5 2: 2 3: 1 4 5 optimal: (38/3 -e*1) a + 38/3 < 0; value: 38/3 d 3*v0 -1*v1 + 4*v3 -26 = 0; value: 0 d -2*v0 + v2 = 0; value: 0 d -16*v0 -24*v3 + 151 < 0; value: -24 d 7/2*v2 -231/4 <= 0; value: 0 a -52/3 <= 0; value: -52/3 0: 1 2 3 4 5 1: 1 3 5 2: 2 4 5 3: 1 4 5 3 0: 2 -> 33/4 1: 0 -> 71/12 2: 4 -> 33/2 3: 5 -> 43/24 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 -6*v1 + 5*v2 -1 = 0; value: 0 a -1*v0 + 2*v2 -1 = 0; value: 0 a v2 -2 = 0; value: 0 a 5*v1 + 5*v2 + 4*v3 -79 <= 0; value: -52 a -2*v1 + v2 <= 0; value: 0 0: 1 2 1: 1 4 5 2: 1 2 3 4 5 3: 4 optimal: 4 a + 4 <= 0; value: 4 d -1*v0 -6*v1 + 5*v2 -1 = 0; value: 0 d -1*v0 + 2*v2 -1 = 0; value: 0 d 1/2*v0 -3/2 = 0; value: 0 a 4*v3 -64 <= 0; value: -52 a <= 0; value: 0 0: 1 2 5 4 3 1: 1 4 5 2: 1 2 3 4 5 3: 4 0: 3 -> 3 1: 1 -> 1 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v2 + 8 <= 0; value: -1 a v2 + 2*v3 -7 = 0; value: 0 a -5*v2 -4 < 0; value: -19 a -3*v1 -5 <= 0; value: -20 a -3*v1 + 3*v2 + 2*v3 + 1 < 0; value: -1 0: 1: 4 5 2: 1 2 3 5 3: 2 5 optimal: oo a 2*v0 -80/9 < 0; value: 10/9 d -3*v2 + 8 <= 0; value: 0 d v2 + 2*v3 -7 = 0; value: 0 a -52/3 < 0; value: -52/3 a -55/3 <= 0; value: -55/3 d -3*v1 + 3*v2 + 2*v3 + 1 < 0; value: -5/6 0: 1: 4 5 2: 1 2 3 5 4 3: 2 5 4 0: 5 -> 5 1: 5 -> 85/18 2: 3 -> 8/3 3: 2 -> 13/6 a 2*v0 -2*v1 <= 0; value: -4 a -6*v1 + 2*v2 -1*v3 + 29 = 0; value: 0 a 2*v1 -3*v2 -6*v3 -6 <= 0; value: -20 a -3*v0 -1*v3 + 10 < 0; value: -2 a -2*v2 -3*v3 + 12 <= 0; value: -1 a 5*v0 -5*v2 -11 <= 0; value: -6 0: 3 5 1: 1 2 2: 1 2 4 5 3: 1 2 3 4 optimal: oo a 2*v0 -2/3*v2 + 1/3*v3 -29/3 <= 0; value: -4 d -6*v1 + 2*v2 -1*v3 + 29 = 0; value: 0 a -7/3*v2 -19/3*v3 + 11/3 <= 0; value: -20 a -3*v0 -1*v3 + 10 < 0; value: -2 a -2*v2 -3*v3 + 12 <= 0; value: -1 a 5*v0 -5*v2 -11 <= 0; value: -6 0: 3 5 1: 1 2 2: 1 2 4 5 3: 1 2 3 4 0: 3 -> 3 1: 5 -> 5 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -5*v0 + 5*v1 -3*v3 -4 = 0; value: 0 a 2*v2 -7 <= 0; value: -1 a -5*v0 + v3 + 8 = 0; value: 0 a -1*v1 + v3 + 2 <= 0; value: 0 a v0 -2*v3 + 2 = 0; value: 0 0: 1 3 5 1: 1 4 2: 2 3: 1 3 4 5 optimal: -4 a -4 <= 0; value: -4 d -5*v0 + 5*v1 -3*v3 -4 = 0; value: 0 a 2*v2 -7 <= 0; value: -1 d -5*v0 + v3 + 8 = 0; value: 0 a <= 0; value: 0 d -9*v0 + 18 = 0; value: 0 0: 1 3 5 4 1: 1 4 2: 2 3: 1 3 4 5 0: 2 -> 2 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 + 1 = 0; value: 0 a -1*v1 <= 0; value: -4 a v2 -4 = 0; value: 0 a 5*v1 + 2*v2 -2*v3 -40 <= 0; value: -18 a -3*v1 -4*v2 -12 <= 0; value: -40 0: 1 1: 2 4 5 2: 3 4 5 3: 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 + 1 = 0; value: 0 d -1*v1 <= 0; value: 0 a v2 -4 = 0; value: 0 a 2*v2 -2*v3 -40 <= 0; value: -38 a -4*v2 -12 <= 0; value: -28 0: 1 1: 2 4 5 2: 3 4 5 3: 4 0: 1 -> 1 1: 4 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a -3*v0 -6*v3 -11 < 0; value: -32 a 5*v0 + 3*v2 -67 < 0; value: -30 a 3*v2 -29 < 0; value: -17 a 5*v3 -12 <= 0; value: -7 a 3*v0 + v2 -5*v3 -14 = 0; value: 0 0: 1 2 5 1: 2: 2 3 5 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a -3*v0 -6*v3 -11 < 0; value: -32 a 5*v0 + 3*v2 -67 < 0; value: -30 a 3*v2 -29 < 0; value: -17 a 5*v3 -12 <= 0; value: -7 a 3*v0 + v2 -5*v3 -14 = 0; value: 0 0: 1 2 5 1: 2: 2 3 5 3: 1 4 5 0: 5 -> 5 1: 0 -> 0 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + 1 <= 0; value: 0 a -3*v2 -6*v3 -13 <= 0; value: -52 a 2*v1 + 3*v2 -17 = 0; value: 0 a 5*v1 -1*v3 -1 <= 0; value: 0 a 4*v0 -4*v2 -4*v3 -19 <= 0; value: -51 0: 5 1: 1 3 4 2: 2 3 5 3: 2 4 5 optimal: oo a 2*v2 + 2*v3 + 15/2 <= 0; value: 51/2 d -1*v1 + 1 <= 0; value: 0 a -3*v2 -6*v3 -13 <= 0; value: -52 a 3*v2 -15 = 0; value: 0 a -1*v3 + 4 <= 0; value: 0 d 4*v0 -4*v2 -4*v3 -19 <= 0; value: 0 0: 5 1: 1 3 4 2: 2 3 5 3: 2 4 5 0: 1 -> 55/4 1: 1 -> 1 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -2*v2 -3*v3 -1 <= 0; value: -12 a 6*v2 + 2*v3 -43 <= 0; value: -17 a 2*v0 + v1 -11 = 0; value: 0 a 5*v2 -52 < 0; value: -32 a 5*v2 -32 < 0; value: -12 0: 3 1: 3 2: 1 2 4 5 3: 1 2 optimal: oo a 6*v0 -22 <= 0; value: 2 a -2*v2 -3*v3 -1 <= 0; value: -12 a 6*v2 + 2*v3 -43 <= 0; value: -17 d 2*v0 + v1 -11 = 0; value: 0 a 5*v2 -52 < 0; value: -32 a 5*v2 -32 < 0; value: -12 0: 3 1: 3 2: 1 2 4 5 3: 1 2 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 -6*v2 + 3 < 0; value: -22 a 3*v1 -4*v2 + 3*v3 -56 <= 0; value: -29 a v0 -3*v3 -3 <= 0; value: -12 a -1*v1 -2*v2 + 5 = 0; value: 0 a -3*v0 -4*v1 + 4*v3 -12 < 0; value: -25 0: 3 5 1: 1 2 4 5 2: 1 2 4 3: 2 3 5 optimal: (108/5 -e*1) a + 108/5 < 0; value: 108/5 d 5/6*v0 -4 <= 0; value: 0 a -471/5 < 0; value: -471/5 d v0 -3*v3 -3 <= 0; value: 0 d -1*v1 -2*v2 + 5 = 0; value: 0 d -3*v0 + 8*v2 + 4*v3 -32 < 0; value: -8 0: 3 5 1 2 1: 1 2 4 5 2: 1 2 4 5 3: 2 3 5 1 0: 3 -> 24/5 1: 5 -> -4 2: 0 -> 9/2 3: 4 -> 3/5 a 2*v0 -2*v1 <= 0; value: 8 a 4*v2 -3*v3 + 8 <= 0; value: -7 a v1 + v3 -5 = 0; value: 0 a 5*v0 + 3*v1 -20 = 0; value: 0 a v1 <= 0; value: 0 a -5*v0 + 5*v3 -9 <= 0; value: -4 0: 3 5 1: 2 3 4 2: 1 3: 1 2 5 optimal: 72/5 a + 72/5 <= 0; value: 72/5 a 4*v2 -13 <= 0; value: -13 d v1 + v3 -5 = 0; value: 0 d 5*v0 -3*v3 -5 = 0; value: 0 a -2 <= 0; value: -2 d 10/3*v0 -52/3 <= 0; value: 0 0: 3 5 1 4 1: 2 3 4 2: 1 3: 1 2 5 3 4 0: 4 -> 26/5 1: 0 -> -2 2: 0 -> 0 3: 5 -> 7 a 2*v0 -2*v1 <= 0; value: -4 a 2*v2 -3*v3 -2 <= 0; value: -1 a -1*v0 + v3 = 0; value: 0 a 6*v2 -3*v3 -10 < 0; value: -1 a -3*v0 + 3*v2 + 5*v3 -17 <= 0; value: -9 a -1*v1 + 2*v2 + v3 -3 <= 0; value: -1 0: 2 4 1: 5 2: 1 3 4 5 3: 1 2 3 4 5 optimal: oo a -4*v2 + 6 <= 0; value: -2 a -3*v0 + 2*v2 -2 <= 0; value: -1 d -1*v0 + v3 = 0; value: 0 a -3*v0 + 6*v2 -10 < 0; value: -1 a 2*v0 + 3*v2 -17 <= 0; value: -9 d -1*v1 + 2*v2 + v3 -3 <= 0; value: 0 0: 2 4 1 3 1: 5 2: 1 3 4 5 3: 1 2 3 4 5 0: 1 -> 1 1: 3 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -1*v1 + 7 = 0; value: 0 a -1*v2 + 1 <= 0; value: -4 a v2 + 6*v3 -82 <= 0; value: -53 a v1 + 2*v2 -14 = 0; value: 0 0: 1 1: 1 4 2: 2 3 4 3: 3 optimal: oo a -32*v3 + 1214/3 <= 0; value: 830/3 d -3*v0 -1*v1 + 7 = 0; value: 0 a 6*v3 -81 <= 0; value: -57 d v2 + 6*v3 -82 <= 0; value: 0 d -3*v0 + 2*v2 -7 = 0; value: 0 0: 1 4 1: 1 4 2: 2 3 4 3: 3 2 0: 1 -> 109/3 1: 4 -> -102 2: 5 -> 58 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a v2 -1 = 0; value: 0 a 4*v1 -5*v2 -23 <= 0; value: -12 a -2*v1 + 5 < 0; value: -3 a -6*v0 -2*v1 + 2*v3 + 11 < 0; value: -1 0: 4 1: 2 3 4 2: 1 2 3: 4 optimal: oo a 2*v0 -5 < 0; value: -1 a v2 -1 = 0; value: 0 a -5*v2 -13 < 0; value: -18 d 6*v0 -2*v3 -6 <= 0; value: 0 d -6*v0 -2*v1 + 2*v3 + 11 < 0; value: -3/2 0: 4 3 2 1: 2 3 4 2: 1 2 3: 4 3 2 0: 2 -> 2 1: 4 -> 13/4 2: 1 -> 1 3: 4 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -5*v2 -2*v3 -4 <= 0; value: -20 a 3*v2 -5*v3 -5 <= 0; value: -17 a -3*v0 + 2*v2 + 1 = 0; value: 0 a 5*v2 + 4*v3 -17 = 0; value: 0 a -1*v1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 3 4 3: 1 2 4 optimal: 494/111 a + 494/111 <= 0; value: 494/111 a -3410/111 <= 0; value: -3410/111 d -37/5*v3 + 26/5 <= 0; value: 0 d -3*v0 + 2*v2 + 1 = 0; value: 0 d 5*v2 + 4*v3 -17 = 0; value: 0 d -1*v1 <= 0; value: 0 0: 1 3 1: 5 2: 1 2 3 4 3: 1 2 4 0: 1 -> 247/111 1: 0 -> 0 2: 1 -> 105/37 3: 3 -> 26/37 a 2*v0 -2*v1 <= 0; value: -4 a v2 -5 <= 0; value: 0 a -4*v0 + 5*v1 + 2*v3 -33 <= 0; value: -16 a -4*v1 + 3*v2 -4 <= 0; value: -9 a -1*v0 -1*v1 -2*v2 + 18 = 0; value: 0 a -1*v2 + v3 -2 < 0; value: -5 0: 2 4 1: 2 3 4 2: 1 3 4 5 3: 2 5 optimal: 5 a + 5 <= 0; value: 5 d v2 -5 <= 0; value: 0 a 2*v3 -161/4 <= 0; value: -145/4 d 4*v0 -21 <= 0; value: 0 d -1*v0 -1*v1 -2*v2 + 18 = 0; value: 0 a v3 -7 < 0; value: -5 0: 2 4 3 1: 2 3 4 2: 1 3 4 5 2 3: 2 5 0: 3 -> 21/4 1: 5 -> 11/4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 + v2 -34 < 0; value: -17 a 3*v0 + v3 -19 = 0; value: 0 a -1*v0 -2*v2 <= 0; value: -9 a -1*v1 -6*v2 -13 < 0; value: -29 a -1*v2 + 2 = 0; value: 0 0: 1 2 3 1: 4 2: 1 3 4 5 3: 2 optimal: (214/3 -e*1) a + 214/3 < 0; value: 214/3 d -1*v3 -13 < 0; value: -1 d 3*v0 + v3 -19 = 0; value: 0 a -44/3 < 0; value: -44/3 d -1*v1 -6*v2 -13 < 0; value: -1 d -1*v2 + 2 = 0; value: 0 0: 1 2 3 1: 4 2: 1 3 4 5 3: 2 1 3 0: 5 -> 31/3 1: 4 -> -24 2: 2 -> 2 3: 4 -> -12 a 2*v0 -2*v1 <= 0; value: -6 a -3*v2 + v3 + 5 <= 0; value: -9 a -2*v2 + 9 <= 0; value: -1 a 2*v3 -3 <= 0; value: -1 a 4*v0 -3*v1 -3*v3 + 12 = 0; value: 0 a -1*v0 = 0; value: 0 0: 4 5 1: 4 2: 1 2 3: 1 3 4 optimal: -5 a -5 <= 0; value: -5 a -3*v2 + 13/2 <= 0; value: -17/2 a -2*v2 + 9 <= 0; value: -1 d 2*v3 -3 <= 0; value: 0 d 4*v0 -3*v1 -3*v3 + 12 = 0; value: 0 d -1*v0 = 0; value: 0 0: 4 5 1: 4 2: 1 2 3: 1 3 4 0: 0 -> 0 1: 3 -> 5/2 2: 5 -> 5 3: 1 -> 3/2 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 -2*v3 -7 = 0; value: 0 a -6*v0 -6*v1 -6*v2 -23 <= 0; value: -89 a 2*v0 -3*v1 + 4*v3 + 5 = 0; value: 0 a 4*v1 -1*v3 -20 < 0; value: -1 a -1*v0 + 3*v2 -6 = 0; value: 0 0: 2 3 5 1: 2 3 4 2: 1 2 5 3: 1 3 4 optimal: -7/24 a -7/24 <= 0; value: -7/24 d 3*v2 -2*v3 -7 = 0; value: 0 d -16*v0 -41 <= 0; value: 0 d 2*v0 -3*v1 + 4*v3 + 5 = 0; value: 0 a -2677/96 < 0; value: -2677/96 d -1*v0 + 3*v2 -6 = 0; value: 0 0: 2 3 5 4 1: 2 3 4 2: 1 2 5 4 3: 1 3 4 2 0: 3 -> -41/16 1: 5 -> -29/12 2: 3 -> 55/48 3: 1 -> -57/32 a 2*v0 -2*v1 <= 0; value: -10 a -2*v0 + v3 -2 <= 0; value: 0 a 6*v0 -1*v2 + 3*v3 -2 = 0; value: 0 a 2*v1 -5*v2 -6 <= 0; value: -16 a -3*v1 + 5*v2 + 4*v3 -13 = 0; value: 0 a -1*v1 + 4 <= 0; value: -1 0: 1 2 1: 3 4 5 2: 2 3 4 3: 1 2 4 optimal: oo a 2*v0 -8 <= 0; value: -8 a -68/19*v0 -3/19 <= 0; value: -3/19 d 6*v0 -1*v2 + 3*v3 -2 = 0; value: 0 a -120/19*v0 -297/19 <= 0; value: -297/19 d -3*v1 + 5*v2 + 4*v3 -13 = 0; value: 0 d 8/3*v0 -19/9*v2 + 67/9 <= 0; value: 0 0: 1 2 5 3 1: 3 4 5 2: 2 3 4 5 1 3: 1 2 4 5 3 0: 0 -> 0 1: 5 -> 4 2: 4 -> 67/19 3: 2 -> 35/19 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 -1*v2 + 8 <= 0; value: -5 a v0 -6*v1 + 5*v2 + 14 <= 0; value: -2 a 2*v0 + 4*v1 -5*v2 -40 <= 0; value: -23 a 2*v1 + v2 -16 <= 0; value: -7 a 5*v0 -1*v1 + 6*v3 -54 < 0; value: -25 0: 1 2 3 5 1: 2 3 4 5 2: 1 2 3 4 3: 5 optimal: 149/7 a + 149/7 <= 0; value: 149/7 d -4*v0 -1*v2 + 8 <= 0; value: 0 d v0 -6*v1 + 5*v2 + 14 <= 0; value: 0 d 28/3*v0 -44 <= 0; value: 0 a -271/7 <= 0; value: -271/7 a 6*v3 -49/2 < 0; value: -13/2 0: 1 2 3 5 4 1: 2 3 4 5 2: 1 2 3 4 5 3: 5 0: 3 -> 33/7 1: 4 -> -83/14 2: 1 -> -76/7 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + 6*v1 -3*v3 -53 <= 0; value: -33 a -4*v1 + 3*v3 + 13 <= 0; value: -7 a -5*v0 -2*v1 + 6 < 0; value: -29 a 3*v0 + v1 -3*v2 -31 < 0; value: -14 a 4*v1 + 2*v3 -49 <= 0; value: -29 0: 1 3 4 1: 1 2 3 4 5 2: 4 3: 1 2 5 optimal: oo a 42*v2 + 386 < 0; value: 428 a -42*v2 -426 < 0; value: -468 d -4*v1 + 3*v3 + 13 <= 0; value: 0 d -5*v0 -3/2*v3 -1/2 < 0; value: -3/2 d 1/2*v0 -3*v2 -28 < 0; value: -1/2 a -100*v2 -971 < 0; value: -1071 0: 1 3 4 5 1: 1 2 3 4 5 2: 4 1 5 3: 1 2 5 3 4 0: 5 -> 61 1: 5 -> -595/4 2: 1 -> 1 3: 0 -> -608/3 a 2*v0 -2*v1 <= 0; value: 2 a v0 -2*v1 + 1 = 0; value: 0 a v0 -2*v3 <= 0; value: -1 a 5*v0 + v3 -17 = 0; value: 0 a v1 -2 = 0; value: 0 a 5*v0 + v1 -4*v3 -14 <= 0; value: -5 0: 1 2 3 5 1: 1 4 5 2: 3: 2 3 5 optimal: 2 a + 2 <= 0; value: 2 d v0 -2*v1 + 1 = 0; value: 0 a -1 <= 0; value: -1 d 5*v0 + v3 -17 = 0; value: 0 d -1/10*v3 + 1/5 = 0; value: 0 a -5 <= 0; value: -5 0: 1 2 3 5 4 1: 1 4 5 2: 3: 2 3 5 4 0: 3 -> 3 1: 2 -> 2 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 4*v2 -5 <= 0; value: -15 a -5*v1 -4*v3 + 11 < 0; value: -6 a -1*v0 + v3 + 2 = 0; value: 0 a -1*v2 -5*v3 -1 <= 0; value: -16 a 3*v2 + 6*v3 -25 <= 0; value: -7 0: 1 3 1: 2 2: 1 4 5 3: 2 3 4 5 optimal: oo a -9/5*v2 + 73/5 < 0; value: 73/5 a 5*v2 -52/3 <= 0; value: -52/3 d -5*v1 -4*v3 + 11 < 0; value: -5 d -1*v0 + v3 + 2 = 0; value: 0 a 3/2*v2 -131/6 <= 0; value: -131/6 d 6*v0 + 3*v2 -37 <= 0; value: 0 0: 1 3 5 4 1: 2 2: 1 4 5 3: 2 3 4 5 0: 5 -> 37/6 1: 1 -> -2/15 2: 0 -> 0 3: 3 -> 25/6 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 + 3*v1 -14 <= 0; value: 0 a 4*v0 + 3*v1 -2*v2 -28 <= 0; value: -14 a -1*v1 -2*v2 + 10 = 0; value: 0 a -1*v0 + 2*v1 + v3 -4 = 0; value: 0 a 2*v1 + 6*v2 -49 <= 0; value: -21 0: 1 2 4 1: 1 2 3 4 5 2: 2 3 5 3: 4 optimal: 95 a + 95 <= 0; value: 95 a -14 <= 0; value: -14 d 4*v0 -114 <= 0; value: 0 d -1*v1 -2*v2 + 10 = 0; value: 0 d -1*v0 -4*v2 + v3 + 16 = 0; value: 0 d -1/2*v0 + 1/2*v3 -21 <= 0; value: 0 0: 1 2 4 5 1: 1 2 3 4 5 2: 2 3 5 4 1 3: 4 5 2 1 0: 4 -> 57/2 1: 2 -> -19 2: 4 -> 29/2 3: 4 -> 141/2 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + v2 + 2*v3 -12 = 0; value: 0 a -2*v2 -7 <= 0; value: -15 a -6*v1 -3*v3 -14 < 0; value: -38 a -3*v0 + 2*v2 -8 = 0; value: 0 a -5*v2 -5*v3 -6 <= 0; value: -46 0: 1 4 1: 3 2: 1 2 4 5 3: 1 3 5 optimal: oo a 11/4*v0 + 26/3 < 0; value: 26/3 d -3*v0 + v2 + 2*v3 -12 = 0; value: 0 a -3*v0 -15 <= 0; value: -15 d -6*v1 -3*v3 -14 < 0; value: -6 d -3*v0 + 2*v2 -8 = 0; value: 0 a -45/4*v0 -46 <= 0; value: -46 0: 1 4 5 2 1: 3 2: 1 2 4 5 3: 1 3 5 0: 0 -> 0 1: 2 -> -10/3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a v1 + v3 -13 <= 0; value: -8 a 5*v0 + 2*v1 -20 = 0; value: 0 a -1*v1 = 0; value: 0 a -3*v0 + 3*v1 -11 <= 0; value: -23 a 5*v0 -3*v1 + 3*v3 -70 <= 0; value: -35 0: 2 4 5 1: 1 2 3 4 5 2: 3: 1 5 optimal: 8 a + 8 <= 0; value: 8 a v3 -13 <= 0; value: -8 d 5*v0 + 2*v1 -20 = 0; value: 0 d 5/2*v0 -10 = 0; value: 0 a -23 <= 0; value: -23 a 3*v3 -50 <= 0; value: -35 0: 2 4 5 3 1 1: 1 2 3 4 5 2: 3: 1 5 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -3*v1 + 4 <= 0; value: -3 a -1*v0 + 2*v2 <= 0; value: 0 a -3*v0 + 7 < 0; value: -5 a v0 + 3*v1 + v2 -54 < 0; value: -33 a 2*v1 -1*v3 -8 <= 0; value: -3 0: 1 2 3 4 1: 1 4 5 2: 2 4 3: 5 optimal: oo a -2/9*v2 + 76/9 < 0; value: 8 d 2*v0 -3*v1 + 4 <= 0; value: 0 a 7/3*v2 -50/3 < 0; value: -12 a v2 -43 < 0; value: -41 d v2 + 9/4*v3 -38 < 0; value: -9/4 d 4/3*v0 -1*v3 -16/3 <= 0; value: 0 0: 1 2 3 4 5 1: 1 4 5 2: 2 4 3 3: 5 4 2 3 0: 4 -> 61/4 1: 5 -> 23/2 2: 2 -> 2 3: 5 -> 15 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 -5*v2 + 6 <= 0; value: -4 a -5*v2 -8 < 0; value: -18 a -1*v2 -3*v3 + 2 < 0; value: -6 a v3 -3 <= 0; value: -1 a 6*v2 -3*v3 -17 <= 0; value: -11 0: 1 1: 2: 1 2 3 5 3: 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 -5*v2 + 6 <= 0; value: -4 a -5*v2 -8 < 0; value: -18 a -1*v2 -3*v3 + 2 < 0; value: -6 a v3 -3 <= 0; value: -1 a 6*v2 -3*v3 -17 <= 0; value: -11 0: 1 1: 2: 1 2 3 5 3: 3 4 5 0: 0 -> 0 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -1*v1 -1*v2 + v3 + 1 = 0; value: 0 a -2*v2 -1*v3 = 0; value: 0 a -1*v1 + 1 = 0; value: 0 a 4*v1 + 3*v2 -10 <= 0; value: -6 a -3*v1 + 4*v3 -1 <= 0; value: -4 0: 1: 1 3 4 5 2: 1 2 4 3: 1 2 5 optimal: oo a 2*v0 -2 <= 0; value: 6 d -1*v1 -1*v2 + v3 + 1 = 0; value: 0 d -2*v2 -1*v3 = 0; value: 0 d 3*v2 = 0; value: 0 a -6 <= 0; value: -6 a -4 <= 0; value: -4 0: 1: 1 3 4 5 2: 1 2 4 3 5 3: 1 2 5 3 4 0: 4 -> 4 1: 1 -> 1 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -1*v1 + v2 -3 < 0; value: -8 a v0 + 3*v1 + 3*v3 -31 <= 0; value: -4 a -2*v0 -3*v2 <= 0; value: 0 a -1*v0 -5*v1 -2*v2 -8 < 0; value: -33 a -4*v1 + 17 < 0; value: -3 0: 2 3 4 1: 1 2 4 5 2: 1 3 4 3: 2 optimal: oo a -6*v3 + 28 < 0; value: 4 a v2 -29/4 <= 0; value: -29/4 d v0 + 3*v3 -73/4 < 0; value: -1 a -3*v2 + 6*v3 -73/2 < 0; value: -25/2 a -2*v2 + 3*v3 -95/2 < 0; value: -71/2 d -4*v1 + 17 < 0; value: -3/2 0: 2 3 4 1: 1 2 4 5 2: 1 3 4 3: 2 3 4 0: 0 -> 21/4 1: 5 -> 37/8 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 3*v1 + v2 -11 = 0; value: 0 a -1*v0 + v2 <= 0; value: 0 a v0 -1*v2 = 0; value: 0 a v0 + 3*v3 -42 <= 0; value: -25 a -2*v0 -6*v2 -1*v3 + 21 = 0; value: 0 0: 2 3 4 5 1: 1 2: 1 2 3 5 3: 4 5 optimal: oo a -1/3*v3 -1/3 <= 0; value: -2 d 3*v1 + v2 -11 = 0; value: 0 d -1*v0 + v2 <= 0; value: 0 a = 0; value: 0 a 23/8*v3 -315/8 <= 0; value: -25 d -8*v0 -1*v3 + 21 = 0; value: 0 0: 2 3 4 5 1: 1 2: 1 2 3 5 3: 4 5 0: 2 -> 2 1: 3 -> 3 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 6*v1 + v3 -32 <= 0; value: -18 a -3*v0 + 7 <= 0; value: -2 a 4*v0 -15 <= 0; value: -3 a 5*v0 -18 < 0; value: -3 0: 2 3 4 1: 1 2: 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v1 + v3 -32 <= 0; value: -18 a -3*v0 + 7 <= 0; value: -2 a 4*v0 -15 <= 0; value: -3 a 5*v0 -18 < 0; value: -3 0: 2 3 4 1: 1 2: 3: 1 0: 3 -> 3 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a 4*v0 + 3*v1 -2*v2 -26 <= 0; value: -17 a -2*v1 -2*v2 + 3*v3 + 4 <= 0; value: -7 a 3*v1 -5*v2 + 4 < 0; value: -6 a -3*v2 -4*v3 -17 <= 0; value: -44 a -1*v1 + 5 = 0; value: 0 0: 1 1: 1 2 3 5 2: 1 2 3 4 3: 2 4 optimal: oo a v2 -9/2 <= 0; value: 1/2 d 4*v0 -2*v2 -11 <= 0; value: 0 a -2*v2 + 3*v3 -6 <= 0; value: -7 a -5*v2 + 19 < 0; value: -6 a -3*v2 -4*v3 -17 <= 0; value: -44 d -1*v1 + 5 = 0; value: 0 0: 1 1: 1 2 3 5 2: 1 2 3 4 3: 2 4 0: 1 -> 21/4 1: 5 -> 5 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 + 6*v1 -31 <= 0; value: -7 a -1*v0 + 5*v1 + 6*v3 -61 <= 0; value: -29 a -1*v1 -4*v2 + 7 <= 0; value: -1 a 6*v0 -4*v3 + 3 <= 0; value: -5 a 6*v1 + 4*v2 -39 <= 0; value: -11 0: 1 2 4 1: 1 2 3 5 2: 3 5 3: 2 4 optimal: oo a 2*v0 + 8*v2 -14 <= 0; value: -6 a -3*v0 -24*v2 + 11 <= 0; value: -13 a -1*v0 -20*v2 + 6*v3 -26 <= 0; value: -34 d -1*v1 -4*v2 + 7 <= 0; value: 0 a 6*v0 -4*v3 + 3 <= 0; value: -5 a -20*v2 + 3 <= 0; value: -17 0: 1 2 4 1: 1 2 3 5 2: 3 5 1 2 3: 2 4 0: 0 -> 0 1: 4 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -6*v0 + v1 -1*v3 + 18 = 0; value: 0 a 5*v0 -6*v2 -22 <= 0; value: -13 a 6*v0 -3*v1 + 5*v3 -20 <= 0; value: -2 a -5*v1 -5*v2 + 2*v3 + 2 <= 0; value: -3 a -6*v0 -6*v1 + v3 + 14 <= 0; value: -4 0: 1 2 3 5 1: 1 3 4 5 2: 2 4 3: 1 3 4 5 optimal: oo a 204/25*v2 + 428/25 <= 0; value: 632/25 d -6*v0 + v1 -1*v3 + 18 = 0; value: 0 d 5*v0 -6*v2 -22 <= 0; value: 0 a -864/25*v2 -1098/25 <= 0; value: -1962/25 a -269/25*v2 -58/25 <= 0; value: -327/25 d -42*v0 -5*v3 + 122 <= 0; value: 0 0: 1 2 3 5 4 1: 1 3 4 5 2: 2 4 3 3: 1 3 4 5 0: 3 -> 28/5 1: 0 -> -176/25 2: 1 -> 1 3: 0 -> -566/25 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + v3 -6 <= 0; value: -3 a 4*v2 + 5*v3 -25 = 0; value: 0 a v0 -1*v3 -2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a v0 + v2 -8 = 0; value: 0 0: 3 5 1: 1 4 2: 2 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + v3 -6 <= 0; value: -3 a 4*v2 + 5*v3 -25 = 0; value: 0 a v0 -1*v3 -2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a v0 + v2 -8 = 0; value: 0 0: 3 5 1: 1 4 2: 2 5 3: 1 2 3 4 0: 3 -> 3 1: 1 -> 1 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 10 a -4*v1 + 5*v2 + 6*v3 -21 <= 0; value: -11 a -1*v3 <= 0; value: 0 a v0 + 3*v1 + 5*v2 -42 <= 0; value: -27 a -3*v1 -2*v2 + 2*v3 + 4 <= 0; value: 0 a v2 -1*v3 -2 = 0; value: 0 0: 3 1: 1 3 4 2: 1 3 4 5 3: 1 2 4 5 optimal: 64 a + 64 <= 0; value: 64 a -11 <= 0; value: -11 d -1*v3 <= 0; value: 0 d v0 -32 <= 0; value: 0 d -3*v1 -2*v2 + 2*v3 + 4 <= 0; value: 0 d v2 -2 = 0; value: 0 0: 3 1: 1 3 4 2: 1 3 4 5 3: 1 2 4 5 3 0: 5 -> 32 1: 0 -> 0 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a v2 -1*v3 + 1 <= 0; value: -3 a 2*v1 + 5*v2 -6*v3 -21 <= 0; value: -44 a 4*v0 + 3*v1 -2*v2 -26 <= 0; value: -17 a 6*v1 -7 < 0; value: -1 a v0 + v1 -3*v2 <= 0; value: 0 0: 3 5 1: 2 3 4 5 2: 1 2 3 5 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a v2 -1*v3 + 1 <= 0; value: -3 a 2*v1 + 5*v2 -6*v3 -21 <= 0; value: -44 a 4*v0 + 3*v1 -2*v2 -26 <= 0; value: -17 a 6*v1 -7 < 0; value: -1 a v0 + v1 -3*v2 <= 0; value: 0 0: 3 5 1: 2 3 4 5 2: 1 2 3 5 3: 1 2 0: 2 -> 2 1: 1 -> 1 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a 6*v1 + 3*v2 -5*v3 -1 <= 0; value: -4 a 4*v0 -3*v1 -27 <= 0; value: -17 a 5*v2 + v3 -4 <= 0; value: -1 a 2*v0 + 3*v1 + 3*v3 -68 <= 0; value: -45 a 4*v0 -6*v1 + 2*v3 -23 <= 0; value: -13 0: 2 4 5 1: 1 2 4 5 2: 1 3 3: 1 3 4 5 optimal: oo a -2/3*v0 + 18 <= 0; value: 46/3 d 4*v0 + 3*v2 -3*v3 -24 <= 0; value: 0 d 2/3*v0 -1*v2 -15/2 <= 0; value: 0 a 16/3*v0 -57 <= 0; value: -107/3 a 12*v0 -283/2 <= 0; value: -187/2 d 4*v0 -6*v1 + 2*v3 -23 <= 0; value: 0 0: 2 4 5 1 3 1: 1 2 4 5 2: 1 3 2 4 3: 1 3 4 5 2 0: 4 -> 4 1: 2 -> -11/3 2: 0 -> -29/6 3: 3 -> -15/2 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v2 + 2*v3 -28 < 0; value: -13 a 3*v1 -4*v2 < 0; value: -20 a -3*v1 + 6*v2 -37 < 0; value: -7 a -5*v1 -4*v2 + 10 < 0; value: -10 a 6*v0 + 4*v3 -77 < 0; value: -37 0: 1 5 1: 2 3 4 2: 1 2 3 4 3: 1 5 optimal: oo a -4/3*v3 + 209/7 < 0; value: 515/21 a 10/3*v3 -1609/42 < 0; value: -1049/42 a -562/21 < 0; value: -562/21 d 42/5*v2 -43 <= 0; value: 0 d -5*v1 -4*v2 + 10 < 0; value: -5 d 6*v0 + 4*v3 -77 < 0; value: -6 0: 1 5 1: 2 3 4 2: 1 2 3 4 3: 1 5 0: 4 -> 55/6 1: 0 -> -23/21 2: 5 -> 215/42 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a v0 -4*v1 -1*v2 + 8 = 0; value: 0 a -4*v0 + v1 + 18 = 0; value: 0 a 4*v2 -1*v3 -41 <= 0; value: -23 a -1*v2 -5*v3 -8 <= 0; value: -23 a -5*v0 + 4*v1 < 0; value: -17 0: 1 2 5 1: 1 2 5 2: 1 3 4 3: 3 4 optimal: oo a 1/10*v3 + 81/10 <= 0; value: 83/10 d v0 -4*v1 -1*v2 + 8 = 0; value: 0 d -15/4*v0 -1/4*v2 + 20 = 0; value: 0 d -60*v0 -1*v3 + 279 <= 0; value: 0 a -21/4*v3 -73/4 <= 0; value: -115/4 a -11/60*v3 -417/20 < 0; value: -1273/60 0: 1 2 5 3 4 1: 1 2 5 2: 1 3 4 2 5 3: 3 4 5 0: 5 -> 277/60 1: 2 -> 7/15 2: 5 -> 43/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 + 3*v2 -3*v3 + 14 <= 0; value: -6 a 6*v0 + 5*v3 -53 <= 0; value: -21 a -5*v1 -4*v2 -4 < 0; value: -14 a -2*v3 + 1 < 0; value: -7 a -1*v0 + v1 <= 0; value: 0 0: 1 2 5 1: 3 5 2: 1 3 3: 1 2 4 optimal: (535/18 -e*1) a + 535/18 < 0; value: 535/18 d -4*v0 + 3*v2 -3*v3 + 14 <= 0; value: 0 d 6*v0 + 5*v3 -53 <= 0; value: 0 d -5*v1 -4*v2 -4 < 0; value: -5 d 12/5*v0 -101/5 < 0; value: -12/5 a -535/36 < 0; value: -535/36 0: 1 2 5 4 1: 3 5 2: 1 3 5 3: 1 2 4 5 0: 2 -> 89/12 1: 2 -> -1201/225 2: 0 -> 623/90 3: 4 -> 17/10 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 5*v1 + 3*v2 + 4 = 0; value: 0 a 2*v2 + v3 -9 = 0; value: 0 a 5*v1 + 3*v3 -26 <= 0; value: -6 a v2 -5 < 0; value: -3 a 3*v0 + v3 -20 = 0; value: 0 0: 1 5 1: 1 3 2: 1 2 4 3: 2 3 5 optimal: (66/5 -e*1) a + 66/5 < 0; value: 66/5 d -3*v0 + 5*v1 + 3*v2 + 4 = 0; value: 0 d 2*v2 + v3 -9 = 0; value: 0 a -27 < 0; value: -27 d 3/2*v0 -21/2 < 0; value: -3/2 d 3*v0 + v3 -20 = 0; value: 0 0: 1 5 3 4 1: 1 3 2: 1 2 4 3 3: 2 3 5 4 0: 5 -> 6 1: 1 -> 7/10 2: 2 -> 7/2 3: 5 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -4*v1 + 5*v2 -16 = 0; value: 0 a -1*v0 -5*v2 -2*v3 -11 <= 0; value: -35 a 3*v0 + 2*v2 + v3 -44 <= 0; value: -29 a -1*v1 + 3*v3 -5 <= 0; value: -3 a 2*v0 + v3 -5 = 0; value: 0 0: 2 3 5 1: 1 4 2: 1 2 3 3: 2 3 4 5 optimal: 538/27 a + 538/27 <= 0; value: 538/27 d -4*v1 + 5*v2 -16 = 0; value: 0 d 27*v0 -77 <= 0; value: 0 a -5552/135 <= 0; value: -5552/135 d -5/4*v2 + 3*v3 -1 <= 0; value: 0 d 2*v0 + v3 -5 = 0; value: 0 0: 2 3 5 1: 1 4 2: 1 2 3 4 3: 2 3 4 5 0: 2 -> 77/27 1: 1 -> -64/9 2: 4 -> -112/45 3: 1 -> -19/27 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -2*v2 + 3*v3 -29 < 0; value: -15 a 5*v1 -9 <= 0; value: -4 a 3*v2 -11 <= 0; value: -5 a v0 -6*v3 + 19 <= 0; value: -2 a v1 -5*v3 + 13 < 0; value: -6 0: 1 4 1: 2 5 2: 1 3 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -2*v2 + 3*v3 -29 < 0; value: -15 a 5*v1 -9 <= 0; value: -4 a 3*v2 -11 <= 0; value: -5 a v0 -6*v3 + 19 <= 0; value: -2 a v1 -5*v3 + 13 < 0; value: -6 0: 1 4 1: 2 5 2: 1 3 3: 1 4 5 0: 3 -> 3 1: 1 -> 1 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v0 + 4*v1 + v2 -4 <= 0; value: 0 a -3*v3 + 2 <= 0; value: -1 a v1 -5*v2 -6*v3 + 26 = 0; value: 0 a 2*v0 + v3 -2 < 0; value: -1 a -4*v3 -3 < 0; value: -7 0: 1 4 1: 1 3 2: 1 3 3: 2 3 4 5 optimal: oo a 2*v0 -10*v2 + 44 <= 0; value: 4 a -6*v0 + 21*v2 -92 <= 0; value: -8 d -3*v3 + 2 <= 0; value: 0 d v1 -5*v2 -6*v3 + 26 = 0; value: 0 a 2*v0 -4/3 < 0; value: -4/3 a -17/3 < 0; value: -17/3 0: 1 4 1: 1 3 2: 1 3 3: 2 3 4 5 1 0: 0 -> 0 1: 0 -> -2 2: 4 -> 4 3: 1 -> 2/3 a 2*v0 -2*v1 <= 0; value: 2 a -4*v0 -5*v1 + 22 = 0; value: 0 a -2*v0 -1*v2 + 9 = 0; value: 0 a 5*v3 -24 <= 0; value: -14 a 5*v0 -5*v3 -8 <= 0; value: -3 a -1*v0 -2 < 0; value: -5 0: 1 2 4 5 1: 1 2: 2 3: 3 4 optimal: 356/25 a + 356/25 <= 0; value: 356/25 d -4*v0 -5*v1 + 22 = 0; value: 0 d -2*v0 -1*v2 + 9 = 0; value: 0 d 5*v3 -24 <= 0; value: 0 d -5/2*v2 -5*v3 + 29/2 <= 0; value: 0 a -42/5 < 0; value: -42/5 0: 1 2 4 5 1: 1 2: 2 4 5 3: 3 4 5 0: 3 -> 32/5 1: 2 -> -18/25 2: 3 -> -19/5 3: 2 -> 24/5 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 -6*v3 + 37 = 0; value: 0 a -6*v0 + 4*v2 -4*v3 -21 <= 0; value: -55 a -5*v0 + 5*v2 + 7 < 0; value: -13 a -3*v2 -1*v3 <= 0; value: -5 a -1*v0 + v2 -1 < 0; value: -5 0: 2 3 5 1: 1 2: 2 3 4 5 3: 1 2 4 optimal: oo a 2*v0 + 12/5*v3 -74/5 <= 0; value: 0 d -5*v1 -6*v3 + 37 = 0; value: 0 a -6*v0 + 4*v2 -4*v3 -21 <= 0; value: -55 a -5*v0 + 5*v2 + 7 < 0; value: -13 a -3*v2 -1*v3 <= 0; value: -5 a -1*v0 + v2 -1 < 0; value: -5 0: 2 3 5 1: 1 2: 2 3 4 5 3: 1 2 4 0: 5 -> 5 1: 5 -> 5 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a v2 -4*v3 -5 <= 0; value: -20 a v0 -3 <= 0; value: -1 a -4*v2 -6*v3 -21 <= 0; value: -49 a -1*v0 + v2 -1*v3 + 2 < 0; value: -3 a 3*v0 -3*v1 -2 <= 0; value: -5 0: 2 4 5 1: 5 2: 1 3 4 3: 1 3 4 optimal: 4/3 a + 4/3 <= 0; value: 4/3 a v2 -4*v3 -5 <= 0; value: -20 a v0 -3 <= 0; value: -1 a -4*v2 -6*v3 -21 <= 0; value: -49 a -1*v0 + v2 -1*v3 + 2 < 0; value: -3 d 3*v0 -3*v1 -2 <= 0; value: 0 0: 2 4 5 1: 5 2: 1 3 4 3: 1 3 4 0: 2 -> 2 1: 3 -> 4/3 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 6*v1 -1*v2 -8 < 0; value: -5 a 5*v0 -4*v3 -2 = 0; value: 0 a -5*v0 -1*v1 -2*v3 -9 <= 0; value: -24 a v1 -1*v2 + 2 <= 0; value: 0 a -1*v1 + 1 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 4 3: 2 3 optimal: oo a 8/5*v3 -6/5 <= 0; value: 2 a -1*v2 -2 < 0; value: -5 d 5*v0 -4*v3 -2 = 0; value: 0 a -6*v3 -12 <= 0; value: -24 a -1*v2 + 3 <= 0; value: 0 d -1*v1 + 1 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 4 3: 2 3 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + v2 -13 <= 0; value: -7 a v1 + 2*v2 -7 < 0; value: -4 a -2*v0 -5*v2 -3*v3 + 1 <= 0; value: -4 a v1 -2 <= 0; value: -1 a -2*v2 + 5*v3 + 2 <= 0; value: 0 0: 3 1: 1 2 4 2: 1 2 3 5 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + v2 -13 <= 0; value: -7 a v1 + 2*v2 -7 < 0; value: -4 a -2*v0 -5*v2 -3*v3 + 1 <= 0; value: -4 a v1 -2 <= 0; value: -1 a -2*v2 + 5*v3 + 2 <= 0; value: 0 0: 3 1: 1 2 4 2: 1 2 3 5 3: 3 5 0: 0 -> 0 1: 1 -> 1 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a v1 -2*v3 -4 < 0; value: -9 a 4*v1 + 5*v2 -5*v3 -49 <= 0; value: -32 a 5*v1 -1*v2 -5*v3 + 1 < 0; value: -9 a -1*v2 + 4*v3 -17 <= 0; value: -6 0: 1: 1 2 3 2: 2 3 4 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a v1 -2*v3 -4 < 0; value: -9 a 4*v1 + 5*v2 -5*v3 -49 <= 0; value: -32 a 5*v1 -1*v2 -5*v3 + 1 < 0; value: -9 a -1*v2 + 4*v3 -17 <= 0; value: -6 0: 1: 1 2 3 2: 2 3 4 3: 1 2 3 4 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -4*v1 + 5 <= 0; value: -7 a -2*v0 + v2 + 5 = 0; value: 0 a v1 -7 < 0; value: -4 a 3*v3 -11 < 0; value: -5 a 6*v0 + 3*v1 -34 < 0; value: -7 0: 2 5 1: 1 3 5 2: 2 3: 4 optimal: (91/12 -e*1) a + 91/12 < 0; value: 91/12 d -4*v1 + 5 <= 0; value: 0 d -2*v0 + v2 + 5 = 0; value: 0 a -23/4 < 0; value: -23/4 a 3*v3 -11 < 0; value: -5 d 3*v2 -61/4 < 0; value: -3 0: 2 5 1: 1 3 5 2: 2 5 3: 4 0: 3 -> 109/24 1: 3 -> 5/4 2: 1 -> 49/12 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -3*v2 -1*v3 + 3 <= 0; value: -2 a -4*v1 -5*v2 + 3 <= 0; value: -6 a -2*v0 -1*v3 + 6 < 0; value: -4 a -3*v1 + 2*v2 + 1 <= 0; value: 0 a 5*v0 -3*v1 -6*v2 -11 = 0; value: 0 0: 3 5 1: 2 4 5 2: 1 2 4 5 3: 1 3 optimal: oo a 7/6*v0 + 4/3 <= 0; value: 6 a -15/8*v0 -1*v3 + 15/2 <= 0; value: -2 a -115/24*v0 + 79/6 <= 0; value: -6 a -2*v0 -1*v3 + 6 < 0; value: -4 d -3*v1 + 2*v2 + 1 <= 0; value: 0 d 5*v0 -8*v2 -12 = 0; value: 0 0: 3 5 2 1 1: 2 4 5 2: 1 2 4 5 3: 1 3 0: 4 -> 4 1: 1 -> 1 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 3*v3 -23 <= 0; value: -14 a -2*v0 -1*v1 -1 <= 0; value: -13 a -1*v0 + 4 = 0; value: 0 a 2*v2 -4*v3 -1 <= 0; value: -5 a -6*v0 + 4*v2 + 6*v3 -13 <= 0; value: -3 0: 2 3 5 1: 2 2: 4 5 3: 1 4 5 optimal: 26 a + 26 <= 0; value: 26 a 3*v3 -23 <= 0; value: -14 d -2*v0 -1*v1 -1 <= 0; value: 0 d -1*v0 + 4 = 0; value: 0 a 2*v2 -4*v3 -1 <= 0; value: -5 a 4*v2 + 6*v3 -37 <= 0; value: -3 0: 2 3 5 1: 2 2: 4 5 3: 1 4 5 0: 4 -> 4 1: 4 -> -9 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a 3*v2 -5 <= 0; value: -2 a -3*v2 -1 <= 0; value: -4 a -5*v2 + 3*v3 -18 <= 0; value: -11 a v1 -5 = 0; value: 0 a 3*v0 -2*v2 -6*v3 -4 < 0; value: -27 0: 5 1: 4 2: 1 2 3 5 3: 3 5 optimal: (30 -e*1) a + 30 < 0; value: 30 d 3*v2 -5 <= 0; value: 0 a -6 <= 0; value: -6 d -5*v2 + 3*v3 -18 <= 0; value: 0 d v1 -5 = 0; value: 0 d 3*v0 -2*v2 -6*v3 -4 < 0; value: -3 0: 5 1: 4 2: 1 2 3 5 3: 3 5 0: 1 -> 19 1: 5 -> 5 2: 1 -> 5/3 3: 4 -> 79/9 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 4*v1 + 4*v2 -11 <= 0; value: -7 a 3*v0 -4*v1 -12 <= 0; value: 0 a 6*v0 + 4*v1 + v2 -58 <= 0; value: -30 a v0 -5*v1 -1*v2 <= 0; value: 0 a 4*v1 + 4*v2 -21 <= 0; value: -5 0: 1 2 3 4 1: 1 2 3 4 5 2: 1 3 4 5 3: optimal: 643/66 a + 643/66 <= 0; value: 643/66 a -137/11 <= 0; value: -137/11 d 3*v0 -4*v1 -12 <= 0; value: 0 d -11*v2 + 29 <= 0; value: 0 a -1085/132 <= 0; value: -1085/132 d 3*v0 + 4*v2 -33 <= 0; value: 0 0: 1 2 3 4 5 1: 1 2 3 4 5 2: 1 3 4 5 3: 0: 4 -> 247/33 1: 0 -> 115/44 2: 4 -> 29/11 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -5*v0 + 3*v3 -8 < 0; value: -3 a v1 -4*v2 -5*v3 + 20 < 0; value: -25 a -5*v1 + 4*v2 -1*v3 -43 <= 0; value: -28 a 5*v0 -1*v2 -6 < 0; value: -1 a -1*v2 + 3 <= 0; value: -2 0: 1 4 1: 2 3 2: 2 3 4 5 3: 1 2 3 optimal: (274/15 -e*1) a + 274/15 < 0; value: 274/15 d -5*v0 + 3*v3 -8 < 0; value: -1 a -83/3 <= 0; value: -83/3 d -5*v1 + 4*v2 -1*v3 -43 <= 0; value: 0 d 5*v0 -1*v2 -6 < 0; value: -1 d -5*v0 + 9 <= 0; value: 0 0: 1 4 2 5 1: 2 3 2: 2 3 4 5 3: 1 2 3 0: 2 -> 9/5 1: 0 -> -97/15 2: 5 -> 4 3: 5 -> 16/3 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 -3*v3 + 10 <= 0; value: 0 a 4*v1 -1*v3 -4 = 0; value: 0 a -1*v1 + 2*v2 -7 <= 0; value: -2 a -5*v0 -1*v2 + 2*v3 -26 < 0; value: -54 a v3 <= 0; value: 0 0: 1 4 1: 2 3 2: 3 4 3: 1 2 4 5 optimal: oo a -28*v2 + 120 <= 0; value: 36 d -2*v0 -3*v3 + 10 <= 0; value: 0 d 4*v1 -1*v3 -4 = 0; value: 0 d 1/6*v0 + 2*v2 -53/6 <= 0; value: 0 a 75*v2 -355 < 0; value: -130 a 8*v2 -32 <= 0; value: -8 0: 1 4 3 5 1: 2 3 2: 3 4 5 3: 1 2 4 5 3 0: 5 -> 17 1: 1 -> -1 2: 3 -> 3 3: 0 -> -8 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + v2 -1 <= 0; value: -3 a -2*v0 + 1 <= 0; value: -7 a -4*v0 + 3*v1 + 2*v2 + 6 <= 0; value: 0 a 3*v0 -3*v1 + 2*v3 -17 < 0; value: -7 a -1*v1 + 2 = 0; value: 0 0: 1 2 3 4 1: 3 4 5 2: 1 3 3: 4 optimal: oo a -4/3*v3 + 34/3 < 0; value: 26/3 a v2 + 2/3*v3 -26/3 < 0; value: -16/3 a 4/3*v3 -43/3 < 0; value: -35/3 a 2*v2 + 8/3*v3 -56/3 < 0; value: -28/3 d 3*v0 + 2*v3 -23 < 0; value: -3 d -1*v1 + 2 = 0; value: 0 0: 1 2 3 4 1: 3 4 5 2: 1 3 3: 4 1 2 3 0: 4 -> 16/3 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -3*v3 -1 <= 0; value: 0 a -3*v1 -6*v2 + 4*v3 -1 <= 0; value: -6 a -5*v0 + 4 <= 0; value: -11 a -1*v1 -4*v2 -5*v3 + 7 <= 0; value: -3 a -4*v0 + 2*v2 -3 <= 0; value: -13 0: 3 5 1: 1 2 4 2: 2 4 5 3: 1 2 4 optimal: oo a 222/19*v0 + 92/19 <= 0; value: 758/19 a -332/19*v0 -242/19 <= 0; value: -1238/19 d -3*v1 -6*v2 + 4*v3 -1 <= 0; value: 0 a -5*v0 + 4 <= 0; value: -11 d -2*v2 -19/3*v3 + 22/3 <= 0; value: 0 d -4*v0 + 2*v2 -3 <= 0; value: 0 0: 3 5 1 1: 1 2 4 2: 2 4 5 1 3: 1 2 4 0: 3 -> 3 1: 1 -> -322/19 2: 1 -> 15/2 3: 1 -> -23/19 a 2*v0 -2*v1 <= 0; value: -6 a 4*v0 + 6*v3 -23 < 0; value: -9 a -6*v0 -3*v1 -4*v2 + 39 = 0; value: 0 a -2*v1 + v2 + 4 <= 0; value: -3 a 3*v1 -6*v2 + 5*v3 -2 = 0; value: 0 a -4*v0 -3*v1 -1*v2 -19 <= 0; value: -45 0: 1 2 5 1: 2 3 4 5 2: 2 3 4 5 3: 1 4 optimal: (-129/52 -e*1) a -129/52 < 0; value: -129/52 d 4*v0 + 6*v3 -23 < 0; value: -189/52 d -6*v0 -3*v1 -4*v2 + 39 = 0; value: 0 d 26/45*v0 -253/180 <= 0; value: 0 d -6*v0 -10*v2 + 5*v3 + 37 = 0; value: 0 a -2241/52 <= 0; value: -2241/52 0: 1 2 5 3 4 1: 2 3 4 5 2: 2 3 4 5 3: 1 4 3 5 0: 2 -> 253/104 1: 5 -> 53/13 2: 3 -> 633/208 3: 1 -> 167/104 a 2*v0 -2*v1 <= 0; value: 0 a v1 -1*v2 -1*v3 + 6 = 0; value: 0 a v0 -2 = 0; value: 0 a -6*v0 -1*v2 + 7 <= 0; value: -9 a 5*v0 + v2 + 4*v3 -60 < 0; value: -30 a -3*v2 + v3 + 8 <= 0; value: 0 0: 2 3 4 1: 1 2: 1 3 4 5 3: 1 4 5 optimal: oo a 2*v0 -2*v2 -2*v3 + 12 <= 0; value: 0 d v1 -1*v2 -1*v3 + 6 = 0; value: 0 a v0 -2 = 0; value: 0 a -6*v0 -1*v2 + 7 <= 0; value: -9 a 5*v0 + v2 + 4*v3 -60 < 0; value: -30 a -3*v2 + v3 + 8 <= 0; value: 0 0: 2 3 4 1: 1 2: 1 3 4 5 3: 1 4 5 0: 2 -> 2 1: 2 -> 2 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v0 -4*v2 + 1 = 0; value: 0 a v0 + v1 + v3 -8 = 0; value: 0 a -3*v0 + 5 < 0; value: -4 a -5*v0 -9 <= 0; value: -24 a -1*v0 -6*v2 + 4*v3 + 1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 1 5 3: 2 5 optimal: oo a 21/4*v0 -63/4 <= 0; value: 0 d v0 -4*v2 + 1 = 0; value: 0 d v0 + v1 + v3 -8 = 0; value: 0 a -3*v0 + 5 < 0; value: -4 a -5*v0 -9 <= 0; value: -24 d -1*v0 -6*v2 + 4*v3 + 1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 1 5 3: 2 5 0: 3 -> 3 1: 3 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 + 3 = 0; value: 0 a -6*v1 -4*v3 + 21 <= 0; value: -5 a -6*v1 + v2 < 0; value: -17 a -5*v1 -1*v3 -2 <= 0; value: -19 a -5*v1 -2*v2 <= 0; value: -17 0: 1: 1 2 3 4 5 2: 3 5 3: 2 4 optimal: oo a 2*v0 -6 <= 0; value: -6 d -1*v1 + 3 = 0; value: 0 a -4*v3 + 3 <= 0; value: -5 a v2 -18 < 0; value: -17 a -1*v3 -17 <= 0; value: -19 a -2*v2 -15 <= 0; value: -17 0: 1: 1 2 3 4 5 2: 3 5 3: 2 4 0: 0 -> 0 1: 3 -> 3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -6*v1 -4*v2 + 1 <= 0; value: -21 a 2*v0 -4*v1 -7 <= 0; value: -1 a 6*v0 -3*v1 -4*v2 -11 = 0; value: 0 a 6*v1 -2*v2 -1 <= 0; value: -3 a v0 -6*v1 + 1 = 0; value: 0 0: 2 3 5 1: 1 2 3 4 5 2: 1 3 4 3: optimal: 37/4 a + 37/4 <= 0; value: 37/4 a -207/8 <= 0; value: -207/8 d 4/3*v0 -23/3 <= 0; value: 0 d 6*v0 -3*v1 -4*v2 -11 = 0; value: 0 a -69/16 <= 0; value: -69/16 d -11*v0 + 8*v2 + 23 = 0; value: 0 0: 2 3 5 1 4 1: 1 2 3 4 5 2: 1 3 4 2 5 3: 0: 5 -> 23/4 1: 1 -> 9/8 2: 4 -> 161/32 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v1 -4 = 0; value: 0 a v0 -1*v1 + v2 -5 = 0; value: 0 a v0 -2*v1 + 4 = 0; value: 0 a 3*v2 -17 <= 0; value: -2 a 3*v0 -3*v3 -11 <= 0; value: -2 0: 2 3 5 1: 1 2 3 2: 2 4 3: 5 optimal: 0 a <= 0; value: 0 d v1 -4 = 0; value: 0 d v0 + v2 -9 = 0; value: 0 d -1*v2 + 5 = 0; value: 0 a -2 <= 0; value: -2 a -3*v3 + 1 <= 0; value: -2 0: 2 3 5 1: 1 2 3 2: 2 4 3 5 3: 5 0: 4 -> 4 1: 4 -> 4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -35 <= 0; value: -20 a v2 -3 = 0; value: 0 a -5*v0 + 1 < 0; value: -4 a -5*v2 -1*v3 + 20 = 0; value: 0 a 4*v1 -3*v2 -3 = 0; value: 0 0: 3 1: 5 2: 2 4 5 3: 1 4 optimal: oo a 2*v0 -6 <= 0; value: -4 a 3*v3 -35 <= 0; value: -20 d v2 -3 = 0; value: 0 a -5*v0 + 1 < 0; value: -4 a -1*v3 + 5 = 0; value: 0 d 4*v1 -3*v2 -3 = 0; value: 0 0: 3 1: 5 2: 2 4 5 3: 1 4 0: 1 -> 1 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a -1*v1 + 5*v3 -5 <= 0; value: 0 a v0 -6*v1 -24 <= 0; value: -53 a -3*v0 -2*v1 + 6 <= 0; value: -7 a 5*v0 + 4*v3 -13 = 0; value: 0 a -6*v0 -6*v1 -19 <= 0; value: -55 0: 2 3 4 5 1: 1 2 3 5 2: 3: 1 4 optimal: 51/19 a + 51/19 <= 0; value: 51/19 d -1*v1 + 5*v3 -5 <= 0; value: 0 a -468/19 <= 0; value: -468/19 d 19/2*v0 -33/2 <= 0; value: 0 d 5*v0 + 4*v3 -13 = 0; value: 0 a -604/19 <= 0; value: -604/19 0: 2 3 4 5 1: 1 2 3 5 2: 3: 1 4 2 3 5 0: 1 -> 33/19 1: 5 -> 15/38 2: 2 -> 2 3: 2 -> 41/38 a 2*v0 -2*v1 <= 0; value: 0 a v2 -3*v3 -2 = 0; value: 0 a -1*v2 + 5*v3 = 0; value: 0 a -4*v0 + 1 < 0; value: -3 a 2*v1 + 4*v2 -55 < 0; value: -33 a 2*v0 -1*v1 -2*v3 + 1 = 0; value: 0 0: 3 5 1: 4 5 2: 1 2 4 3: 1 2 5 optimal: (3/2 -e*1) a + 3/2 < 0; value: 3/2 d v2 -3*v3 -2 = 0; value: 0 d 2/3*v2 -10/3 = 0; value: 0 d -4*v0 + 1 < 0; value: -3/2 a -36 < 0; value: -36 d 2*v0 -1*v1 -2*v3 + 1 = 0; value: 0 0: 3 5 4 1: 4 5 2: 1 2 4 3: 1 2 5 4 0: 1 -> 5/8 1: 1 -> 1/4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -3*v1 -6*v2 -4*v3 + 43 = 0; value: 0 a -3*v0 -5*v2 -4*v3 + 34 < 0; value: -17 a -1*v1 + 4*v3 -16 < 0; value: -1 a v1 -2*v3 + 7 = 0; value: 0 a 6*v1 -1*v2 -5 < 0; value: -3 0: 2 1: 1 3 4 5 2: 1 2 5 3: 1 2 3 4 optimal: oo a 2*v0 + 12/5*v2 -58/5 <= 0; value: 8 d -3*v1 -6*v2 -4*v3 + 43 = 0; value: 0 a -3*v0 -13/5*v2 + 42/5 < 0; value: -17 a -6/5*v2 + 19/5 < 0; value: -1 d -2*v2 -10/3*v3 + 64/3 = 0; value: 0 a -41/5*v2 + 149/5 < 0; value: -3 0: 2 1: 1 3 4 5 2: 1 2 5 3 4 3: 1 2 3 4 5 0: 5 -> 5 1: 1 -> 1 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 4*v3 <= 0; value: 0 a 4*v0 -5*v2 -2 <= 0; value: -1 a -3*v2 + 2*v3 -1 <= 0; value: -4 a v0 + 6*v1 + 6*v3 -52 < 0; value: -24 a -1*v0 + 4 <= 0; value: 0 0: 1 2 4 5 1: 4 2: 2 3 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 4*v3 <= 0; value: 0 a 4*v0 -5*v2 -2 <= 0; value: -1 a -3*v2 + 2*v3 -1 <= 0; value: -4 a v0 + 6*v1 + 6*v3 -52 < 0; value: -24 a -1*v0 + 4 <= 0; value: 0 0: 1 2 4 5 1: 4 2: 2 3 3: 1 3 4 0: 4 -> 4 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v2 + 5*v3 -90 < 0; value: -53 a -3*v2 -3*v3 -23 < 0; value: -50 a v3 -5 = 0; value: 0 a v1 <= 0; value: 0 a -1*v0 + v3 -6 < 0; value: -1 0: 5 1: 4 2: 1 2 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 3*v2 + 5*v3 -90 < 0; value: -53 a -3*v2 -3*v3 -23 < 0; value: -50 a v3 -5 = 0; value: 0 a v1 <= 0; value: 0 a -1*v0 + v3 -6 < 0; value: -1 0: 5 1: 4 2: 1 2 3: 1 2 3 5 0: 0 -> 0 1: 0 -> 0 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 8 a 3*v1 + 4*v3 -23 < 0; value: -8 a 6*v0 -5*v2 -88 < 0; value: -58 a -1*v1 -3*v2 + 1 <= 0; value: 0 a -1*v1 < 0; value: -1 a -1*v0 + 5*v2 < 0; value: -5 0: 2 5 1: 1 3 4 2: 2 3 5 3: 1 optimal: (269/9 -e*1) a + 269/9 < 0; value: 269/9 a 4*v3 -23 < 0; value: -11 d 6*v0 -269/3 < 0; value: -6 d -1*v1 -3*v2 + 1 <= 0; value: 0 d 3*v2 -1 < 0; value: -1/2 a -239/18 < 0; value: -239/18 0: 2 5 1: 1 3 4 2: 2 3 5 4 1 3: 1 0: 5 -> 251/18 1: 1 -> 1/2 2: 0 -> 1/6 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v3 -2 = 0; value: 0 a 3*v0 -2*v2 -26 <= 0; value: -16 a -1*v2 + v3 -1 = 0; value: 0 a -1*v0 + 3*v3 -5 <= 0; value: -3 a -1*v1 + 4*v2 -1*v3 -2 < 0; value: -5 0: 2 4 1: 5 2: 2 3 5 3: 1 3 4 5 optimal: (56/3 -e*1) a + 56/3 < 0; value: 56/3 d v3 -2 = 0; value: 0 d 3*v0 -28 <= 0; value: 0 d -1*v2 + 1 = 0; value: 0 a -25/3 <= 0; value: -25/3 d -1*v1 + 4*v2 -1*v3 -2 < 0; value: -1 0: 2 4 1: 5 2: 2 3 5 3: 1 3 4 5 0: 4 -> 28/3 1: 5 -> 1 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 -2*v1 + 3 <= 0; value: -2 a -2*v1 + v2 + 1 = 0; value: 0 a v2 -2 < 0; value: -1 a 2*v0 + v2 -19 <= 0; value: -12 a -1*v2 + 1 <= 0; value: 0 0: 1 4 1: 1 2 2: 2 3 4 5 3: optimal: 16 a + 16 <= 0; value: 16 a -8 <= 0; value: -8 d -2*v1 + v2 + 1 = 0; value: 0 a -1 < 0; value: -1 d 2*v0 -18 <= 0; value: 0 d -1*v2 + 1 <= 0; value: 0 0: 1 4 1: 1 2 2: 2 3 4 5 1 3: 0: 3 -> 9 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 6*v2 -2*v3 -16 < 0; value: -10 a 3*v0 + 6*v2 + 5*v3 -121 <= 0; value: -72 a -3*v0 -6*v1 + v3 + 1 = 0; value: 0 a -1*v1 <= 0; value: 0 a -1*v1 -3*v2 + 9 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 1 2 5 3: 1 2 3 optimal: 12 a + 12 <= 0; value: 12 a -38 < 0; value: -38 d 18*v0 + 6*v2 -126 <= 0; value: 0 d -3*v0 -6*v1 + v3 + 1 = 0; value: 0 d 1/2*v0 -1/6*v3 -1/6 <= 0; value: 0 d -3*v2 + 9 = 0; value: 0 0: 1 2 3 4 5 1: 3 4 5 2: 1 2 5 3: 1 2 3 4 5 0: 2 -> 6 1: 0 -> 0 2: 3 -> 3 3: 5 -> 17 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -6*v2 -6 <= 0; value: -14 a v0 -6*v1 -2*v2 + 16 = 0; value: 0 a 2*v0 + 6*v1 + 3*v3 -46 <= 0; value: -15 a 3*v0 + 6*v3 -106 < 0; value: -70 a -1*v0 + v3 -3 = 0; value: 0 0: 1 2 3 4 5 1: 2 3 2: 1 2 3: 3 4 5 optimal: oo a 5/3*v0 + 2/3*v2 -16/3 <= 0; value: 0 a 5*v0 -6*v2 -6 <= 0; value: -14 d v0 -6*v1 -2*v2 + 16 = 0; value: 0 a 3*v0 -2*v2 + 3*v3 -30 <= 0; value: -15 a 3*v0 + 6*v3 -106 < 0; value: -70 a -1*v0 + v3 -3 = 0; value: 0 0: 1 2 3 4 5 1: 2 3 2: 1 2 3 3: 3 4 5 0: 2 -> 2 1: 2 -> 2 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 10 a 5*v0 -6*v3 -7 = 0; value: 0 a 3*v2 + v3 -15 = 0; value: 0 a v1 <= 0; value: 0 a -2*v1 -3*v2 -5*v3 -7 <= 0; value: -34 a -1*v0 + 3*v2 -3*v3 + 2 <= 0; value: 0 0: 1 5 1: 3 4 2: 2 4 5 3: 1 2 4 5 optimal: oo a 16/3*v0 + 52/3 <= 0; value: 44 d 5*v0 -6*v3 -7 = 0; value: 0 d 5/6*v0 + 3*v2 -97/6 = 0; value: 0 a -5/3*v0 -26/3 <= 0; value: -17 d -2*v1 -3*v2 -5*v3 -7 <= 0; value: 0 a -13/3*v0 + 65/3 <= 0; value: 0 0: 1 5 2 3 1: 3 4 2: 2 4 5 3 3: 1 2 4 5 3 0: 5 -> 5 1: 0 -> -17 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a -5*v3 + 1 < 0; value: -14 a -1*v0 -1*v1 + 7 = 0; value: 0 a v1 + 3*v2 -26 <= 0; value: -9 a -4*v0 + 5*v1 + 5*v2 -15 = 0; value: 0 a 3*v1 -2*v3 <= 0; value: 0 0: 2 4 1: 2 3 4 5 2: 3 4 3: 1 5 optimal: 156/11 a + 156/11 <= 0; value: 156/11 a -5*v3 + 1 < 0; value: -14 d -1*v0 -1*v1 + 7 = 0; value: 0 d 22/9*v2 -191/9 <= 0; value: 0 d -9*v0 + 5*v2 + 20 = 0; value: 0 a -2*v3 -3/22 <= 0; value: -135/22 0: 2 4 3 5 1: 2 3 4 5 2: 3 4 5 3: 1 5 0: 5 -> 155/22 1: 2 -> -1/22 2: 5 -> 191/22 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a 6*v0 -5*v3 -4 < 0; value: -14 a -1*v0 + 3*v2 -14 <= 0; value: -5 a 5*v2 -4*v3 -16 < 0; value: -9 a 4*v1 + 3*v3 -60 <= 0; value: -38 a -1*v1 -4*v2 + 2 <= 0; value: -14 0: 1 2 1: 4 5 2: 2 3 5 3: 1 3 4 optimal: (2304/47 -e*1) a + 2304/47 < 0; value: 2304/47 d 47/5*v3 -152/5 <= 0; value: 0 d -1*v0 + 3*v2 -14 <= 0; value: 0 d 5/3*v0 -4*v3 + 22/3 < 0; value: -5/3 a -6340/47 < 0; value: -6340/47 d -1*v1 -4*v2 + 2 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 2 3 5 4 3: 1 3 4 0: 0 -> 111/47 1: 4 -> -2794/141 2: 3 -> 769/141 3: 2 -> 152/47 a 2*v0 -2*v1 <= 0; value: 6 a v0 -2*v1 -1 = 0; value: 0 a 6*v1 + 5*v2 -12 = 0; value: 0 a v2 <= 0; value: 0 a 3*v3 -7 <= 0; value: -4 a -5*v0 -2*v1 -21 <= 0; value: -50 0: 1 5 1: 1 2 5 2: 2 3 3: 4 optimal: oo a -5/3*v2 + 6 <= 0; value: 6 d v0 -2*v1 -1 = 0; value: 0 d 3*v0 + 5*v2 -15 = 0; value: 0 a v2 <= 0; value: 0 a 3*v3 -7 <= 0; value: -4 a 10*v2 -50 <= 0; value: -50 0: 1 5 2 1: 1 2 5 2: 2 3 5 3: 4 0: 5 -> 5 1: 2 -> 2 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -3*v3 <= 0; value: -1 a 4*v2 -25 < 0; value: -13 a 3*v2 + 2*v3 -15 = 0; value: 0 a -1*v0 + 2*v1 = 0; value: 0 a 3*v0 + v3 -11 < 0; value: -2 0: 1 4 5 1: 4 2: 2 3 3: 1 3 5 optimal: (33/13 -e*1) a + 33/13 < 0; value: 33/13 d 4*v0 -3*v3 <= 0; value: 0 a -547/39 < 0; value: -547/39 d 3*v2 + 2*v3 -15 = 0; value: 0 d -1*v0 + 2*v1 = 0; value: 0 d -39/8*v2 + 107/8 < 0; value: -5/8 0: 1 4 5 1: 4 2: 2 3 5 3: 1 3 5 0: 2 -> 249/104 1: 1 -> 249/208 2: 3 -> 112/39 3: 3 -> 83/26 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 + v1 + 6 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -1*v0 -2*v2 -3*v3 + 10 = 0; value: 0 a -6*v0 -1*v2 + 13 = 0; value: 0 a -3*v0 -2*v3 -6 <= 0; value: -16 0: 1 2 3 4 5 1: 1 2: 3 4 3: 3 5 optimal: 4 a + 4 <= 0; value: 4 d -3*v0 + v1 + 6 = 0; value: 0 d -1*v0 + 2 = 0; value: 0 a -2*v2 -3*v3 + 8 = 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -2*v3 -12 <= 0; value: -16 0: 1 2 3 4 5 1: 1 2: 3 4 3: 3 5 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v0 + 6*v1 -1*v2 <= 0; value: -1 a 3*v0 + 4*v2 + 2*v3 -78 < 0; value: -45 a 2*v0 -1*v2 -6*v3 + 22 = 0; value: 0 a -5*v2 + v3 -1 <= 0; value: -17 a -5*v1 + 2*v3 -18 < 0; value: -10 0: 1 2 3 1: 1 5 2: 1 2 3 4 3: 2 3 4 5 optimal: (294/11 -e*1) a + 294/11 < 0; value: 294/11 d 16/5*v0 -2188/55 < 0; value: -16/5 d 11/3*v0 + 11/3*v2 -212/3 < 0; value: -11/3 d 2*v0 -1*v2 -6*v3 + 22 = 0; value: 0 a -2511/88 <= 0; value: -2511/88 d -5*v1 + 2*v3 -18 < 0; value: -703/264 0: 1 2 3 4 1: 1 5 2: 1 2 3 4 3: 2 3 4 5 1 0: 3 -> 503/44 1: 0 -> -703/1320 2: 4 -> 301/44 3: 4 -> 1673/264 a 2*v0 -2*v1 <= 0; value: 2 a v1 -1*v3 -3 = 0; value: 0 a 3*v2 -5*v3 -6 = 0; value: 0 a 5*v1 + 6*v2 -3*v3 -35 < 0; value: -8 a 2*v0 + 5*v3 -8 = 0; value: 0 a v0 -9 < 0; value: -5 0: 4 5 1: 1 3 2: 2 3 3: 1 2 3 4 optimal: (16 -e*1) a + 16 < 0; value: 16 d v1 -1*v3 -3 = 0; value: 0 d 3*v2 -5*v3 -6 = 0; value: 0 a -32 < 0; value: -32 d 2*v0 + 3*v2 -14 = 0; value: 0 d v0 -9 < 0; value: -1 0: 4 5 3 1: 1 3 2: 2 3 4 3: 1 2 3 4 0: 4 -> 8 1: 3 -> 7/5 2: 2 -> -2/3 3: 0 -> -8/5 a 2*v0 -2*v1 <= 0; value: -2 a -4*v1 -3*v2 -4*v3 -3 <= 0; value: -30 a 4*v0 -5*v2 + 2*v3 + 17 = 0; value: 0 a v0 -1*v3 -2 = 0; value: 0 a v0 + v1 -1*v3 -5 = 0; value: 0 a 6*v0 + 4*v1 -5*v2 + 1 <= 0; value: 0 0: 2 3 4 5 1: 1 4 5 2: 1 2 5 3: 1 2 3 4 optimal: oo a 2*v0 -6 <= 0; value: -2 a -38/5*v0 -74/5 <= 0; value: -30 d 4*v0 -5*v2 + 2*v3 + 17 = 0; value: 0 d 3*v0 -5/2*v2 + 13/2 = 0; value: 0 d v0 + v1 -1*v3 -5 = 0; value: 0 a <= 0; value: 0 0: 2 3 4 5 1 1: 1 4 5 2: 1 2 5 3 3: 1 2 3 4 5 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -1*v1 -2*v3 -1 = 0; value: 0 a 2*v1 -23 <= 0; value: -13 a 5*v0 -5*v3 -11 <= 0; value: -6 a -5*v1 + v2 + v3 + 13 <= 0; value: -5 a 2*v2 + 2*v3 -39 < 0; value: -25 0: 1 3 1: 1 2 4 2: 4 5 3: 1 3 4 5 optimal: oo a 16/11*v0 -4/11*v2 -50/11 <= 0; value: -2/11 d 3*v0 -1*v1 -2*v3 -1 = 0; value: 0 a 6/11*v0 + 4/11*v2 -203/11 <= 0; value: -163/11 a -20/11*v0 + 5/11*v2 -31/11 <= 0; value: -91/11 d -15*v0 + v2 + 11*v3 + 18 <= 0; value: 0 a 30/11*v0 + 20/11*v2 -465/11 < 0; value: -265/11 0: 1 3 4 2 5 1: 1 2 4 2: 4 5 3 2 3: 1 3 4 5 2 0: 4 -> 4 1: 5 -> 45/11 2: 4 -> 4 3: 3 -> 38/11 a 2*v0 -2*v1 <= 0; value: -8 a -6*v2 + 5*v3 <= 0; value: 0 a -1*v3 <= 0; value: 0 a -1*v0 + v2 + 1 <= 0; value: 0 a v0 -5*v1 + 2*v3 -17 <= 0; value: -41 a 6*v1 -5*v2 -34 <= 0; value: -4 0: 3 4 1: 4 5 2: 1 3 5 3: 1 2 4 optimal: oo a 20/3*v2 + 238/3 <= 0; value: 238/3 a -6*v2 <= 0; value: 0 d -1*v3 <= 0; value: 0 a -19/6*v2 -133/3 <= 0; value: -133/3 d v0 -5*v1 + 2*v3 -17 <= 0; value: 0 d 6/5*v0 -5*v2 -272/5 <= 0; value: 0 0: 3 4 5 1: 4 5 2: 1 3 5 3: 1 2 4 5 0: 1 -> 136/3 1: 5 -> 17/3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 3*v1 -4*v2 -11 = 0; value: 0 a -1*v1 + 5*v3 -15 = 0; value: 0 a -5*v2 + 3 <= 0; value: -2 a v1 -9 <= 0; value: -4 a -1*v1 + 2*v2 + 3 = 0; value: 0 0: 1: 1 2 4 5 2: 1 3 5 3: 2 optimal: oo a 2*v0 -10 <= 0; value: -6 d 3*v1 -4*v2 -11 = 0; value: 0 a 5*v3 -20 = 0; value: 0 a -2 <= 0; value: -2 a -4 <= 0; value: -4 d 2/3*v2 -2/3 = 0; value: 0 0: 1: 1 2 4 5 2: 1 3 5 2 4 3: 2 0: 2 -> 2 1: 5 -> 5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a -4*v2 + 3*v3 -15 = 0; value: 0 a 6*v0 + v1 -4*v2 -92 <= 0; value: -61 a -4*v1 -1*v2 + 3*v3 -14 < 0; value: -3 a 3*v1 -4 <= 0; value: -1 a -2*v0 + 1 < 0; value: -9 0: 2 5 1: 2 3 4 2: 1 2 3 3: 1 3 optimal: (539/13 -e*1) a + 539/13 < 0; value: 539/13 d -4*v2 + 3*v3 -15 = 0; value: 0 d 6*v0 -13/4*v2 -367/4 < 0; value: -13/4 d -4*v1 -1*v2 + 3*v3 -14 < 0; value: -4 a -841/13 < 0; value: -841/13 d -2*v0 + 1 < 0; value: -2 0: 2 5 4 1: 2 3 4 2: 1 2 3 4 3: 1 3 2 4 0: 5 -> 3/2 1: 1 -> -889/52 2: 0 -> -318/13 3: 5 -> -359/13 a 2*v0 -2*v1 <= 0; value: 2 a -3*v1 + 3*v3 -1 <= 0; value: -4 a 2*v0 -21 <= 0; value: -13 a 6*v0 + 3*v2 + 6*v3 -47 <= 0; value: -2 a v1 -2*v3 <= 0; value: -1 a 3*v2 + 5*v3 -43 < 0; value: -24 0: 2 3 1: 1 4 2: 3 5 3: 1 3 4 5 optimal: 67/3 a + 67/3 <= 0; value: 67/3 d -3*v1 + 3*v3 -1 <= 0; value: 0 d -1*v2 -14/3 <= 0; value: 0 d 6*v0 + 3*v2 -49 <= 0; value: 0 d -1*v3 -1/3 <= 0; value: 0 a -176/3 < 0; value: -176/3 0: 2 3 1: 1 4 2: 3 5 2 3: 1 3 4 5 0: 4 -> 21/2 1: 3 -> -2/3 2: 3 -> -14/3 3: 2 -> -1/3 a 2*v0 -2*v1 <= 0; value: -2 a 6*v1 + 2*v2 -3*v3 -24 <= 0; value: -12 a 6*v1 -6*v3 -5 <= 0; value: -11 a 3*v1 + v3 -13 = 0; value: 0 a -1*v0 -2*v1 + v2 + 5 = 0; value: 0 a 3*v1 + v2 + v3 -38 < 0; value: -22 0: 4 1: 1 2 3 4 5 2: 1 4 5 3: 1 2 3 5 optimal: oo a 3*v0 -1*v2 -5 <= 0; value: -2 a -15/2*v0 + 19/2*v2 -51/2 <= 0; value: -12 a -12*v0 + 12*v2 -23 <= 0; value: -11 d 3*v1 + v3 -13 = 0; value: 0 d -1*v0 + v2 + 2/3*v3 -11/3 = 0; value: 0 a v2 -25 < 0; value: -22 0: 4 1 2 1: 1 2 3 4 5 2: 1 4 5 2 3: 1 2 3 5 4 0: 2 -> 2 1: 3 -> 3 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a v2 -2 <= 0; value: -1 a -3*v0 + 4*v1 -3*v3 -3 <= 0; value: -10 a 6*v2 + 6*v3 -65 <= 0; value: -29 a 2*v2 -3 <= 0; value: -1 a 3*v3 -28 <= 0; value: -13 0: 2 1: 2 2: 1 3 4 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v2 -2 <= 0; value: -1 a -3*v0 + 4*v1 -3*v3 -3 <= 0; value: -10 a 6*v2 + 6*v3 -65 <= 0; value: -29 a 2*v2 -3 <= 0; value: -1 a 3*v3 -28 <= 0; value: -13 0: 2 1: 2 2: 1 3 4 3: 2 3 5 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v3 < 0; value: -4 a v0 + 2*v3 -12 = 0; value: 0 a 6*v0 + 3*v2 + 5*v3 -71 <= 0; value: -25 a -2*v1 -1*v3 + 7 <= 0; value: 0 a v0 + 2*v3 -12 = 0; value: 0 0: 1 2 3 5 1: 4 2: 3 3: 1 2 3 4 5 optimal: (7/2 -e*1) a + 7/2 < 0; value: 7/2 d 4*v0 -12 < 0; value: -2 d v0 + 2*v3 -12 = 0; value: 0 a 3*v2 -61/2 <= 0; value: -43/2 d -2*v1 -1*v3 + 7 <= 0; value: 0 a = 0; value: 0 0: 1 2 3 5 1: 4 2: 3 3: 1 2 3 4 5 0: 2 -> 5/2 1: 1 -> 9/8 2: 3 -> 3 3: 5 -> 19/4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v1 + 3 <= 0; value: 0 a 3*v1 -1*v2 -3*v3 + 1 = 0; value: 0 a -4*v1 -1*v3 + 3 < 0; value: -21 a -2*v3 -3 <= 0; value: -11 d <= 0; value: 0 0: 1 1: 1 2 3 2: 2 3: 2 3 4 optimal: oo a 2*v0 -2/15*v2 -16/15 < 0; value: 32/5 a -2*v0 + 1/15*v2 + 53/15 < 0; value: -21/5 d 3*v1 -1*v2 -3*v3 + 1 = 0; value: 0 d -4/3*v2 -5*v3 + 13/3 < 0; value: -5 a 8/15*v2 -71/15 <= 0; value: -13/5 d <= 0; value: 0 0: 1 1: 1 2 3 2: 2 3 1 4 3: 2 3 4 1 0: 4 -> 4 1: 5 -> 9/5 2: 4 -> 4 3: 4 -> 4/5 a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 -1*v3 -25 <= 0; value: -6 a -1*v0 + 2*v2 -4 = 0; value: 0 a 3*v0 -31 <= 0; value: -19 a v1 + 2*v2 -31 <= 0; value: -20 a v0 -11 < 0; value: -7 0: 2 3 5 1: 4 2: 1 2 4 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 -1*v3 -25 <= 0; value: -6 a -1*v0 + 2*v2 -4 = 0; value: 0 a 3*v0 -31 <= 0; value: -19 a v1 + 2*v2 -31 <= 0; value: -20 a v0 -11 < 0; value: -7 0: 2 3 5 1: 4 2: 1 2 4 3: 1 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -2*v2 + 3 <= 0; value: -1 a v0 + 6*v1 + 4*v3 -11 = 0; value: 0 a -1*v2 < 0; value: -2 a -1*v1 + 1 <= 0; value: 0 a 2*v1 -2*v3 -5 <= 0; value: -3 0: 2 1: 2 4 5 2: 1 3 3: 2 5 optimal: 20 a + 20 <= 0; value: 20 a -2*v2 + 3 <= 0; value: -1 d v0 + 6*v1 + 4*v3 -11 = 0; value: 0 a -1*v2 < 0; value: -2 d 1/6*v0 + 2/3*v3 -5/6 <= 0; value: 0 d 1/2*v0 -11/2 <= 0; value: 0 0: 2 4 5 1: 2 4 5 2: 1 3 3: 2 5 4 0: 5 -> 11 1: 1 -> 1 2: 2 -> 2 3: 0 -> -3/2 a 2*v0 -2*v1 <= 0; value: -2 a 6*v0 + 2*v2 -5*v3 -2 <= 0; value: -13 a v0 -1 = 0; value: 0 a -3*v1 + 2 <= 0; value: -4 a 3*v0 + v3 -8 <= 0; value: 0 a -2*v1 + 5*v2 -32 <= 0; value: -16 0: 1 2 4 1: 3 5 2: 1 5 3: 1 4 optimal: 2/3 a + 2/3 <= 0; value: 2/3 a 2*v2 -5*v3 + 4 <= 0; value: -13 d v0 -1 = 0; value: 0 d -3*v1 + 2 <= 0; value: 0 a v3 -5 <= 0; value: 0 a 5*v2 -100/3 <= 0; value: -40/3 0: 1 2 4 1: 3 5 2: 1 5 3: 1 4 0: 1 -> 1 1: 2 -> 2/3 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -9 < 0; value: -3 a -1*v2 + 6*v3 -4 < 0; value: -9 a -5*v2 + 1 <= 0; value: -24 a v3 <= 0; value: 0 a -4*v0 + 5*v1 <= 0; value: -1 0: 5 1: 1 5 2: 2 3 3: 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -9 < 0; value: -3 a -1*v2 + 6*v3 -4 < 0; value: -9 a -5*v2 + 1 <= 0; value: -24 a v3 <= 0; value: 0 a -4*v0 + 5*v1 <= 0; value: -1 0: 5 1: 1 5 2: 2 3 3: 2 4 0: 4 -> 4 1: 3 -> 3 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a 4*v1 -1*v2 + 4 = 0; value: 0 a -2*v0 + 2*v3 -1 <= 0; value: -3 a -2*v0 + 5*v3 -11 < 0; value: -4 a -1*v0 + 4 = 0; value: 0 a -1*v0 + 2 <= 0; value: -2 0: 2 3 4 5 1: 1 2: 1 3: 2 3 optimal: oo a 2*v0 -1/2*v2 + 2 <= 0; value: 8 d 4*v1 -1*v2 + 4 = 0; value: 0 a -2*v0 + 2*v3 -1 <= 0; value: -3 a -2*v0 + 5*v3 -11 < 0; value: -4 a -1*v0 + 4 = 0; value: 0 a -1*v0 + 2 <= 0; value: -2 0: 2 3 4 5 1: 1 2: 1 3: 2 3 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a -1*v1 <= 0; value: 0 a 2*v0 -2*v1 -1*v2 -9 <= 0; value: -3 a 3*v0 -2*v3 -27 < 0; value: -16 a -3*v3 + 2 < 0; value: -4 a -3*v0 -1*v2 -17 <= 0; value: -36 0: 2 3 5 1: 1 2 2: 2 5 3: 3 4 optimal: oo a 4/3*v3 + 18 < 0; value: 62/3 d -1*v1 <= 0; value: 0 d 2*v0 -1*v2 -9 <= 0; value: 0 d 3/2*v2 -2*v3 -27/2 < 0; value: -3/2 a -3*v3 + 2 < 0; value: -4 a -10/3*v3 -53 < 0; value: -179/3 0: 2 3 5 1: 1 2 2: 2 5 3 3: 3 4 5 0: 5 -> 59/6 1: 0 -> 0 2: 4 -> 32/3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -10 a -6*v2 -5*v3 + 13 <= 0; value: -5 a v0 = 0; value: 0 a 3*v1 + 5*v2 -64 <= 0; value: -34 a -2*v0 + 3*v2 -9 = 0; value: 0 d = 0; value: 0 0: 2 4 1: 3 2: 1 3 4 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a -6*v2 -5*v3 + 13 <= 0; value: -5 a v0 = 0; value: 0 a 3*v1 + 5*v2 -64 <= 0; value: -34 a -2*v0 + 3*v2 -9 = 0; value: 0 d = 0; value: 0 0: 2 4 1: 3 2: 1 3 4 3: 1 0: 0 -> 0 1: 5 -> 5 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a v1 -6*v3 + 4 <= 0; value: -4 a 4*v1 -1*v3 -18 <= 0; value: -4 a v2 + v3 -18 < 0; value: -11 a -6*v2 -5*v3 -39 < 0; value: -79 a -4*v1 -6*v3 -1 <= 0; value: -29 0: 1: 1 2 5 2: 3 4 3: 1 2 3 4 5 optimal: oo a 2*v0 + 883/2 < 0; value: 891/2 a -4395/4 < 0; value: -4395/4 a -1048 < 0; value: -1048 d v2 + v3 -18 < 0; value: -1 d -1*v2 -129 < 0; value: -1 d -4*v1 -6*v3 -1 <= 0; value: 0 0: 1: 1 2 5 2: 3 4 1 2 3: 1 2 3 4 5 0: 2 -> 2 1: 4 -> -871/4 2: 5 -> -128 3: 2 -> 145 a 2*v0 -2*v1 <= 0; value: 4 a -1*v2 + 2*v3 -7 = 0; value: 0 a -5*v2 + 6*v3 -17 <= 0; value: -2 a -6*v2 -1*v3 + 8 <= 0; value: -15 a -3*v0 + v1 -3 <= 0; value: -13 a 3*v0 -2*v1 -8 = 0; value: 0 0: 4 5 1: 4 5 2: 1 2 3 3: 1 2 3 optimal: 38/3 a + 38/3 <= 0; value: 38/3 a -1*v2 + 2*v3 -7 = 0; value: 0 a -5*v2 + 6*v3 -17 <= 0; value: -2 a -6*v2 -1*v3 + 8 <= 0; value: -15 d -3/2*v0 -7 <= 0; value: 0 d 3*v0 -2*v1 -8 = 0; value: 0 0: 4 5 1: 4 5 2: 1 2 3 3: 1 2 3 0: 4 -> -14/3 1: 2 -> -11 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a 2*v0 + 3*v2 + 5*v3 -71 < 0; value: -38 a v1 -2*v2 + 2 = 0; value: 0 a v0 + 3*v1 -33 < 0; value: -19 a 2*v1 -23 <= 0; value: -15 a v0 + 3*v1 -6*v2 + 4 = 0; value: 0 0: 1 3 5 1: 2 3 4 5 2: 1 2 5 3: 1 optimal: oo a 2*v0 -4*v2 + 4 <= 0; value: -4 a 2*v0 + 3*v2 + 5*v3 -71 < 0; value: -38 d v1 -2*v2 + 2 = 0; value: 0 a v0 + 6*v2 -39 < 0; value: -19 a 4*v2 -27 <= 0; value: -15 a v0 -2 = 0; value: 0 0: 1 3 5 1: 2 3 4 5 2: 1 2 5 3 4 3: 1 0: 2 -> 2 1: 4 -> 4 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a -5*v0 + 4*v3 <= 0; value: -1 a v2 -1*v3 -3 = 0; value: 0 a -5*v1 -3*v3 -12 <= 0; value: -40 a -5*v0 + 3*v1 -21 <= 0; value: -11 a -1*v0 -3*v1 -3 <= 0; value: -19 0: 1 4 5 1: 3 4 5 2: 2 3: 1 2 3 optimal: oo a 24/5*v2 -6/5 <= 0; value: 18 a -5*v2 -6 <= 0; value: -26 d v2 -1*v3 -3 = 0; value: 0 d 5/3*v0 -3*v3 -7 <= 0; value: 0 a -54/5*v2 -84/5 <= 0; value: -60 d -1*v0 -3*v1 -3 <= 0; value: 0 0: 1 4 5 3 1: 3 4 5 2: 2 1 4 3: 1 2 3 4 0: 1 -> 6 1: 5 -> -3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 -1*v3 -3 < 0; value: -10 a 3*v1 + v2 -5 <= 0; value: 0 a v0 + v2 -3 < 0; value: -1 a -5*v2 + 3*v3 -6 <= 0; value: -1 a -4*v1 + v3 -1 = 0; value: 0 0: 3 1: 2 5 2: 1 2 3 4 3: 1 4 5 optimal: (173/16 -e*1) a + 173/16 < 0; value: 173/16 d -1*v2 -1*v3 -3 < 0; value: -1 a -271/32 < 0; value: -271/32 d v0 + v2 -3 < 0; value: -1 d 8*v0 -39 < 0; value: -8 d -4*v1 + v3 -1 = 0; value: 0 0: 3 2 4 1: 2 5 2: 1 2 3 4 3: 1 4 5 2 0: 0 -> 31/8 1: 1 -> -9/32 2: 2 -> -15/8 3: 5 -> -1/8 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -3*v3 <= 0; value: -9 a 4*v0 + 3*v2 -8 <= 0; value: -5 a v0 + 5*v1 + 3*v3 -26 < 0; value: -12 a 4*v2 + 4*v3 -41 < 0; value: -25 a -3*v0 + 3*v1 -8 <= 0; value: -5 0: 1 2 3 5 1: 3 5 2: 2 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -3*v3 <= 0; value: -9 a 4*v0 + 3*v2 -8 <= 0; value: -5 a v0 + 5*v1 + 3*v3 -26 < 0; value: -12 a 4*v2 + 4*v3 -41 < 0; value: -25 a -3*v0 + 3*v1 -8 <= 0; value: -5 0: 1 2 3 5 1: 3 5 2: 2 4 3: 1 3 4 0: 0 -> 0 1: 1 -> 1 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 2*v2 + v3 + 1 <= 0; value: -3 a 6*v0 + v1 -4*v3 -20 = 0; value: 0 a -3*v0 + 1 <= 0; value: -14 a v3 -6 < 0; value: -3 a v2 -6*v3 -5 <= 0; value: -19 0: 1 2 3 1: 2 2: 1 5 3: 1 2 4 5 optimal: oo a 14*v0 -4/3*v2 -100/3 <= 0; value: 94/3 a -3*v0 + 13/6*v2 + 1/6 <= 0; value: -37/6 d 6*v0 + v1 -4*v3 -20 = 0; value: 0 a -3*v0 + 1 <= 0; value: -14 a 1/6*v2 -41/6 < 0; value: -37/6 d v2 -6*v3 -5 <= 0; value: 0 0: 1 2 3 1: 2 2: 1 5 4 3: 1 2 4 5 0: 5 -> 5 1: 2 -> -32/3 2: 4 -> 4 3: 3 -> -1/6 a 2*v0 -2*v1 <= 0; value: 6 a 5*v1 -6*v2 -1*v3 -6 < 0; value: -17 a -3*v2 -4*v3 + 22 = 0; value: 0 a -2*v0 + 4*v1 -1 <= 0; value: -5 a 2*v2 + 5*v3 -48 < 0; value: -24 a -3*v1 + 3*v2 -4 <= 0; value: -1 0: 3 1: 1 3 5 2: 1 2 4 5 3: 1 2 4 optimal: oo a 2*v0 + 548/21 < 0; value: 716/21 a -320/21 <= 0; value: -320/21 d -3*v2 -4*v3 + 22 = 0; value: 0 a -2*v0 -1117/21 < 0; value: -1285/21 d 7/3*v3 -100/3 < 0; value: -7/3 d -3*v1 + 3*v2 -4 <= 0; value: 0 0: 3 1: 1 3 5 2: 1 2 4 5 3 3: 1 2 4 3 0: 4 -> 4 1: 1 -> -82/7 2: 2 -> -218/21 3: 4 -> 93/7 a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 3*v3 -25 <= 0; value: -14 a -1*v2 + 3 = 0; value: 0 a -6*v2 + 5*v3 + 1 < 0; value: -7 a -1*v0 <= 0; value: 0 a 4*v3 -9 < 0; value: -1 0: 4 1: 1 2: 2 3 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 5*v1 + 3*v3 -25 <= 0; value: -14 a -1*v2 + 3 = 0; value: 0 a -6*v2 + 5*v3 + 1 < 0; value: -7 a -1*v0 <= 0; value: 0 a 4*v3 -9 < 0; value: -1 0: 4 1: 1 2: 2 3 3: 1 3 5 0: 0 -> 0 1: 1 -> 1 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 10 a -6*v2 + 5*v3 -25 <= 0; value: -16 a -2*v0 + v2 -4 <= 0; value: -13 a 5*v0 -5*v2 -1*v3 -17 = 0; value: 0 a v2 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 2 3 1: 5 2: 1 2 3 4 3: 1 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a -6*v2 + 5*v3 -25 <= 0; value: -16 a -2*v0 + v2 -4 <= 0; value: -13 a 5*v0 -5*v2 -1*v3 -17 = 0; value: 0 a v2 -1 <= 0; value: 0 a v1 <= 0; value: 0 0: 2 3 1: 5 2: 1 2 3 4 3: 1 3 0: 5 -> 5 1: 0 -> 0 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -1*v3 + 3 <= 0; value: -2 a v1 -4*v2 + v3 -5 <= 0; value: -3 a -2*v0 + v2 + 9 = 0; value: 0 a 2*v0 -3*v1 -13 <= 0; value: -6 a -1*v2 -2*v3 + 7 <= 0; value: -4 0: 3 4 1: 2 4 2: 2 3 5 3: 1 2 5 optimal: oo a 1/3*v2 + 35/3 <= 0; value: 12 a -1*v3 + 3 <= 0; value: -2 a -11/3*v2 + v3 -19/3 <= 0; value: -5 d -2*v0 + v2 + 9 = 0; value: 0 d 2*v0 -3*v1 -13 <= 0; value: 0 a -1*v2 -2*v3 + 7 <= 0; value: -4 0: 3 4 2 1: 2 4 2: 2 3 5 3: 1 2 5 0: 5 -> 5 1: 1 -> -1 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 + 5*v1 -32 <= 0; value: -13 a -4*v1 -1*v3 + 2 <= 0; value: -11 a 3*v0 -1*v3 -5 = 0; value: 0 a -1*v1 + 3*v2 + 2 <= 0; value: -1 a 4*v2 + 5*v3 -14 <= 0; value: -9 0: 1 3 1: 1 2 4 2: 4 5 3: 2 3 5 optimal: 19/3 a + 19/3 <= 0; value: 19/3 a -169/6 <= 0; value: -169/6 d -12*v2 -1*v3 -6 <= 0; value: 0 d 3*v0 -1*v3 -5 = 0; value: 0 d -1*v1 + 3*v2 + 2 <= 0; value: 0 d 14*v0 -118/3 <= 0; value: 0 0: 1 3 5 1: 1 2 4 2: 4 5 2 1 3: 2 3 5 1 0: 2 -> 59/21 1: 3 -> -5/14 2: 0 -> -11/14 3: 1 -> 24/7 a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -8 <= 0; value: -5 a v0 + v1 -2 <= 0; value: 0 a -6*v2 + 25 < 0; value: -5 a -6*v0 + 5*v1 -28 < 0; value: -18 a 2*v0 + 3*v2 -35 < 0; value: -20 0: 2 4 5 1: 2 4 2: 3 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -8 <= 0; value: -5 a v0 + v1 -2 <= 0; value: 0 a -6*v2 + 25 < 0; value: -5 a -6*v0 + 5*v1 -28 < 0; value: -18 a 2*v0 + 3*v2 -35 < 0; value: -20 0: 2 4 5 1: 2 4 2: 3 5 3: 1 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -4*v1 -5*v3 + 14 < 0; value: -14 a -5*v1 -6*v2 + 34 = 0; value: 0 a -5*v3 -18 <= 0; value: -38 a -2*v0 -3*v2 -2*v3 -1 <= 0; value: -27 d = 0; value: 0 0: 4 1: 1 2 2: 2 4 3: 1 3 4 optimal: oo a 2*v0 + 5/2*v3 -7 < 0; value: 9 d 24/5*v2 -5*v3 -66/5 < 0; value: -24/5 d -5*v1 -6*v2 + 34 = 0; value: 0 a -5*v3 -18 <= 0; value: -38 a -2*v0 -41/8*v3 -37/4 < 0; value: -143/4 d = 0; value: 0 0: 4 1: 1 2 2: 2 4 1 3: 1 3 4 0: 3 -> 3 1: 2 -> -3/10 2: 4 -> 71/12 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 -4*v3 + 1 < 0; value: -15 a 5*v0 + 3*v3 -20 <= 0; value: -6 a -3*v1 -6*v3 + 19 <= 0; value: -5 a -1*v2 + 4*v3 -17 <= 0; value: -5 a -1*v1 + 2 = 0; value: 0 0: 2 1: 1 3 5 2: 4 3: 1 2 3 4 optimal: 7/5 a + 7/5 <= 0; value: 7/5 a -35/3 < 0; value: -35/3 d 5*v0 + 3*v3 -20 <= 0; value: 0 d -6*v3 + 13 <= 0; value: 0 a -1*v2 -25/3 <= 0; value: -25/3 d -1*v1 + 2 = 0; value: 0 0: 2 1: 1 3 5 2: 4 3: 1 2 3 4 0: 1 -> 27/10 1: 2 -> 2 2: 0 -> 0 3: 3 -> 13/6 a 2*v0 -2*v1 <= 0; value: -2 a -1*v3 <= 0; value: 0 a -6*v0 -3*v1 + 2 <= 0; value: -1 a 2*v2 -11 < 0; value: -7 a -1*v0 + 3*v1 -3 = 0; value: 0 a v1 -3*v3 -2 <= 0; value: -1 0: 2 4 1: 2 4 5 2: 3 3: 1 5 optimal: oo a 12*v3 + 2 <= 0; value: 2 a -1*v3 <= 0; value: 0 a -63*v3 -22 <= 0; value: -22 a 2*v2 -11 < 0; value: -7 d -1*v0 + 3*v1 -3 = 0; value: 0 d 1/3*v0 -3*v3 -1 <= 0; value: 0 0: 2 4 5 1: 2 4 5 2: 3 3: 1 5 2 0: 0 -> 3 1: 1 -> 2 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + 3*v3 -13 = 0; value: 0 a -1*v2 + 2*v3 -8 = 0; value: 0 a -1*v1 -4*v3 + 22 = 0; value: 0 a v3 -7 <= 0; value: -2 a 3*v2 -1*v3 -1 <= 0; value: 0 0: 1: 1 3 2: 2 5 3: 1 2 3 4 5 optimal: oo a 2*v0 -4 <= 0; value: 0 d -1*v1 + 3*v3 -13 = 0; value: 0 d -1*v2 + 2*v3 -8 = 0; value: 0 d -7/2*v2 + 7 = 0; value: 0 a -2 <= 0; value: -2 a <= 0; value: 0 0: 1: 1 3 2: 2 5 3 4 3: 1 2 3 4 5 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 2*v3 -3 <= 0; value: -1 a -4*v1 + v2 + 2 <= 0; value: -10 a 5*v0 -4*v3 + 1 <= 0; value: -3 a -5*v2 + 4*v3 + 16 = 0; value: 0 a 2*v3 -3 < 0; value: -1 0: 3 1: 2 2: 2 4 3: 1 3 4 5 optimal: (-6/5 -e*1) a -6/5 < 0; value: -6/5 a <= 0; value: 0 d -4*v1 + v2 + 2 <= 0; value: 0 d 5*v0 -4*v3 + 1 <= 0; value: 0 d -5*v2 + 4*v3 + 16 = 0; value: 0 d 5/2*v0 -5/2 < 0; value: -5/4 0: 3 1 5 1: 2 2: 2 4 3: 1 3 4 5 0: 0 -> 1/2 1: 4 -> 59/40 2: 4 -> 39/10 3: 1 -> 7/8 a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v2 -2 <= 0; value: 0 a 2*v0 + 3*v3 -12 <= 0; value: -3 a 5*v1 + 2*v2 -15 < 0; value: -4 a -1*v3 + 3 = 0; value: 0 a -1*v3 -2 < 0; value: -5 0: 1 2 1: 1 3 2: 1 3 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 + 5*v1 -1*v2 -2 <= 0; value: 0 a 2*v0 + 3*v3 -12 <= 0; value: -3 a 5*v1 + 2*v2 -15 < 0; value: -4 a -1*v3 + 3 = 0; value: 0 a -1*v3 -2 < 0; value: -5 0: 1 2 1: 1 3 2: 1 3 3: 2 4 5 0: 0 -> 0 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + 5*v2 + 4*v3 -78 <= 0; value: -47 a v0 + v3 -4 <= 0; value: 0 a -5*v0 + 6*v1 -35 < 0; value: -23 a 3*v3 -14 <= 0; value: -2 a -1*v0 -6*v2 + 10 <= 0; value: -8 0: 1 2 3 5 1: 3 2: 1 5 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + 5*v2 + 4*v3 -78 <= 0; value: -47 a v0 + v3 -4 <= 0; value: 0 a -5*v0 + 6*v1 -35 < 0; value: -23 a 3*v3 -14 <= 0; value: -2 a -1*v0 -6*v2 + 10 <= 0; value: -8 0: 1 2 3 5 1: 3 2: 1 5 3: 1 2 4 0: 0 -> 0 1: 2 -> 2 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a v1 -2*v2 + v3 + 3 = 0; value: 0 a -3*v1 -2*v2 + 12 = 0; value: 0 a 4*v0 -3*v2 -5*v3 -17 <= 0; value: -11 a 5*v0 -4*v2 -17 <= 0; value: -4 a -1*v3 + 1 = 0; value: 0 0: 3 4 1: 1 2 2: 1 2 3 4 3: 1 3 5 optimal: 38/5 a + 38/5 <= 0; value: 38/5 d v1 -2*v2 + v3 + 3 = 0; value: 0 d -8*v2 + 24 = 0; value: 0 a -39/5 <= 0; value: -39/5 d 5*v0 -29 <= 0; value: 0 d -1*v3 + 1 = 0; value: 0 0: 3 4 1: 1 2 2: 1 2 3 4 3: 1 3 5 2 0: 5 -> 29/5 1: 2 -> 2 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 3 <= 0; value: 0 a -3*v0 + 4*v1 + 6*v3 -9 <= 0; value: -2 a -5*v0 + 6*v1 -24 <= 0; value: -15 a v0 + 5*v1 -37 <= 0; value: -14 a -4*v2 + 7 <= 0; value: -5 0: 1 2 3 4 1: 2 3 4 2: 5 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 3 <= 0; value: 0 a -3*v0 + 4*v1 + 6*v3 -9 <= 0; value: -2 a -5*v0 + 6*v1 -24 <= 0; value: -15 a v0 + 5*v1 -37 <= 0; value: -14 a -4*v2 + 7 <= 0; value: -5 0: 1 2 3 4 1: 2 3 4 2: 5 3: 2 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 + 3*v3 -53 <= 0; value: -34 a -2*v0 -4*v2 -3*v3 + 17 = 0; value: 0 a -4*v0 -3*v2 + 11 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 2: 2 3 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v0 + 3*v3 -53 <= 0; value: -34 a -2*v0 -4*v2 -3*v3 + 17 = 0; value: 0 a -4*v0 -3*v2 + 11 = 0; value: 0 d <= 0; value: 0 0: 1 2 3 1: 2: 2 3 3: 1 2 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -6*v0 -5*v2 + v3 -25 <= 0; value: -73 a -1*v0 -1*v1 -1 < 0; value: -5 a -2*v0 -5*v1 + 8 = 0; value: 0 a -2*v0 -1 <= 0; value: -9 a -1*v2 + 5 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 5 3: 1 optimal: oo a 14/5*v0 -16/5 <= 0; value: 8 a -6*v0 -5*v2 + v3 -25 <= 0; value: -73 a -3/5*v0 -13/5 < 0; value: -5 d -2*v0 -5*v1 + 8 = 0; value: 0 a -2*v0 -1 <= 0; value: -9 a -1*v2 + 5 = 0; value: 0 0: 1 2 3 4 1: 2 3 2: 1 5 3: 1 0: 4 -> 4 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + v1 + 1 <= 0; value: 0 a -2*v0 -6*v1 + 23 < 0; value: -3 a v2 -1*v3 + 3 = 0; value: 0 a 4*v2 -3*v3 + 9 = 0; value: 0 a 5*v1 -4*v2 -37 < 0; value: -22 0: 1 2 1: 1 2 5 2: 3 4 5 3: 3 4 optimal: oo a 8/3*v0 -23/3 < 0; value: 3 a -4/3*v0 + 29/6 < 0; value: -1/2 d -2*v0 -6*v1 + 23 < 0; value: -3/2 a v2 -1*v3 + 3 = 0; value: 0 a 4*v2 -3*v3 + 9 = 0; value: 0 a -5/3*v0 -4*v2 -107/6 < 0; value: -49/2 0: 1 2 5 1: 1 2 5 2: 3 4 5 3: 3 4 0: 4 -> 4 1: 3 -> 11/4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a v0 -2 < 0; value: -1 a -5*v0 -6*v3 -2 <= 0; value: -37 a 3*v0 -2*v2 + 6 <= 0; value: -1 a -1*v1 -6*v2 -3*v3 + 8 <= 0; value: -37 a -6*v1 + 5*v3 -73 <= 0; value: -48 0: 1 2 3 1: 4 5 2: 3 4 3: 2 4 5 optimal: (95/3 -e*1) a + 95/3 < 0; value: 95/3 d 2/3*v2 -4 < 0; value: -1/3 d -5*v0 -6*v3 -2 <= 0; value: 0 d 3*v0 -2*v2 + 6 <= 0; value: 0 a -49/6 < 0; value: -49/6 d -6*v1 + 5*v3 -73 <= 0; value: 0 0: 1 2 3 4 1: 4 5 2: 3 4 1 3: 2 4 5 0: 1 -> 5/3 1: 0 -> -1469/108 2: 5 -> 11/2 3: 5 -> -31/18 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 + 3*v3 -34 <= 0; value: -20 a -3*v0 -3*v2 + 1 <= 0; value: -2 a -4*v2 -1 <= 0; value: -5 a -5*v0 -2*v3 + 4 < 0; value: -4 0: 1 2 4 1: 2: 1 2 3 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v2 + 3*v3 -34 <= 0; value: -20 a -3*v0 -3*v2 + 1 <= 0; value: -2 a -4*v2 -1 <= 0; value: -5 a -5*v0 -2*v3 + 4 < 0; value: -4 0: 1 2 4 1: 2: 1 2 3 3: 1 4 0: 0 -> 0 1: 1 -> 1 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a v0 -3*v2 + 8 <= 0; value: -2 a -6*v0 + 3*v2 + 5*v3 -60 < 0; value: -35 a -1*v1 + v2 < 0; value: -1 a -4*v0 + 4*v2 -1*v3 -3 = 0; value: 0 a v0 + 6*v2 -45 <= 0; value: -19 0: 1 2 4 5 1: 3 2: 1 2 3 4 5 3: 2 4 optimal: (68/9 -e*1) a + 68/9 < 0; value: 68/9 d -2*v0 -3/4*v3 + 23/4 <= 0; value: 0 a -1718/9 < 0; value: -1718/9 d -1*v1 + v2 < 0; value: -4/9 d -4*v0 + 4*v2 -1*v3 -3 = 0; value: 0 d 3*v0 -29 <= 0; value: 0 0: 1 2 4 5 1: 3 2: 1 2 3 4 5 3: 2 4 1 5 0: 2 -> 29/3 1: 5 -> 19/3 2: 4 -> 53/9 3: 5 -> -163/9 a 2*v0 -2*v1 <= 0; value: -6 a v2 -5 < 0; value: -2 a -3*v0 -1*v1 -3*v2 + 4 <= 0; value: -16 a -1*v0 < 0; value: -2 a -1*v2 + 1 < 0; value: -2 a v2 -3 = 0; value: 0 0: 2 3 1: 2 2: 1 2 4 5 3: optimal: oo a 8*v0 + 10 <= 0; value: 26 a -2 < 0; value: -2 d -3*v0 -1*v1 -3*v2 + 4 <= 0; value: 0 a -1*v0 < 0; value: -2 a -2 < 0; value: -2 d v2 -3 = 0; value: 0 0: 2 3 1: 2 2: 1 2 4 5 3: 0: 2 -> 2 1: 5 -> -11 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 6*v3 + 1 <= 0; value: -2 a 2*v0 -3*v3 -4 = 0; value: 0 a v0 -1*v1 -3 = 0; value: 0 a 5*v1 -4*v2 -2 = 0; value: 0 a 4*v2 + 2*v3 -13 <= 0; value: -1 0: 1 2 3 1: 3 4 2: 4 5 3: 1 2 5 optimal: 6 a + 6 <= 0; value: 6 a -3*v0 + 6*v3 + 1 <= 0; value: -2 a 2*v0 -3*v3 -4 = 0; value: 0 d v0 -1*v1 -3 = 0; value: 0 a 5*v0 -4*v2 -17 = 0; value: 0 a 4*v2 + 2*v3 -13 <= 0; value: -1 0: 1 2 3 4 1: 3 4 2: 4 5 3: 1 2 5 0: 5 -> 5 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 + 2*v3 + 2 <= 0; value: 0 a -3*v0 + v1 + 6 = 0; value: 0 a 2*v0 + 3*v3 -16 <= 0; value: -6 a -1*v0 -1*v2 + 7 = 0; value: 0 a -2*v0 -3*v3 + 10 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 4 3: 1 3 5 optimal: 4 a + 4 <= 0; value: 4 d -3*v0 + 2*v3 + 2 <= 0; value: 0 d -3*v0 + v1 + 6 = 0; value: 0 a -6 <= 0; value: -6 a -1*v2 + 5 = 0; value: 0 d -13/3*v3 + 26/3 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 4 3: 1 3 5 4 0: 2 -> 2 1: 0 -> 0 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 2*v2 + v3 -7 <= 0; value: -4 a -1*v0 + v3 <= 0; value: 0 a -6*v2 + v3 -3 <= 0; value: 0 a v2 <= 0; value: 0 a 2*v1 + v2 -24 < 0; value: -14 0: 2 1: 5 2: 1 3 4 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a 2*v2 + v3 -7 <= 0; value: -4 a -1*v0 + v3 <= 0; value: 0 a -6*v2 + v3 -3 <= 0; value: 0 a v2 <= 0; value: 0 a 2*v1 + v2 -24 < 0; value: -14 0: 2 1: 5 2: 1 3 4 5 3: 1 2 3 0: 3 -> 3 1: 5 -> 5 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -6*v0 -2*v2 + 25 < 0; value: -3 a 6*v0 -3*v2 -1*v3 + 2 = 0; value: 0 a 2*v0 -11 <= 0; value: -5 a v0 + 2*v1 -13 = 0; value: 0 a -4*v0 + 5*v1 -26 <= 0; value: -13 0: 1 2 3 4 5 1: 4 5 2: 1 2 3: 2 optimal: 7/2 a + 7/2 <= 0; value: 7/2 a -2*v2 -8 < 0; value: -18 d 6*v0 -3*v2 -1*v3 + 2 = 0; value: 0 d v2 + 1/3*v3 -35/3 <= 0; value: 0 d v0 + 2*v1 -13 = 0; value: 0 a -117/4 <= 0; value: -117/4 0: 1 2 3 4 5 1: 4 5 2: 1 2 3 5 3: 2 3 1 5 0: 3 -> 11/2 1: 5 -> 15/4 2: 5 -> 5 3: 5 -> 20 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 + 3*v1 -32 = 0; value: 0 a -1*v1 + 4 = 0; value: 0 a -5*v0 -16 <= 0; value: -41 a -2*v0 + 4*v1 + 5*v2 -6 <= 0; value: 0 a v1 -2*v2 -2*v3 -1 < 0; value: -3 0: 1 3 4 1: 1 2 4 5 2: 4 5 3: 5 optimal: 2 a + 2 <= 0; value: 2 d 4*v0 + 3*v1 -32 = 0; value: 0 d 4/3*v0 -20/3 = 0; value: 0 a -41 <= 0; value: -41 a 5*v2 <= 0; value: 0 a -2*v2 -2*v3 + 3 < 0; value: -3 0: 1 3 4 2 5 1: 1 2 4 5 2: 4 5 3: 5 0: 5 -> 5 1: 4 -> 4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a v0 = 0; value: 0 a 2*v1 -1*v2 + 2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a 3*v2 -1*v3 -28 <= 0; value: -17 a -6*v0 + v3 -1 = 0; value: 0 0: 1 5 1: 2 3 2: 2 4 3: 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v0 = 0; value: 0 a 2*v1 -1*v2 + 2 <= 0; value: 0 a v1 -1*v3 <= 0; value: 0 a 3*v2 -1*v3 -28 <= 0; value: -17 a -6*v0 + v3 -1 = 0; value: 0 0: 1 5 1: 2 3 2: 2 4 3: 3 4 5 0: 0 -> 0 1: 1 -> 1 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -17 < 0; value: -11 a -4*v0 -5*v2 + 3*v3 + 10 = 0; value: 0 a v1 -1*v3 = 0; value: 0 a -3*v1 -2*v2 + 5 = 0; value: 0 0: 1 2 1: 3 4 2: 2 4 3: 2 3 optimal: (412/63 -e*1) a + 412/63 < 0; value: 412/63 d 3*v0 -17 < 0; value: -3 d -4*v0 -5*v2 + 3*v3 + 10 = 0; value: 0 d v1 -1*v3 = 0; value: 0 d -4*v0 -7*v2 + 15 = 0; value: 0 0: 1 2 4 1: 3 4 2: 2 4 3: 2 3 4 0: 2 -> 14/3 1: 1 -> 127/63 2: 1 -> -11/21 3: 1 -> 127/63 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 -1*v2 + 2 <= 0; value: 0 a 3*v1 -1*v2 + 1 = 0; value: 0 a -6*v0 -2*v1 + v2 -6 <= 0; value: -16 a -2*v0 -3 <= 0; value: -7 a 3*v0 + v2 + 4*v3 -69 <= 0; value: -39 0: 3 4 5 1: 1 2 3 2: 1 2 3 5 3: 5 optimal: oo a -8/3*v3 + 124/3 <= 0; value: 28 d -1/3*v2 + 4/3 <= 0; value: 0 d 3*v1 -1*v2 + 1 = 0; value: 0 a 8*v3 -134 <= 0; value: -94 a 8/3*v3 -139/3 <= 0; value: -33 d 3*v0 + 4*v3 -65 <= 0; value: 0 0: 3 4 5 1: 1 2 3 2: 1 2 3 5 3: 5 3 4 0: 2 -> 15 1: 1 -> 1 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 + 4*v3 -46 < 0; value: -19 a -4*v2 + 3*v3 + 2 <= 0; value: -1 a v1 -2 <= 0; value: -1 a 2*v0 -3*v3 + 3 <= 0; value: -2 a v3 -3 = 0; value: 0 0: 4 1: 3 2: 1 2 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 5*v2 + 4*v3 -46 < 0; value: -19 a -4*v2 + 3*v3 + 2 <= 0; value: -1 a v1 -2 <= 0; value: -1 a 2*v0 -3*v3 + 3 <= 0; value: -2 a v3 -3 = 0; value: 0 0: 4 1: 3 2: 1 2 3: 1 2 4 5 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 4*v1 -5*v2 + v3 <= 0; value: -1 a -2*v1 -5*v2 + 3*v3 -5 < 0; value: -20 a v1 -1*v2 <= 0; value: 0 a 3*v2 + 3*v3 -35 <= 0; value: -20 a -4*v1 -4*v2 + 23 <= 0; value: -1 0: 1: 1 2 3 5 2: 1 2 3 4 5 3: 1 2 4 optimal: oo a 2*v0 -2*v3 + 71/6 <= 0; value: 83/6 a 10*v3 -82 <= 0; value: -62 a 6*v3 -103/2 < 0; value: -79/2 a 2*v3 -211/12 <= 0; value: -163/12 d 3*v2 + 3*v3 -35 <= 0; value: 0 d -4*v1 -4*v2 + 23 <= 0; value: 0 0: 1: 1 2 3 5 2: 1 2 3 4 5 3: 1 2 4 3 0: 3 -> 3 1: 3 -> -47/12 2: 3 -> 29/3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 + v1 -20 < 0; value: -13 a 2*v0 -2*v1 -1 < 0; value: -3 a -2*v2 -3*v3 -18 <= 0; value: -38 a 2*v1 -1*v2 -2 = 0; value: 0 a 3*v2 -2*v3 -8 < 0; value: -4 0: 1 2 1: 1 2 4 2: 3 4 5 3: 3 5 optimal: (1 -e*1) a + 1 < 0; value: 1 a 3*v0 -41/2 < 0; value: -29/2 d 2*v0 -1*v2 -3 < 0; value: -1 a -4*v0 -3*v3 -12 <= 0; value: -32 d 2*v1 -1*v2 -2 = 0; value: 0 a 6*v0 -2*v3 -17 < 0; value: -13 0: 1 2 3 5 1: 1 2 4 2: 3 4 5 2 1 3: 3 5 0: 2 -> 2 1: 3 -> 2 2: 4 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a 5*v2 -2*v3 <= 0; value: -8 a -3*v1 + 5*v2 + 6 <= 0; value: -3 a -2*v2 + 3*v3 -35 <= 0; value: -23 a v2 = 0; value: 0 a v1 + v2 -1*v3 + 1 <= 0; value: 0 0: 1: 2 5 2: 1 2 3 4 5 3: 1 3 5 optimal: oo a 2*v0 -4 <= 0; value: -4 a -2*v3 <= 0; value: -8 d -3*v1 + 5*v2 + 6 <= 0; value: 0 a 3*v3 -35 <= 0; value: -23 d v2 = 0; value: 0 a -1*v3 + 3 <= 0; value: -1 0: 1: 2 5 2: 1 2 3 4 5 3: 1 3 5 0: 0 -> 0 1: 3 -> 2 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v1 + 6*v3 -3 = 0; value: 0 a v0 + 2*v2 -11 = 0; value: 0 a -4*v0 -3*v2 + 9 <= 0; value: -10 a -5*v2 + 8 < 0; value: -17 a 5*v0 -1*v2 + v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2: 2 3 4 5 3: 1 5 optimal: oo a -1*v0 -6*v3 + 3 <= 0; value: 2 d 3*v0 -2*v1 + 6*v3 -3 = 0; value: 0 a v0 + 2*v2 -11 = 0; value: 0 a -4*v0 -3*v2 + 9 <= 0; value: -10 a -5*v2 + 8 < 0; value: -17 a 5*v0 -1*v2 + v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2: 2 3 4 5 3: 1 5 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + v1 + 1 <= 0; value: 0 a -2*v2 -3 <= 0; value: -7 a 6*v0 + 4*v3 -17 < 0; value: -11 a 2*v1 -5*v2 -2*v3 + 5 < 0; value: -3 a 4*v1 + 3*v3 -4 = 0; value: 0 0: 1 3 1: 1 4 5 2: 2 4 3: 3 4 5 optimal: (33/7 -e*1) a + 33/7 < 0; value: 33/7 d -7/8*v0 -19/16 < 0; value: -7/8 a -2*v2 -3 <= 0; value: -7 d 6*v0 + 4*v3 -17 < 0; value: -4 a -5*v2 -15 < 0; value: -25 d 4*v1 + 3*v3 -4 = 0; value: 0 0: 1 3 4 1: 1 4 5 2: 2 4 3: 3 4 5 1 0: 1 -> -5/14 1: 1 -> -103/56 2: 2 -> 2 3: 0 -> 53/14 a 2*v0 -2*v1 <= 0; value: 4 a -2*v0 + 3 <= 0; value: -3 a 6*v1 -5*v2 -2 <= 0; value: -1 a -5*v0 + 5*v1 -1*v2 + 3 <= 0; value: -8 a 5*v0 + 6*v1 -47 <= 0; value: -26 a -1*v0 + 6*v1 + 2*v2 -5 = 0; value: 0 0: 1 3 4 5 1: 2 3 4 5 2: 2 3 5 3: optimal: oo a 5/3*v0 + 2/3*v2 -5/3 <= 0; value: 4 a -2*v0 + 3 <= 0; value: -3 a v0 -7*v2 + 3 <= 0; value: -1 a -25/6*v0 -8/3*v2 + 43/6 <= 0; value: -8 a 6*v0 -2*v2 -42 <= 0; value: -26 d -1*v0 + 6*v1 + 2*v2 -5 = 0; value: 0 0: 1 3 4 5 2 1: 2 3 4 5 2: 2 3 5 4 3: 0: 3 -> 3 1: 1 -> 1 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a v0 -2*v1 <= 0; value: -1 a v1 -2*v3 < 0; value: -4 a 2*v0 -5*v2 -11 <= 0; value: -30 a -1*v3 + 3 = 0; value: 0 a 6*v1 -1*v3 -23 <= 0; value: -14 0: 1 3 1: 1 2 5 2: 3 3: 2 4 5 optimal: 26/3 a + 26/3 <= 0; value: 26/3 d v0 -2*v1 <= 0; value: 0 a -5/3 < 0; value: -5/3 a -5*v2 + 19/3 <= 0; value: -56/3 d -1*v3 + 3 = 0; value: 0 d 3*v0 -1*v3 -23 <= 0; value: 0 0: 1 3 2 5 1: 1 2 5 2: 3 3: 2 4 5 3 0: 3 -> 26/3 1: 2 -> 13/3 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -1*v1 -4*v3 + 12 < 0; value: -5 a v2 + 3*v3 -32 <= 0; value: -12 a -5*v0 + 5*v3 -23 < 0; value: -3 a -2*v0 + v2 -6 <= 0; value: -3 a 3*v0 -2*v3 -2 < 0; value: -9 0: 1 3 4 5 1: 1 2: 2 4 3: 1 2 3 5 optimal: (64/5 -e*1) a + 64/5 < 0; value: 64/5 d 5*v0 -1*v1 -4*v3 + 12 < 0; value: -1 a 3*v0 + v2 -91/5 <= 0; value: -51/5 d -5*v0 + 5*v3 -23 < 0; value: -3/2 a -2*v0 + v2 -6 <= 0; value: -3 a v0 -56/5 < 0; value: -51/5 0: 1 3 4 5 2 1: 1 2: 2 4 3: 1 2 3 5 0: 1 -> 1 1: 2 -> -16/5 2: 5 -> 5 3: 5 -> 53/10 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 4*v1 -6 = 0; value: 0 a v1 + v3 -5 = 0; value: 0 a -6*v0 -1*v3 -11 <= 0; value: -26 a v1 -2 = 0; value: 0 a v0 + 2*v1 -6 <= 0; value: 0 0: 1 3 5 1: 1 2 4 5 2: 3: 2 3 optimal: 0 a <= 0; value: 0 d -1*v0 + 4*v1 -6 = 0; value: 0 a v3 -3 = 0; value: 0 a -1*v3 -23 <= 0; value: -26 a = 0; value: 0 d 3/2*v0 -3 <= 0; value: 0 0: 1 3 5 2 4 1: 1 2 4 5 2: 3: 2 3 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -10 a 5*v2 -4*v3 -11 = 0; value: 0 a -1*v2 -1*v3 + 4 <= 0; value: 0 a v0 + 3*v1 -44 <= 0; value: -29 a -2*v2 -1*v3 + 4 < 0; value: -3 a v0 -6*v3 -5 < 0; value: -11 0: 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a 5*v2 -4*v3 -11 = 0; value: 0 a -1*v2 -1*v3 + 4 <= 0; value: 0 a v0 + 3*v1 -44 <= 0; value: -29 a -2*v2 -1*v3 + 4 < 0; value: -3 a v0 -6*v3 -5 < 0; value: -11 0: 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 0: 0 -> 0 1: 5 -> 5 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -41 <= 0; value: -21 a -3*v0 + v1 -2*v2 + 20 = 0; value: 0 a 3*v1 -5*v2 -1 < 0; value: -11 a 6*v2 -2*v3 -37 <= 0; value: -15 a -3*v0 + 6*v1 + 5*v3 -70 <= 0; value: -35 0: 1 2 5 1: 2 3 5 2: 2 3 4 3: 4 5 optimal: oo a -4*v0 -4*v2 + 40 <= 0; value: 0 a 4*v0 -41 <= 0; value: -21 d -3*v0 + v1 -2*v2 + 20 = 0; value: 0 a 9*v0 + v2 -61 < 0; value: -11 a 6*v2 -2*v3 -37 <= 0; value: -15 a 15*v0 + 12*v2 + 5*v3 -190 <= 0; value: -35 0: 1 2 5 3 1: 2 3 5 2: 2 3 4 5 3: 4 5 0: 5 -> 5 1: 5 -> 5 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 -4*v2 + 21 <= 0; value: -1 a v2 -4 = 0; value: 0 a -5*v0 + 5*v2 -14 <= 0; value: -4 a 6*v2 -6*v3 -49 < 0; value: -31 a v0 -6*v1 -5*v2 + 23 <= 0; value: -13 0: 3 5 1: 1 5 2: 1 2 3 4 5 3: 4 optimal: 19 a + 19 <= 0; value: 19 d -2*v1 -4*v2 + 21 <= 0; value: 0 d v2 -4 = 0; value: 0 a -54 <= 0; value: -54 a -6*v3 -25 < 0; value: -31 d v0 -12 <= 0; value: 0 0: 3 5 1: 1 5 2: 1 2 3 4 5 3: 4 0: 2 -> 12 1: 3 -> 5/2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 -5*v2 -10 <= 0; value: -35 a -1*v2 + 5 = 0; value: 0 a 6*v0 + 2*v1 -23 < 0; value: -15 a -1*v0 <= 0; value: 0 a -3*v2 -1*v3 -11 <= 0; value: -30 0: 1 3 4 1: 3 2: 1 2 5 3: 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 -5*v2 -10 <= 0; value: -35 a -1*v2 + 5 = 0; value: 0 a 6*v0 + 2*v1 -23 < 0; value: -15 a -1*v0 <= 0; value: 0 a -3*v2 -1*v3 -11 <= 0; value: -30 0: 1 3 4 1: 3 2: 1 2 5 3: 5 0: 0 -> 0 1: 4 -> 4 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 -2*v1 <= 0; value: 0 a -1*v2 + 4 = 0; value: 0 a 2*v1 -1*v2 -6 = 0; value: 0 a -5*v0 -6*v2 + v3 -19 <= 0; value: -51 a -6*v2 -3*v3 + 14 < 0; value: -16 0: 1 4 1: 1 3 2: 2 3 4 5 3: 4 5 optimal: -6 a -6 <= 0; value: -6 d 5*v0 -2*v1 <= 0; value: 0 d -1*v2 + 4 = 0; value: 0 d 5*v0 -1*v2 -6 = 0; value: 0 a v3 -53 <= 0; value: -51 a -3*v3 -10 < 0; value: -16 0: 1 4 3 1: 1 3 2: 2 3 4 5 3: 4 5 0: 2 -> 2 1: 5 -> 5 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 4*v1 -27 <= 0; value: -10 a 3*v1 -1*v3 -6 <= 0; value: 0 a 3*v0 + 4*v2 + 2*v3 -25 = 0; value: 0 a -3*v0 -1*v1 + 3*v2 -6 = 0; value: 0 a 2*v1 -6*v2 + v3 + 5 <= 0; value: -10 0: 1 3 4 1: 1 2 4 5 2: 3 4 5 3: 2 3 5 optimal: oo a 61/2*v0 -9/2 <= 0; value: 26 a -52*v0 -18 <= 0; value: -70 a -195/4*v0 -25/4 <= 0; value: -55 d 3*v0 + 4*v2 + 2*v3 -25 = 0; value: 0 d -3*v0 -1*v1 + 3*v2 -6 = 0; value: 0 d -6*v0 + v3 -7 <= 0; value: 0 0: 1 3 4 2 5 1: 1 2 4 5 2: 3 4 5 1 2 3: 2 3 5 1 0: 1 -> 1 1: 3 -> -12 2: 4 -> -1 3: 3 -> 13 a 2*v0 -2*v1 <= 0; value: -2 a -5*v1 -5*v2 + 9 <= 0; value: -21 a 3*v0 -7 < 0; value: -4 a 3*v2 -2*v3 -7 <= 0; value: -1 a -5*v2 -6*v3 + 38 = 0; value: 0 a 4*v0 + 4*v3 -47 <= 0; value: -31 0: 2 5 1: 1 2: 1 3 4 3: 3 4 5 optimal: (997/105 -e*1) a + 997/105 < 0; value: 997/105 d -5*v1 -5*v2 + 9 <= 0; value: 0 d 3*v0 -7 < 0; value: -2 d -28/5*v3 + 79/5 <= 0; value: 0 d -5*v2 -6*v3 + 38 = 0; value: 0 a -554/21 <= 0; value: -554/21 0: 2 5 1: 1 2: 1 3 4 3: 3 4 5 0: 1 -> 5/3 1: 2 -> -169/70 2: 4 -> 59/14 3: 3 -> 79/28 a 2*v0 -2*v1 <= 0; value: 6 a 5*v3 -13 < 0; value: -3 a -1*v2 + 2 = 0; value: 0 a 5*v1 -6*v3 -5 < 0; value: -12 a 6*v2 + 3*v3 -44 <= 0; value: -26 a v1 + 2*v2 -5 = 0; value: 0 0: 1: 3 5 2: 2 4 5 3: 1 3 4 optimal: oo a 2*v0 -2 <= 0; value: 6 a 5*v3 -13 < 0; value: -3 d -1*v2 + 2 = 0; value: 0 a -6*v3 < 0; value: -12 a 3*v3 -32 <= 0; value: -26 d v1 + 2*v2 -5 = 0; value: 0 0: 1: 3 5 2: 2 4 5 3 3: 1 3 4 0: 4 -> 4 1: 1 -> 1 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 -2 < 0; value: -7 a -1*v2 <= 0; value: -3 a 3*v1 -6*v2 -5*v3 + 5 <= 0; value: -29 a 2*v1 + v3 -29 <= 0; value: -18 a 4*v1 -6*v3 + 1 <= 0; value: -17 0: 1: 3 4 5 2: 2 3 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v3 -2 < 0; value: -7 a -1*v2 <= 0; value: -3 a 3*v1 -6*v2 -5*v3 + 5 <= 0; value: -29 a 2*v1 + v3 -29 <= 0; value: -18 a 4*v1 -6*v3 + 1 <= 0; value: -17 0: 1: 3 4 5 2: 2 3 3: 1 3 4 5 0: 4 -> 4 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -2*v0 + 6*v2 -43 <= 0; value: -25 a 3*v0 + 3*v1 -32 <= 0; value: -17 a 5*v1 + v2 -18 <= 0; value: -4 a 3*v1 + v2 -16 < 0; value: -6 a -1*v0 + 3 = 0; value: 0 0: 1 2 5 1: 2 3 4 2: 1 3 4 3: optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -2*v0 + 6*v2 -43 <= 0; value: -25 a 3*v0 + 3*v1 -32 <= 0; value: -17 a 5*v1 + v2 -18 <= 0; value: -4 a 3*v1 + v2 -16 < 0; value: -6 a -1*v0 + 3 = 0; value: 0 0: 1 2 5 1: 2 3 4 2: 1 3 4 3: 0: 3 -> 3 1: 2 -> 2 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a 5*v2 -37 <= 0; value: -17 a -2*v0 -1*v2 -3 <= 0; value: -9 a 3*v0 -4*v2 + 5*v3 -4 < 0; value: -17 a -1*v3 <= 0; value: 0 a -1*v0 -1*v1 + 5 <= 0; value: -1 0: 2 3 5 1: 5 2: 1 2 3 3: 3 4 optimal: (174/5 -e*1) a + 174/5 < 0; value: 174/5 d 5*v2 -37 <= 0; value: 0 a -164/5 < 0; value: -164/5 d 3*v0 -4*v2 + 5*v3 -4 < 0; value: -3 d -1*v3 <= 0; value: 0 d -1*v0 -1*v1 + 5 <= 0; value: 0 0: 2 3 5 1: 5 2: 1 2 3 3: 3 4 2 0: 1 -> 51/5 1: 5 -> -26/5 2: 4 -> 37/5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a -4*v1 + 2*v2 -23 < 0; value: -13 a 6*v1 -2*v2 -1 <= 0; value: -11 a 5*v1 + 6*v2 + v3 -73 <= 0; value: -39 a -2*v0 -5*v1 + 10 <= 0; value: 0 a -3*v1 + 6*v2 + 2*v3 -39 <= 0; value: -1 0: 4 1: 1 2 3 4 5 2: 1 2 3 5 3: 3 5 optimal: oo a -7/2*v2 + 201/4 < 0; value: 131/4 d -6*v2 -8/3*v3 + 29 < 0; value: -8/3 a v2 -71/2 < 0; value: -61/2 a 25/4*v2 -727/8 < 0; value: -477/8 d -2*v0 -5*v1 + 10 <= 0; value: 0 d 6/5*v0 + 6*v2 + 2*v3 -45 <= 0; value: 0 0: 4 1 5 2 3 1: 1 2 3 4 5 2: 1 2 3 5 3: 3 5 1 2 0: 5 -> 275/24 1: 0 -> -31/12 2: 5 -> 5 3: 4 -> 5/8 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 6*v1 -6 = 0; value: 0 a 4*v1 + v3 -7 = 0; value: 0 a v2 + 6*v3 -46 <= 0; value: -25 a 6*v2 + 5*v3 -85 <= 0; value: -52 a v1 + v2 + 3*v3 -13 = 0; value: 0 0: 1 1: 1 2 5 2: 3 4 5 3: 2 3 4 5 optimal: 84/13 a + 84/13 <= 0; value: 84/13 d 5*v0 + 6*v1 -6 = 0; value: 0 d -10/3*v0 + v3 -3 = 0; value: 0 d -13/11*v2 -236/11 <= 0; value: 0 a -1826/13 <= 0; value: -1826/13 d v2 + 11/4*v3 -45/4 = 0; value: 0 0: 1 2 5 1: 1 2 5 2: 3 4 5 3: 2 3 4 5 0: 0 -> 30/13 1: 1 -> -12/13 2: 3 -> -236/13 3: 3 -> 139/13 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -14 < 0; value: -29 a -1*v0 + v3 + 3 <= 0; value: 0 a 2*v0 + 4*v2 -19 <= 0; value: -3 a 2*v0 + v3 -9 = 0; value: 0 a -2*v0 + v2 -4 <= 0; value: -10 0: 2 3 4 5 1: 1 2: 3 5 3: 2 4 optimal: oo a -4*v2 + 85/3 < 0; value: 61/3 d -3*v1 -14 < 0; value: -3 a 6*v2 -33/2 <= 0; value: -9/2 d 4*v2 -1*v3 -10 <= 0; value: 0 d 2*v0 + v3 -9 = 0; value: 0 a 5*v2 -23 <= 0; value: -13 0: 2 3 4 5 1: 1 2: 3 5 2 3: 2 4 3 5 0: 4 -> 11/2 1: 5 -> -11/3 2: 2 -> 2 3: 1 -> -2 a 2*v0 -2*v1 <= 0; value: -4 a -2*v3 -1 <= 0; value: -3 a 5*v0 -5*v1 + 3*v3 -3 <= 0; value: -10 a -4*v0 + 4*v2 -6*v3 -3 < 0; value: -9 a -1*v1 + 4*v2 -1 < 0; value: -3 a v2 <= 0; value: 0 0: 2 3 1: 2 4 2: 3 4 5 3: 1 2 3 optimal: (9/5 -e*1) a + 9/5 < 0; value: 9/5 d 4/3*v0 -4/3*v2 <= 0; value: 0 d 5*v0 -5*v1 + 3*v3 -3 <= 0; value: 0 d -4*v0 + 4*v2 -6*v3 -3 < 0; value: -9/2 a 3*v0 -1/10 <= 0; value: -1/10 a v0 <= 0; value: 0 0: 2 3 4 1 5 1: 2 4 2: 3 4 5 1 3: 1 2 3 4 0: 0 -> 0 1: 2 -> -9/20 2: 0 -> 0 3: 1 -> 1/4 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 + 5*v2 -9 < 0; value: -4 a 3*v2 -1*v3 -7 < 0; value: -4 a 3*v1 -26 <= 0; value: -14 a 2*v0 + 5*v2 -14 <= 0; value: -9 a -3*v1 + 2 < 0; value: -10 0: 1 4 1: 3 5 2: 1 2 4 3: 2 optimal: oo a -5*v2 + 38/3 < 0; value: 23/3 a 15/2*v2 -16 < 0; value: -17/2 a 3*v2 -1*v3 -7 < 0; value: -4 a -24 < 0; value: -24 d 2*v0 + 5*v2 -14 <= 0; value: 0 d -3*v1 + 2 < 0; value: -3 0: 1 4 1: 3 5 2: 1 2 4 3: 2 0: 0 -> 9/2 1: 4 -> 5/3 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 + 4*v1 -47 <= 0; value: -29 a -4*v1 + 6*v2 -3*v3 -27 <= 0; value: -8 a -1*v0 + 6*v2 -41 <= 0; value: -13 a -2*v0 -6*v1 + 4*v3 + 11 < 0; value: -1 a -6*v1 + v2 + 3 <= 0; value: -4 0: 1 3 4 1: 1 2 4 5 2: 2 3 5 3: 2 4 optimal: oo a 2*v0 -1/3*v2 -1 < 0; value: 4/3 a 5*v0 + 2/3*v2 -45 < 0; value: -95/3 a -3/2*v0 + 55/12*v2 -23 <= 0; value: -37/12 a -1*v0 + 6*v2 -41 <= 0; value: -13 d -2*v0 -6*v1 + 4*v3 + 11 < 0; value: -2 d 2*v0 + v2 -4*v3 -8 <= 0; value: 0 0: 1 3 4 2 5 1: 1 2 4 5 2: 2 3 5 1 3: 2 4 5 1 0: 2 -> 2 1: 2 -> 5/3 2: 5 -> 5 3: 1 -> 1/4 a 2*v0 -2*v1 <= 0; value: 2 a -6*v0 -1*v1 + 5*v2 <= 0; value: 0 a -6*v0 + 5*v3 + 1 <= 0; value: -2 a v3 -7 <= 0; value: -4 a -5*v0 + 4*v1 + 7 = 0; value: 0 a -6*v1 -5 < 0; value: -17 0: 1 2 4 1: 1 4 5 2: 1 3: 2 3 optimal: (47/15 -e*1) a + 47/15 < 0; value: 47/15 d -6*v0 -1*v1 + 5*v2 <= 0; value: 0 d -6*v0 + 5*v3 + 1 <= 0; value: 0 a -158/25 < 0; value: -158/25 d -29*v0 + 20*v2 + 7 = 0; value: 0 d -25/4*v3 + 17/4 < 0; value: -25/4 0: 1 2 4 5 1: 1 4 5 2: 1 4 5 3: 2 3 5 0: 3 -> 47/30 1: 2 -> 5/24 2: 4 -> 1153/600 3: 3 -> 42/25 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v3 -3 <= 0; value: -1 a 2*v0 + 6*v2 + 3*v3 -40 < 0; value: -17 a -3*v3 + 7 <= 0; value: -8 a v0 + 3*v2 -2*v3 + 6 = 0; value: 0 a -1*v0 + v2 + 4 = 0; value: 0 0: 1 2 4 5 1: 2: 2 4 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -2*v3 -3 <= 0; value: -1 a 2*v0 + 6*v2 + 3*v3 -40 < 0; value: -17 a -3*v3 + 7 <= 0; value: -8 a v0 + 3*v2 -2*v3 + 6 = 0; value: 0 a -1*v0 + v2 + 4 = 0; value: 0 0: 1 2 4 5 1: 2: 2 4 5 3: 1 2 3 4 0: 4 -> 4 1: 3 -> 3 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v1 + v2 -24 < 0; value: -11 a -1*v0 -1*v3 -1 <= 0; value: -6 a -5*v1 -6*v2 + 50 = 0; value: 0 a 3*v1 -14 <= 0; value: -2 0: 2 1: 1 3 4 2: 1 3 3: 2 optimal: oo a 2*v0 + 12/5*v2 -20 <= 0; value: -2 a -7/5*v2 -4 < 0; value: -11 a -1*v0 -1*v3 -1 <= 0; value: -6 d -5*v1 -6*v2 + 50 = 0; value: 0 a -18/5*v2 + 16 <= 0; value: -2 0: 2 1: 1 3 4 2: 1 3 4 3: 2 0: 3 -> 3 1: 4 -> 4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 + 5*v3 -23 <= 0; value: -7 a 2*v1 + 5*v2 -12 = 0; value: 0 a 5*v0 + 4*v2 -68 <= 0; value: -45 a -5*v0 -3*v3 + 5 <= 0; value: -16 a 6*v0 + 2*v3 -61 <= 0; value: -39 0: 1 3 4 5 1: 2 2: 2 3 3: 1 4 5 optimal: 1574/19 a + 1574/19 <= 0; value: 1574/19 d 19/5*v3 -21 <= 0; value: 0 d 2*v1 + 5*v2 -12 = 0; value: 0 d 5*v0 + 4*v2 -68 <= 0; value: 0 d -5*v0 -3*v3 + 5 <= 0; value: 0 a -1213/19 <= 0; value: -1213/19 0: 1 3 4 5 1: 2 2: 2 3 3: 1 4 5 0: 3 -> -44/19 1: 1 -> -831/19 2: 2 -> 378/19 3: 2 -> 105/19 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 6*v3 -11 <= 0; value: -7 a v0 + v1 + v2 -14 <= 0; value: -8 a 2*v0 + v1 + 2*v3 -15 <= 0; value: -9 a -1*v2 -1*v3 -4 <= 0; value: -9 0: 1 2 3 1: 2 3 2: 2 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 6*v3 -11 <= 0; value: -7 a v0 + v1 + v2 -14 <= 0; value: -8 a 2*v0 + v1 + 2*v3 -15 <= 0; value: -9 a -1*v2 -1*v3 -4 <= 0; value: -9 0: 1 2 3 1: 2 3 2: 2 4 3: 1 3 4 0: 2 -> 2 1: 0 -> 0 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -3*v3 + 2 <= 0; value: -7 a v1 -6*v2 -4 <= 0; value: 0 a -5*v0 + 2*v2 + 6*v3 -13 = 0; value: 0 a v2 <= 0; value: 0 a 4*v0 + 6*v1 -6*v2 -41 < 0; value: -13 0: 3 5 1: 2 5 2: 2 3 4 5 3: 1 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -3*v3 + 2 <= 0; value: -7 a v1 -6*v2 -4 <= 0; value: 0 a -5*v0 + 2*v2 + 6*v3 -13 = 0; value: 0 a v2 <= 0; value: 0 a 4*v0 + 6*v1 -6*v2 -41 < 0; value: -13 0: 3 5 1: 2 5 2: 2 3 4 5 3: 1 3 0: 1 -> 1 1: 4 -> 4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -10 a v0 + 3*v1 -15 = 0; value: 0 a -3*v0 + 2*v2 <= 0; value: 0 a v0 -1*v2 = 0; value: 0 a -1*v1 -2*v2 + v3 + 1 = 0; value: 0 a 2*v1 -19 < 0; value: -9 0: 1 2 3 1: 1 4 5 2: 2 3 4 3: 4 optimal: oo a 8/5*v3 -82/5 <= 0; value: -10 d v0 + 3*v1 -15 = 0; value: 0 a -3/5*v3 + 12/5 <= 0; value: 0 d v0 -1*v2 = 0; value: 0 d -5/3*v2 + v3 -4 = 0; value: 0 a -2/5*v3 -37/5 < 0; value: -9 0: 1 2 3 4 5 1: 1 4 5 2: 2 3 4 5 3: 4 2 5 0: 0 -> 0 1: 5 -> 5 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v1 -5*v2 -2*v3 + 21 = 0; value: 0 a -3*v1 -2*v2 + 2*v3 -4 < 0; value: -12 a -1*v0 + v1 -3*v3 -3 <= 0; value: -8 a 3*v0 -5 <= 0; value: -2 a v0 -1 <= 0; value: 0 0: 3 4 5 1: 1 2 3 2: 1 2 3: 1 2 3 optimal: (534/25 -e*1) a + 534/25 < 0; value: 534/25 d -1*v1 -5*v2 -2*v3 + 21 = 0; value: 0 d 13*v2 + 8*v3 -67 < 0; value: -8 d -1*v0 + 25/8*v2 -191/8 < 0; value: -25/8 a -2 <= 0; value: -2 d v0 -1 <= 0; value: 0 0: 3 4 5 1: 1 2 3 2: 1 2 3 3: 1 2 3 0: 1 -> 1 1: 2 -> -593/100 2: 3 -> 174/25 3: 2 -> -787/200 a 2*v0 -2*v1 <= 0; value: 0 a 6*v1 + 5*v3 -81 <= 0; value: -42 a v0 + 2*v2 -12 = 0; value: 0 a -1*v1 -2*v3 -5 <= 0; value: -15 a v0 -5*v1 + 16 = 0; value: 0 a 2*v0 -2*v2 -1*v3 + 3 = 0; value: 0 0: 2 4 5 1: 1 3 4 2: 2 5 3: 1 3 5 optimal: 112/27 a + 112/27 <= 0; value: 112/27 d 27/5*v3 -291/5 <= 0; value: 0 d v0 + 2*v2 -12 = 0; value: 0 a -839/27 <= 0; value: -839/27 d v0 -5*v1 + 16 = 0; value: 0 d -6*v2 -1*v3 + 27 = 0; value: 0 0: 2 4 5 3 1 1: 1 3 4 2: 2 5 1 3 3: 1 3 5 0: 4 -> 178/27 1: 4 -> 122/27 2: 4 -> 73/27 3: 3 -> 97/9 a 2*v0 -2*v1 <= 0; value: -4 a v0 <= 0; value: 0 a -2*v0 -2*v3 -1 <= 0; value: -9 a 5*v1 -5*v2 -1*v3 -2 <= 0; value: -1 a v0 <= 0; value: 0 a 5*v3 -29 <= 0; value: -9 0: 1 2 4 1: 3 2: 3 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a v0 <= 0; value: 0 a -2*v0 -2*v3 -1 <= 0; value: -9 a 5*v1 -5*v2 -1*v3 -2 <= 0; value: -1 a v0 <= 0; value: 0 a 5*v3 -29 <= 0; value: -9 0: 1 2 4 1: 3 2: 3 3: 2 3 5 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 + 4*v1 -3*v3 -61 <= 0; value: -39 a -6*v0 -5*v1 -3*v3 + 18 <= 0; value: -27 a 2*v1 -2*v3 -11 <= 0; value: -5 a -1*v0 -2*v3 -1 < 0; value: -6 a 5*v1 -39 < 0; value: -24 0: 1 2 4 1: 1 2 3 5 2: 3: 1 2 3 4 optimal: oo a 22/5*v0 + 6/5*v3 -36/5 <= 0; value: 74/5 a -14/5*v0 -27/5*v3 -233/5 <= 0; value: -303/5 d -6*v0 -5*v1 -3*v3 + 18 <= 0; value: 0 a -12/5*v0 -16/5*v3 -19/5 <= 0; value: -79/5 a -1*v0 -2*v3 -1 < 0; value: -6 a -6*v0 -3*v3 -21 < 0; value: -51 0: 1 2 4 3 5 1: 1 2 3 5 2: 3: 1 2 3 4 5 0: 5 -> 5 1: 3 -> -12/5 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a v0 <= 0; value: 0 a -1*v3 < 0; value: -2 a -3*v1 + v2 -11 < 0; value: -26 a 5*v0 -6*v1 + 6 <= 0; value: -24 d = 0; value: 0 0: 1 4 1: 3 4 2: 3 3: 2 optimal: -2 a -2 <= 0; value: -2 d v0 <= 0; value: 0 a -1*v3 < 0; value: -2 a v2 -14 < 0; value: -14 d 5*v0 -6*v1 + 6 <= 0; value: 0 d = 0; value: 0 0: 1 4 3 1: 3 4 2: 3 3: 2 0: 0 -> 0 1: 5 -> 1 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -1*v1 -1*v2 -4 <= 0; value: -11 a -5*v1 -1*v3 + 14 < 0; value: -11 a 3*v0 + 6*v1 -92 <= 0; value: -59 a 2*v1 -1*v3 -12 <= 0; value: -2 a v2 -6*v3 -5 <= 0; value: -3 0: 3 1: 1 2 3 4 2: 1 5 3: 2 4 5 optimal: oo a 2*v0 + 2*v2 + 8 < 0; value: 14 d -1*v2 + 1/5*v3 -34/5 <= 0; value: 0 d -5*v1 -1*v3 + 14 < 0; value: -5 a 3*v0 -6*v2 -116 < 0; value: -125 a -7*v2 -54 < 0; value: -68 a -29*v2 -209 <= 0; value: -267 0: 3 1: 1 2 3 4 2: 1 5 4 3 3: 2 4 5 1 3 0: 1 -> 1 1: 5 -> -5 2: 2 -> 2 3: 0 -> 44 a 2*v0 -2*v1 <= 0; value: 8 a 2*v0 -6*v1 + 3*v3 -19 < 0; value: -8 a 4*v0 -2*v2 + 2*v3 -33 < 0; value: -15 a v1 = 0; value: 0 a -5*v1 -4*v3 + 4 = 0; value: 0 a 6*v0 + 4*v1 -45 < 0; value: -21 0: 1 2 5 1: 1 3 4 5 2: 2 3: 1 2 4 optimal: (15 -e*1) a + 15 < 0; value: 15 a 3*v3 -4 <= 0; value: -1 a -2*v2 + 2*v3 -3 <= 0; value: -1 d v1 = 0; value: 0 a -4*v3 + 4 = 0; value: 0 d 6*v0 -45 < 0; value: -6 0: 1 2 5 1: 1 3 4 5 2: 2 3: 1 2 4 0: 4 -> 13/2 1: 0 -> 0 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -4*v2 -4*v3 + 3 < 0; value: -5 a -1*v1 -1*v2 = 0; value: 0 a 6*v2 -2*v3 -1 <= 0; value: -5 a -1*v1 + v2 <= 0; value: 0 a -3*v0 + 2*v2 -2*v3 -7 < 0; value: -20 0: 5 1: 2 4 2: 1 2 3 4 5 3: 1 3 5 optimal: oo a 2*v0 <= 0; value: 6 a -4*v3 + 3 < 0; value: -5 d -1*v1 -1*v2 = 0; value: 0 a -2*v3 -1 <= 0; value: -5 d 2*v2 <= 0; value: 0 a -3*v0 -2*v3 -7 < 0; value: -20 0: 5 1: 2 4 2: 1 2 3 4 5 3: 1 3 5 0: 3 -> 3 1: 0 -> 0 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -5*v0 -1*v1 + 22 < 0; value: -4 a 2*v2 + 4*v3 -9 < 0; value: -3 a 3*v1 -1*v2 -3 <= 0; value: -1 a -1*v0 + v3 + 4 = 0; value: 0 a -3*v1 + 4*v2 -2 < 0; value: -1 0: 1 4 1: 1 3 5 2: 2 3 5 3: 2 4 optimal: oo a 12*v3 + 4 < 0; value: 16 d -5*v0 -4/3*v2 + 68/3 <= 0; value: 0 a -7/2*v3 -5 < 0; value: -17/2 a -45/4*v3 + 1 < 0; value: -41/4 d -1*v0 + v3 + 4 = 0; value: 0 d -3*v1 + 4*v2 -2 < 0; value: -3 0: 1 4 2 3 1: 1 3 5 2: 2 3 5 1 3: 2 4 3 0: 5 -> 5 1: 1 -> -2 2: 1 -> -7/4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 -6*v3 + 5 <= 0; value: -10 a -2*v1 + 3*v3 -11 <= 0; value: -6 a 3*v1 -2*v3 <= 0; value: 0 a -5*v0 -2*v3 + 5 <= 0; value: -1 a -6*v2 -1*v3 -7 <= 0; value: -16 0: 4 1: 2 3 2: 1 5 3: 1 2 3 4 5 optimal: 788/65 a + 788/65 <= 0; value: 788/65 d 15*v0 + 3*v2 -10 <= 0; value: 0 d -2*v1 + 3*v3 -11 <= 0; value: 0 a -207/13 <= 0; value: -207/13 d -5*v0 -2*v3 + 5 <= 0; value: 0 d -13/2*v2 -47/6 <= 0; value: 0 0: 4 1 5 3 1: 2 3 2: 1 5 3 3: 1 2 3 4 5 0: 0 -> 59/65 1: 2 -> -67/13 2: 1 -> -47/39 3: 3 -> 3/13 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 2 <= 0; value: -1 a -1*v2 + 2*v3 -2 <= 0; value: -1 a -5*v1 + 3*v2 + 11 = 0; value: 0 a v0 -3 = 0; value: 0 a 4*v0 + 5*v3 -63 < 0; value: -41 0: 4 5 1: 3 2: 1 2 3 3: 2 5 optimal: -4/5 a -4/5 <= 0; value: -4/5 d -1*v2 + 2 <= 0; value: 0 a 2*v3 -4 <= 0; value: 0 d -5*v1 + 3*v2 + 11 = 0; value: 0 d v0 -3 = 0; value: 0 a 5*v3 -51 < 0; value: -41 0: 4 5 1: 3 2: 1 2 3 3: 2 5 0: 3 -> 3 1: 4 -> 17/5 2: 3 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 1 <= 0; value: 0 a v3 -1 <= 0; value: 0 a 3*v1 + 4*v2 -14 <= 0; value: 0 a 3*v0 -2*v2 -2 = 0; value: 0 d <= 0; value: 0 0: 4 1: 3 2: 3 4 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 1 <= 0; value: 0 a v3 -1 <= 0; value: 0 a 3*v1 + 4*v2 -14 <= 0; value: 0 a 3*v0 -2*v2 -2 = 0; value: 0 d <= 0; value: 0 0: 4 1: 3 2: 3 4 3: 1 2 0: 2 -> 2 1: 2 -> 2 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 2 <= 0; value: -3 a 5*v2 -14 <= 0; value: -9 a -1*v1 -1*v2 + 5*v3 -14 <= 0; value: 0 a -4*v1 + v2 -1*v3 + 1 <= 0; value: -1 a -1*v0 -5*v3 + 16 = 0; value: 0 0: 1 5 1: 3 4 2: 2 3 4 3: 3 4 5 optimal: oo a 58/25*v0 + 2/25 <= 0; value: 12/5 a -5*v0 + 2 <= 0; value: -3 a -21/5*v0 -19/5 <= 0; value: -8 d -1*v1 -1*v2 + 5*v3 -14 <= 0; value: 0 d 21/5*v0 + 5*v2 -51/5 <= 0; value: 0 d -1*v0 -5*v3 + 16 = 0; value: 0 0: 1 5 4 2 1: 3 4 2: 2 3 4 3: 3 4 5 0: 1 -> 1 1: 0 -> -1/5 2: 1 -> 6/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a v0 -2*v3 -2 <= 0; value: -9 a -5*v0 -6*v1 + 23 = 0; value: 0 a -6*v0 -1*v3 + 2 < 0; value: -8 a 6*v0 -1*v3 -3 <= 0; value: -1 a v0 -1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 3: 1 3 4 optimal: -4 a -4 <= 0; value: -4 a -2*v3 -1 <= 0; value: -9 d -5*v0 -6*v1 + 23 = 0; value: 0 a -1*v3 -4 < 0; value: -8 a -1*v3 + 3 <= 0; value: -1 d v0 -1 = 0; value: 0 0: 1 2 3 4 5 1: 2 2: 3: 1 3 4 0: 1 -> 1 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 -3*v2 + 6*v3 -28 <= 0; value: -10 a 3*v2 -26 <= 0; value: -14 a -1*v0 -3*v2 + 2*v3 -5 <= 0; value: -16 a 5*v0 -3*v1 + 6*v2 -75 <= 0; value: -38 a -4*v0 + v2 -3 < 0; value: -19 0: 3 4 5 1: 1 4 2: 1 2 3 4 5 3: 1 3 optimal: oo a -8/3*v3 + 170/3 <= 0; value: 146/3 a 4*v0 + 8*v3 -108 <= 0; value: -64 a -1*v0 + 2*v3 -31 <= 0; value: -30 d -1*v0 -3*v2 + 2*v3 -5 <= 0; value: 0 d 5*v0 -3*v1 + 6*v2 -75 <= 0; value: 0 a -13/3*v0 + 2/3*v3 -14/3 < 0; value: -73/3 0: 3 4 5 1 2 1: 1 4 2: 1 2 3 4 5 3: 1 3 2 5 0: 5 -> 5 1: 4 -> -58/3 2: 4 -> -4/3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 6*v1 + 4*v2 + v3 -28 = 0; value: 0 a -1*v2 = 0; value: 0 a v1 -3*v3 + 2 <= 0; value: -6 a 5*v1 + 4*v3 -56 <= 0; value: -20 a -3*v0 -5*v1 + 32 = 0; value: 0 0: 5 1: 1 3 4 5 2: 1 2 3: 1 3 4 optimal: 320/57 a + 320/57 <= 0; value: 320/57 d 6*v1 + 4*v2 + v3 -28 = 0; value: 0 d -1*v2 = 0; value: 0 a -26 <= 0; value: -26 d 57/5*v0 -16*v2 -328/5 <= 0; value: 0 d -3*v0 + 10/3*v2 + 5/6*v3 + 26/3 = 0; value: 0 0: 5 4 3 1: 1 3 4 5 2: 1 2 5 3 4 3: 1 3 4 5 0: 4 -> 328/57 1: 4 -> 56/19 2: 0 -> 0 3: 4 -> 196/19 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 + 4*v1 + 5*v2 -12 = 0; value: 0 a -1*v2 <= 0; value: 0 a -1*v2 <= 0; value: 0 a v1 -5 <= 0; value: -1 0: 1 1: 1 4 2: 1 2 3 3: optimal: oo a v0 + 5/2*v2 -6 <= 0; value: -4 d -2*v0 + 4*v1 + 5*v2 -12 = 0; value: 0 a -1*v2 <= 0; value: 0 a -1*v2 <= 0; value: 0 a 1/2*v0 -5/4*v2 -2 <= 0; value: -1 0: 1 4 1: 1 4 2: 1 2 3 4 3: 0: 2 -> 2 1: 4 -> 4 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -2*v1 -11 = 0; value: 0 a 2*v1 -4*v2 + 3 <= 0; value: -1 a -1*v1 + v3 <= 0; value: 0 a 3*v0 + 2*v2 -28 <= 0; value: -9 a 6*v0 -5*v2 -25 < 0; value: -5 0: 1 4 5 1: 1 2 3 2: 2 4 5 3: 3 optimal: oo a -2/3*v3 + 22/3 <= 0; value: 6 d 3*v0 -2*v1 -11 = 0; value: 0 a -4*v2 + 2*v3 + 3 <= 0; value: -1 d -3/2*v0 + v3 + 11/2 <= 0; value: 0 a 2*v2 + 2*v3 -17 <= 0; value: -9 a -5*v2 + 4*v3 -3 < 0; value: -5 0: 1 4 5 3 2 1: 1 2 3 2: 2 4 5 3: 3 4 5 2 0: 5 -> 5 1: 2 -> 2 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -4*v1 -4*v2 + 17 <= 0; value: -7 a 2*v0 + 3*v2 -6*v3 = 0; value: 0 a 2*v0 + 3*v1 -12 = 0; value: 0 a 2*v0 -2*v1 -3 <= 0; value: -11 a 3*v1 -1*v3 -26 <= 0; value: -15 0: 2 3 4 1: 1 3 4 5 2: 1 2 3: 2 5 optimal: 3 a + 3 <= 0; value: 3 d -8*v2 + 8*v3 + 1 <= 0; value: 0 d 2*v0 + 3*v2 -6*v3 = 0; value: 0 d 2*v0 + 3*v1 -12 = 0; value: 0 d 5*v2 -49/4 <= 0; value: 0 a -917/40 <= 0; value: -917/40 0: 2 3 4 1 5 1: 1 3 4 5 2: 1 2 4 5 3: 2 5 4 1 0: 0 -> 33/10 1: 4 -> 9/5 2: 2 -> 49/20 3: 1 -> 93/40 a 2*v0 -2*v1 <= 0; value: -6 a -6*v1 + 5 < 0; value: -13 a -4*v1 -3*v3 + 21 = 0; value: 0 a v0 <= 0; value: 0 a -1*v0 <= 0; value: 0 0: 3 4 1: 1 2 2: 3: 2 optimal: (-5/3 -e*1) a -5/3 < 0; value: -5/3 d 9/2*v3 -53/2 < 0; value: -9/2 d -4*v1 -3*v3 + 21 = 0; value: 0 d v0 <= 0; value: 0 a <= 0; value: 0 0: 3 4 1: 1 2 2: 3: 2 1 0: 0 -> 0 1: 3 -> 19/12 2: 1 -> 1 3: 3 -> 44/9 a 2*v0 -2*v1 <= 0; value: -4 a 4*v0 -2*v1 -1*v2 <= 0; value: 0 a -1*v1 + v3 + 1 <= 0; value: 0 a -3*v0 + 2*v2 -1*v3 -2 < 0; value: -11 a v0 -5*v3 + 7 <= 0; value: -10 a v3 -4 = 0; value: 0 0: 1 3 4 1: 1 2 2: 1 3 3: 2 3 4 5 optimal: (2/5 -e*1) a + 2/5 < 0; value: 2/5 d 4*v0 -2*v1 -1*v2 <= 0; value: 0 d -2*v0 + 1/2*v2 + v3 + 1 <= 0; value: 0 d 5*v0 -26 < 0; value: -5 a -39/5 <= 0; value: -39/5 d v3 -4 = 0; value: 0 0: 1 3 4 2 1: 1 2 2: 1 3 2 3: 2 3 4 5 0: 3 -> 21/5 1: 5 -> 5 2: 2 -> 34/5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 3*v2 + 2*v3 -25 <= 0; value: -16 a v0 -7 < 0; value: -2 a -5*v0 + 5*v2 -1*v3 + 2 <= 0; value: -21 a -3*v0 -14 <= 0; value: -29 a -1*v1 + 1 < 0; value: -1 0: 2 3 4 1: 5 2: 1 3 3: 1 3 optimal: (12 -e*1) a + 12 < 0; value: 12 a 3*v2 + 2*v3 -25 <= 0; value: -16 d v0 -7 < 0; value: -1 a 5*v2 -1*v3 -33 < 0; value: -31 a -35 < 0; value: -35 d -1*v1 + 1 < 0; value: -1/2 0: 2 3 4 1: 5 2: 1 3 3: 1 3 0: 5 -> 6 1: 2 -> 3/2 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -4*v0 -1*v1 + 9 = 0; value: 0 a -3*v3 + 1 < 0; value: -11 a -1*v0 + 2*v1 + 4*v3 -23 < 0; value: -7 a v3 -4 = 0; value: 0 a v1 -1 <= 0; value: 0 0: 1 3 1: 1 3 5 2: 3: 2 3 4 optimal: oo a 10*v0 -18 <= 0; value: 2 d -4*v0 -1*v1 + 9 = 0; value: 0 a -3*v3 + 1 < 0; value: -11 a -9*v0 + 4*v3 -5 < 0; value: -7 a v3 -4 = 0; value: 0 a -4*v0 + 8 <= 0; value: 0 0: 1 3 5 1: 1 3 5 2: 3: 2 3 4 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 2*v0 -2*v2 -7 <= 0; value: -3 a -2*v0 -5*v3 + 1 <= 0; value: -3 a 2*v0 + 4*v3 -7 <= 0; value: -3 a -5*v1 + 6*v3 + 8 <= 0; value: -12 a v0 + 3*v2 -3 < 0; value: -1 0: 1 2 3 5 1: 4 2: 1 5 3: 2 3 4 optimal: (631/100 -e*1) a + 631/100 < 0; value: 631/100 d -8*v2 -1 <= 0; value: 0 d -2*v0 -5*v3 + 1 <= 0; value: 0 a -97/20 <= 0; value: -97/20 d -5*v1 + 6*v3 + 8 <= 0; value: 0 d v0 + 3*v2 -3 < 0; value: -11/16 0: 1 2 3 5 1: 4 2: 1 5 3 3: 2 3 4 0: 2 -> 43/16 1: 4 -> 11/20 2: 0 -> -1/8 3: 0 -> -7/8 a 2*v0 -2*v1 <= 0; value: -2 a v2 -4 < 0; value: -1 a 4*v0 + 5*v1 + 3*v3 -54 < 0; value: -16 a 4*v3 -21 <= 0; value: -13 a 3*v2 -16 <= 0; value: -7 a v1 -7 <= 0; value: -3 0: 2 1: 2 5 2: 1 4 3: 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a v2 -4 < 0; value: -1 a 4*v0 + 5*v1 + 3*v3 -54 < 0; value: -16 a 4*v3 -21 <= 0; value: -13 a 3*v2 -16 <= 0; value: -7 a v1 -7 <= 0; value: -3 0: 2 1: 2 5 2: 1 4 3: 2 3 0: 3 -> 3 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 -2*v3 + 1 <= 0; value: -7 a -2*v1 + 2*v2 + 4*v3 -35 < 0; value: -21 a -5*v0 + v2 + 6 <= 0; value: -7 a 4*v0 -2*v3 -7 <= 0; value: -1 a -1*v2 + 2 = 0; value: 0 0: 3 4 1: 1 2 2: 2 3 5 3: 1 2 4 optimal: (37/2 -e*1) a + 37/2 < 0; value: 37/2 d -2*v1 -2*v3 + 1 <= 0; value: 0 d 2*v2 + 6*v3 -36 < 0; value: -6 a -169/12 < 0; value: -169/12 d 4*v0 -53/3 < 0; value: -17/6 d -1*v2 + 2 = 0; value: 0 0: 3 4 1: 1 2 2: 2 3 5 4 3: 1 2 4 0: 3 -> 89/24 1: 1 -> -23/6 2: 2 -> 2 3: 3 -> 13/3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 + v3 -2 <= 0; value: 0 a -1*v1 -3*v2 + 7 < 0; value: -10 a -1*v1 + v3 -2 = 0; value: 0 a -2*v0 -3*v2 -19 <= 0; value: -40 a -6*v0 -2*v3 + 23 < 0; value: -3 0: 4 5 1: 1 2 3 2: 2 4 3: 1 3 5 optimal: oo a 8*v2 -37/3 < 0; value: 83/3 d -1*v1 + v3 -2 <= 0; value: 0 d 3*v0 -3*v2 -5/2 <= 0; value: 0 a = 0; value: 0 a -5*v2 -62/3 <= 0; value: -137/3 d -6*v0 -2*v3 + 23 < 0; value: -2 0: 4 5 2 1: 1 2 3 2: 2 4 3: 1 3 5 2 0: 3 -> 35/6 1: 2 -> -7 2: 5 -> 5 3: 4 -> -5 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + v2 -3*v3 + 1 <= 0; value: -10 a -4*v0 -4*v2 + 3*v3 + 20 = 0; value: 0 a 2*v1 -1*v3 -6 <= 0; value: 0 a 3*v1 -22 <= 0; value: -13 a -1*v0 + v1 + 1 <= 0; value: 0 0: 1 2 5 1: 3 4 5 2: 1 2 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + v2 -3*v3 + 1 <= 0; value: -10 a -4*v0 -4*v2 + 3*v3 + 20 = 0; value: 0 a 2*v1 -1*v3 -6 <= 0; value: 0 a 3*v1 -22 <= 0; value: -13 a -1*v0 + v1 + 1 <= 0; value: 0 0: 1 2 5 1: 3 4 5 2: 1 2 3: 1 2 3 0: 4 -> 4 1: 3 -> 3 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 2*v2 -3*v3 -9 = 0; value: 0 a v1 -1*v3 <= 0; value: 0 a v1 -1*v3 = 0; value: 0 a v0 + v1 + v3 -3 = 0; value: 0 a v0 -3*v2 + 6*v3 + 4 <= 0; value: -1 0: 1 4 5 1: 2 3 4 2: 1 5 3: 1 2 3 4 5 optimal: 12/25 a + 12/25 <= 0; value: 12/25 d 4*v0 + 2*v2 -3*v3 -9 = 0; value: 0 a <= 0; value: 0 d v1 -1*v3 = 0; value: 0 d 11/3*v0 + 4/3*v2 -9 = 0; value: 0 d 25/4*v0 -29/4 <= 0; value: 0 0: 1 4 5 1: 2 3 4 2: 1 5 4 3: 1 2 3 4 5 0: 1 -> 29/25 1: 1 -> 23/25 2: 4 -> 89/25 3: 1 -> 23/25 a 2*v0 -2*v1 <= 0; value: -4 a -2*v2 + v3 -3 <= 0; value: -9 a 6*v0 -4*v1 -1 <= 0; value: -7 a -4*v0 -3*v2 + 11 <= 0; value: -5 0: 2 3 1: 2 2: 1 3 3: 1 optimal: oo a 3/4*v2 -9/4 <= 0; value: 3/4 a -2*v2 + v3 -3 <= 0; value: -9 d 6*v0 -4*v1 -1 <= 0; value: 0 d -4*v0 -3*v2 + 11 <= 0; value: 0 0: 2 3 1: 2 2: 1 3 3: 1 0: 1 -> -1/4 1: 3 -> -5/8 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a v0 -4 = 0; value: 0 a v1 + 6*v3 -27 < 0; value: -3 a 3*v1 -4*v2 + 16 <= 0; value: 0 a -3*v1 + 5*v3 -34 <= 0; value: -14 a 3*v1 -5*v2 -3 <= 0; value: -23 0: 1 1: 2 3 4 5 2: 3 5 3: 2 4 optimal: oo a 2*v0 -10/3*v3 + 68/3 <= 0; value: 52/3 a v0 -4 = 0; value: 0 a 23/3*v3 -115/3 < 0; value: -23/3 a -4*v2 + 5*v3 -18 <= 0; value: -14 d -3*v1 + 5*v3 -34 <= 0; value: 0 a -5*v2 + 5*v3 -37 <= 0; value: -37 0: 1 1: 2 3 4 5 2: 3 5 3: 2 4 3 5 0: 4 -> 4 1: 0 -> -14/3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 + v1 -2 <= 0; value: -17 a -5*v0 -4*v1 + 15 = 0; value: 0 a -6*v1 -1*v2 -2*v3 + 13 = 0; value: 0 a v1 <= 0; value: 0 a -3*v0 + 3*v2 + 3*v3 -52 <= 0; value: -34 0: 1 2 5 1: 1 2 3 4 2: 3 5 3: 3 5 optimal: oo a -9/11*v2 + 315/11 <= 0; value: 270/11 a 25/22*v2 -3197/66 <= 0; value: -1411/33 d -5*v0 -4*v1 + 15 = 0; value: 0 d 15/2*v0 -1*v2 -2*v3 -19/2 = 0; value: 0 a 5/22*v2 -415/66 <= 0; value: -170/33 d 13/5*v2 + 11/5*v3 -279/5 <= 0; value: 0 0: 1 2 5 3 4 1: 1 2 3 4 2: 3 5 1 4 3: 3 5 1 4 0: 3 -> 235/33 1: 0 -> -170/33 2: 5 -> 5 3: 4 -> 214/11 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 + 2*v1 -2*v3 -23 <= 0; value: -14 a 3*v1 + v2 -22 <= 0; value: -14 a 4*v0 -1*v1 + 6*v2 -90 < 0; value: -49 a 4*v0 -2*v1 -15 < 0; value: -5 a -4*v1 -3*v2 -4*v3 -11 <= 0; value: -34 0: 1 3 4 1: 1 2 3 4 5 2: 2 3 5 3: 1 5 optimal: oo a 3/4*v2 + v3 + 41/4 < 0; value: 15 a -21/8*v2 -11/2*v3 -171/8 < 0; value: -40 a -5/4*v2 -3*v3 -121/4 < 0; value: -79/2 a 21/4*v2 -1*v3 -311/4 <= 0; value: -105/2 d 4*v0 -2*v1 -15 < 0; value: -2 d -8*v0 -3*v2 -4*v3 + 19 <= 0; value: 0 0: 1 3 4 5 2 1: 1 2 3 4 5 2: 2 3 5 1 3: 1 5 3 2 0: 3 -> 0 1: 1 -> -13/2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 -5*v1 <= 0; value: 0 a -4*v0 -6*v1 + 3*v3 -4 <= 0; value: -42 a v0 -5 = 0; value: 0 a -6*v0 + 5*v3 -28 <= 0; value: -58 a -3*v0 -4*v1 + 6 <= 0; value: -21 0: 1 2 3 4 5 1: 1 2 5 2: 3: 2 4 optimal: 4 a + 4 <= 0; value: 4 d 3*v0 -5*v1 <= 0; value: 0 a 3*v3 -42 <= 0; value: -42 d v0 -5 = 0; value: 0 a 5*v3 -58 <= 0; value: -58 a -21 <= 0; value: -21 0: 1 2 3 4 5 1: 1 2 5 2: 3: 2 4 0: 5 -> 5 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -4*v2 + 5*v3 + 16 = 0; value: 0 a -2*v1 + 5*v2 -1*v3 -35 <= 0; value: -21 a -4*v0 -4*v2 -33 <= 0; value: -69 a v1 -5 < 0; value: -2 a -3*v0 + v1 -2 <= 0; value: -14 0: 3 5 1: 2 4 5 2: 1 2 3 3: 1 2 optimal: oo a 31/5*v0 + 1329/20 <= 0; value: 1949/20 d -4*v2 + 5*v3 + 16 = 0; value: 0 d -2*v1 + 5*v2 -1*v3 -35 <= 0; value: 0 d -4*v0 -4*v2 -33 <= 0; value: 0 a -21/10*v0 -1529/40 < 0; value: -1949/40 a -51/10*v0 -1409/40 <= 0; value: -2429/40 0: 3 5 4 1: 2 4 5 2: 1 2 3 4 5 3: 1 2 4 5 0: 5 -> 5 1: 3 -> -1749/40 2: 4 -> -53/4 3: 0 -> -69/5 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 -16 < 0; value: -10 a -2*v2 + 3 < 0; value: -1 a -4*v0 -1*v1 + v3 -1 < 0; value: -3 a -3*v0 -4*v2 -3 <= 0; value: -11 a -3*v0 + 5*v2 -15 < 0; value: -5 0: 3 4 5 1: 3 2: 1 2 4 5 3: 3 optimal: oo a 10*v0 -2*v3 + 2 < 0; value: 2 a 3*v2 -16 < 0; value: -10 a -2*v2 + 3 < 0; value: -1 d -4*v0 -1*v1 + v3 -1 < 0; value: -1 a -3*v0 -4*v2 -3 <= 0; value: -11 a -3*v0 + 5*v2 -15 < 0; value: -5 0: 3 4 5 1: 3 2: 1 2 4 5 3: 3 0: 0 -> 0 1: 2 -> 0 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 + v2 -38 <= 0; value: -14 a -4*v0 -1*v1 -5 < 0; value: -24 a v2 -1*v3 -8 <= 0; value: -5 a -1*v0 + 2*v3 -1 <= 0; value: -3 a -1*v1 + 3 = 0; value: 0 0: 1 2 4 1: 2 5 2: 1 3 3: 3 4 optimal: oo a -2/5*v2 + 46/5 <= 0; value: 38/5 d 5*v0 + v2 -38 <= 0; value: 0 a 4/5*v2 -192/5 < 0; value: -176/5 a v2 -1*v3 -8 <= 0; value: -5 a 1/5*v2 + 2*v3 -43/5 <= 0; value: -29/5 d -1*v1 + 3 = 0; value: 0 0: 1 2 4 1: 2 5 2: 1 3 2 4 3: 3 4 0: 4 -> 34/5 1: 3 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 6*v0 + 5*v1 -29 < 0; value: -18 a v0 -3*v3 + 14 = 0; value: 0 a 4*v0 -1*v1 -5 < 0; value: -2 a -4*v1 -5*v3 + 29 = 0; value: 0 a -4*v1 + 3 < 0; value: -1 0: 1 2 3 1: 1 3 4 5 2: 3: 2 4 optimal: (68/53 -e*1) a + 68/53 < 0; value: 68/53 a -860/53 <= 0; value: -860/53 d v0 -3*v3 + 14 = 0; value: 0 d 53/12*v0 -77/12 < 0; value: -1 d -4*v1 -5*v3 + 29 = 0; value: 0 a -13/53 <= 0; value: -13/53 0: 1 2 3 5 1: 1 3 4 5 2: 3: 2 4 3 5 1 0: 1 -> 65/53 1: 1 -> 48/53 2: 2 -> 2 3: 5 -> 269/53 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 -1*v3 -1 < 0; value: -7 a -2*v2 + 1 <= 0; value: -9 a -6*v1 -1*v2 + v3 + 30 < 0; value: -4 a -4*v0 -1 <= 0; value: -17 a -2*v0 + 4*v2 -2*v3 -29 < 0; value: -19 0: 4 5 1: 3 2: 1 2 3 5 3: 1 3 5 optimal: oo a 20/9*v0 -20/3 < 0; value: 20/9 d -1*v2 -1*v3 -1 < 0; value: -1 a -2/3*v0 -8 <= 0; value: -32/3 d -6*v1 -1*v2 + v3 + 30 < 0; value: -35/6 a -4*v0 -1 <= 0; value: -17 d -2*v0 + 6*v2 -27 <= 0; value: 0 0: 4 5 2 1: 3 2: 1 2 3 5 3: 1 3 5 0: 4 -> 4 1: 5 -> 145/36 2: 5 -> 35/6 3: 1 -> -35/6 a 2*v0 -2*v1 <= 0; value: 4 a 2*v2 -2*v3 -5 <= 0; value: -3 a -4*v0 + 6*v1 + v2 <= 0; value: 0 a v0 -2*v1 + 1 = 0; value: 0 a 4*v2 -5*v3 -8 <= 0; value: -5 a -1*v2 + 3*v3 -1 <= 0; value: 0 0: 2 3 1: 2 3 2: 1 2 4 5 3: 1 4 5 optimal: oo a v0 -1 <= 0; value: 4 a 2*v2 -2*v3 -5 <= 0; value: -3 a -1*v0 + v2 + 3 <= 0; value: 0 d v0 -2*v1 + 1 = 0; value: 0 a 4*v2 -5*v3 -8 <= 0; value: -5 a -1*v2 + 3*v3 -1 <= 0; value: 0 0: 2 3 1: 2 3 2: 1 2 4 5 3: 1 4 5 0: 5 -> 5 1: 3 -> 3 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 5*v1 -1*v2 -11 <= 0; value: -6 a 4*v0 -2*v2 -3*v3 -11 <= 0; value: -5 a v2 -5 = 0; value: 0 a 6*v1 -5*v3 -33 <= 0; value: -21 a -2*v0 -4*v2 -1*v3 -6 < 0; value: -34 0: 2 5 1: 1 4 2: 1 2 3 5 3: 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 5*v1 -1*v2 -11 <= 0; value: -6 a 4*v0 -2*v2 -3*v3 -11 <= 0; value: -5 a v2 -5 = 0; value: 0 a 6*v1 -5*v3 -33 <= 0; value: -21 a -2*v0 -4*v2 -1*v3 -6 < 0; value: -34 0: 2 5 1: 1 4 2: 1 2 3 5 3: 2 4 5 0: 4 -> 4 1: 2 -> 2 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a v2 -5 = 0; value: 0 a 2*v1 + 3*v2 -3*v3 -25 = 0; value: 0 a -3*v0 + 1 <= 0; value: -5 a 2*v0 -1*v1 -5*v2 -15 <= 0; value: -41 a -3*v0 + 5*v3 + 6 = 0; value: 0 0: 3 4 5 1: 2 4 2: 1 2 4 3: 2 5 optimal: 16/11 a + 16/11 <= 0; value: 16/11 d v2 -5 = 0; value: 0 d 2*v1 + 3*v2 -3*v3 -25 = 0; value: 0 a -1285/11 <= 0; value: -1285/11 d 11/10*v0 -216/5 <= 0; value: 0 d -3*v0 + 5*v3 + 6 = 0; value: 0 0: 3 4 5 1: 2 4 2: 1 2 4 3: 2 5 4 0: 2 -> 432/11 1: 5 -> 424/11 2: 5 -> 5 3: 0 -> 246/11 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 6*v2 -24 < 0; value: -13 a -1*v0 -1*v3 -3 < 0; value: -8 a 2*v0 -3*v2 = 0; value: 0 a -1*v2 -5*v3 + 12 = 0; value: 0 a 3*v3 -8 <= 0; value: -2 0: 2 3 1: 1 2: 1 3 4 3: 2 4 5 optimal: (60 -e*1) a + 60 < 0; value: 60 d -1*v1 + 6*v2 -24 < 0; value: -1 a -11/3 < 0; value: -11/3 d 2*v0 -3*v2 = 0; value: 0 d -2/3*v0 -5*v3 + 12 = 0; value: 0 d 3*v3 -8 <= 0; value: 0 0: 2 3 4 1: 1 2: 1 3 4 3: 2 4 5 0: 3 -> -2 1: 1 -> -31 2: 2 -> -4/3 3: 2 -> 8/3 a 2*v0 -2*v1 <= 0; value: -6 a 4*v2 + 2*v3 -33 < 0; value: -19 a 2*v2 -4*v3 -3 <= 0; value: -11 a 6*v0 -6*v1 -7 < 0; value: -25 a v3 -3 <= 0; value: 0 a -1*v0 + 5*v3 -28 <= 0; value: -14 0: 3 5 1: 3 2: 1 2 3: 1 2 4 5 optimal: (7/3 -e*1) a + 7/3 < 0; value: 7/3 a 4*v2 + 2*v3 -33 < 0; value: -19 a 2*v2 -4*v3 -3 <= 0; value: -11 d 6*v0 -6*v1 -7 < 0; value: -6 a v3 -3 <= 0; value: 0 a -1*v0 + 5*v3 -28 <= 0; value: -14 0: 3 5 1: 3 2: 1 2 3: 1 2 4 5 0: 1 -> 1 1: 4 -> 5/6 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -37 < 0; value: -22 a v1 -6*v2 + 15 < 0; value: -4 a 3*v0 + 6*v1 + 2*v3 -63 <= 0; value: -8 a 4*v2 -3*v3 -1 = 0; value: 0 a -5*v1 -1*v3 + 30 = 0; value: 0 0: 1 3 1: 2 3 5 2: 2 4 3: 3 4 5 optimal: (256/47 -e*1) a + 256/47 < 0; value: 256/47 a -626/47 <= 0; value: -626/47 d 141/8*v0 -1113/8 < 0; value: -141/8 d 3*v0 + 16/15*v2 -409/15 <= 0; value: 0 d 4*v2 -3*v3 -1 = 0; value: 0 d -5*v1 -1*v3 + 30 = 0; value: 0 0: 1 3 2 1: 2 3 5 2: 2 4 3 3: 3 4 5 2 0: 5 -> 324/47 1: 5 -> 831/188 2: 4 -> 4643/752 3: 5 -> 1485/188 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -5*v2 + 5*v3 <= 0; value: -18 a -1*v3 <= 0; value: 0 a -1*v1 -2*v2 + 7 <= 0; value: -2 a 5*v1 -4*v3 -50 <= 0; value: -25 a -3*v1 + 6*v2 + 1 < 0; value: -2 0: 1 1: 3 4 5 2: 1 3 5 3: 1 2 4 optimal: oo a 2*v0 -22/3 < 0; value: 2/3 a -2*v0 + 5*v3 -25/3 <= 0; value: -49/3 a -1*v3 <= 0; value: 0 d -4*v2 + 20/3 <= 0; value: 0 a -4*v3 -95/3 < 0; value: -95/3 d -3*v1 + 6*v2 + 1 < 0; value: -2 0: 1 1: 3 4 5 2: 1 3 5 4 3: 1 2 4 0: 4 -> 4 1: 5 -> 13/3 2: 2 -> 5/3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 1 <= 0; value: 0 a 6*v1 + 3*v2 + 2*v3 -35 < 0; value: -21 a -3*v1 -4*v2 -3*v3 + 9 <= 0; value: 0 a 4*v0 -1*v1 + 5*v3 -22 <= 0; value: -11 a 5*v0 -6*v1 + 5*v3 -3 = 0; value: 0 0: 4 5 1: 2 3 4 5 2: 2 3 3: 1 2 3 4 5 optimal: 22/19 a + 22/19 <= 0; value: 22/19 d 5/11*v0 + 8/11*v2 -10/11 <= 0; value: 0 a -771/76 < 0; value: -771/76 d -3*v1 -4*v2 -3*v3 + 9 <= 0; value: 0 d 19/6*v0 -52/3 <= 0; value: 0 d 5*v0 + 8*v2 + 11*v3 -21 = 0; value: 0 0: 4 5 1 2 1: 2 3 4 5 2: 2 3 4 5 1 3: 1 2 3 4 5 0: 2 -> 104/19 1: 2 -> 93/19 2: 0 -> -165/76 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v1 + v3 -9 < 0; value: -1 a -5*v0 -6*v1 + 5*v3 + 29 = 0; value: 0 a -3*v1 + 5*v2 -9 <= 0; value: -1 a -6*v1 + v3 -17 < 0; value: -37 a -6*v0 + 5*v3 + 6 <= 0; value: -4 0: 2 5 1: 1 2 3 4 2: 3 3: 1 2 4 5 optimal: (1292/35 -e*1) a + 1292/35 < 0; value: 1292/35 d 35/24*v0 -101/4 < 0; value: -35/24 d -5*v0 -6*v1 + 5*v3 + 29 = 0; value: 0 d 5/2*v0 + 5*v2 -5/2*v3 -47/2 <= 0; value: 0 d v0 -8*v2 -42/5 < 0; value: -8 a -1651/35 <= 0; value: -1651/35 0: 2 5 3 4 1 1: 1 2 3 4 2: 3 4 1 5 3: 1 2 4 5 3 0: 5 -> 571/35 1: 4 -> 53/168 2: 4 -> 557/280 3: 4 -> 305/28 a 2*v0 -2*v1 <= 0; value: 4 a v1 -2*v2 + 2*v3 -19 <= 0; value: -8 a -2*v1 -1 <= 0; value: -3 a 6*v1 + 2*v2 -3*v3 + 7 <= 0; value: -2 a 2*v1 -5*v2 -2 <= 0; value: 0 a 3*v0 -4*v3 -9 <= 0; value: -20 0: 5 1: 1 2 3 4 2: 1 3 4 3: 1 3 5 optimal: oo a 8/3*v2 + 33 <= 0; value: 33 d -2*v2 + 2*v3 -39/2 <= 0; value: 0 d -2*v1 -1 <= 0; value: 0 a -1*v2 -101/4 <= 0; value: -101/4 a -5*v2 -3 <= 0; value: -3 d 3*v0 -4*v3 -9 <= 0; value: 0 0: 5 1: 1 2 3 4 2: 1 3 4 3: 1 3 5 0: 3 -> 16 1: 1 -> -1/2 2: 0 -> 0 3: 5 -> 39/4 a 2*v0 -2*v1 <= 0; value: 6 a -1*v2 -2 <= 0; value: -6 a 2*v0 -1*v1 + 3*v2 -22 <= 0; value: -4 a v1 <= 0; value: 0 a -1*v3 = 0; value: 0 a -3*v0 -2*v2 + 8 <= 0; value: -9 0: 2 5 1: 2 3 2: 1 2 5 3: 4 optimal: 48 a + 48 <= 0; value: 48 d 3/2*v0 -6 <= 0; value: 0 d 2*v0 -1*v1 + 3*v2 -22 <= 0; value: 0 a -20 <= 0; value: -20 a -1*v3 = 0; value: 0 d -3*v0 -2*v2 + 8 <= 0; value: 0 0: 2 5 3 1 1: 2 3 2: 1 2 5 3 3: 4 0: 3 -> 4 1: 0 -> -20 2: 4 -> -2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -6*v0 -6*v2 + 5*v3 -31 <= 0; value: -63 a -6*v2 -2*v3 + 5 <= 0; value: -17 a -1*v0 + v1 + 2 = 0; value: 0 a 3*v0 -19 <= 0; value: -7 a 5*v0 + 2*v2 -1*v3 -31 <= 0; value: -7 0: 1 3 4 5 1: 3 2: 1 2 5 3: 1 2 5 optimal: 4 a + 4 <= 0; value: 4 a -6*v0 -6*v2 + 5*v3 -31 <= 0; value: -63 a -6*v2 -2*v3 + 5 <= 0; value: -17 d -1*v0 + v1 + 2 = 0; value: 0 a 3*v0 -19 <= 0; value: -7 a 5*v0 + 2*v2 -1*v3 -31 <= 0; value: -7 0: 1 3 4 5 1: 3 2: 1 2 5 3: 1 2 5 0: 4 -> 4 1: 2 -> 2 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -17 < 0; value: -8 a 3*v1 + 3*v3 -4 < 0; value: -1 a -2*v1 + 5*v2 = 0; value: 0 a v1 + 6*v2 <= 0; value: 0 a -2*v0 + 3 <= 0; value: -3 0: 1 5 1: 2 3 4 2: 3 4 3: 2 optimal: oo a 2*v0 -5*v2 <= 0; value: 6 a 3*v0 -17 < 0; value: -8 a 15/2*v2 + 3*v3 -4 < 0; value: -1 d -2*v1 + 5*v2 = 0; value: 0 a 17/2*v2 <= 0; value: 0 a -2*v0 + 3 <= 0; value: -3 0: 1 5 1: 2 3 4 2: 3 4 2 3: 2 0: 3 -> 3 1: 0 -> 0 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -1*v0 -5*v1 -4*v3 + 28 <= 0; value: -2 a -1*v0 -2*v3 + 6 <= 0; value: -9 a 3*v1 -4 <= 0; value: -1 a -3*v0 + 4*v2 + 11 = 0; value: 0 a 5*v0 -4*v1 + 6*v3 -55 <= 0; value: -4 0: 1 2 4 5 1: 1 3 5 2: 4 3: 1 2 5 optimal: 284/21 a + 284/21 <= 0; value: 284/21 d -1*v0 -5*v1 -4*v3 + 28 <= 0; value: 0 a -61/7 <= 0; value: -61/7 d 28/23*v2 -93/23 <= 0; value: 0 d -3*v0 + 4*v2 + 11 = 0; value: 0 d 29/5*v0 + 46/5*v3 -387/5 <= 0; value: 0 0: 1 2 4 5 3 1: 1 3 5 2: 4 2 3 3: 1 2 5 3 0: 5 -> 170/21 1: 1 -> 4/3 2: 1 -> 93/28 3: 5 -> 139/42 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 <= 0; value: 0 a -1*v1 + 3*v2 + 4 <= 0; value: -1 a 3*v1 + v2 -32 < 0; value: -17 a v2 <= 0; value: 0 a -2*v1 + 2*v2 -5*v3 + 6 < 0; value: -19 0: 1: 2 3 5 2: 1 2 3 4 5 3: 5 optimal: oo a 2*v0 -8 <= 0; value: -2 d -1*v2 <= 0; value: 0 d -1*v1 + 3*v2 + 4 <= 0; value: 0 a -20 < 0; value: -20 a <= 0; value: 0 a -5*v3 -2 < 0; value: -17 0: 1: 2 3 5 2: 1 2 3 4 5 3: 5 0: 3 -> 3 1: 5 -> 4 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v3 <= 0; value: 0 a 3*v2 -4*v3 -12 = 0; value: 0 a -2*v2 -1*v3 -2 <= 0; value: -10 a v1 <= 0; value: 0 0: 1: 4 2: 2 3 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -1*v3 <= 0; value: 0 a 3*v2 -4*v3 -12 = 0; value: 0 a -2*v2 -1*v3 -2 <= 0; value: -10 a v1 <= 0; value: 0 0: 1: 4 2: 2 3 3: 1 2 3 0: 2 -> 2 1: 0 -> 0 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 3*v1 + 4*v2 + 2*v3 -37 < 0; value: -19 a -3*v0 -4*v1 -5*v3 + 18 <= 0; value: -9 a -5*v2 -5*v3 -11 <= 0; value: -31 a 6*v0 -25 <= 0; value: -7 a v1 + 2*v3 -6 <= 0; value: 0 0: 2 4 1: 1 2 5 2: 1 3 3: 1 2 3 5 optimal: 21 a + 21 <= 0; value: 21 a 4*v2 -131/3 < 0; value: -107/3 d -3*v0 -4*v1 -5*v3 + 18 <= 0; value: 0 a -5*v2 -251/6 <= 0; value: -311/6 d 6*v0 -25 <= 0; value: 0 d -3/4*v0 + 3/4*v3 -3/2 <= 0; value: 0 0: 2 4 1 5 3 1: 1 2 5 2: 1 3 3: 1 2 3 5 0: 3 -> 25/6 1: 2 -> -19/3 2: 2 -> 2 3: 2 -> 37/6 a 2*v0 -2*v1 <= 0; value: 2 a -1*v1 = 0; value: 0 a 4*v0 -11 <= 0; value: -7 a 3*v2 + 2*v3 -42 < 0; value: -20 a v1 <= 0; value: 0 a -1*v1 + 3*v3 -15 = 0; value: 0 0: 2 1: 1 4 5 2: 3 3: 3 5 optimal: 11/2 a + 11/2 <= 0; value: 11/2 d -1*v1 = 0; value: 0 d 4*v0 -11 <= 0; value: 0 a 3*v2 + 2*v3 -42 < 0; value: -20 a <= 0; value: 0 a 3*v3 -15 = 0; value: 0 0: 2 1: 1 4 5 2: 3 3: 3 5 0: 1 -> 11/4 1: 0 -> 0 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 -1*v2 + 9 = 0; value: 0 a v2 + 4*v3 -71 < 0; value: -46 a -3*v1 + 6*v3 -79 <= 0; value: -52 a 2*v0 + v1 + 5*v3 -34 = 0; value: 0 a -6*v0 + v3 -9 <= 0; value: -28 0: 1 4 5 1: 3 4 2: 1 2 3: 2 3 4 5 optimal: oo a -22/7*v2 + 976/21 <= 0; value: 646/21 d -1*v0 -1*v2 + 9 = 0; value: 0 a 15/7*v2 -983/21 < 0; value: -758/21 d 6*v0 + 21*v3 -181 <= 0; value: 0 d 2*v0 + v1 + 5*v3 -34 = 0; value: 0 a 44/7*v2 -1196/21 <= 0; value: -536/21 0: 1 4 5 3 2 1: 3 4 2: 1 2 5 3: 2 3 4 5 0: 4 -> 4 1: 1 -> -239/21 2: 5 -> 5 3: 5 -> 157/21 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 + v1 + 4*v2 -11 <= 0; value: -7 a 4*v1 -6*v2 + v3 -39 <= 0; value: -23 a -2*v1 + 4*v2 -5*v3 + 3 <= 0; value: -5 a -2*v1 -4*v2 + 1 < 0; value: -7 a 4*v1 -1*v3 -19 <= 0; value: -3 0: 1 1: 1 2 3 4 5 2: 1 2 3 4 3: 2 3 5 optimal: oo a 8*v0 + 20 < 0; value: 20 d -3*v0 + 2*v2 -21/2 < 0; value: -2 a -93/5*v0 -1017/10 < 0; value: -1017/10 d -2*v1 + 4*v2 -5*v3 + 3 <= 0; value: 0 d -8*v2 + 5*v3 -2 < 0; value: -5 a -72/5*v0 -339/5 < 0; value: -339/5 0: 1 2 5 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 2 3 5 4 1 0: 0 -> 0 1: 4 -> -11/2 2: 0 -> 17/4 3: 0 -> 31/5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -3 < 0; value: -11 a -1*v0 + 3*v2 + 5*v3 -7 = 0; value: 0 a v3 -1 <= 0; value: 0 a v1 + 3*v2 -10 <= 0; value: 0 a 5*v1 -4*v2 + v3 -35 <= 0; value: -22 0: 1 2 1: 4 5 2: 2 4 5 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -3 < 0; value: -11 a -1*v0 + 3*v2 + 5*v3 -7 = 0; value: 0 a v3 -1 <= 0; value: 0 a v1 + 3*v2 -10 <= 0; value: 0 a 5*v1 -4*v2 + v3 -35 <= 0; value: -22 0: 1 2 1: 4 5 2: 2 4 5 3: 2 3 5 0: 4 -> 4 1: 4 -> 4 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -2*v1 -5*v2 + 5 <= 0; value: -14 a -1*v1 + 5*v3 -5 <= 0; value: -2 a 5*v0 + 6*v2 -18 <= 0; value: 0 a -5*v2 -2 <= 0; value: -17 a 3*v0 -2*v1 + 6*v2 -23 <= 0; value: -9 0: 3 5 1: 1 2 5 2: 1 3 4 5 3: 2 optimal: 305/37 a + 305/37 <= 0; value: 305/37 d -3*v0 -11*v2 + 28 <= 0; value: 0 d -1*v1 + 5*v3 -5 <= 0; value: 0 d 37/11*v0 -30/11 <= 0; value: 0 a -504/37 <= 0; value: -504/37 d 3*v0 + 6*v2 -10*v3 -13 <= 0; value: 0 0: 3 5 1 4 1: 1 2 5 2: 1 3 4 5 3: 2 1 5 0: 0 -> 30/37 1: 2 -> -245/74 2: 3 -> 86/37 3: 1 -> 25/74 a 2*v0 -2*v1 <= 0; value: 10 a -1*v1 = 0; value: 0 a -2*v2 -3*v3 + 8 < 0; value: -4 a v3 -2 <= 0; value: 0 a -2*v0 -5*v1 -1 < 0; value: -11 a v2 + 3*v3 -20 <= 0; value: -11 0: 4 1: 1 4 2: 2 5 3: 2 3 5 optimal: oo a 2*v0 <= 0; value: 10 d -1*v1 = 0; value: 0 a -2*v2 -3*v3 + 8 < 0; value: -4 a v3 -2 <= 0; value: 0 a -2*v0 -1 < 0; value: -11 a v2 + 3*v3 -20 <= 0; value: -11 0: 4 1: 1 4 2: 2 5 3: 2 3 5 0: 5 -> 5 1: 0 -> 0 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 3*v2 -5*v3 + 14 = 0; value: 0 a -6*v0 + 5*v2 -4 <= 0; value: -12 a -5*v1 + 5*v3 -14 < 0; value: -29 a v3 -1 <= 0; value: 0 a -6*v0 + v1 -3*v2 + 20 = 0; value: 0 0: 1 2 5 1: 3 5 2: 1 2 5 3: 1 3 4 optimal: oo a 15/2*v0 -10 < 0; value: 25/2 d -5*v0 + 3*v2 -5*v3 + 14 = 0; value: 0 a -247/12*v0 + 113/3 < 0; value: -289/12 d -55*v0 -20*v3 + 156 < 0; value: -29/2 a -11/4*v0 + 34/5 < 0; value: -29/20 d -6*v0 + v1 -3*v2 + 20 = 0; value: 0 0: 1 2 5 3 4 1: 3 5 2: 1 2 5 3 3: 1 3 4 2 0: 3 -> 3 1: 4 -> 3/8 2: 2 -> 19/24 3: 1 -> 11/40 a 2*v0 -2*v1 <= 0; value: -4 a -5*v1 + 2 <= 0; value: -8 a 5*v2 -16 <= 0; value: -6 a 3*v0 -1*v2 + 1 < 0; value: -1 a 2*v1 + 3*v2 -25 <= 0; value: -15 a -1*v1 <= 0; value: -2 0: 3 1: 1 4 5 2: 2 3 4 3: optimal: (2/3 -e*1) a + 2/3 < 0; value: 2/3 d -5*v1 + 2 <= 0; value: 0 d 5*v2 -16 <= 0; value: 0 d 3*v0 -1*v2 + 1 < 0; value: -11/10 a -73/5 <= 0; value: -73/5 a -2/5 <= 0; value: -2/5 0: 3 1: 1 4 5 2: 2 3 4 3: 0: 0 -> 11/30 1: 2 -> 2/5 2: 2 -> 16/5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a -5*v0 -1*v3 + 3 <= 0; value: 0 a -1*v2 + 1 <= 0; value: 0 a -2*v1 -5*v3 -7 <= 0; value: -30 a 3*v0 -2*v2 -3*v3 + 2 <= 0; value: -9 a -3*v0 + v2 -1 <= 0; value: 0 0: 1 4 5 1: 3 2: 2 4 5 3: 1 3 4 optimal: oo a 2*v0 + 5*v3 + 7 <= 0; value: 22 a -5*v0 -1*v3 + 3 <= 0; value: 0 a -1*v2 + 1 <= 0; value: 0 d -2*v1 -5*v3 -7 <= 0; value: 0 a 3*v0 -2*v2 -3*v3 + 2 <= 0; value: -9 a -3*v0 + v2 -1 <= 0; value: 0 0: 1 4 5 1: 3 2: 2 4 5 3: 1 3 4 0: 0 -> 0 1: 4 -> -11 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 -27 <= 0; value: -15 a -2*v0 -6*v2 -5 < 0; value: -31 a 2*v1 -3*v3 -6 = 0; value: 0 a -3*v2 + 5*v3 + 7 < 0; value: -5 a v0 -6*v1 + 17 = 0; value: 0 0: 2 5 1: 1 3 5 2: 2 4 3: 3 4 optimal: (67/2 -e*1) a + 67/2 < 0; value: 67/2 d 18/5*v2 -117/5 <= 0; value: 0 a -91 < 0; value: -91 d 2*v1 -3*v3 -6 = 0; value: 0 d 5/9*v0 -3*v2 + 58/9 < 0; value: -5/9 d v0 -9*v3 -1 = 0; value: 0 0: 2 5 4 1 1: 1 3 5 2: 2 4 1 3: 3 4 5 1 0: 1 -> 45/2 1: 3 -> 79/12 2: 4 -> 13/2 3: 0 -> 43/18 a 2*v0 -2*v1 <= 0; value: 6 a 3*v1 -2*v2 -3 = 0; value: 0 a 3*v0 -1*v1 -11 = 0; value: 0 a 3*v2 -4*v3 + 8 = 0; value: 0 a -5*v0 -3*v2 + 20 = 0; value: 0 a -5*v2 -3*v3 + 4 < 0; value: -2 0: 2 4 1: 1 2 2: 1 3 4 5 3: 3 5 optimal: 6 a + 6 <= 0; value: 6 d 3*v1 -2*v2 -3 = 0; value: 0 d 37/9*v0 -148/9 = 0; value: 0 d 3*v2 -4*v3 + 8 = 0; value: 0 d -5*v0 -4*v3 + 28 = 0; value: 0 a -2 < 0; value: -2 0: 2 4 5 1: 1 2 2: 1 3 4 5 2 3: 3 5 4 2 0: 4 -> 4 1: 1 -> 1 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 + v2 -1*v3 -3 <= 0; value: -10 a 6*v0 -5*v2 -1 <= 0; value: -3 a 3*v0 -4*v1 + 3 = 0; value: 0 a -1*v0 + v3 -5 < 0; value: -3 a 3*v0 -16 < 0; value: -7 0: 1 2 3 4 5 1: 3 2: 1 2 3: 1 4 optimal: (7/6 -e*1) a + 7/6 < 0; value: 7/6 a -1*v3 -112/15 < 0; value: -187/15 d 6*v0 -5*v2 -1 <= 0; value: 0 d 3*v0 -4*v1 + 3 = 0; value: 0 a v3 -31/3 < 0; value: -16/3 d 5/2*v2 -31/2 < 0; value: -5/2 0: 1 2 3 4 5 1: 3 2: 1 2 5 4 3: 1 4 0: 3 -> 9/2 1: 3 -> 33/8 2: 4 -> 26/5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -11 <= 0; value: -5 a v2 <= 0; value: 0 a 5*v0 -3*v1 -3*v3 -7 < 0; value: -16 a 2*v2 -1*v3 + 4 <= 0; value: 0 a -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 3 1: 3 5 2: 2 4 5 3: 3 4 optimal: 3 a + 3 <= 0; value: 3 d 2*v0 -11 <= 0; value: 0 d v2 <= 0; value: 0 a -3*v3 + 17/2 < 0; value: -7/2 a -1*v3 + 4 <= 0; value: 0 d -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 3 1: 3 5 2: 2 4 5 3 3: 3 4 0: 3 -> 11/2 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -5*v1 -5*v3 -14 <= 0; value: -34 a -6*v0 -5*v3 <= 0; value: -5 a v1 -3*v3 <= 0; value: 0 a 4*v0 -3*v1 -3*v3 -10 < 0; value: -22 a 2*v0 + 6*v1 -1*v2 -17 = 0; value: 0 0: 2 4 5 1: 1 3 4 5 2: 5 3: 1 2 3 4 optimal: oo a 2*v0 + 2*v3 + 28/5 <= 0; value: 38/5 d 5/3*v0 -5/6*v2 -5*v3 -169/6 <= 0; value: 0 a -6*v0 -5*v3 <= 0; value: -5 a -4*v3 -14/5 <= 0; value: -34/5 a 4*v0 -8/5 < 0; value: -8/5 d 2*v0 + 6*v1 -1*v2 -17 = 0; value: 0 0: 2 4 5 1 3 1: 1 3 4 5 2: 5 4 1 3 3: 1 2 3 4 0: 0 -> 0 1: 3 -> -19/5 2: 1 -> -199/5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 + 2*v1 -1 <= 0; value: -9 a -2*v2 -1 < 0; value: -3 a -1*v0 -1*v1 -2*v2 + 4 = 0; value: 0 a 4*v1 -1*v3 + 2 <= 0; value: 0 a -1*v2 + 2*v3 -3 = 0; value: 0 0: 1 3 1: 1 3 4 2: 2 3 5 3: 4 5 optimal: oo a 4*v0 + 8*v3 -20 <= 0; value: 4 a -6*v0 -8*v3 + 19 <= 0; value: -9 a -4*v3 + 5 < 0; value: -3 d -1*v0 -1*v1 -2*v2 + 4 = 0; value: 0 a -4*v0 -17*v3 + 42 <= 0; value: 0 d -1*v2 + 2*v3 -3 = 0; value: 0 0: 1 3 4 1: 1 3 4 2: 2 3 5 1 4 3: 4 5 2 1 0: 2 -> 2 1: 0 -> 0 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -3*v3 -10 <= 0; value: -34 a -3*v3 + 13 < 0; value: -2 a -3*v0 -1*v1 -1*v3 -9 <= 0; value: -27 a v1 -5*v3 + 1 < 0; value: -20 a 2*v0 + 5*v3 -49 <= 0; value: -18 0: 1 3 5 1: 3 4 2: 3: 1 2 3 4 5 optimal: (136 -e*1) a + 136 < 0; value: 136 a -64 < 0; value: -64 d 6/5*v0 -82/5 < 0; value: -6/5 d -3*v0 -1*v1 -1*v3 -9 <= 0; value: 0 a -75 < 0; value: -75 d 2*v0 + 5*v3 -49 <= 0; value: 0 0: 1 3 5 4 2 1: 3 4 2: 3: 1 2 3 4 5 0: 3 -> 38/3 1: 4 -> -776/15 2: 2 -> 2 3: 5 -> 71/15 a 2*v0 -2*v1 <= 0; value: -2 a 3*v1 + 2*v2 -2*v3 -12 <= 0; value: -4 a -3*v0 -2 < 0; value: -11 a 4*v1 -5*v2 -4*v3 + 10 <= 0; value: 0 a 3*v3 -19 < 0; value: -7 a 4*v0 -1*v1 -2*v3 <= 0; value: 0 0: 2 5 1: 1 3 5 2: 1 3 3: 1 3 4 5 optimal: (88/3 -e*1) a + 88/3 < 0; value: 88/3 a 2*v2 -212/3 < 0; value: -200/3 d -3*v0 -2 < 0; value: -3 a -5*v2 -230/3 < 0; value: -260/3 d 3*v3 -19 < 0; value: -3 d 4*v0 -1*v1 -2*v3 <= 0; value: 0 0: 2 5 1 3 1: 1 3 5 2: 1 3 3: 1 3 4 5 0: 3 -> 1/3 1: 4 -> -28/3 2: 2 -> 2 3: 4 -> 16/3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 1 < 0; value: -3 a v1 + 2*v3 -10 < 0; value: -5 a 6*v1 + v2 + 4*v3 -97 < 0; value: -63 a -1*v1 + 5 = 0; value: 0 d <= 0; value: 0 0: 1: 2 3 4 2: 1 3 3: 2 3 optimal: oo a 2*v0 -10 <= 0; value: -2 a -1*v2 + 1 < 0; value: -3 a 2*v3 -5 < 0; value: -5 a v2 + 4*v3 -67 < 0; value: -63 d -1*v1 + 5 = 0; value: 0 d <= 0; value: 0 0: 1: 2 3 4 2: 1 3 3: 2 3 0: 4 -> 4 1: 5 -> 5 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 4*v2 -1*v3 -36 <= 0; value: -21 a v1 + v2 -6 = 0; value: 0 a 4*v0 -4*v2 -3 <= 0; value: -7 a -1*v2 -1*v3 -3 < 0; value: -8 a 6*v1 + 5*v2 -42 <= 0; value: -10 0: 3 1: 2 5 2: 1 2 3 4 5 3: 1 4 optimal: oo a 2*v0 + 1/2*v3 + 6 <= 0; value: 25/2 d 4*v2 -1*v3 -36 <= 0; value: 0 d v1 + v2 -6 = 0; value: 0 a 4*v0 -1*v3 -39 <= 0; value: -28 a -5/4*v3 -12 < 0; value: -53/4 a -1/4*v3 -15 <= 0; value: -61/4 0: 3 1: 2 5 2: 1 2 3 4 5 3: 1 4 3 5 0: 3 -> 3 1: 2 -> -13/4 2: 4 -> 37/4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 + 2*v2 + 4 < 0; value: -6 a -5*v1 -6*v3 -4 < 0; value: -33 a 5*v0 -6*v3 < 0; value: -4 a v0 -3*v3 -4 <= 0; value: -12 a 4*v0 + v2 -5*v3 -1 <= 0; value: 0 0: 1 3 4 5 1: 2 2: 1 5 3: 2 3 4 5 optimal: oo a 2*v0 + 12/5*v3 + 8/5 < 0; value: 96/5 a -5*v0 + 2*v2 + 4 < 0; value: -6 d -5*v1 -6*v3 -4 < 0; value: -5 a 5*v0 -6*v3 < 0; value: -4 a v0 -3*v3 -4 <= 0; value: -12 a 4*v0 + v2 -5*v3 -1 <= 0; value: 0 0: 1 3 4 5 1: 2 2: 1 5 3: 2 3 4 5 0: 4 -> 4 1: 1 -> -23/5 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 8 a 3*v0 -1*v2 + v3 -13 = 0; value: 0 a -2*v0 -3*v1 -1*v2 + 4 <= 0; value: -4 a 4*v1 -6*v2 -6*v3 -5 < 0; value: -11 a -5*v0 + 5*v1 -8 <= 0; value: -28 a 2*v0 -3*v1 -15 <= 0; value: -7 0: 1 2 4 5 1: 2 3 4 5 2: 1 2 3 3: 1 3 optimal: (1361/103 -e*1) a + 1361/103 < 0; value: 1361/103 d 3*v0 -1*v2 + v3 -13 = 0; value: 0 d -2*v0 -3*v1 -1*v2 + 4 <= 0; value: 0 d 206/3*v0 -331 < 0; value: -169/6 a -8453/206 < 0; value: -8453/206 d 7*v0 + v3 -32 <= 0; value: 0 0: 1 2 4 5 3 1: 2 3 4 5 2: 1 2 3 5 4 3: 1 3 5 4 0: 4 -> 1817/412 1: 0 -> -1273/618 2: 0 -> 140/103 3: 1 -> 465/412 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 5*v2 + 4*v3 + 16 = 0; value: 0 a 5*v1 -2*v2 + 4*v3 -29 = 0; value: 0 a -3*v0 -2*v2 + 9 <= 0; value: -3 a v1 + v2 -14 <= 0; value: -9 a -1*v1 -3 < 0; value: -8 0: 1 3 1: 2 4 5 2: 1 2 3 4 3: 1 2 optimal: (552/31 -e*1) a + 552/31 < 0; value: 552/31 d -5*v0 + 5*v2 + 4*v3 + 16 = 0; value: 0 d 5*v1 -2*v2 + 4*v3 -29 = 0; value: 0 d -3*v0 -2*v2 + 9 <= 0; value: 0 a -662/31 < 0; value: -662/31 d 31/10*v0 -183/10 < 0; value: -59/20 0: 1 3 5 4 1: 2 4 5 2: 1 2 3 4 5 3: 1 2 5 4 0: 4 -> 307/62 1: 5 -> -1/20 2: 0 -> -363/124 3: 1 -> 2901/496 a 2*v0 -2*v1 <= 0; value: -8 a -2*v2 -3*v3 -1 <= 0; value: -10 a 2*v0 -5*v1 -1*v3 + 24 = 0; value: 0 a -5*v1 -1*v3 -9 <= 0; value: -35 a -6*v1 -1*v3 + 31 = 0; value: 0 a -2*v1 -5*v2 + 5*v3 + 20 = 0; value: 0 0: 2 1: 2 3 4 5 2: 1 5 3: 1 2 3 4 5 optimal: oo a 15/32*v2 -301/32 <= 0; value: -8 a -77/16*v2 + 71/16 <= 0; value: -10 d 2*v0 -5*v1 -1*v3 + 24 = 0; value: 0 a -5/32*v2 -1105/32 <= 0; value: -35 d -12/5*v0 + 1/5*v3 + 11/5 = 0; value: 0 d 64*v0 -5*v2 -49 = 0; value: 0 0: 2 3 4 5 1 1: 2 3 4 5 2: 1 5 3 3: 1 2 3 4 5 0: 1 -> 1 1: 5 -> 5 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a 3*v0 -2*v1 + 4 = 0; value: 0 a -2*v1 -3 <= 0; value: -7 a v0 <= 0; value: 0 a -3*v1 + 1 <= 0; value: -5 a -1*v0 + v3 -5 <= 0; value: -1 0: 1 3 5 1: 1 2 4 2: 3: 5 optimal: -26/9 a -26/9 <= 0; value: -26/9 d 3*v0 -2*v1 + 4 = 0; value: 0 a -11/3 <= 0; value: -11/3 a -10/9 <= 0; value: -10/9 d -9/2*v3 + 35/2 <= 0; value: 0 d -1*v0 + v3 -5 <= 0; value: 0 0: 1 3 5 2 4 1: 1 2 4 2: 3: 5 2 4 3 0: 0 -> -10/9 1: 2 -> 1/3 2: 1 -> 1 3: 4 -> 35/9 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v3 + 6 <= 0; value: -4 a -4*v1 -1 < 0; value: -5 a -4*v0 + 4*v1 -3 < 0; value: -19 a -5*v1 -2 < 0; value: -7 a 5*v0 -6*v3 -25 = 0; value: 0 0: 1 3 5 1: 2 3 4 2: 3: 1 5 optimal: (53/2 -e*1) a + 53/2 < 0; value: 53/2 d 3/5*v3 -4 <= 0; value: 0 d -4*v1 -1 < 0; value: -5/2 a -56 < 0; value: -56 a -3/4 <= 0; value: -3/4 d 5*v0 -6*v3 -25 = 0; value: 0 0: 1 3 5 1: 2 3 4 2: 3: 1 5 3 0: 5 -> 13 1: 1 -> 3/8 2: 2 -> 2 3: 0 -> 20/3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 -2*v1 + 13 <= 0; value: -1 a v1 + v2 -6 = 0; value: 0 a 5*v2 -11 <= 0; value: -6 a 5*v2 -9 < 0; value: -4 a -1*v0 -4*v2 + 3 <= 0; value: -5 0: 1 5 1: 1 2 2: 2 3 4 5 3: optimal: (4/5 -e*1) a + 4/5 < 0; value: 4/5 d -1*v0 + 2*v2 + 1 <= 0; value: 0 d v1 + v2 -6 = 0; value: 0 a -2 <= 0; value: -2 d 5/2*v0 -23/2 < 0; value: -3/4 a -44/5 < 0; value: -44/5 0: 1 5 3 4 1: 1 2 2: 2 3 4 5 1 3: 0: 4 -> 43/10 1: 5 -> 87/20 2: 1 -> 33/20 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -3*v1 + 1 <= 0; value: -2 a 3*v0 + 5*v1 -1*v2 -8 = 0; value: 0 a 2*v0 -6*v3 + 19 < 0; value: -3 a -2*v0 -2*v3 -7 <= 0; value: -17 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 2 2: 2 3: 3 4 5 optimal: -2/3 a -2/3 <= 0; value: -2/3 d 24/5*v0 -3/5*v2 -19/5 <= 0; value: 0 d 3*v0 + 5*v1 -1*v2 -8 = 0; value: 0 a 2*v0 -6*v3 + 19 < 0; value: -3 a -2*v0 -2*v3 -7 <= 0; value: -17 a v3 -4 = 0; value: 0 0: 1 2 3 4 1: 1 2 2: 2 1 3: 3 4 5 0: 1 -> 1 1: 2 -> 4/3 2: 5 -> 5/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a 4*v0 -1*v2 -13 < 0; value: -5 a 5*v0 -5*v2 + 4*v3 -28 <= 0; value: -17 a -5*v0 -1*v2 -14 < 0; value: -33 a 3*v2 -19 < 0; value: -7 a -1*v0 + 5*v2 -35 < 0; value: -18 0: 1 2 3 5 1: 2: 1 2 3 4 5 3: 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 4*v0 -1*v2 -13 < 0; value: -5 a 5*v0 -5*v2 + 4*v3 -28 <= 0; value: -17 a -5*v0 -1*v2 -14 < 0; value: -33 a 3*v2 -19 < 0; value: -7 a -1*v0 + 5*v2 -35 < 0; value: -18 0: 1 2 3 5 1: 2: 1 2 3 4 5 3: 2 0: 3 -> 3 1: 0 -> 0 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -6*v0 -1*v1 -1*v3 -14 < 0; value: -29 a 2*v0 + 6*v3 -21 <= 0; value: -5 a 5*v2 -1*v3 -13 <= 0; value: 0 a -3*v1 + 4*v2 -3*v3 -5 < 0; value: -2 a 6*v0 -1*v2 -9 = 0; value: 0 0: 1 2 5 1: 1 4 2: 3 4 5 3: 1 2 3 4 optimal: (2185/63 -e*1) a + 2185/63 < 0; value: 2185/63 d -14*v0 -1/3 <= 0; value: 0 d 2*v0 + 6*v3 -21 <= 0; value: 0 a -560/9 <= 0; value: -560/9 d -3*v1 + 4*v2 -3*v3 -5 < 0; value: -3 d 6*v0 -1*v2 -9 = 0; value: 0 0: 1 2 5 3 1: 1 4 2: 3 4 5 1 3: 1 2 3 4 0: 2 -> -1/42 1: 1 -> -1031/63 2: 3 -> -64/7 3: 2 -> 221/63 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 <= 0; value: -2 a -6*v1 + v2 + 8 < 0; value: -2 a v0 -1*v3 <= 0; value: 0 a -6*v0 -4*v1 + 15 <= 0; value: -17 0: 3 4 1: 1 2 4 2: 2 3: 3 optimal: oo a 2*v3 < 0; value: 8 d -1/6*v2 -4/3 <= 0; value: 0 d -6*v1 + v2 + 8 < 0; value: -6 d v0 -1*v3 <= 0; value: 0 a -6*v3 + 15 <= 0; value: -9 0: 3 4 1: 1 2 4 2: 2 1 4 3: 3 4 0: 4 -> 4 1: 2 -> 1 2: 2 -> -8 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a v0 -3 = 0; value: 0 a 4*v0 -1*v3 -20 < 0; value: -8 a -4*v1 + 5*v3 <= 0; value: 0 a v2 -8 <= 0; value: -3 a -4*v0 + 2*v1 + 3*v3 + 5 <= 0; value: -7 0: 1 2 5 1: 3 5 2: 4 3: 2 3 5 optimal: (26 -e*1) a + 26 < 0; value: 26 d v0 -3 = 0; value: 0 d 4*v0 -1*v3 -20 < 0; value: -1 d -4*v1 + 5*v3 <= 0; value: 0 a v2 -8 <= 0; value: -3 a -51 < 0; value: -51 0: 1 2 5 1: 3 5 2: 4 3: 2 3 5 0: 3 -> 3 1: 0 -> -35/4 2: 5 -> 5 3: 0 -> -7 a 2*v0 -2*v1 <= 0; value: -2 a -4*v0 + 6*v1 -17 <= 0; value: -5 a 3*v2 + 5*v3 -16 = 0; value: 0 a -1*v3 + 2 = 0; value: 0 a 3*v1 + v3 -14 = 0; value: 0 a 4*v1 -5*v2 -6 = 0; value: 0 0: 1 1: 1 4 5 2: 2 5 3: 2 3 4 optimal: oo a 2*v0 -8 <= 0; value: -2 a -4*v0 + 7 <= 0; value: -5 d 3*v2 + 5*v3 -16 = 0; value: 0 a = 0; value: 0 d 3*v1 + v3 -14 = 0; value: 0 d -21/5*v2 + 42/5 = 0; value: 0 0: 1 1: 1 4 5 2: 2 5 3 1 3: 2 3 4 5 1 0: 3 -> 3 1: 4 -> 4 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 3*v2 -32 <= 0; value: -19 a v2 -5 = 0; value: 0 a -1*v0 -5*v1 -8 < 0; value: -18 a -1*v1 -1*v3 + 3 <= 0; value: 0 a -1*v3 + 1 = 0; value: 0 0: 3 1: 1 3 4 2: 1 2 3: 4 5 optimal: oo a 2*v0 -4 <= 0; value: -4 a 3*v2 -34 <= 0; value: -19 a v2 -5 = 0; value: 0 a -1*v0 -18 < 0; value: -18 d -1*v1 -1*v3 + 3 <= 0; value: 0 d -1*v3 + 1 = 0; value: 0 0: 3 1: 1 3 4 2: 1 2 3: 4 5 1 3 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -3*v1 + v2 -5 <= 0; value: 0 a -1*v0 + 1 = 0; value: 0 a -1*v0 -5*v1 <= 0; value: -1 a -2*v3 -1 <= 0; value: -11 a -2*v1 -1*v2 + 5 = 0; value: 0 0: 2 3 1: 1 3 5 2: 1 5 3: 4 optimal: 2 a + 2 <= 0; value: 2 d -3*v1 + v2 -5 <= 0; value: 0 d -1*v0 + 1 = 0; value: 0 a -1 <= 0; value: -1 a -2*v3 -1 <= 0; value: -11 d -5/3*v2 + 25/3 = 0; value: 0 0: 2 3 1: 1 3 5 2: 1 5 3 3: 4 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 + v2 -4*v3 -1 < 0; value: -13 a 3*v0 + 3*v1 -1*v3 -5 = 0; value: 0 a 6*v0 -5*v1 + 5*v3 -46 < 0; value: -19 a -1*v0 -6*v1 + 4*v3 -9 <= 0; value: -1 a -3*v2 + 2 < 0; value: -4 0: 2 3 4 1: 1 2 3 4 2: 1 5 3: 1 2 3 4 optimal: (911/57 -e*1) a + 911/57 < 0; value: 911/57 d -2*v0 + v2 -10/3*v3 + 7/3 < 0; value: -10/3 d 3*v0 + 3*v1 -1*v3 -5 = 0; value: 0 a -604/57 <= 0; value: -604/57 d 19/5*v0 -86/5 < 0; value: -19/5 d -3*v2 + 2 < 0; value: -2 0: 2 3 4 1 1: 1 2 3 4 2: 1 5 3 4 3: 1 2 3 4 0: 2 -> 67/19 1: 1 -> -1063/570 2: 2 -> 4/3 3: 4 -> -3/190 a 2*v0 -2*v1 <= 0; value: -4 a 4*v0 -3*v1 -1*v3 -6 <= 0; value: -15 a -1*v0 + 2*v1 -14 <= 0; value: -8 a v0 + 4*v2 -5*v3 -4 <= 0; value: -15 a 5*v1 -6*v2 -2 = 0; value: 0 a -6*v0 -3*v1 -1*v2 -8 <= 0; value: -35 0: 1 2 3 5 1: 1 2 4 5 2: 3 4 5 3: 1 3 optimal: oo a 118/23*v0 + 4 <= 0; value: 328/23 d 4*v0 -18/5*v2 -1*v3 -36/5 <= 0; value: 0 a -95/23*v0 -18 <= 0; value: -604/23 a -1097/23*v0 -12 <= 0; value: -2470/23 d 5*v1 -6*v2 -2 = 0; value: 0 d -100/9*v0 + 23/18*v3 <= 0; value: 0 0: 1 2 3 5 1: 1 2 4 5 2: 3 4 5 1 2 3: 1 3 5 2 0: 2 -> 2 1: 4 -> -118/23 2: 3 -> -106/23 3: 5 -> 400/23 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -6*v1 + 2 <= 0; value: -10 a v0 -3*v3 -5 <= 0; value: -1 a 6*v0 -3*v2 + 2*v3 -45 <= 0; value: -24 a -1*v0 + v1 <= 0; value: 0 0: 1 2 3 4 1: 1 4 2: 3 3: 2 3 optimal: oo a 9/20*v2 + 79/12 <= 0; value: 211/30 d 3*v0 -6*v1 + 2 <= 0; value: 0 d v0 -3*v3 -5 <= 0; value: 0 d -3*v2 + 20*v3 -15 <= 0; value: 0 a -9/40*v2 -79/24 <= 0; value: -211/60 0: 1 2 3 4 1: 1 4 2: 3 4 3: 2 3 4 0: 4 -> 77/10 1: 4 -> 251/60 2: 1 -> 1 3: 0 -> 9/10 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 + v2 + 2*v3 + 1 <= 0; value: -1 a -4*v1 -3*v2 + 31 = 0; value: 0 a -4*v0 -5*v2 + 3*v3 + 16 <= 0; value: -17 a -1*v1 -6*v3 + 28 = 0; value: 0 a -2*v0 + v2 -2*v3 + 13 = 0; value: 0 0: 1 3 5 1: 2 4 2: 1 2 3 5 3: 1 3 4 5 optimal: 20 a + 20 <= 0; value: 20 d 1/3*v0 -8/3 <= 0; value: 0 d -4*v1 -3*v2 + 31 = 0; value: 0 a -66 <= 0; value: -66 d 3/2*v0 -9/2*v3 + 21/2 = 0; value: 0 d -2*v0 + v2 -2*v3 + 13 = 0; value: 0 0: 1 3 5 4 1: 2 4 2: 1 2 3 5 4 3: 1 3 4 5 0: 5 -> 8 1: 4 -> -2 2: 5 -> 13 3: 4 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a v2 -2 = 0; value: 0 a -4*v3 -1 <= 0; value: -13 a -6*v1 + 5*v3 -3 <= 0; value: 0 a 6*v2 + 5*v3 -58 < 0; value: -31 a 6*v2 -31 < 0; value: -19 0: 1: 3 2: 1 4 5 3: 2 3 4 optimal: oo a 2*v0 + 17/12 <= 0; value: 113/12 a v2 -2 = 0; value: 0 d -4*v3 -1 <= 0; value: 0 d -6*v1 + 5*v3 -3 <= 0; value: 0 a 6*v2 -237/4 < 0; value: -189/4 a 6*v2 -31 < 0; value: -19 0: 1: 3 2: 1 4 5 3: 2 3 4 0: 4 -> 4 1: 2 -> -17/24 2: 2 -> 2 3: 3 -> -1/4 a 2*v0 -2*v1 <= 0; value: 10 a 3*v0 + v3 -19 < 0; value: -2 a 6*v1 -3*v2 -2*v3 + 7 <= 0; value: 0 a 6*v0 + 4*v3 -41 <= 0; value: -3 a 2*v1 + 3*v2 + 2*v3 -7 = 0; value: 0 a -3*v0 -6*v1 + 11 <= 0; value: -4 0: 1 3 5 1: 2 4 5 2: 2 4 3: 1 2 3 4 optimal: (83/6 -e*1) a + 83/6 < 0; value: 83/6 d 9/8*v2 -37/16 < 0; value: -19/32 a -26/3 < 0; value: -26/3 d 8*v0 -6*v2 -103/3 <= 0; value: 0 d 2*v1 + 3*v2 + 2*v3 -7 = 0; value: 0 d -3*v0 + 9*v2 + 6*v3 -10 <= 0; value: 0 0: 1 3 5 2 1: 2 4 5 2: 2 4 5 1 3 2 3: 1 2 3 4 5 0: 5 -> 87/16 1: 0 -> -85/96 2: 1 -> 55/36 3: 2 -> 67/32 a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 + 5*v2 -6*v3 -2 <= 0; value: -17 a -4*v0 + 5*v2 -6*v3 + 9 < 0; value: -27 a -4*v0 + 3*v1 -4*v3 -11 <= 0; value: -30 a 6*v3 -25 < 0; value: -1 a 2*v2 + 3*v3 -18 < 0; value: -6 0: 2 3 1: 1 3 2: 1 2 5 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 3*v1 + 5*v2 -6*v3 -2 <= 0; value: -17 a -4*v0 + 5*v2 -6*v3 + 9 < 0; value: -27 a -4*v0 + 3*v1 -4*v3 -11 <= 0; value: -30 a 6*v3 -25 < 0; value: -1 a 2*v2 + 3*v3 -18 < 0; value: -6 0: 2 3 1: 1 3 2: 1 2 5 3: 1 2 3 4 5 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 -1*v2 + 2*v3 + 8 <= 0; value: 0 a -5*v0 + 6*v1 + 6*v2 -13 < 0; value: -4 a v1 -2*v3 <= 0; value: 0 a 2*v1 -1*v2 + v3 -10 = 0; value: 0 a -1*v0 + v1 -1 = 0; value: 0 0: 2 5 1: 1 2 3 4 5 2: 1 2 4 3: 1 3 4 optimal: -2 a -2 <= 0; value: -2 d -3*v1 -1*v2 + 2*v3 + 8 <= 0; value: 0 a -4 < 0; value: -4 d -1/3*v2 -4/3*v3 + 8/3 <= 0; value: 0 d -9/4*v2 = 0; value: 0 d -1*v0 + 3 = 0; value: 0 0: 2 5 1: 1 2 3 4 5 2: 1 2 4 5 3 3: 1 3 4 5 2 0: 3 -> 3 1: 4 -> 4 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -3*v1 -6*v2 + 35 < 0; value: -1 a v1 -3*v2 + 1 < 0; value: -12 a -2*v0 -1*v2 + 6*v3 -16 < 0; value: -1 a 2*v1 -5*v3 -5 <= 0; value: -21 a v1 -4*v3 -11 <= 0; value: -25 0: 3 1: 1 2 4 5 2: 1 2 3 3: 3 4 5 optimal: oo a 2*v0 + 4*v2 -70/3 < 0; value: 2/3 d -3*v1 -6*v2 + 35 < 0; value: -1/2 a -5*v2 + 38/3 < 0; value: -37/3 a -2*v0 -1*v2 + 6*v3 -16 < 0; value: -1 a -4*v2 -5*v3 + 55/3 < 0; value: -65/3 a -2*v2 -4*v3 + 2/3 < 0; value: -76/3 0: 3 1: 1 2 4 5 2: 1 2 3 4 5 3: 3 4 5 0: 2 -> 2 1: 2 -> 11/6 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 + 5*v2 -2*v3 -3 <= 0; value: 0 a -1*v1 + 5*v2 + 6*v3 -5 = 0; value: 0 a -1*v0 + 3*v1 + v2 -4 < 0; value: -2 a 4*v0 -1*v3 -5 < 0; value: -2 a 5*v0 -6*v1 + 4*v2 + 1 <= 0; value: 0 0: 3 4 5 1: 1 2 3 5 2: 1 2 3 5 3: 1 2 4 optimal: oo a 1/3*v0 -4/3*v2 -1/3 <= 0; value: 0 a 35/9*v0 + 88/9*v2 -35/9 <= 0; value: 0 d -1*v1 + 5*v2 + 6*v3 -5 = 0; value: 0 a 3/2*v0 + 3*v2 -7/2 < 0; value: -2 a 139/36*v0 + 13/18*v2 -211/36 < 0; value: -2 d 5*v0 -26*v2 -36*v3 + 31 <= 0; value: 0 0: 3 4 5 1 1: 1 2 3 5 2: 1 2 3 5 4 3: 1 2 4 5 3 0: 1 -> 1 1: 1 -> 1 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -4*v1 -6*v2 + 5*v3 -15 < 0; value: -32 a -1*v1 + 5*v3 -13 = 0; value: 0 a 2*v1 -2*v2 -3*v3 + 10 < 0; value: -3 a -1*v0 -3*v1 + 11 = 0; value: 0 a v1 -3*v2 + 10 = 0; value: 0 0: 4 1: 1 2 3 4 5 2: 1 3 5 3: 1 2 3 optimal: (286/5 -e*1) a + 286/5 < 0; value: 286/5 d -15*v2 + 28 < 0; value: -15 d -1*v1 + 5*v3 -13 = 0; value: 0 a -577/75 < 0; value: -577/75 d -1*v0 -15*v3 + 50 = 0; value: 0 d -1/3*v0 -3*v2 + 41/3 = 0; value: 0 0: 4 1 5 3 1: 1 2 3 4 5 2: 1 3 5 3: 1 2 3 4 5 0: 5 -> 76/5 1: 2 -> -7/5 2: 4 -> 43/15 3: 3 -> 58/25 a 2*v0 -2*v1 <= 0; value: 0 a v2 -2 = 0; value: 0 a -6*v0 -1*v3 + 7 = 0; value: 0 a -4*v0 -3*v2 + 3 <= 0; value: -7 a -1*v2 -1*v3 + 3 = 0; value: 0 a v1 -1 = 0; value: 0 0: 2 3 1: 5 2: 1 3 4 3: 2 4 optimal: 0 a <= 0; value: 0 d v2 -2 = 0; value: 0 d -6*v0 -1*v3 + 7 = 0; value: 0 a -7 <= 0; value: -7 d -1*v2 -1*v3 + 3 = 0; value: 0 d v1 -1 = 0; value: 0 0: 2 3 1: 5 2: 1 3 4 3: 2 4 3 0: 1 -> 1 1: 1 -> 1 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v0 + 2*v1 -12 = 0; value: 0 a v0 -1*v2 -7 <= 0; value: -3 a -1*v0 -2 <= 0; value: -6 a -1*v3 < 0; value: -2 0: 1 2 3 1: 1 2: 2 3: 4 optimal: oo a 3*v2 + 9 <= 0; value: 9 d v0 + 2*v1 -12 = 0; value: 0 d v0 -1*v2 -7 <= 0; value: 0 a -1*v2 -9 <= 0; value: -9 a -1*v3 < 0; value: -2 0: 1 2 3 1: 1 2: 2 3 3: 4 0: 4 -> 7 1: 4 -> 5/2 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a v1 -1*v2 -1*v3 -6 < 0; value: -14 a -3*v0 + 2*v1 + 3*v3 <= 0; value: -1 a 2*v1 + 5*v3 -25 < 0; value: -3 a -2*v0 + 3*v1 -2 < 0; value: -9 a -3*v0 + 6*v3 -16 <= 0; value: -7 0: 2 4 5 1: 1 2 3 4 2: 1 3: 1 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v1 -1*v2 -1*v3 -6 < 0; value: -14 a -3*v0 + 2*v1 + 3*v3 <= 0; value: -1 a 2*v1 + 5*v3 -25 < 0; value: -3 a -2*v0 + 3*v1 -2 < 0; value: -9 a -3*v0 + 6*v3 -16 <= 0; value: -7 0: 2 4 5 1: 1 2 3 4 2: 1 3: 1 2 3 5 0: 5 -> 5 1: 1 -> 1 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v3 <= 0; value: -1 a 2*v0 + 5*v3 -19 = 0; value: 0 a 6*v0 + 4*v1 -1*v3 -31 <= 0; value: -10 a -1*v0 -1 <= 0; value: -3 0: 1 2 3 4 1: 3 2: 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + v3 <= 0; value: -1 a 2*v0 + 5*v3 -19 = 0; value: 0 a 6*v0 + 4*v1 -1*v3 -31 <= 0; value: -10 a -1*v0 -1 <= 0; value: -3 0: 1 2 3 4 1: 3 2: 3: 1 2 3 0: 2 -> 2 1: 3 -> 3 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a v0 + 6*v1 -1*v2 -30 = 0; value: 0 a -1*v0 < 0; value: -2 a -3*v0 -1*v2 + 7 < 0; value: -1 a -5*v1 -6*v2 + v3 + 17 <= 0; value: -20 a 4*v0 -1*v1 -5 <= 0; value: -2 0: 1 2 3 5 1: 1 4 5 2: 1 3 4 3: 4 optimal: (-61/14 -e*1) a -61/14 < 0; value: -61/14 d v0 + 6*v1 -1*v2 -30 = 0; value: 0 a -67/28 < 0; value: -67/28 d -3*v0 -1*v2 + 7 < 0; value: -1 a v3 -67/14 <= 0; value: -67/14 d 14/3*v0 -67/6 <= 0; value: 0 0: 1 2 3 5 4 1: 1 4 5 2: 1 3 4 5 3: 4 0: 2 -> 67/28 1: 5 -> 199/42 2: 2 -> 23/28 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 3*v0 -1*v2 -11 <= 0; value: 0 a -1*v2 + 4 = 0; value: 0 a 3*v1 + 3*v2 -47 < 0; value: -26 a v1 + 3*v2 -44 <= 0; value: -29 a -3*v1 + 6*v2 -34 < 0; value: -19 0: 1 1: 3 4 5 2: 1 2 3 4 5 3: optimal: (50/3 -e*1) a + 50/3 < 0; value: 50/3 d 3*v0 -1*v2 -11 <= 0; value: 0 d -3*v0 + 15 = 0; value: 0 a -45 < 0; value: -45 a -106/3 < 0; value: -106/3 d -3*v1 + 6*v2 -34 < 0; value: -3 0: 1 2 3 4 1: 3 4 5 2: 1 2 3 4 5 3: 0: 5 -> 5 1: 3 -> -7/3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -2*v1 -2*v3 -5 <= 0; value: -15 a -6*v0 -23 <= 0; value: -47 a -6*v0 -5*v1 < 0; value: -29 a 2*v0 -3*v1 -2*v3 + 3 = 0; value: 0 a 4*v1 -1*v3 <= 0; value: 0 0: 2 3 4 1: 1 3 4 5 2: 3: 1 4 5 optimal: oo a 22/5*v0 < 0; value: 88/5 a -16/5*v0 -8 < 0; value: -104/5 a -6*v0 -23 <= 0; value: -47 d -28/3*v0 + 10/3*v3 -5 < 0; value: -10/3 d 2*v0 -3*v1 -2*v3 + 3 = 0; value: 0 a -38/5*v0 -3/2 < 0; value: -319/10 0: 2 3 4 1 5 1: 1 3 4 5 2: 3: 1 4 5 3 0: 4 -> 4 1: 1 -> -62/15 2: 1 -> 1 3: 4 -> 117/10 a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -4*v3 + 12 = 0; value: 0 a 5*v1 -56 <= 0; value: -36 a -1*v3 + 1 < 0; value: -2 a v0 -2*v2 -5 <= 0; value: -15 a -5*v0 -2*v2 + v3 + 7 = 0; value: 0 0: 1 4 5 1: 2 2: 4 5 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -3*v0 -4*v3 + 12 = 0; value: 0 a 5*v1 -56 <= 0; value: -36 a -1*v3 + 1 < 0; value: -2 a v0 -2*v2 -5 <= 0; value: -15 a -5*v0 -2*v2 + v3 + 7 = 0; value: 0 0: 1 4 5 1: 2 2: 4 5 3: 1 3 5 0: 0 -> 0 1: 4 -> 4 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a -1*v3 + 1 = 0; value: 0 a 2*v2 -1*v3 -1 <= 0; value: 0 a -5*v0 -1*v1 + 10 = 0; value: 0 a -1*v2 + 1 <= 0; value: 0 a -1*v0 + v1 -7 <= 0; value: -3 0: 3 5 1: 3 5 2: 2 4 3: 1 2 optimal: oo a 12*v0 -20 <= 0; value: -8 a -1*v3 + 1 = 0; value: 0 a 2*v2 -1*v3 -1 <= 0; value: 0 d -5*v0 -1*v1 + 10 = 0; value: 0 a -1*v2 + 1 <= 0; value: 0 a -6*v0 + 3 <= 0; value: -3 0: 3 5 1: 3 5 2: 2 4 3: 1 2 0: 1 -> 1 1: 5 -> 5 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v0 -3*v1 + 4*v3 -14 < 0; value: -1 a -6*v0 + 3*v3 -4 <= 0; value: -10 a v1 -2*v2 + 6*v3 -16 = 0; value: 0 a -1*v0 -4*v1 + 2 < 0; value: -9 a -3*v0 -1*v3 + 5 < 0; value: -8 0: 1 2 4 5 1: 1 3 4 2: 3 3: 1 2 3 5 optimal: oo a 5/2*v0 -1 < 0; value: 13/2 d v0 -6*v2 + 22*v3 -62 < 0; value: -253/16 a -117/16*v0 + 61/8 <= 0; value: -229/16 d v1 -2*v2 + 6*v3 -16 = 0; value: 0 d -23/11*v0 -16/11*v2 + 62/11 <= 0; value: 0 a -41/16*v0 + 9/8 < 0; value: -105/16 0: 1 2 4 5 1: 1 3 4 2: 3 1 4 2 5 3: 1 2 3 5 4 0: 3 -> 3 1: 2 -> 65/16 2: 5 -> -7/16 3: 4 -> 59/32 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 -1*v1 -1*v2 -1 < 0; value: -21 a 2*v2 + v3 -18 <= 0; value: -3 a -1*v1 -3*v3 + 15 = 0; value: 0 a 5*v1 -5*v2 + v3 + 3 <= 0; value: -17 a 5*v1 -4*v2 -4*v3 + 2 <= 0; value: -38 0: 1 1: 1 3 4 5 2: 1 2 4 5 3: 2 3 4 5 optimal: oo a 74/7*v0 + 90/7 < 0; value: 312/7 d -5*v0 -7*v2 + 38 < 0; value: -6 d 2*v2 + v3 -18 <= 0; value: 0 d -1*v1 -3*v3 + 15 = 0; value: 0 a -115/7*v0 -344/7 < 0; value: -689/7 a -170/7*v0 -563/7 < 0; value: -1073/7 0: 1 4 5 1: 1 3 4 5 2: 1 2 4 5 3: 2 3 4 5 1 0: 3 -> 3 1: 0 -> -99/7 2: 5 -> 29/7 3: 5 -> 68/7 a 2*v0 -2*v1 <= 0; value: 0 a -6*v1 + 4*v2 -13 < 0; value: -31 a v2 -8 <= 0; value: -5 a -1*v2 + 3 <= 0; value: 0 a 6*v0 -6*v2 -35 < 0; value: -23 a v3 -4 < 0; value: -2 0: 4 1: 1 2: 1 2 3 4 3: 5 optimal: (18 -e*1) a + 18 < 0; value: 18 d -6*v1 + 4*v2 -13 < 0; value: -6 a -5 <= 0; value: -5 d -1*v2 + 3 <= 0; value: 0 d 6*v0 -53 < 0; value: -6 a v3 -4 < 0; value: -2 0: 4 1: 1 2: 1 2 3 4 3: 5 0: 5 -> 47/6 1: 5 -> 5/6 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a 2*v1 + v2 -32 <= 0; value: -21 a 3*v1 -2*v3 -26 < 0; value: -15 a -5*v0 + 3*v1 + 2*v2 -31 <= 0; value: -19 a -6*v2 + 5 <= 0; value: -1 a -4*v0 -5*v1 + 13 < 0; value: -16 0: 3 5 1: 1 2 3 5 2: 1 3 4 3: 2 optimal: oo a 18/5*v0 -26/5 < 0; value: -8/5 a -8/5*v0 + v2 -134/5 < 0; value: -137/5 a -12/5*v0 -2*v3 -91/5 < 0; value: -123/5 a -37/5*v0 + 2*v2 -116/5 < 0; value: -143/5 a -6*v2 + 5 <= 0; value: -1 d -4*v0 -5*v1 + 13 < 0; value: -5 0: 3 5 1 2 1: 1 2 3 5 2: 1 3 4 3: 2 0: 1 -> 1 1: 5 -> 14/5 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a -6*v0 -3*v2 + 4 <= 0; value: -2 a 2*v1 -5*v2 -10 = 0; value: 0 a -6*v0 + v3 + 1 < 0; value: -2 a -1*v1 + 2 <= 0; value: -3 0: 1 3 1: 2 4 2: 1 2 3: 3 optimal: -22/15 a -22/15 <= 0; value: -22/15 d -6*v0 -3*v2 + 4 <= 0; value: 0 d 2*v1 -5*v2 -10 = 0; value: 0 a v3 -33/5 < 0; value: -18/5 d 5*v0 -19/3 <= 0; value: 0 0: 1 3 4 1: 2 4 2: 1 2 4 3: 3 0: 1 -> 19/15 1: 5 -> 2 2: 0 -> -6/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 2*v1 + v2 -10 < 0; value: -5 a -5*v0 -1*v2 + 2*v3 + 1 <= 0; value: -1 a -5*v1 -4*v3 + 8 < 0; value: -10 a -1*v0 + 2*v3 -3 = 0; value: 0 a 4*v0 -5*v1 + 6 = 0; value: 0 0: 2 4 5 1: 1 3 5 2: 1 2 3: 2 3 4 optimal: oo a -1/4*v2 -1/2 < 0; value: -3/4 d v2 + 16/5*v3 -62/5 < 0; value: -5/2 a 3/2*v2 -15 < 0; value: -27/2 a 15/4*v2 -65/2 < 0; value: -115/4 d -1*v0 + 2*v3 -3 = 0; value: 0 d 4*v0 -5*v1 + 6 = 0; value: 0 0: 2 4 5 3 1 1: 1 3 5 2: 1 2 3 3: 2 3 4 1 0: 1 -> 41/16 1: 2 -> 13/4 2: 1 -> 1 3: 2 -> 89/32 a 2*v0 -2*v1 <= 0; value: 10 a v1 + 2*v2 -5 <= 0; value: -3 a v2 -1*v3 <= 0; value: 0 a v0 -5*v1 -13 <= 0; value: -8 a -3*v1 + v3 -1 = 0; value: 0 0: 3 1: 1 3 4 2: 1 2 3: 2 4 optimal: 206/7 a + 206/7 <= 0; value: 206/7 d 7/5*v0 -106/5 <= 0; value: 0 d v2 -1*v3 <= 0; value: 0 d v0 -5/3*v2 -34/3 <= 0; value: 0 d -3*v1 + v3 -1 = 0; value: 0 0: 3 1 1: 1 3 4 2: 1 2 3 3: 2 4 3 1 0: 5 -> 106/7 1: 0 -> 3/7 2: 1 -> 16/7 3: 1 -> 16/7 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 -4*v1 -2*v2 -7 <= 0; value: -39 a 6*v0 -3*v1 -7 <= 0; value: -4 a v0 -7 <= 0; value: -4 a v2 + v3 -10 < 0; value: -3 a -2*v1 -3*v2 + 19 = 0; value: 0 0: 1 2 3 1: 1 2 5 2: 1 4 5 3: 4 optimal: (25/3 -e*1) a + 25/3 < 0; value: 25/3 d -11/2*v3 -11/6 <= 0; value: 0 d 6*v0 + 9/2*v2 -71/2 <= 0; value: 0 a -53/6 < 0; value: -53/6 d -4/3*v0 + v3 -19/9 < 0; value: -4/3 d -2*v1 -3*v2 + 19 = 0; value: 0 0: 1 2 3 4 1: 1 2 5 2: 1 4 5 2 3: 4 1 3 0: 3 -> -5/6 1: 5 -> -4 2: 3 -> 9 3: 4 -> -1/3 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -4*v2 -4 <= 0; value: -14 a -1*v0 + 2 <= 0; value: 0 a -2*v0 -3*v1 -3*v3 + 18 <= 0; value: -4 a -2*v1 + 6*v3 -59 <= 0; value: -39 a v1 -2 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 1 3: 3 4 optimal: oo a 8/3*v2 -4/3 <= 0; value: 28/3 d 3*v0 -4*v2 -4 <= 0; value: 0 a -4/3*v2 + 2/3 <= 0; value: -14/3 a -8/3*v2 -3*v3 + 28/3 <= 0; value: -40/3 a 6*v3 -63 <= 0; value: -39 d v1 -2 = 0; value: 0 0: 1 2 3 1: 3 4 5 2: 1 2 3 3: 3 4 0: 2 -> 20/3 1: 2 -> 2 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a -1*v2 -1 < 0; value: -3 a -3*v1 + 2*v3 -9 <= 0; value: -22 a v0 -2 = 0; value: 0 a -1*v0 + v3 + 1 = 0; value: 0 a v0 + 6*v3 -8 = 0; value: 0 0: 3 4 5 1: 2 2: 1 3: 2 4 5 optimal: 26/3 a + 26/3 <= 0; value: 26/3 a -1*v2 -1 < 0; value: -3 d -3*v1 + 2*v3 -9 <= 0; value: 0 d v0 -2 = 0; value: 0 d -1*v0 + v3 + 1 = 0; value: 0 a = 0; value: 0 0: 3 4 5 1: 2 2: 1 3: 2 4 5 0: 2 -> 2 1: 5 -> -7/3 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -2*v1 + 3*v3 -12 = 0; value: 0 a -3*v1 -1*v2 -2*v3 -4 < 0; value: -12 a -1*v0 + 1 < 0; value: -2 a 4*v0 -2*v2 -3*v3 <= 0; value: 0 a -2*v1 -1*v3 + 2 < 0; value: -2 0: 3 4 1: 1 2 5 2: 2 4 3: 1 2 4 5 optimal: oo a 2*v0 + 3/2 < 0; value: 15/2 d -2*v1 + 3*v3 -12 = 0; value: 0 a -2*v0 -7/2 <= 0; value: -19/2 a -1*v0 + 1 < 0; value: -2 d 4*v0 -2*v2 -3*v3 <= 0; value: 0 d -16/3*v0 + 8/3*v2 + 14 < 0; value: -1 0: 3 4 2 5 1: 1 2 5 2: 2 4 5 3: 1 2 4 5 0: 3 -> 3 1: 0 -> -3/8 2: 0 -> 3/8 3: 4 -> 15/4 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + v1 + 4*v3 -7 <= 0; value: -2 a 3*v0 -6*v2 -1*v3 + 10 = 0; value: 0 a 2*v0 + 5*v2 + 4*v3 -52 <= 0; value: -27 a 4*v0 -3*v3 -9 = 0; value: 0 a 5*v0 + v1 -5*v2 -4 = 0; value: 0 0: 1 2 3 4 5 1: 1 5 2: 2 3 5 3: 1 2 3 4 optimal: 306/13 a + 306/13 <= 0; value: 306/13 d 13/18*v0 -25/6 <= 0; value: 0 d 3*v0 -6*v2 -1*v3 + 10 = 0; value: 0 a -37/13 <= 0; value: -37/13 d 4*v0 -3*v3 -9 = 0; value: 0 d 5*v0 + v1 -5*v2 -4 = 0; value: 0 0: 1 2 3 4 5 1: 1 5 2: 2 3 5 1 3: 1 2 3 4 0: 3 -> 75/13 1: 4 -> -6 2: 3 -> 49/13 3: 1 -> 61/13 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -1*v1 -2*v2 + 2 = 0; value: 0 a -2*v1 -3*v2 + 4 <= 0; value: -10 a -1*v3 + 4 = 0; value: 0 a v1 + 3*v2 -23 <= 0; value: -13 a -3*v0 + 3*v1 -8 < 0; value: -5 0: 1 5 1: 1 2 4 5 2: 1 2 4 3: 3 optimal: 45 a + 45 <= 0; value: 45 d 2*v0 -1*v1 -2*v2 + 2 = 0; value: 0 d -4*v0 + v2 <= 0; value: 0 a -1*v3 + 4 = 0; value: 0 d 6*v0 -21 <= 0; value: 0 a -151/2 < 0; value: -151/2 0: 1 5 2 4 1: 1 2 4 5 2: 1 2 4 5 3: 3 0: 3 -> 7/2 1: 4 -> -19 2: 2 -> 14 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -1*v3 -9 <= 0; value: -5 a 5*v0 -3*v2 -4*v3 + 1 <= 0; value: -1 a -5*v0 -6*v2 -10 < 0; value: -43 a -2*v2 -1*v3 + 8 = 0; value: 0 a v0 -2*v1 -5*v2 + 7 <= 0; value: -13 0: 1 2 3 5 1: 5 2: 2 3 4 5 3: 1 2 4 optimal: oo a -4*v0 + 24 <= 0; value: 12 a -23/5 <= 0; value: -23/5 d 5*v0 -5/2*v3 -11 <= 0; value: 0 a v0 -236/5 < 0; value: -221/5 d -2*v2 -1*v3 + 8 = 0; value: 0 d v0 -2*v1 -5*v2 + 7 <= 0; value: 0 0: 1 2 3 5 1: 5 2: 2 3 4 5 3: 1 2 4 3 0: 3 -> 3 1: 4 -> -3 2: 3 -> 16/5 3: 2 -> 8/5 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 + 3*v3 + 10 = 0; value: 0 a 2*v0 + v1 + 2*v2 -23 = 0; value: 0 a -1*v0 -1*v1 + v2 + 6 = 0; value: 0 a 4*v0 -3*v2 -23 < 0; value: -15 a -4*v0 + 3*v3 + 5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 2: 2 3 4 3: 1 5 optimal: 0 a <= 0; value: 0 d -5*v1 + 3*v3 + 10 = 0; value: 0 d 14/5*v0 + 2*v2 -22 = 0; value: 0 d 16/7*v2 -64/7 = 0; value: 0 a -15 < 0; value: -15 d -4*v0 + 3*v3 + 5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 2: 2 3 4 3: 1 5 2 3 0: 5 -> 5 1: 5 -> 5 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -6*v2 + 17 <= 0; value: -13 a -1*v0 -2*v3 -7 <= 0; value: -15 a 5*v0 -6*v1 + 18 = 0; value: 0 a -1*v1 + 5*v3 -18 < 0; value: -1 a -2*v1 + 2*v2 -7 <= 0; value: -3 0: 2 3 1: 3 4 5 2: 1 5 3: 2 4 optimal: oo a 1/3*v0 -6 <= 0; value: -6 a -6*v2 + 17 <= 0; value: -13 a -1*v0 -2*v3 -7 <= 0; value: -15 d 5*v0 -6*v1 + 18 = 0; value: 0 a -5/6*v0 + 5*v3 -21 < 0; value: -1 a -5/3*v0 + 2*v2 -13 <= 0; value: -3 0: 2 3 4 5 1: 3 4 5 2: 1 5 3: 2 4 0: 0 -> 0 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -10 a -3*v1 + 6*v3 -22 < 0; value: -13 a v3 -4 = 0; value: 0 a v0 + v2 -6*v3 + 6 < 0; value: -18 a -5*v0 -2*v1 <= 0; value: -10 a v2 -3*v3 + 12 = 0; value: 0 0: 3 4 1: 1 4 2: 3 5 3: 1 2 3 5 optimal: (104/3 -e*1) a + 104/3 < 0; value: 104/3 d -3*v1 + 6*v3 -22 < 0; value: -3 d v3 -4 = 0; value: 0 d v0 + v2 -18 < 0; value: -1 a -274/3 < 0; value: -274/3 d v2 = 0; value: 0 0: 3 4 1: 1 4 2: 3 5 4 3: 1 2 3 5 4 0: 0 -> 17 1: 5 -> 5/3 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 2*v0 -2*v2 -3 <= 0; value: -7 a -1*v0 -3*v1 + 2 <= 0; value: 0 a v0 -2*v1 -5 <= 0; value: -3 a 5*v0 -6*v1 -11 <= 0; value: -1 a -5*v0 -4*v3 + 16 < 0; value: -2 0: 1 2 3 4 5 1: 2 3 4 2: 1 3: 5 optimal: 92/21 a + 92/21 <= 0; value: 92/21 a -2*v2 + 9/7 <= 0; value: -47/7 d -1*v0 -3*v1 + 2 <= 0; value: 0 a -58/21 <= 0; value: -58/21 d 7*v0 -15 <= 0; value: 0 a -4*v3 + 37/7 < 0; value: -19/7 0: 1 2 3 4 5 1: 2 3 4 2: 1 3: 5 0: 2 -> 15/7 1: 0 -> -1/21 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 + 11 <= 0; value: -1 a 4*v1 + 3*v2 + 4*v3 -77 <= 0; value: -40 a -4*v2 + 1 <= 0; value: -11 a -3*v1 + 2*v3 + 6 = 0; value: 0 d <= 0; value: 0 0: 1 1: 2 4 2: 2 3 3: 2 4 optimal: oo a 2*v0 -4/3*v3 -4 <= 0; value: 0 a -3*v0 + 11 <= 0; value: -1 a 3*v2 + 20/3*v3 -69 <= 0; value: -40 a -4*v2 + 1 <= 0; value: -11 d -3*v1 + 2*v3 + 6 = 0; value: 0 d <= 0; value: 0 0: 1 1: 2 4 2: 2 3 3: 2 4 0: 4 -> 4 1: 4 -> 4 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -5*v1 -4*v3 = 0; value: 0 a -4*v1 -1*v3 <= 0; value: 0 a v1 -4*v3 <= 0; value: 0 a -1*v3 <= 0; value: 0 a 4*v1 -6*v2 + 7 < 0; value: -17 0: 1: 1 2 3 5 2: 5 3: 1 2 3 4 optimal: oo a 2*v0 <= 0; value: 8 d -5*v1 -4*v3 = 0; value: 0 d 11/5*v3 <= 0; value: 0 a <= 0; value: 0 a <= 0; value: 0 a -6*v2 + 7 < 0; value: -17 0: 1: 1 2 3 5 2: 5 3: 1 2 3 4 5 0: 4 -> 4 1: 0 -> 0 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 -23 <= 0; value: -13 a -1*v1 + 4*v3 -4 <= 0; value: -1 a -4*v0 -4*v1 + 2*v2 + 1 <= 0; value: -1 a 3*v0 + 6*v1 -6*v3 -10 <= 0; value: -4 a -6*v0 + 4*v2 -21 < 0; value: -13 0: 1 3 4 5 1: 2 3 4 2: 3 5 3: 2 4 optimal: oo a 2*v0 -8*v3 + 8 <= 0; value: 4 a 5*v0 -23 <= 0; value: -13 d v0 -1/2*v2 + 4*v3 -17/4 <= 0; value: 0 d -4*v0 -4*v1 + 2*v2 + 1 <= 0; value: 0 a 3*v0 + 18*v3 -34 <= 0; value: -10 a 2*v0 + 32*v3 -55 < 0; value: -19 0: 1 3 4 5 2 1: 2 3 4 2: 3 5 2 4 3: 2 4 5 0: 2 -> 2 1: 1 -> 0 2: 5 -> 7/2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -6*v0 -6*v1 + v3 + 1 <= 0; value: 0 a -4*v0 -3*v2 -5*v3 + 13 <= 0; value: -25 a -4*v0 + 5*v1 -6*v3 + 34 = 0; value: 0 a v1 + v2 -3 = 0; value: 0 0: 1 2 3 1: 1 3 4 2: 2 4 3: 1 2 3 optimal: 1801/13 a + 1801/13 <= 0; value: 1801/13 d -6*v0 -6*v1 + v3 + 1 <= 0; value: 0 d 13/20*v2 -539/20 <= 0; value: 0 d -9*v0 -31/6*v3 + 209/6 = 0; value: 0 d -40/31*v0 + v2 -53/31 = 0; value: 0 0: 1 2 3 4 1: 1 3 4 2: 2 4 3: 1 2 3 4 0: 1 -> 801/26 1: 0 -> -500/13 2: 3 -> 539/13 3: 5 -> -610/13 a 2*v0 -2*v1 <= 0; value: 2 a v0 -3*v2 <= 0; value: 0 a 6*v0 -4*v1 + v2 -29 < 0; value: -18 a -1*v3 <= 0; value: -1 a -5*v0 + v3 + 2 < 0; value: -12 a v3 -2 <= 0; value: -1 0: 1 2 4 1: 2 2: 1 2 3: 3 4 5 optimal: (421/30 -e*1) a + 421/30 < 0; value: 421/30 d v0 -3*v2 <= 0; value: 0 d 6*v0 -4*v1 + v2 -29 < 0; value: -4 d -1*v3 <= 0; value: 0 d -5*v0 + v3 + 2 < 0; value: -5 a -2 <= 0; value: -2 0: 1 2 4 1: 2 2: 1 2 3: 3 4 5 0: 3 -> 7/5 1: 2 -> -121/30 2: 1 -> 7/15 3: 1 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a -4*v1 -4*v2 + 7 <= 0; value: -13 a -5*v2 -5*v3 + 13 <= 0; value: -17 a -4*v1 -1 <= 0; value: -5 a 3*v0 -5*v3 -12 <= 0; value: -7 a -1*v0 -2*v3 + 9 <= 0; value: 0 0: 4 5 1: 1 3 2: 1 2 3: 2 4 5 optimal: oo a 10/3*v3 + 17/2 <= 0; value: 91/6 a -4*v2 + 8 <= 0; value: -8 a -5*v2 -5*v3 + 13 <= 0; value: -17 d -4*v1 -1 <= 0; value: 0 d 3*v0 -5*v3 -12 <= 0; value: 0 a -11/3*v3 + 5 <= 0; value: -7/3 0: 4 5 1: 1 3 2: 1 2 3: 2 4 5 0: 5 -> 22/3 1: 1 -> -1/4 2: 4 -> 4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -3*v2 + v3 -3 < 0; value: -7 a -2*v0 -2*v2 + 3 <= 0; value: -5 a 3*v1 + 6*v2 + 2*v3 -58 < 0; value: -33 a 4*v1 -33 <= 0; value: -21 a -1*v0 + 2*v3 -4 <= 0; value: -2 0: 2 5 1: 3 4 2: 1 2 3 3: 1 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -3*v2 + v3 -3 < 0; value: -7 a -2*v0 -2*v2 + 3 <= 0; value: -5 a 3*v1 + 6*v2 + 2*v3 -58 < 0; value: -33 a 4*v1 -33 <= 0; value: -21 a -1*v0 + 2*v3 -4 <= 0; value: -2 0: 2 5 1: 3 4 2: 1 2 3 3: 1 3 5 0: 2 -> 2 1: 3 -> 3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -10 a -5*v0 + 6*v1 -30 = 0; value: 0 a 2*v0 -1*v1 -1*v3 + 1 < 0; value: -5 a -6*v0 + v2 -7 < 0; value: -3 a -3*v2 + 5*v3 + 7 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 3 5 1: 1 2 2: 3 4 3: 2 4 optimal: oo a 6/35*v2 -324/35 < 0; value: -60/7 d -5*v0 + 6*v1 -30 = 0; value: 0 d 7/6*v0 -1*v3 -4 < 0; value: -7/6 a -73/35*v2 -713/35 < 0; value: -201/7 d -3*v2 + 5*v3 + 7 = 0; value: 0 a -18/35*v2 -78/35 < 0; value: -30/7 0: 1 2 3 5 1: 1 2 2: 3 4 5 3: 2 4 3 5 0: 0 -> 23/7 1: 5 -> 325/42 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 + 2*v2 -33 <= 0; value: -16 a v1 + 3*v2 + 3*v3 -30 < 0; value: -7 a -6*v2 + 3*v3 -11 <= 0; value: -26 a -3*v1 -2*v3 -10 <= 0; value: -22 a -5*v2 + 16 < 0; value: -4 0: 1 1: 2 4 2: 1 2 3 5 3: 2 3 4 optimal: (7838/207 -e*1) a + 7838/207 < 0; value: 7838/207 d 3*v0 -1831/69 <= 0; value: 0 d 3*v2 + 7/3*v3 -100/3 < 0; value: -7/3 d -69/7*v2 + 223/7 <= 0; value: 0 d -3*v1 -2*v3 -10 <= 0; value: 0 a -11/69 < 0; value: -11/69 0: 1 1: 2 4 2: 1 2 3 5 3: 2 3 4 0: 3 -> 1831/207 1: 2 -> -650/69 2: 4 -> 223/69 3: 3 -> 210/23 a 2*v0 -2*v1 <= 0; value: 6 a v1 -1*v3 -1 <= 0; value: -6 a v0 + v2 -5 <= 0; value: -2 a -5*v0 + v1 -8 <= 0; value: -23 a -6*v1 + 2*v2 + 3*v3 -23 < 0; value: -8 a 6*v3 -65 <= 0; value: -35 0: 2 3 1: 1 3 4 2: 2 4 3: 1 4 5 optimal: oo a 2*v0 -4/3*v2 + 52/3 < 0; value: 70/3 d 1/3*v2 -1/2*v3 -29/6 < 0; value: -1/2 a v0 + v2 -5 <= 0; value: -2 a -5*v0 + 2/3*v2 -50/3 < 0; value: -95/3 d -6*v1 + 2*v2 + 3*v3 -23 < 0; value: -6 a 4*v2 -123 < 0; value: -123 0: 2 3 1: 1 3 4 2: 2 4 1 3 5 3: 1 4 5 3 0: 3 -> 3 1: 0 -> -43/6 2: 0 -> 0 3: 5 -> -26/3 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 4*v2 + 3*v3 -6 = 0; value: 0 a -1*v1 -4*v3 -7 <= 0; value: -16 a -5*v3 + 2 <= 0; value: -3 a v2 <= 0; value: 0 a -1*v1 -1*v2 + 2 <= 0; value: -3 0: 1 1: 2 5 2: 1 4 5 3: 1 2 3 optimal: 28/5 a + 28/5 <= 0; value: 28/5 d v0 + 4*v2 + 3*v3 -6 = 0; value: 0 a -53/5 <= 0; value: -53/5 d 5/3*v0 -8 <= 0; value: 0 d -1/4*v0 -3/4*v3 + 3/2 <= 0; value: 0 d -1*v1 -1*v2 + 2 <= 0; value: 0 0: 1 4 2 3 1: 2 5 2: 1 4 5 2 3: 1 2 3 4 0: 3 -> 24/5 1: 5 -> 2 2: 0 -> 0 3: 1 -> 2/5 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + v1 -2*v2 -6 <= 0; value: -18 a 6*v0 + 3*v2 + v3 -65 <= 0; value: -29 a -6*v0 -3*v1 -1*v2 + 12 <= 0; value: -14 a -2*v1 + 6*v2 -45 <= 0; value: -17 a 4*v0 + 2*v2 + 3*v3 -52 <= 0; value: -21 0: 1 2 3 5 1: 1 3 4 2: 1 2 3 4 5 3: 2 5 optimal: oo a -4/3*v3 + 313/6 <= 0; value: 289/6 a 8/21*v3 -3043/84 <= 0; value: -421/12 d 21/5*v0 + v3 -823/20 <= 0; value: 0 d -6*v0 -3*v1 -1*v2 + 12 <= 0; value: 0 d 4*v0 + 20/3*v2 -53 <= 0; value: 0 a 7/3*v3 -26/3 <= 0; value: -5/3 0: 1 2 3 5 4 1: 1 3 4 2: 1 2 3 4 5 3: 2 5 1 0: 3 -> 109/12 1: 1 -> -15 2: 5 -> 5/2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a v3 -2 <= 0; value: 0 a 5*v0 + 6*v3 -12 = 0; value: 0 a -4*v2 -5*v3 -15 <= 0; value: -33 a 2*v0 + 2*v3 -9 < 0; value: -5 a -6*v0 -3*v2 -2 <= 0; value: -8 0: 2 4 5 1: 2: 3 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a v3 -2 <= 0; value: 0 a 5*v0 + 6*v3 -12 = 0; value: 0 a -4*v2 -5*v3 -15 <= 0; value: -33 a 2*v0 + 2*v3 -9 < 0; value: -5 a -6*v0 -3*v2 -2 <= 0; value: -8 0: 2 4 5 1: 2: 3 5 3: 1 2 3 4 0: 0 -> 0 1: 3 -> 3 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + v1 + 3*v2 -24 = 0; value: 0 a v0 -5*v2 + 2 <= 0; value: -21 a 5*v2 -1*v3 -22 = 0; value: 0 a -2*v1 -5*v3 -16 <= 0; value: -37 0: 1 2 1: 1 4 2: 1 2 3 3: 3 4 optimal: oo a 8*v0 + 6/5*v3 -108/5 <= 0; value: -2 d 3*v0 + v1 + 3*v2 -24 = 0; value: 0 a v0 -1*v3 -20 <= 0; value: -21 d 5*v2 -1*v3 -22 = 0; value: 0 a 6*v0 -19/5*v3 -188/5 <= 0; value: -37 0: 1 2 4 1: 1 4 2: 1 2 3 4 3: 3 4 2 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a -1*v1 -6*v2 -4 < 0; value: -10 a -5*v0 -4*v2 -17 < 0; value: -41 a -5*v0 + v2 -6*v3 + 25 = 0; value: 0 a -2*v1 -3*v3 + 3 = 0; value: 0 a 6*v1 -2*v2 -1 < 0; value: -3 0: 2 3 1: 1 4 5 2: 1 2 3 5 3: 3 4 optimal: oo a -1/2*v0 + 1/2*v2 + 19/2 <= 0; value: 8 a -5/4*v0 -23/4*v2 + 3/4 < 0; value: -10 a -5*v0 -4*v2 -17 < 0; value: -41 d -5*v0 + v2 -6*v3 + 25 = 0; value: 0 d -2*v1 -3*v3 + 3 = 0; value: 0 a 15/2*v0 -7/2*v2 -59/2 < 0; value: -3 0: 2 3 1 5 1: 1 4 5 2: 1 2 3 5 3: 3 4 1 5 0: 4 -> 4 1: 0 -> 0 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a v0 -1*v3 + 4 = 0; value: 0 a -3*v1 -5*v2 + 25 = 0; value: 0 a -5*v1 -6*v2 -4*v3 + 50 = 0; value: 0 a v2 -5 = 0; value: 0 a 5*v0 -1*v3 <= 0; value: 0 0: 1 5 1: 2 3 2: 2 3 4 3: 1 3 5 optimal: 2 a + 2 <= 0; value: 2 d v0 -1*v3 + 4 = 0; value: 0 d -3*v1 -5*v2 + 25 = 0; value: 0 d 7/3*v2 -4*v3 + 25/3 = 0; value: 0 a = 0; value: 0 d 4*v0 -4 <= 0; value: 0 0: 1 5 4 1: 2 3 2: 2 3 4 3: 1 3 5 4 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a v0 + 2*v3 -20 <= 0; value: -10 a -1*v1 + 2 = 0; value: 0 a -6*v1 -6*v2 -3*v3 -43 <= 0; value: -88 a -1*v3 -1 <= 0; value: -6 a -1*v0 = 0; value: 0 0: 1 5 1: 2 3 2: 3 3: 1 3 4 optimal: -4 a -4 <= 0; value: -4 a 2*v3 -20 <= 0; value: -10 d -1*v1 + 2 = 0; value: 0 a -6*v2 -3*v3 -55 <= 0; value: -88 a -1*v3 -1 <= 0; value: -6 d -1*v0 = 0; value: 0 0: 1 5 1: 2 3 2: 3 3: 1 3 4 0: 0 -> 0 1: 2 -> 2 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -6*v1 + 2*v3 -1 <= 0; value: -9 a -1*v0 -2*v1 + 7 = 0; value: 0 a 3*v0 -4*v1 -4*v3 + 7 <= 0; value: 0 a -3*v1 + 6*v3 -13 <= 0; value: -7 a -4*v0 -3*v1 -6*v3 + 28 < 0; value: -2 0: 2 3 5 1: 1 2 3 4 5 2: 3: 1 3 4 5 optimal: 13/3 a + 13/3 <= 0; value: 13/3 a -85/18 <= 0; value: -85/18 d -1*v0 -2*v1 + 7 = 0; value: 0 d 5*v0 -4*v3 -7 <= 0; value: 0 d 36/5*v3 -107/5 <= 0; value: 0 a -88/9 < 0; value: -88/9 0: 2 3 5 1 4 1: 1 2 3 4 5 2: 3: 1 3 4 5 0: 3 -> 34/9 1: 2 -> 29/18 2: 3 -> 3 3: 2 -> 107/36 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 2*v1 -5*v2 -7 < 0; value: -20 a v1 -5*v3 + 6 < 0; value: -3 a 5*v1 -6*v3 + 7 = 0; value: 0 a 6*v0 + 2*v2 -17 <= 0; value: -11 a 2*v0 -1*v1 -2*v3 + 5 = 0; value: 0 0: 1 4 5 1: 1 2 3 5 2: 1 4 3: 2 3 5 optimal: (-61/78 -e*1) a -61/78 < 0; value: -61/78 d -13/2*v2 + 31/4 < 0; value: -47/8 a -2741/312 < 0; value: -2741/312 d 5*v1 -6*v3 + 7 = 0; value: 0 d 6*v0 + 2*v2 -17 <= 0; value: 0 d 2*v0 -16/5*v3 + 32/5 = 0; value: 0 0: 1 4 5 2 1: 1 2 3 5 2: 1 4 2 3: 2 3 5 1 0: 0 -> 111/52 1: 1 -> 541/208 2: 3 -> 109/52 3: 2 -> 1387/416 a 2*v0 -2*v1 <= 0; value: 2 a v0 -6 <= 0; value: -3 a -1*v0 -2 <= 0; value: -5 a v3 -4 = 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -2*v0 + 5*v3 -16 <= 0; value: -2 0: 1 2 5 1: 2: 4 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a v0 -6 <= 0; value: -3 a -1*v0 -2 <= 0; value: -5 a v3 -4 = 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -2*v0 + 5*v3 -16 <= 0; value: -2 0: 1 2 5 1: 2: 4 3: 3 5 0: 3 -> 3 1: 2 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 -4*v3 = 0; value: 0 a -1*v0 + 1 <= 0; value: -1 a v1 <= 0; value: 0 a v3 <= 0; value: 0 a 5*v2 -63 <= 0; value: -38 0: 2 1: 1 3 2: 5 3: 1 4 optimal: oo a 2*v0 -8/3*v3 <= 0; value: 4 d 3*v1 -4*v3 = 0; value: 0 a -1*v0 + 1 <= 0; value: -1 a 4/3*v3 <= 0; value: 0 a v3 <= 0; value: 0 a 5*v2 -63 <= 0; value: -38 0: 2 1: 1 3 2: 5 3: 1 4 3 0: 2 -> 2 1: 0 -> 0 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 + v2 -3 <= 0; value: 0 a -6*v1 + v2 + 2*v3 + 5 <= 0; value: 0 a -3*v1 -2*v3 + 19 = 0; value: 0 a -1*v0 <= 0; value: 0 a -6*v0 -1*v1 + 6*v2 -15 = 0; value: 0 0: 1 4 5 1: 2 3 5 2: 1 2 5 3: 2 3 optimal: -6 a -6 <= 0; value: -6 d 1/53*v0 <= 0; value: 0 d -6*v1 + v2 + 2*v3 + 5 <= 0; value: 0 d -1/2*v2 -3*v3 + 33/2 = 0; value: 0 a <= 0; value: 0 d -6*v0 + 53/9*v2 -53/3 = 0; value: 0 0: 1 4 5 1: 2 3 5 2: 1 2 5 3 3: 2 3 5 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 10 a 4*v0 + 4*v2 -37 < 0; value: -9 a -3*v0 -8 < 0; value: -23 a 6*v1 + 5*v2 -10 = 0; value: 0 a -2*v2 + v3 = 0; value: 0 0: 1 2 1: 3 2: 1 3 4 3: 4 optimal: oo a 1/3*v0 + 145/12 < 0; value: 55/4 d 4*v0 + 2*v3 -37 < 0; value: -2 a -3*v0 -8 < 0; value: -23 d 6*v1 + 5*v2 -10 = 0; value: 0 d -2*v2 + v3 = 0; value: 0 0: 1 2 1: 3 2: 1 3 4 3: 4 1 0: 5 -> 5 1: 0 -> -35/24 2: 2 -> 15/4 3: 4 -> 15/2 a 2*v0 -2*v1 <= 0; value: -8 a -3*v1 -1*v2 -9 <= 0; value: -21 a 4*v0 + 4*v3 -35 <= 0; value: -19 a v1 -4 = 0; value: 0 a 2*v0 -1*v2 <= 0; value: 0 a -2*v0 -5*v2 -3*v3 + 12 = 0; value: 0 0: 2 4 5 1: 1 3 2: 1 4 5 3: 2 5 optimal: oo a -1/2*v3 -6 <= 0; value: -8 a 1/2*v3 -23 <= 0; value: -21 a 3*v3 -31 <= 0; value: -19 d v1 -4 = 0; value: 0 d 2*v0 -1*v2 <= 0; value: 0 d -6*v2 -3*v3 + 12 = 0; value: 0 0: 2 4 5 1: 1 3 2: 1 4 5 2 3: 2 5 1 0: 0 -> 0 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -3*v2 -2*v3 + 17 = 0; value: 0 a v1 + v2 -5 = 0; value: 0 a -1*v1 <= 0; value: 0 a 2*v3 -3 <= 0; value: -1 a v0 -5*v1 -6*v2 + 30 = 0; value: 0 0: 5 1: 2 3 5 2: 1 2 5 3: 1 4 optimal: 0 a <= 0; value: 0 d -3*v2 -2*v3 + 17 = 0; value: 0 d v1 + v2 -5 = 0; value: 0 d v0 <= 0; value: 0 a -1 <= 0; value: -1 d v0 + 2/3*v3 -2/3 = 0; value: 0 0: 5 3 4 1: 2 3 5 2: 1 2 5 3 3: 1 4 5 3 0: 0 -> 0 1: 0 -> 0 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v2 + 2*v3 + 8 <= 0; value: 0 a 3*v0 + 6*v2 + 5*v3 -28 <= 0; value: -16 a -3*v0 + 6*v1 + 3*v3 -8 <= 0; value: -20 a v1 + 3*v3 <= 0; value: 0 a -2*v0 + 3*v2 + 8 = 0; value: 0 0: 1 2 3 5 1: 3 4 2: 1 2 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a -2*v0 + 3*v2 + 2*v3 + 8 <= 0; value: 0 a 3*v0 + 6*v2 + 5*v3 -28 <= 0; value: -16 a -3*v0 + 6*v1 + 3*v3 -8 <= 0; value: -20 a v1 + 3*v3 <= 0; value: 0 a -2*v0 + 3*v2 + 8 = 0; value: 0 0: 1 2 3 5 1: 3 4 2: 1 2 5 3: 1 2 3 4 0: 4 -> 4 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 2*v2 + 2*v3 -2 <= 0; value: 0 a 2*v1 -3*v2 + 2*v3 -13 = 0; value: 0 a 2*v2 + 5*v3 -51 <= 0; value: -24 a v1 + 3*v2 -10 <= 0; value: -4 a v0 -6*v1 -12 < 0; value: -28 0: 1 5 1: 2 4 5 2: 1 2 3 4 3: 1 2 3 optimal: (2966/279 -e*1) a + 2966/279 < 0; value: 2966/279 d -5*v0 + 2*v2 + 2*v3 -2 <= 0; value: 0 d 2*v1 -3*v2 + 2*v3 -13 = 0; value: 0 d 93/10*v0 -37 <= 0; value: 0 a -2122/279 < 0; value: -2122/279 d 16*v0 -15*v2 -45 < 0; value: -170/93 0: 1 5 3 4 1: 2 4 5 2: 1 2 3 4 5 3: 1 2 3 5 4 0: 2 -> 370/93 1: 3 -> -32/31 2: 1 -> 127/93 3: 5 -> 297/31 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 + v1 + 1 = 0; value: 0 a -1*v2 + 4 = 0; value: 0 a 2*v0 + 2*v1 -17 <= 0; value: -11 a 3*v0 -2*v1 <= 0; value: -1 a v0 -1 = 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3: optimal: -2 a -2 <= 0; value: -2 d -3*v0 + v1 + 1 = 0; value: 0 a -1*v2 + 4 = 0; value: 0 a -11 <= 0; value: -11 a -1 <= 0; value: -1 d v0 -1 = 0; value: 0 0: 1 3 4 5 1: 1 3 4 2: 2 3: 0: 1 -> 1 1: 2 -> 2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 1 = 0; value: 0 a -1*v1 -4*v3 <= 0; value: 0 a v0 -2*v1 <= 0; value: 0 a 3*v0 -4*v2 + 2 <= 0; value: -2 a v2 + v3 -1 <= 0; value: 0 0: 3 4 1: 2 3 2: 1 4 5 3: 2 5 optimal: 0 a <= 0; value: 0 d -1*v2 + 1 = 0; value: 0 d -1*v1 -4*v3 <= 0; value: 0 d v0 <= 0; value: 0 a -2 <= 0; value: -2 d v2 + v3 -1 <= 0; value: 0 0: 3 4 1: 2 3 2: 1 4 5 3 3: 2 5 3 0: 0 -> 0 1: 0 -> 0 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -1*v3 <= 0; value: 0 a -1*v1 + v3 -4 <= 0; value: -2 a v2 -4 <= 0; value: -2 a -1*v1 <= 0; value: -2 a -3*v1 + 6*v2 -10 < 0; value: -4 0: 1: 1 2 4 5 2: 3 5 3: 1 2 optimal: oo a 2*v0 < 0; value: 10 a -1*v3 < 0; value: -4 a v3 -4 <= 0; value: 0 a -7/3 <= 0; value: -7/3 d -2*v2 + 10/3 <= 0; value: 0 d -3*v1 + 6*v2 -10 < 0; value: -3 0: 1: 1 2 4 5 2: 3 5 4 2 1 3: 1 2 0: 5 -> 5 1: 2 -> 1 2: 2 -> 5/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a v0 -4*v3 < 0; value: -8 a -3*v1 -2*v2 + 5 <= 0; value: -4 a 4*v3 -35 <= 0; value: -23 a 2*v1 -5*v3 -7 <= 0; value: -16 a -4*v0 -1*v1 + 3 <= 0; value: -16 0: 1 5 1: 2 4 5 2: 2 3: 1 3 4 optimal: (344 -e*1) a + 344 < 0; value: 344 d v0 -4*v3 < 0; value: -1 d -3*v1 -2*v2 + 5 <= 0; value: 0 d 4*v3 -35 <= 0; value: 0 a -1299/4 < 0; value: -1299/4 d -4*v0 + 2/3*v2 + 4/3 <= 0; value: 0 0: 1 5 4 1: 2 4 5 2: 2 5 4 3: 1 3 4 0: 4 -> 34 1: 3 -> -133 2: 0 -> 202 3: 3 -> 35/4 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 -1 < 0; value: -4 a -5*v1 -2*v3 <= 0; value: -2 a 5*v0 -4*v2 -3*v3 -4 <= 0; value: 0 a v0 -3 <= 0; value: 0 a 2*v0 + 3*v1 -14 < 0; value: -8 0: 1 3 4 5 1: 2 5 2: 3 3: 2 3 optimal: oo a 2*v0 + 4/5*v3 <= 0; value: 34/5 a -1*v0 -1 < 0; value: -4 d -5*v1 -2*v3 <= 0; value: 0 a 5*v0 -4*v2 -3*v3 -4 <= 0; value: 0 a v0 -3 <= 0; value: 0 a 2*v0 -6/5*v3 -14 < 0; value: -46/5 0: 1 3 4 5 1: 2 5 2: 3 3: 2 3 5 0: 3 -> 3 1: 0 -> -2/5 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 -1 <= 0; value: -5 a v1 -2*v2 + 1 <= 0; value: 0 a 3*v0 -5*v3 + 11 <= 0; value: -8 a 5*v2 -6*v3 + 20 = 0; value: 0 a -5*v1 -3*v3 + 5 <= 0; value: -25 0: 1 3 1: 2 5 2: 2 4 3: 3 4 5 optimal: oo a 2*v0 + v2 + 2 <= 0; value: 8 a -2*v0 -1 <= 0; value: -5 a -5/2*v2 <= 0; value: -5 a 3*v0 -25/6*v2 -17/3 <= 0; value: -8 d 5*v2 -6*v3 + 20 = 0; value: 0 d -5*v1 -3*v3 + 5 <= 0; value: 0 0: 1 3 1: 2 5 2: 2 4 3 3: 3 4 5 2 0: 2 -> 2 1: 3 -> -2 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -8 a 2*v0 -2*v1 + 3 < 0; value: -5 a -2*v0 -4*v3 -5 <= 0; value: -11 a -2*v1 + v3 + 3 <= 0; value: -6 a 4*v1 -1*v2 -30 <= 0; value: -11 a -1*v2 + 1 = 0; value: 0 0: 1 2 1: 1 3 4 2: 4 5 3: 2 3 optimal: (-3 -e*1) a -3 < 0; value: -3 d 2*v0 -2*v1 + 3 < 0; value: -2 a -2*v0 -4*v3 -5 <= 0; value: -11 a -2*v0 + v3 <= 0; value: -1 a 4*v0 -1*v2 -24 < 0; value: -21 a -1*v2 + 1 = 0; value: 0 0: 1 2 3 4 1: 1 3 4 2: 4 5 3: 2 3 0: 1 -> 1 1: 5 -> 7/2 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 -2 <= 0; value: -6 a -3*v0 -5*v3 + 28 = 0; value: 0 a v0 -1 <= 0; value: 0 a -2*v0 -5*v1 + 15 <= 0; value: -7 0: 2 3 4 1: 1 4 2: 3: 2 optimal: -16/5 a -16/5 <= 0; value: -16/5 a -23/5 <= 0; value: -23/5 d -3*v0 -5*v3 + 28 = 0; value: 0 d -5/3*v3 + 25/3 <= 0; value: 0 d -2*v0 -5*v1 + 15 <= 0; value: 0 0: 2 3 4 1 1: 1 4 2: 3: 2 3 1 0: 1 -> 1 1: 4 -> 13/5 2: 3 -> 3 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a v1 + 3*v3 -39 < 0; value: -21 a 2*v0 -3*v1 + 4*v2 -1 <= 0; value: 0 a -5*v0 + 4*v1 + 3 = 0; value: 0 a -1*v0 + 3*v1 -6*v3 + 12 <= 0; value: -12 a 5*v0 -2*v1 -4*v2 -5 = 0; value: 0 0: 2 3 4 5 1: 1 2 3 4 5 2: 2 5 3: 1 4 optimal: 0 a <= 0; value: 0 a 3*v3 -36 < 0; value: -21 d 2*v0 -3*v1 + 4*v2 -1 <= 0; value: 0 d 3/5*v0 -9/5 = 0; value: 0 a -6*v3 + 18 <= 0; value: -12 d 11/3*v0 -20/3*v2 -13/3 = 0; value: 0 0: 2 3 4 5 1 1: 1 2 3 4 5 2: 2 5 3 1 4 3: 1 4 0: 3 -> 3 1: 3 -> 3 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 -1*v2 + 6*v3 + 17 = 0; value: 0 a 5*v0 + 6*v2 + v3 -54 <= 0; value: -28 a v3 = 0; value: 0 a -1*v1 -2*v3 + 2 = 0; value: 0 a -3*v0 + 2*v2 -6*v3 + 10 = 0; value: 0 0: 1 2 5 1: 4 2: 1 2 5 3: 1 2 3 4 5 optimal: 4 a + 4 <= 0; value: 4 d -4*v0 -1*v2 + 6*v3 + 17 = 0; value: 0 a -28 <= 0; value: -28 d 11/6*v0 -22/3 = 0; value: 0 d -1*v1 -2*v3 + 2 = 0; value: 0 d -7*v0 + v2 + 27 = 0; value: 0 0: 1 2 5 3 1: 4 2: 1 2 5 3 3: 1 2 3 4 5 0: 4 -> 4 1: 2 -> 2 2: 1 -> 1 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 -3*v2 -3*v3 + 16 = 0; value: 0 a -1*v0 + 4 = 0; value: 0 a -1*v0 + 5*v2 -2*v3 -1 <= 0; value: 0 a -3*v1 + 3*v2 -4 <= 0; value: -1 a v0 -4*v3 + 3 <= 0; value: -13 0: 2 3 5 1: 1 4 2: 1 3 4 3: 1 3 5 optimal: 66/13 a + 66/13 <= 0; value: 66/13 d 4*v1 -3*v2 -3*v3 + 16 = 0; value: 0 d -1*v0 + 4 = 0; value: 0 d -1*v0 + 5*v2 -2*v3 -1 <= 0; value: 0 d 9/8*v0 -39/8*v2 + 73/8 <= 0; value: 0 a -427/39 <= 0; value: -427/39 0: 2 3 5 4 1: 1 4 2: 1 3 4 5 3: 1 3 5 4 0: 4 -> 4 1: 2 -> 19/13 2: 3 -> 109/39 3: 5 -> 175/39 a 2*v0 -2*v1 <= 0; value: 6 a -4*v1 -6*v2 -1*v3 + 14 = 0; value: 0 a v3 <= 0; value: 0 a -1*v3 <= 0; value: 0 a 2*v2 -3 < 0; value: -1 a 5*v0 -2*v2 -54 < 0; value: -31 0: 5 1: 1 2: 1 4 5 3: 1 2 3 optimal: (203/10 -e*1) a + 203/10 < 0; value: 203/10 d -4*v1 -6*v2 -1*v3 + 14 = 0; value: 0 d v3 <= 0; value: 0 a <= 0; value: 0 d 2*v2 -3 < 0; value: -1/2 d 5*v0 -57 < 0; value: -5 0: 5 1: 1 2: 1 4 5 3: 1 2 3 0: 5 -> 52/5 1: 2 -> 13/8 2: 1 -> 5/4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 3*v2 -29 <= 0; value: -17 a v0 + 3*v2 -6*v3 -5 = 0; value: 0 a v0 + 4*v1 -21 = 0; value: 0 a -2*v0 + v2 -2*v3 -8 <= 0; value: -18 a -3*v1 + 4 < 0; value: -8 0: 2 3 4 1: 3 5 2: 1 2 4 3: 2 4 optimal: (86/3 -e*1) a + 86/3 < 0; value: 86/3 a 3*v2 -29 <= 0; value: -17 d v0 + 3*v2 -6*v3 -5 = 0; value: 0 d v0 + 4*v1 -21 = 0; value: 0 a -386/9 < 0; value: -386/9 d -9/4*v2 + 9/2*v3 -8 < 0; value: -4 0: 2 3 4 5 1: 3 5 2: 1 2 4 5 3: 2 4 5 0: 5 -> 31/3 1: 4 -> 8/3 2: 4 -> 4 3: 2 -> 26/9 a 2*v0 -2*v1 <= 0; value: 0 a -3*v0 -1*v1 + 6*v2 + 16 = 0; value: 0 a 2*v1 -17 <= 0; value: -9 a v0 + 3*v1 -16 = 0; value: 0 a 2*v0 + 2*v3 -19 < 0; value: -11 a 5*v1 + 5*v3 -49 < 0; value: -29 0: 1 3 4 1: 1 2 3 5 2: 1 3: 4 5 optimal: oo a -8/3*v3 + 44/3 < 0; value: 44/3 d -3*v0 -1*v1 + 6*v2 + 16 = 0; value: 0 a 2/3*v3 -38/3 < 0; value: -38/3 d -8*v0 + 18*v2 + 32 = 0; value: 0 d 2*v0 + 2*v3 -19 < 0; value: -2 a 20/3*v3 -229/6 < 0; value: -229/6 0: 1 3 4 2 5 1: 1 2 3 5 2: 1 3 2 5 3: 4 5 2 0: 4 -> 17/2 1: 4 -> 5/2 2: 0 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a v3 <= 0; value: 0 a -1*v2 <= 0; value: 0 a -2*v0 + 6*v3 + 1 < 0; value: -7 a v3 <= 0; value: 0 a -1*v1 = 0; value: 0 0: 3 1: 5 2: 2 3: 1 3 4 optimal: oo a 2*v0 <= 0; value: 8 a v3 <= 0; value: 0 a -1*v2 <= 0; value: 0 a -2*v0 + 6*v3 + 1 < 0; value: -7 a v3 <= 0; value: 0 d -1*v1 = 0; value: 0 0: 3 1: 5 2: 2 3: 1 3 4 0: 4 -> 4 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a v2 + v3 -12 < 0; value: -6 a v1 = 0; value: 0 a v1 -2*v2 + 8 = 0; value: 0 a 6*v0 + 5*v1 -2*v3 -28 <= 0; value: -14 a 4*v0 -5*v1 -1*v3 -10 = 0; value: 0 0: 4 5 1: 2 3 4 5 2: 1 3 3: 1 4 5 optimal: (9 -e*1) a + 9 < 0; value: 9 d v2 + v3 -12 < 0; value: -1 d v1 = 0; value: 0 d -2*v2 + 8 = 0; value: 0 a -17 < 0; value: -17 d 4*v0 -1*v3 -10 = 0; value: 0 0: 4 5 1: 2 3 4 5 2: 1 3 4 3: 1 4 5 0: 3 -> 17/4 1: 0 -> 0 2: 4 -> 4 3: 2 -> 7 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 -5*v3 -25 = 0; value: 0 a -2*v2 + v3 -8 < 0; value: -17 a -1*v2 + 5*v3 <= 0; value: 0 a v1 -9 < 0; value: -5 a v2 -5 = 0; value: 0 0: 1 1: 4 2: 2 3 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 -5*v3 -25 = 0; value: 0 a -2*v2 + v3 -8 < 0; value: -17 a -1*v2 + 5*v3 <= 0; value: 0 a v1 -9 < 0; value: -5 a v2 -5 = 0; value: 0 0: 1 1: 4 2: 2 3 5 3: 1 2 3 0: 5 -> 5 1: 4 -> 4 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 6*v0 -1*v2 -15 < 0; value: -4 a v3 -10 < 0; value: -5 a -5*v0 -4*v1 -3*v3 -27 <= 0; value: -56 a 4*v2 + v3 -25 <= 0; value: -16 a -2*v0 -1*v3 -1 <= 0; value: -10 0: 1 3 5 1: 3 2: 1 4 3: 2 3 4 5 optimal: (681/16 -e*1) a + 681/16 < 0; value: 681/16 d 6*v0 -1*v2 -15 < 0; value: -27/8 d v3 -10 < 0; value: -1 d -5*v0 -4*v1 -3*v3 -27 <= 0; value: 0 d 4*v2 -15 <= 0; value: 0 a -69/4 < 0; value: -69/4 0: 1 3 5 1: 3 2: 1 4 5 3: 2 3 4 5 0: 2 -> 41/16 1: 1 -> -1069/64 2: 1 -> 15/4 3: 5 -> 9 a 2*v0 -2*v1 <= 0; value: -8 a -5*v0 -5*v1 -1*v3 + 15 <= 0; value: -5 a -3*v2 + 2*v3 <= 0; value: 0 a -2*v0 + 3*v3 <= 0; value: 0 a -6*v1 + 5*v3 + 24 = 0; value: 0 a -6*v0 + 5*v1 + 5*v2 -38 <= 0; value: -18 0: 1 3 5 1: 1 4 5 2: 2 5 3: 1 2 3 4 optimal: oo a 112/31*v0 -198/31 <= 0; value: -198/31 d -5*v0 -31/6*v3 -5 <= 0; value: 0 a -60/31*v0 -3*v2 -60/31 <= 0; value: -60/31 a -152/31*v0 -90/31 <= 0; value: -90/31 d -6*v1 + 5*v3 + 24 = 0; value: 0 a -311/31*v0 + 5*v2 -683/31 <= 0; value: -683/31 0: 1 3 5 2 1: 1 4 5 2: 2 5 3: 1 2 3 4 5 0: 0 -> 0 1: 4 -> 99/31 2: 0 -> 0 3: 0 -> -30/31 a 2*v0 -2*v1 <= 0; value: -8 a -2*v1 -3*v2 + 3 <= 0; value: -13 a v1 + 6*v2 -40 <= 0; value: -23 a 6*v0 + 5*v1 -31 = 0; value: 0 a -1*v1 -3*v2 + 11 = 0; value: 0 a 5*v1 -4*v2 -1*v3 -26 <= 0; value: -11 0: 3 1: 1 2 3 4 5 2: 1 2 4 5 3: 5 optimal: 119/3 a + 119/3 <= 0; value: 119/3 d 3*v2 -19 <= 0; value: 0 a -10 <= 0; value: -10 d 6*v0 + 5*v1 -31 = 0; value: 0 d 6/5*v0 -3*v2 + 24/5 = 0; value: 0 a -1*v3 -274/3 <= 0; value: -280/3 0: 3 1 4 2 5 1: 1 2 3 4 5 2: 1 2 4 5 3: 5 0: 1 -> 71/6 1: 5 -> -8 2: 2 -> 19/3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -5*v0 + 2*v2 + 2*v3 -5 < 0; value: -15 a -4*v2 + 4*v3 -1 <= 0; value: -5 a -1*v0 -6*v1 -1*v2 + 13 = 0; value: 0 a 2*v0 + v1 -9 = 0; value: 0 a -2*v1 + v3 <= 0; value: 0 0: 1 3 4 1: 3 4 5 2: 1 2 3 3: 1 2 5 optimal: (16 -e*1) a + 16 < 0; value: 16 d -9/4*v3 -21/2 < 0; value: -9/4 a -105 < 0; value: -105 d -1*v0 -6*v1 -1*v2 + 13 = 0; value: 0 d 11/6*v0 -1/6*v2 -41/6 = 0; value: 0 d 4*v0 + v3 -18 <= 0; value: 0 0: 1 3 4 5 2 1: 3 4 5 2: 1 2 3 4 5 3: 1 2 5 0: 4 -> 65/12 1: 1 -> -11/6 2: 3 -> 223/12 3: 2 -> -11/3 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 + 6*v1 -13 <= 0; value: -5 a -5*v1 + 2 < 0; value: -18 a 4*v0 + 6*v3 -69 <= 0; value: -41 a -1*v1 + 4 <= 0; value: 0 a 4*v1 -4*v2 + 5*v3 -19 < 0; value: -5 0: 1 3 1: 1 2 4 5 2: 5 3: 3 5 optimal: oo a -3*v3 + 53/2 <= 0; value: 41/2 a 6*v3 -58 <= 0; value: -46 a -18 < 0; value: -18 d 4*v0 + 6*v3 -69 <= 0; value: 0 d -1*v1 + 4 <= 0; value: 0 a -4*v2 + 5*v3 -3 < 0; value: -5 0: 1 3 1: 1 2 4 5 2: 5 3: 3 5 1 0: 4 -> 57/4 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 5*v2 -47 < 0; value: -27 a v0 -7 <= 0; value: -4 a 5*v3 -48 <= 0; value: -28 a -1*v0 + v1 -3*v2 + 9 < 0; value: -1 a -6*v1 -1*v3 -31 <= 0; value: -65 0: 2 4 1: 4 5 2: 1 4 3: 3 5 optimal: 413/15 a + 413/15 <= 0; value: 413/15 a 5*v2 -47 < 0; value: -27 d v0 -7 <= 0; value: 0 d 5*v3 -48 <= 0; value: 0 a -3*v2 -143/30 < 0; value: -503/30 d -6*v1 -1*v3 -31 <= 0; value: 0 0: 2 4 1: 4 5 2: 1 4 3: 3 5 4 0: 3 -> 7 1: 5 -> -203/30 2: 4 -> 4 3: 4 -> 48/5 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 + 6*v1 -5*v2 + 1 <= 0; value: 0 a -4*v1 -5*v2 -17 <= 0; value: -36 a -6*v1 + 3*v2 -8 <= 0; value: -5 a -3*v3 -1 <= 0; value: -16 a 6*v1 -3*v2 -6*v3 -17 <= 0; value: -50 0: 1 1: 1 2 3 5 2: 1 2 3 5 3: 4 5 optimal: oo a v0 + 37/6 <= 0; value: 61/6 d 2*v0 -2*v2 -7 <= 0; value: 0 a -7*v0 + 77/6 <= 0; value: -91/6 d -6*v1 + 3*v2 -8 <= 0; value: 0 a -3*v3 -1 <= 0; value: -16 a -6*v3 -25 <= 0; value: -55 0: 1 2 1: 1 2 3 5 2: 1 2 3 5 3: 4 5 0: 4 -> 4 1: 1 -> -13/12 2: 3 -> 1/2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 + 3*v2 + 1 = 0; value: 0 a -2*v0 + v2 + 3 <= 0; value: -2 a -3*v0 -4*v3 + 9 < 0; value: -12 a -1*v0 + v2 + 2 = 0; value: 0 a 5*v1 -2*v2 -8 <= 0; value: 0 0: 2 3 4 1: 1 5 2: 1 2 4 5 3: 3 optimal: 4 a + 4 <= 0; value: 4 d -2*v1 + 3*v2 + 1 = 0; value: 0 d -1*v0 + 1 <= 0; value: 0 a -4*v3 + 6 < 0; value: -6 d -1*v0 + v2 + 2 = 0; value: 0 a -11 <= 0; value: -11 0: 2 3 4 5 1: 1 5 2: 1 2 4 5 3: 3 0: 3 -> 1 1: 2 -> -1 2: 1 -> -1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + v2 -1*v3 + 2 = 0; value: 0 a 3*v0 + 6*v2 -46 <= 0; value: -13 a 4*v1 + 3*v2 -62 <= 0; value: -41 a 5*v0 -5*v1 + 5*v2 -66 <= 0; value: -41 a 5*v0 + v1 + 5*v3 -113 <= 0; value: -75 0: 2 4 5 1: 1 3 4 5 2: 1 2 3 4 3: 1 5 optimal: oo a -2*v2 + 132/5 <= 0; value: 102/5 d -1*v1 + v2 -1*v3 + 2 = 0; value: 0 a 3*v0 + 6*v2 -46 <= 0; value: -13 a 4*v0 + 7*v2 -574/5 <= 0; value: -369/5 d 5*v0 + 5*v3 -76 <= 0; value: 0 a v0 + v2 -251/5 <= 0; value: -211/5 0: 2 4 5 3 1: 1 3 4 5 2: 1 2 3 4 5 3: 1 5 4 3 0: 5 -> 5 1: 3 -> -26/5 2: 3 -> 3 3: 2 -> 51/5 a 2*v0 -2*v1 <= 0; value: 8 a -6*v0 + v1 -14 < 0; value: -38 a v2 <= 0; value: 0 a -2*v1 -3*v3 -4 < 0; value: -10 a -1*v3 + 2 <= 0; value: 0 a v0 -6*v2 -7 <= 0; value: -3 0: 1 5 1: 1 3 2: 2 5 3: 3 4 optimal: oo a 2*v0 + 3*v3 + 4 < 0; value: 18 a -6*v0 -3/2*v3 -16 < 0; value: -43 a v2 <= 0; value: 0 d -2*v1 -3*v3 -4 < 0; value: -2 a -1*v3 + 2 <= 0; value: 0 a v0 -6*v2 -7 <= 0; value: -3 0: 1 5 1: 1 3 2: 2 5 3: 3 4 1 0: 4 -> 4 1: 0 -> -4 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 5*v2 -6 < 0; value: -1 a v3 -3 < 0; value: -1 a -5*v1 -4*v3 -20 <= 0; value: -43 a -3*v0 + 2*v1 + v3 <= 0; value: -1 a 2*v1 -2*v2 -5*v3 + 6 = 0; value: 0 0: 4 1: 3 4 5 2: 1 5 3: 2 3 4 5 optimal: oo a 2*v0 + 64/5 < 0; value: 94/5 a -121/2 < 0; value: -121/2 d -10/33*v2 -109/33 < 0; value: -10/33 d -5*v2 -33/2*v3 -5 <= 0; value: 0 a -3*v0 -49/5 < 0; value: -94/5 d 2*v1 -2*v2 -5*v3 + 6 = 0; value: 0 0: 4 1: 3 4 5 2: 1 5 3 4 2 3: 2 3 4 5 0: 3 -> 3 1: 3 -> -1016/165 2: 1 -> -99/10 3: 2 -> 89/33 a 2*v0 -2*v1 <= 0; value: 10 a -2*v0 + 4*v3 -29 <= 0; value: -19 a -3*v0 -2*v1 -3 <= 0; value: -18 a -2*v1 -6*v2 + 3 <= 0; value: -15 a -1*v0 + 3*v1 + 4 < 0; value: -1 a 3*v0 -3*v1 -4*v3 -2 <= 0; value: -7 0: 1 2 4 5 1: 2 3 4 5 2: 3 3: 1 5 optimal: oo a 4/3*v0 + 62/3 <= 0; value: 82/3 d v0 + 9*v2 -71/2 <= 0; value: 0 a -11/3*v0 + 53/3 <= 0; value: -2/3 d -2*v0 -6*v2 + 8/3*v3 + 13/3 <= 0; value: 0 a -27 < 0; value: -27 d 3*v0 -3*v1 -4*v3 -2 <= 0; value: 0 0: 1 2 4 5 3 1: 2 3 4 5 2: 3 2 1 4 3: 1 5 2 3 4 0: 5 -> 5 1: 0 -> -26/3 2: 3 -> 61/18 3: 5 -> 39/4 a 2*v0 -2*v1 <= 0; value: 2 a v0 + 2*v3 -3 <= 0; value: -1 a 2*v1 + 2*v3 -5 <= 0; value: -3 a 2*v0 + 6*v3 -7 <= 0; value: -3 a -5*v1 + v2 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 0: 1 3 5 1: 2 4 2: 4 3: 1 2 3 optimal: oo a 2*v0 -2/5*v2 -4/5 <= 0; value: 2 a v0 + 2*v3 -3 <= 0; value: -1 a 2/5*v2 + 2*v3 -21/5 <= 0; value: -3 a 2*v0 + 6*v3 -7 <= 0; value: -3 d -5*v1 + v2 + 2 = 0; value: 0 a -1*v0 + 2 = 0; value: 0 0: 1 3 5 1: 2 4 2: 4 2 3: 1 2 3 0: 2 -> 2 1: 1 -> 1 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a -1*v0 -2*v2 + 15 = 0; value: 0 a 2*v1 -1*v3 + 1 <= 0; value: -2 a -1*v2 + v3 + 1 <= 0; value: -1 a v3 -3 = 0; value: 0 0: 1 1: 2 2: 1 3 3: 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a -1*v0 -2*v2 + 15 = 0; value: 0 a 2*v1 -1*v3 + 1 <= 0; value: -2 a -1*v2 + v3 + 1 <= 0; value: -1 a v3 -3 = 0; value: 0 0: 1 1: 2 2: 1 3 3: 2 3 4 0: 5 -> 5 1: 0 -> 0 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 -4*v1 -3*v2 -4 <= 0; value: -23 a 6*v0 + 5*v1 + 2*v3 -39 = 0; value: 0 a v0 -2*v2 + 4 = 0; value: 0 a 2*v1 + v2 -20 < 0; value: -7 a -5*v0 + 3*v2 + 1 <= 0; value: 0 0: 1 2 3 5 1: 1 2 4 2: 1 3 4 5 3: 2 optimal: (68/9 -e*1) a + 68/9 < 0; value: 68/9 d 49/5*v0 -3*v2 + 8/5*v3 -176/5 <= 0; value: 0 d 6*v0 + 5*v1 + 2*v3 -39 = 0; value: 0 d v0 -2*v2 + 4 = 0; value: 0 d 9/4*v0 -23 < 0; value: -9/4 a -259/9 < 0; value: -259/9 0: 1 2 3 5 4 1: 1 2 4 2: 1 3 4 5 3: 2 1 4 0: 2 -> 83/9 1: 5 -> 401/72 2: 3 -> 119/18 3: 1 -> -3181/144 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + 2*v2 + v3 -36 <= 0; value: -20 a -1*v0 + 3*v2 -5*v3 -2 < 0; value: -1 a 2*v1 + 3*v2 -37 < 0; value: -18 a -1*v1 + v3 <= 0; value: 0 a -4*v1 -1*v2 + 3 <= 0; value: -10 0: 2 1: 1 3 4 5 2: 1 2 3 5 3: 1 2 4 optimal: (574/5 -e*1) a + 574/5 < 0; value: 574/5 a -16 <= 0; value: -16 d -1*v0 + 3*v2 -5*v3 -2 < 0; value: -5 d 10/17*v0 -546/17 < 0; value: -10/17 d -1*v1 + v3 <= 0; value: 0 d 4/5*v0 -17/5*v2 + 23/5 <= 0; value: 0 0: 2 5 1 3 1: 1 3 4 5 2: 1 2 3 5 3: 1 2 4 5 3 0: 4 -> 268/5 1: 2 -> -148/85 2: 5 -> 1187/85 3: 2 -> -148/85 a 2*v0 -2*v1 <= 0; value: -8 a 2*v2 + v3 -9 <= 0; value: -4 a -5*v1 + 6*v2 -6*v3 + 19 = 0; value: 0 a v1 -5 = 0; value: 0 a 5*v2 -1*v3 -22 <= 0; value: -13 a 6*v0 + 2*v2 + v3 -29 <= 0; value: -18 0: 5 1: 2 3 2: 1 2 4 5 3: 1 2 4 5 optimal: oo a -1*v2 <= 0; value: -2 a 3*v2 -10 <= 0; value: -4 d -5*v1 + 6*v2 -6*v3 + 19 = 0; value: 0 d 6/5*v2 -6/5*v3 -6/5 = 0; value: 0 a 4*v2 -21 <= 0; value: -13 d 6*v0 + 3*v2 -30 <= 0; value: 0 0: 5 1: 2 3 2: 1 2 4 5 3 3: 1 2 4 5 3 0: 1 -> 4 1: 5 -> 5 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 + v3 -16 <= 0; value: -8 a -3*v0 + 4*v1 + 4*v2 -38 < 0; value: -21 a -4*v0 + v1 -4*v2 -18 <= 0; value: -55 a v1 -1*v2 -4*v3 -8 < 0; value: -18 a v1 -2*v2 + 2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2 3 4 5 2: 2 3 4 5 3: 1 4 5 optimal: oo a 2*v0 -4*v2 + 4*v3 + 6 <= 0; value: 4 a 4*v2 -3*v3 -22 <= 0; value: -8 a -3*v0 + 12*v2 -8*v3 -50 < 0; value: -21 a -4*v0 -2*v2 -2*v3 -21 <= 0; value: -55 a v2 -6*v3 -11 < 0; value: -18 d v1 -2*v2 + 2*v3 + 3 = 0; value: 0 0: 2 3 1: 1 2 3 4 5 2: 2 3 4 5 1 3: 1 4 5 2 3 0: 5 -> 5 1: 3 -> 3 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -10 a -3*v0 + 5*v3 -28 <= 0; value: -18 a -1*v0 <= 0; value: 0 a 3*v0 + 3*v1 -34 < 0; value: -19 a v2 -1*v3 -1 < 0; value: -3 a 5*v2 + 4*v3 -21 <= 0; value: -13 0: 1 2 3 1: 3 2: 4 5 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -10 a -3*v0 + 5*v3 -28 <= 0; value: -18 a -1*v0 <= 0; value: 0 a 3*v0 + 3*v1 -34 < 0; value: -19 a v2 -1*v3 -1 < 0; value: -3 a 5*v2 + 4*v3 -21 <= 0; value: -13 0: 1 2 3 1: 3 2: 4 5 3: 1 4 5 0: 0 -> 0 1: 5 -> 5 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a v1 -2 < 0; value: -1 a 5*v1 -2*v3 -7 <= 0; value: -2 a -3*v0 -2*v1 < 0; value: -2 a -3*v1 -6*v2 + 4*v3 + 31 <= 0; value: -2 a 2*v1 -3*v3 -4 <= 0; value: -2 0: 3 1: 1 2 3 4 5 2: 4 3: 2 4 5 optimal: oo a 60*v2 -770/3 < 0; value: 130/3 a -18*v2 + 75 < 0; value: -15 a -66*v2 + 278 < 0; value: -52 d -3*v0 + 4*v2 -8/3*v3 -62/3 < 0; value: -8/3 d -3*v1 -6*v2 + 4*v3 + 31 <= 0; value: 0 d 3/8*v0 -9/2*v2 + 77/4 <= 0; value: 0 0: 3 5 2 1 1: 1 2 3 4 5 2: 4 3 1 2 5 1 3: 2 4 5 3 1 0: 0 -> 26/3 1: 1 -> -35/3 2: 5 -> 5 3: 0 -> -9 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 + 5*v1 + 6*v2 -100 <= 0; value: -45 a -4*v0 -1*v1 + 4 < 0; value: -17 a v0 -5*v2 + 3*v3 + 1 < 0; value: -1 a 4*v0 -23 <= 0; value: -7 a 2*v0 -6*v3 -3 < 0; value: -13 0: 1 2 3 4 5 1: 1 2 2: 1 3 3: 3 5 optimal: (99/2 -e*1) a + 99/2 < 0; value: 99/2 a 6*v2 -711/4 < 0; value: -639/4 d -4*v0 -1*v1 + 4 < 0; value: -1 d v0 -5*v2 + 3*v3 + 1 < 0; value: -7/8 d 20*v2 -12*v3 -27 <= 0; value: 0 a -10*v2 + 22 <= 0; value: -8 0: 1 2 3 4 5 1: 1 2 2: 1 3 4 5 3: 3 5 4 1 0: 4 -> 39/8 1: 5 -> -29/2 2: 3 -> 3 3: 3 -> 11/4 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -5 <= 0; value: -11 a 2*v1 -17 < 0; value: -11 a 2*v0 -5*v3 -3 <= 0; value: -7 a -6*v0 + 3*v2 + 1 <= 0; value: -17 a 3*v3 -11 < 0; value: -5 0: 1 3 4 1: 2 2: 4 3: 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -5 <= 0; value: -11 a 2*v1 -17 < 0; value: -11 a 2*v0 -5*v3 -3 <= 0; value: -7 a -6*v0 + 3*v2 + 1 <= 0; value: -17 a 3*v3 -11 < 0; value: -5 0: 1 3 4 1: 2 2: 4 3: 3 5 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 -4*v3 -3 < 0; value: -18 a 2*v0 -15 <= 0; value: -5 a 4*v1 -4*v2 -3*v3 -8 = 0; value: 0 a v0 -6*v2 -6*v3 -6 < 0; value: -1 a 3*v0 + v2 -15 = 0; value: 0 0: 1 2 4 5 1: 3 2: 3 4 5 3: 1 3 4 optimal: (115/8 -e*1) a + 115/8 < 0; value: 115/8 a -113/2 <= 0; value: -113/2 d 2*v0 -15 <= 0; value: 0 d 4*v1 -4*v2 -3*v3 -8 = 0; value: 0 d v0 -6*v2 -6*v3 -6 < 0; value: -6 d 3*v0 + v2 -15 = 0; value: 0 0: 1 2 4 5 1: 3 2: 3 4 5 1 3: 1 3 4 0: 5 -> 15/2 1: 2 -> 17/16 2: 0 -> -15/2 3: 0 -> 35/4 a 2*v0 -2*v1 <= 0; value: 2 a 3*v0 -4*v2 -5*v3 + 1 <= 0; value: -8 a 3*v0 -17 <= 0; value: -2 a -1*v0 + 2*v2 + 3*v3 -20 <= 0; value: -11 a -5*v0 + 4*v2 -1*v3 + 25 = 0; value: 0 a -2*v0 + 6*v1 -1*v3 -10 = 0; value: 0 0: 1 2 3 4 5 1: 5 2: 1 3 4 3: 1 3 4 5 optimal: 92/27 a + 92/27 <= 0; value: 92/27 d 28*v0 -24*v2 -124 <= 0; value: 0 d 3*v0 -17 <= 0; value: 0 a -139/9 <= 0; value: -139/9 d -5*v0 + 4*v2 -1*v3 + 25 = 0; value: 0 d -2*v0 + 6*v1 -1*v3 -10 = 0; value: 0 0: 1 2 3 4 5 1: 5 2: 1 3 4 3: 1 3 4 5 0: 5 -> 17/3 1: 4 -> 107/27 2: 1 -> 13/9 3: 4 -> 22/9 a 2*v0 -2*v1 <= 0; value: 4 a -4*v1 -2*v2 + 3 < 0; value: -19 a 4*v0 -1*v1 -17 = 0; value: 0 a -1*v2 -2*v3 + 7 <= 0; value: 0 a v0 + 6*v1 -45 <= 0; value: -22 a 4*v2 + v3 -33 < 0; value: -12 0: 2 4 1: 1 2 4 2: 1 3 5 3: 3 5 optimal: (767/56 -e*1) a + 767/56 < 0; value: 767/56 d -16*v0 -2*v2 + 71 < 0; value: -82/7 d 4*v0 -1*v1 -17 = 0; value: 0 d -7/4*v3 -5/4 < 0; value: -3/2 a -6989/112 < 0; value: -6989/112 d 4*v2 + v3 -33 < 0; value: -4 0: 2 4 1 1: 1 2 4 2: 1 3 5 4 3: 3 5 4 0: 5 -> 239/56 1: 3 -> 1/14 2: 5 -> 101/14 3: 1 -> 1/7 a 2*v0 -2*v1 <= 0; value: -4 a -6*v1 -1*v2 -4 < 0; value: -36 a -5*v0 + 5*v1 + 2*v2 -14 = 0; value: 0 a 3*v1 -35 < 0; value: -20 a -1*v0 + 2 <= 0; value: -1 a v0 -3 = 0; value: 0 0: 2 4 5 1: 1 2 3 2: 1 2 3: optimal: (116/7 -e*1) a + 116/7 < 0; value: 116/7 d -6*v0 + 7/5*v2 -104/5 < 0; value: -7/5 d -5*v0 + 5*v1 + 2*v2 -14 = 0; value: 0 a -356/7 < 0; value: -356/7 a -1 <= 0; value: -1 d v0 -3 = 0; value: 0 0: 2 4 5 1 3 1: 1 2 3 2: 1 2 3 3: 0: 3 -> 3 1: 5 -> -171/35 2: 2 -> 187/7 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 4*v2 -11 = 0; value: 0 a -4*v0 + 5*v3 -16 <= 0; value: -36 a 4*v1 -3*v2 -8 = 0; value: 0 a -1*v0 + v1 <= 0; value: 0 a 5*v1 + v2 -68 <= 0; value: -39 0: 1 2 4 1: 3 4 5 2: 1 3 5 3: 2 optimal: 1014/19 a + 1014/19 <= 0; value: 1014/19 d -1*v0 + 4*v2 -11 = 0; value: 0 a 5*v3 -3180/19 <= 0; value: -3180/19 d 4*v1 -3*v2 -8 = 0; value: 0 a -507/19 <= 0; value: -507/19 d 19/16*v0 -719/16 <= 0; value: 0 0: 1 2 4 5 1: 3 4 5 2: 1 3 5 4 3: 2 0: 5 -> 719/19 1: 5 -> 212/19 2: 4 -> 232/19 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a 5*v0 + 4*v2 -26 <= 0; value: -14 a 6*v2 + 5*v3 -94 < 0; value: -56 a -6*v1 -1*v3 + 2 < 0; value: -20 a v1 -3 = 0; value: 0 a 5*v0 -1*v1 + 3*v2 -6 <= 0; value: 0 0: 1 5 1: 3 4 5 2: 1 2 5 3: 2 3 optimal: oo a -6/5*v2 -12/5 <= 0; value: -6 a v2 -17 <= 0; value: -14 a 6*v2 + 5*v3 -94 < 0; value: -56 a -1*v3 -16 < 0; value: -20 d v1 -3 = 0; value: 0 d 5*v0 + 3*v2 -9 <= 0; value: 0 0: 1 5 1: 3 4 5 2: 1 2 5 3: 2 3 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 3*v2 -6*v3 + 1 <= 0; value: -5 a 3*v0 -5*v2 + 6 <= 0; value: -2 a 5*v1 + 3*v2 + 6*v3 -74 <= 0; value: -34 a 3*v2 + 2*v3 -47 <= 0; value: -29 a -6*v0 -2*v1 -3*v3 -9 <= 0; value: -46 0: 2 5 1: 3 5 2: 1 2 3 4 3: 1 3 4 5 optimal: 1499/9 a + 1499/9 <= 0; value: 1499/9 d 36/5*v0 -628/5 <= 0; value: 0 d 3*v0 -5*v2 + 6 <= 0; value: 0 a -1993/6 <= 0; value: -1993/6 d 3*v2 + 2*v3 -47 <= 0; value: 0 d -6*v0 -2*v1 -3*v3 -9 <= 0; value: 0 0: 2 5 3 1 1: 3 5 2: 1 2 3 4 3: 1 3 4 5 0: 4 -> 157/9 1: 2 -> -395/6 2: 4 -> 35/3 3: 3 -> 6 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 + 4*v1 + 3*v3 -10 <= 0; value: 0 a -2*v1 -1*v3 + 12 = 0; value: 0 a -1*v1 -1 <= 0; value: -5 a -3*v2 + 2*v3 -3 < 0; value: -7 a -1*v0 <= 0; value: -3 0: 1 5 1: 1 2 3 2: 4 3: 1 2 4 optimal: (34/3 -e*1) a + 34/3 < 0; value: 34/3 d -6*v0 + v3 + 14 <= 0; value: 0 d -2*v1 -1*v3 + 12 = 0; value: 0 d 3/4*v2 -25/4 <= 0; value: 0 d 12*v0 -3*v2 -31 < 0; value: -10 a -14/3 < 0; value: -14/3 0: 1 5 4 3 1: 1 2 3 2: 4 3 5 3: 1 2 4 3 0: 3 -> 23/6 1: 4 -> 3/2 2: 4 -> 25/3 3: 4 -> 9 a 2*v0 -2*v1 <= 0; value: -4 a -1*v3 + 2 <= 0; value: 0 a v1 + v2 -13 <= 0; value: -4 a -5*v1 -2*v3 + 29 = 0; value: 0 a 5*v0 -21 <= 0; value: -6 a -5*v1 -2*v2 -7 <= 0; value: -40 0: 4 1: 2 3 5 2: 2 5 3: 1 3 optimal: 152/5 a + 152/5 <= 0; value: 152/5 a -40 <= 0; value: -40 d 3/5*v2 -72/5 <= 0; value: 0 d -5*v1 -2*v3 + 29 = 0; value: 0 d 5*v0 -21 <= 0; value: 0 d -2*v2 + 2*v3 -36 <= 0; value: 0 0: 4 1: 2 3 5 2: 2 5 1 3: 1 3 5 2 0: 3 -> 21/5 1: 5 -> -11 2: 4 -> 24 3: 2 -> 42 a 2*v0 -2*v1 <= 0; value: 4 a 4*v0 -4*v1 + 5*v2 -31 <= 0; value: -3 a -1*v1 -3*v2 + 8 <= 0; value: -6 a 6*v2 -3*v3 -13 <= 0; value: -4 a 6*v1 + v2 + 3*v3 -31 = 0; value: 0 a -3*v1 -1*v3 + 9 <= 0; value: -2 0: 1 1: 1 2 4 5 2: 1 2 3 4 3: 3 4 5 optimal: 321/22 a + 321/22 <= 0; value: 321/22 d 4*v0 + 17/3*v2 + 2*v3 -155/3 <= 0; value: 0 d -1*v0 -17/4*v2 + 63/4 <= 0; value: 0 d 44/17*v0 -625/17 <= 0; value: 0 d 6*v1 + v2 + 3*v3 -31 = 0; value: 0 a -268/33 <= 0; value: -268/33 0: 1 2 5 3 1: 1 2 4 5 2: 1 2 3 4 5 3: 3 4 5 2 1 0: 4 -> 625/44 1: 2 -> 76/11 2: 4 -> 4/11 3: 5 -> -119/33 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -1*v0 -5*v3 -5 <= 0; value: -22 a 3*v1 -3*v2 + 2*v3 -9 = 0; value: 0 a 5*v0 + v2 + 5*v3 -36 <= 0; value: -10 a -3*v0 -5*v1 + 5*v2 -9 <= 0; value: -20 0: 1 2 4 5 1: 3 5 2: 3 4 5 3: 2 3 4 optimal: 48 a + 48 <= 0; value: 48 d -1*v0 + 2 = 0; value: 0 a -52 <= 0; value: -52 d 3*v1 -3*v2 + 2*v3 -9 = 0; value: 0 d 5*v0 + v2 + 5*v3 -36 <= 0; value: 0 d -19/3*v0 -2/3*v2 <= 0; value: 0 0: 1 2 4 5 1: 3 5 2: 3 4 5 5 2 3: 2 3 4 5 0: 2 -> 2 1: 2 -> -22 2: 1 -> -19 3: 3 -> 9 a 2*v0 -2*v1 <= 0; value: 0 a -1*v3 + 3 = 0; value: 0 a 3*v0 + v1 -7 <= 0; value: -3 a -1*v1 -1*v2 + 1 < 0; value: -3 a -5*v1 + 4 < 0; value: -1 a 5*v0 + 6*v2 + v3 -29 <= 0; value: -3 0: 2 5 1: 2 3 4 2: 3 5 3: 1 5 optimal: (38/15 -e*1) a + 38/15 < 0; value: 38/15 d -1*v3 + 3 = 0; value: 0 d -18/5*v2 + 47/5 < 0; value: -7/10 a -217/90 <= 0; value: -217/90 d -5*v1 + 4 < 0; value: -1/2 d 5*v0 + 6*v2 + v3 -29 <= 0; value: 0 0: 2 5 1: 2 3 4 2: 3 5 2 3: 1 5 2 0: 1 -> 11/6 1: 1 -> 9/10 2: 3 -> 101/36 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -3*v1 + 4*v2 + 3*v3 <= 0; value: 0 a -1*v1 + v2 + 2 <= 0; value: 0 a -6*v1 + 5 <= 0; value: -7 a -4*v0 -6*v3 + 5 < 0; value: -11 a v1 -2 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 2 3: 1 4 optimal: oo a 2*v0 -4 <= 0; value: -2 d -3*v1 + 4*v2 + 3*v3 <= 0; value: 0 d -1/3*v2 -1*v3 + 2 <= 0; value: 0 a -7 <= 0; value: -7 a -4*v0 -7 < 0; value: -11 d v2 = 0; value: 0 0: 4 1: 1 2 3 5 2: 1 2 3 5 4 3: 1 4 2 3 5 0: 1 -> 1 1: 2 -> 2 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a v2 -3*v3 + 8 <= 0; value: -7 a -6*v1 + 5*v2 + 4*v3 -20 = 0; value: 0 a -4*v2 -1*v3 + 4 <= 0; value: -1 a -1*v1 <= 0; value: 0 a 6*v0 + v2 -36 <= 0; value: -18 0: 5 1: 2 4 2: 1 2 3 5 3: 1 2 3 optimal: 400/33 a + 400/33 <= 0; value: 400/33 a -96/11 <= 0; value: -96/11 d -6*v1 + 5*v2 + 4*v3 -20 = 0; value: 0 d -11/4*v2 -1 <= 0; value: 0 d -5/6*v2 -2/3*v3 + 10/3 <= 0; value: 0 d 6*v0 + v2 -36 <= 0; value: 0 0: 5 1: 2 4 2: 1 2 3 5 4 3: 1 2 3 4 0: 3 -> 200/33 1: 0 -> 0 2: 0 -> -4/11 3: 5 -> 60/11 a 2*v0 -2*v1 <= 0; value: -8 a -1*v1 -6*v2 + 11 = 0; value: 0 a v2 -3*v3 + 14 = 0; value: 0 a -2*v1 -1*v3 + 8 <= 0; value: -7 a 5*v2 -14 < 0; value: -9 a 4*v1 -3*v2 -47 < 0; value: -30 0: 1: 1 3 5 2: 1 2 4 5 3: 2 3 optimal: oo a 2*v0 -14/5 <= 0; value: -4/5 d -1*v1 -6*v2 + 11 = 0; value: 0 d v2 -3*v3 + 14 = 0; value: 0 d 35*v3 -182 <= 0; value: 0 a -6 < 0; value: -6 a -231/5 < 0; value: -231/5 0: 1: 1 3 5 2: 1 2 4 5 3 3: 2 3 4 5 0: 1 -> 1 1: 5 -> 7/5 2: 1 -> 8/5 3: 5 -> 26/5 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 + 1 = 0; value: 0 a -6*v0 + v1 + 3 = 0; value: 0 a -5*v0 + 5*v1 -11 <= 0; value: -1 a 4*v2 -3*v3 -16 <= 0; value: -5 a -2*v1 + 2*v2 -11 <= 0; value: -7 0: 1 2 3 1: 2 3 5 2: 4 5 3: 4 optimal: -4 a -4 <= 0; value: -4 d -1*v0 + 1 = 0; value: 0 d -6*v0 + v1 + 3 = 0; value: 0 a -1 <= 0; value: -1 a 4*v2 -3*v3 -16 <= 0; value: -5 a 2*v2 -17 <= 0; value: -7 0: 1 2 3 5 1: 2 3 5 2: 4 5 3: 4 0: 1 -> 1 1: 3 -> 3 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -1*v1 + 1 = 0; value: 0 a 5*v1 -1*v2 + 2*v3 -11 <= 0; value: -3 a -2*v1 + v2 <= 0; value: 0 a -4*v1 -1*v2 -6*v3 + 6 <= 0; value: -18 a -1*v1 <= 0; value: 0 0: 1 1: 1 2 3 4 5 2: 2 3 4 3: 2 4 optimal: 2 a + 2 <= 0; value: 2 d -1*v0 -1*v1 + 1 = 0; value: 0 a 2*v3 -11 <= 0; value: -3 d 2*v0 + v2 -2 <= 0; value: 0 a -6*v3 + 6 <= 0; value: -18 d -1/2*v2 <= 0; value: 0 0: 1 3 4 5 2 1: 1 2 3 4 5 2: 2 3 4 5 3: 2 4 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -3*v0 -1*v3 -2 < 0; value: -20 a -4*v1 -1*v2 + 3*v3 -1 <= 0; value: -13 a -3*v0 + 2*v2 -3*v3 + 14 = 0; value: 0 a -1*v0 + 4*v1 -5*v2 -7 <= 0; value: -21 a 3*v3 -16 <= 0; value: -7 0: 1 3 4 1: 2 4 2: 2 3 4 3: 1 2 3 5 optimal: oo a 4*v0 -29/4 <= 0; value: 51/4 a -4/3*v0 -23/3 < 0; value: -43/3 d -4*v1 -1*v2 + 3*v3 -1 <= 0; value: 0 d -3*v0 + 2*v2 -3*v3 + 14 = 0; value: 0 d -4*v0 -4*v2 + 6 <= 0; value: 0 a -5*v0 + 1 <= 0; value: -24 0: 1 3 4 5 1: 2 4 2: 2 3 4 1 5 3: 1 2 3 5 4 0: 5 -> 5 1: 4 -> -11/8 2: 5 -> -7/2 3: 3 -> -8/3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v1 + v2 + 3 = 0; value: 0 a v0 + 3*v1 + 2*v3 -24 <= 0; value: 0 a 2*v1 -4*v2 + v3 -6 <= 0; value: -2 a v0 -9 <= 0; value: -4 a -3*v0 + 5*v2 -3 < 0; value: -8 0: 2 4 5 1: 1 2 3 2: 1 3 5 3: 2 3 optimal: oo a 2*v0 -1*v3 -6 <= 0; value: 2 d -1*v1 + v2 + 3 = 0; value: 0 a v0 + 7/2*v3 -15 <= 0; value: -3 d -2*v2 + v3 <= 0; value: 0 a v0 -9 <= 0; value: -4 a -3*v0 + 5/2*v3 -3 < 0; value: -13 0: 2 4 5 1: 1 2 3 2: 1 3 5 2 3: 2 3 5 0: 5 -> 5 1: 5 -> 4 2: 2 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a 2*v0 + 5*v2 -41 < 0; value: -18 a 2*v0 + 4*v3 -45 < 0; value: -25 a 5*v0 -4*v3 -14 <= 0; value: -6 a -1*v1 + 2*v2 -5 = 0; value: 0 a -5*v2 -8 < 0; value: -23 0: 1 2 3 1: 4 2: 1 4 5 3: 2 3 optimal: (1164/35 -e*1) a + 1164/35 < 0; value: 1164/35 a -225/7 <= 0; value: -225/7 d 28/5*v3 -197/5 < 0; value: -28/5 d 5*v0 -4*v3 -14 <= 0; value: 0 d -1*v1 + 2*v2 -5 = 0; value: 0 d -5*v2 -8 < 0; value: -5 0: 1 2 3 1: 4 2: 1 4 5 3: 2 3 1 0: 4 -> 267/35 1: 1 -> -31/5 2: 3 -> -3/5 3: 3 -> 169/28 a 2*v0 -2*v1 <= 0; value: 0 a 2*v2 -25 < 0; value: -15 a -5*v0 + 3*v1 + 6*v2 -57 <= 0; value: -33 a -1*v2 + 5 = 0; value: 0 a v1 -1*v3 -3 = 0; value: 0 a 3*v1 -5*v2 -13 <= 0; value: -29 0: 2 1: 2 4 5 2: 1 2 3 5 3: 4 optimal: oo a 2*v0 -2*v3 -6 <= 0; value: 0 a 2*v2 -25 < 0; value: -15 a -5*v0 + 6*v2 + 3*v3 -48 <= 0; value: -33 a -1*v2 + 5 = 0; value: 0 d v1 -1*v3 -3 = 0; value: 0 a -5*v2 + 3*v3 -4 <= 0; value: -29 0: 2 1: 2 4 5 2: 1 2 3 5 3: 4 2 5 0: 3 -> 3 1: 3 -> 3 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a v0 -5 = 0; value: 0 a v0 -3*v3 + 10 <= 0; value: 0 a -4*v0 -6*v1 -5*v2 + 25 = 0; value: 0 a -5*v2 + v3 <= 0; value: 0 a -3*v0 -3*v1 + 2*v3 -4 < 0; value: -9 0: 1 2 3 5 1: 3 5 2: 3 4 3: 2 4 5 optimal: (16 -e*1) a + 16 < 0; value: 16 d v0 -5 = 0; value: 0 d v0 -3*v3 + 10 <= 0; value: 0 d -4*v0 -6*v1 -5*v2 + 25 = 0; value: 0 a -18 < 0; value: -18 d -1*v0 + 5/2*v2 + 2*v3 -33/2 < 0; value: -5/2 0: 1 2 3 5 4 1: 3 5 2: 3 4 5 3: 2 4 5 0: 5 -> 5 1: 0 -> -13/6 2: 1 -> 18/5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -3*v2 -5 <= 0; value: -20 a -3*v1 + v2 -3*v3 -8 < 0; value: -24 a -4*v0 -5*v2 -3*v3 + 39 = 0; value: 0 a -4*v2 -1*v3 -12 <= 0; value: -34 a -1*v1 -6*v2 + 2*v3 + 17 < 0; value: -14 0: 3 1: 2 5 2: 1 2 3 4 5 3: 2 3 4 5 optimal: (1289/55 -e*1) a + 1289/55 < 0; value: 1289/55 a -128/55 <= 0; value: -128/55 d -3*v1 + v2 -3*v3 -8 < 0; value: -39/55 d -4*v0 -5*v2 -3*v3 + 39 = 0; value: 0 d 110/51*v0 -1891/51 <= 0; value: 0 d -4*v0 -34/3*v2 + 176/3 <= 0; value: 0 0: 3 5 4 1 1: 2 5 2: 1 2 3 4 5 3: 2 3 4 5 0: 2 -> 1891/110 1: 5 -> 314/55 2: 5 -> -49/55 3: 2 -> -464/55 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 6*v2 -14 = 0; value: 0 a v0 -3*v1 -6*v2 + 17 = 0; value: 0 a 6*v0 -2*v2 -23 <= 0; value: -5 a -3*v1 -4*v2 + 15 = 0; value: 0 a 4*v2 -3*v3 -6 <= 0; value: -3 0: 1 2 3 1: 2 4 2: 1 2 3 4 5 3: 5 optimal: 6 a + 6 <= 0; value: 6 d -1*v0 + 6*v2 -14 = 0; value: 0 d v0 -3*v1 -6*v2 + 17 = 0; value: 0 a -5 <= 0; value: -5 d -2/3*v0 + 8/3 = 0; value: 0 a -3*v3 + 6 <= 0; value: -3 0: 1 2 3 4 5 1: 2 4 2: 1 2 3 4 5 3: 5 0: 4 -> 4 1: 1 -> 1 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + v1 <= 0; value: 0 a -5*v0 + 4*v3 <= 0; value: 0 a -1*v0 -1*v1 <= 0; value: 0 a -1*v0 + v1 + v3 <= 0; value: 0 a v0 <= 0; value: 0 0: 1 2 3 4 5 1: 1 3 4 2: 3: 2 4 optimal: 0 a <= 0; value: 0 a <= 0; value: 0 a 4*v3 <= 0; value: 0 d -1*v0 -1*v1 <= 0; value: 0 a v3 <= 0; value: 0 d v0 <= 0; value: 0 0: 1 2 3 4 5 1: 1 3 4 2: 3: 2 4 0: 0 -> 0 1: 0 -> 0 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -3*v3 + 1 < 0; value: -2 a -5*v0 + 3*v3 -3 <= 0; value: -15 a -1*v0 -1*v2 -6 < 0; value: -13 a -2*v0 + 4*v1 + 3 <= 0; value: -3 a -4*v1 + v3 -2 < 0; value: -1 0: 2 3 4 1: 1 4 5 2: 3 3: 1 2 5 optimal: oo a 2*v0 + 1 < 0; value: 7 d -5/2*v3 < 0; value: -5/4 a -5*v0 -3 < 0; value: -18 a -1*v0 -1*v2 -6 < 0; value: -13 a -2*v0 + 1 < 0; value: -5 d -4*v1 + v3 -2 < 0; value: -3/4 0: 2 3 4 1: 1 4 5 2: 3 3: 1 2 5 4 0: 3 -> 3 1: 0 -> -3/16 2: 4 -> 4 3: 1 -> 1/2 a 2*v0 -2*v1 <= 0; value: -8 a 2*v1 + v2 -18 <= 0; value: -3 a v0 + 3*v2 + 3*v3 -44 <= 0; value: -28 a -4*v0 -1*v2 -4*v3 -7 <= 0; value: -16 a v0 -1 <= 0; value: 0 a 3*v2 -2*v3 -15 = 0; value: 0 0: 2 3 4 1: 1 2: 1 2 3 5 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a 2*v1 + v2 -18 <= 0; value: -3 a v0 + 3*v2 + 3*v3 -44 <= 0; value: -28 a -4*v0 -1*v2 -4*v3 -7 <= 0; value: -16 a v0 -1 <= 0; value: 0 a 3*v2 -2*v3 -15 = 0; value: 0 0: 2 3 4 1: 1 2: 1 2 3 5 3: 2 3 5 0: 1 -> 1 1: 5 -> 5 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -4 a -2*v0 + 5*v3 -14 = 0; value: 0 a -3*v2 -5*v3 -31 <= 0; value: -66 a 3*v2 -2*v3 -16 <= 0; value: -9 a -1*v0 -4*v1 + 23 = 0; value: 0 a -1*v1 + 5 = 0; value: 0 0: 1 4 1: 4 5 2: 2 3 3: 1 2 3 optimal: -4 a -4 <= 0; value: -4 d -2*v0 + 5*v3 -14 = 0; value: 0 a -3*v2 -51 <= 0; value: -66 a 3*v2 -24 <= 0; value: -9 d -1*v0 -4*v1 + 23 = 0; value: 0 d 5/8*v3 -5/2 = 0; value: 0 0: 1 4 5 1: 4 5 2: 2 3 3: 1 2 3 5 0: 3 -> 3 1: 5 -> 5 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 2*v2 -18 < 0; value: -11 a 2*v2 -3 <= 0; value: -1 a -3*v1 + 2*v2 -2 <= 0; value: -9 a -6*v0 -5*v1 -2*v3 < 0; value: -23 a -1*v2 < 0; value: -1 0: 1 4 1: 3 4 2: 1 2 3 5 3: 4 optimal: (128/15 -e*1) a + 128/15 < 0; value: 128/15 d 5*v0 -18 < 0; value: -5 a -3 < 0; value: -3 d -3*v1 + 2*v2 -2 <= 0; value: 0 a -2*v3 -274/15 < 0; value: -304/15 d -1*v2 < 0; value: -1/2 0: 1 4 1: 3 4 2: 1 2 3 5 4 3: 4 0: 1 -> 13/5 1: 3 -> -1/3 2: 1 -> 1/2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 -3*v3 -7 < 0; value: -34 a -1*v0 -6*v1 + 2*v2 + 19 = 0; value: 0 a 6*v1 -31 < 0; value: -13 a -3*v1 + 2*v2 -1 <= 0; value: -6 a -3*v3 + 11 <= 0; value: -1 0: 1 2 1: 2 3 4 2: 2 4 3: 1 5 optimal: oo a 7/3*v0 -2/3*v2 -19/3 <= 0; value: 4 a -3*v0 -3*v3 -7 < 0; value: -34 d -1*v0 -6*v1 + 2*v2 + 19 = 0; value: 0 a -1*v0 + 2*v2 -12 < 0; value: -13 a 1/2*v0 + v2 -21/2 <= 0; value: -6 a -3*v3 + 11 <= 0; value: -1 0: 1 2 4 3 1: 2 3 4 2: 2 4 3 3: 1 5 0: 5 -> 5 1: 3 -> 3 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a 4*v0 -6*v2 -3 <= 0; value: -9 a -6*v0 + 3*v1 + v3 + 8 = 0; value: 0 a -2*v0 -2*v1 -7 <= 0; value: -17 a -5*v2 + 4 < 0; value: -11 a 3*v0 + v2 -13 <= 0; value: -1 0: 1 2 3 5 1: 2 3 2: 1 4 5 3: 2 optimal: 239/11 a + 239/11 <= 0; value: 239/11 d -22/3*v2 + 43/3 <= 0; value: 0 d -6*v0 + 3*v1 + v3 + 8 = 0; value: 0 d -6*v0 + 2/3*v3 -5/3 <= 0; value: 0 a -127/22 < 0; value: -127/22 d 3*v0 + v2 -13 <= 0; value: 0 0: 1 2 3 5 1: 2 3 2: 1 4 5 3: 2 3 0: 3 -> 81/22 1: 2 -> -79/11 2: 3 -> 43/22 3: 4 -> 392/11 a 2*v0 -2*v1 <= 0; value: 8 a v0 + 2*v1 + 5*v3 -34 <= 0; value: -10 a 2*v2 -7 <= 0; value: -3 a -5*v0 -1*v2 + 22 = 0; value: 0 a v0 -3*v2 -4*v3 + 5 <= 0; value: -13 a -3*v3 + 4 < 0; value: -8 0: 1 3 4 1: 1 2: 2 3 4 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v0 + 2*v1 + 5*v3 -34 <= 0; value: -10 a 2*v2 -7 <= 0; value: -3 a -5*v0 -1*v2 + 22 = 0; value: 0 a v0 -3*v2 -4*v3 + 5 <= 0; value: -13 a -3*v3 + 4 < 0; value: -8 0: 1 3 4 1: 1 2: 2 3 4 3: 1 4 5 0: 4 -> 4 1: 0 -> 0 2: 2 -> 2 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a 4*v0 -3*v1 <= 0; value: -12 a v1 -1*v2 = 0; value: 0 a 6*v0 -1*v2 -1 <= 0; value: -5 a 5*v0 -5*v2 + 19 <= 0; value: -1 a -6*v2 -6*v3 + 19 <= 0; value: -17 0: 1 3 4 1: 1 2 2: 2 3 4 5 3: 5 optimal: -38/5 a -38/5 <= 0; value: -38/5 a v0 -57/5 <= 0; value: -57/5 d v1 -1*v2 = 0; value: 0 a 5*v0 -24/5 <= 0; value: -24/5 d 5*v0 -5*v2 + 19 <= 0; value: 0 a -6*v0 -6*v3 -19/5 <= 0; value: -79/5 0: 1 3 4 5 1: 1 2 2: 2 3 4 5 1 3: 5 0: 0 -> 0 1: 4 -> 19/5 2: 4 -> 19/5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -2*v3 -3 <= 0; value: -7 a v3 -2 <= 0; value: -1 a v1 + 5*v2 -22 < 0; value: -11 a -5*v0 + v2 + 7 <= 0; value: -1 a -5*v0 -1*v2 -6*v3 -16 < 0; value: -34 0: 1 4 5 1: 3 2: 3 4 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 -2*v3 -3 <= 0; value: -7 a v3 -2 <= 0; value: -1 a v1 + 5*v2 -22 < 0; value: -11 a -5*v0 + v2 + 7 <= 0; value: -1 a -5*v0 -1*v2 -6*v3 -16 < 0; value: -34 0: 1 4 5 1: 3 2: 3 4 5 3: 1 2 5 0: 2 -> 2 1: 1 -> 1 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a 2*v0 -1*v1 -4*v3 -4 <= 0; value: -23 a -6*v0 -1*v1 + 3 = 0; value: 0 a -2*v1 -6*v2 -5*v3 + 7 <= 0; value: -19 a -1*v0 + 3*v3 -33 <= 0; value: -21 a -2*v0 + 6*v1 -33 < 0; value: -15 0: 1 2 4 5 1: 1 2 3 5 2: 3 3: 1 3 4 optimal: 1011/10 a + 1011/10 <= 0; value: 1011/10 d 120/31*v2 -501/31 <= 0; value: 0 d -6*v0 -1*v1 + 3 = 0; value: 0 d 12*v0 -6*v2 -5*v3 + 1 <= 0; value: 0 d -1/2*v2 + 31/12*v3 -395/12 <= 0; value: 0 a -3057/10 < 0; value: -3057/10 0: 1 2 4 5 3 1: 1 2 3 5 2: 3 1 4 5 3: 1 3 4 5 0: 0 -> 153/20 1: 3 -> -429/10 2: 0 -> 167/40 3: 4 -> 271/20 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 -1*v2 + 10 = 0; value: 0 a v0 -5*v2 + 2*v3 -7 < 0; value: -15 a 5*v0 -1*v2 -16 <= 0; value: 0 a 2*v1 -17 <= 0; value: -11 a v3 -7 < 0; value: -3 0: 2 3 1: 1 4 2: 1 2 3 3: 2 5 optimal: oo a 2*v0 + v2 -10 <= 0; value: 2 d -2*v1 -1*v2 + 10 = 0; value: 0 a v0 -5*v2 + 2*v3 -7 < 0; value: -15 a 5*v0 -1*v2 -16 <= 0; value: 0 a -1*v2 -7 <= 0; value: -11 a v3 -7 < 0; value: -3 0: 2 3 1: 1 4 2: 1 2 3 4 3: 2 5 0: 4 -> 4 1: 3 -> 3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a -3*v0 -4*v2 + 31 = 0; value: 0 a -6*v0 + 5*v1 -5*v2 -5 <= 0; value: -40 a 4*v0 + v2 + 4*v3 -24 = 0; value: 0 a 6*v0 + v2 -5*v3 -34 = 0; value: 0 a -3*v1 + 5*v2 -11 = 0; value: 0 0: 1 2 3 4 1: 2 5 2: 1 2 3 4 5 3: 3 4 optimal: 4 a + 4 <= 0; value: 4 d -3*v0 -4*v2 + 31 = 0; value: 0 a -40 <= 0; value: -40 d 13/4*v0 + 4*v3 -65/4 = 0; value: 0 d -149/13*v3 = 0; value: 0 d -3*v1 + 5*v2 -11 = 0; value: 0 0: 1 2 3 4 1: 2 5 2: 1 2 3 4 5 3: 3 4 2 0: 5 -> 5 1: 3 -> 3 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -1*v0 -3*v1 + v3 + 8 < 0; value: -2 a v0 + v1 -11 <= 0; value: -6 a -3*v0 + 5*v1 -5*v3 -5 < 0; value: -3 a 6*v1 + 5*v2 -80 <= 0; value: -41 a -1*v3 + 3 = 0; value: 0 0: 1 2 3 1: 1 2 3 4 2: 4 3: 1 3 5 optimal: (22 -e*1) a + 22 < 0; value: 22 d -1*v0 -3*v1 + v3 + 8 < 0; value: -3 d 2/3*v0 -22/3 < 0; value: -2/3 a -53 < 0; value: -53 a 5*v2 -80 < 0; value: -65 d -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 1: 1 2 3 4 2: 4 3: 1 3 5 2 4 0: 1 -> 10 1: 4 -> 4/3 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a 4*v1 + 3*v3 -67 < 0; value: -40 a -5*v2 -5*v3 -26 <= 0; value: -76 a 5*v3 -56 <= 0; value: -31 a 4*v1 + 3*v3 -27 = 0; value: 0 a -3*v3 -13 < 0; value: -28 0: 1: 1 4 2: 2 3: 1 2 3 4 5 optimal: oo a 2*v0 + 33/10 <= 0; value: 33/10 a -40 < 0; value: -40 a -5*v2 -82 <= 0; value: -107 d 5*v3 -56 <= 0; value: 0 d 4*v1 + 3*v3 -27 = 0; value: 0 a -233/5 < 0; value: -233/5 0: 1: 1 4 2: 2 3: 1 2 3 4 5 0: 0 -> 0 1: 3 -> -33/20 2: 5 -> 5 3: 5 -> 56/5 a 2*v0 -2*v1 <= 0; value: 8 a 5*v0 -1*v1 + 6*v3 -90 < 0; value: -52 a 5*v0 + 2*v1 + 5*v3 -55 < 0; value: -20 a -6*v0 + 2*v1 + 5*v2 + 9 = 0; value: 0 a 3*v0 + 2*v2 + 6*v3 -49 < 0; value: -13 a 4*v0 + 5*v3 -31 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 3 2: 3 4 3: 1 2 4 5 optimal: (51 -e*1) a + 51 < 0; value: 51 a -473/10 < 0; value: -473/10 d 5/2*v0 -125/2 < 0; value: -5/2 d -6*v0 + 2*v1 + 5*v2 + 9 = 0; value: 0 d 3*v0 + 2*v2 + 6*v3 -49 < 0; value: -2 d 4*v0 + 5*v3 -31 = 0; value: 0 0: 1 2 3 4 5 1: 1 2 3 2: 3 4 1 2 3: 1 2 4 5 0: 4 -> 24 1: 0 -> 5/4 2: 3 -> 53/2 3: 3 -> -13 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 -4*v1 -5*v3 + 6 = 0; value: 0 a -4*v1 -5*v3 + 2 <= 0; value: -6 a -1*v3 <= 0; value: 0 a 2*v1 + v2 + v3 -19 <= 0; value: -12 a -5*v0 -6*v3 + 5 = 0; value: 0 0: 1 5 1: 1 2 4 2: 4 3: 1 2 3 4 5 optimal: 5/4 a + 5/4 <= 0; value: 5/4 d 2*v0 -4*v1 -5*v3 + 6 = 0; value: 0 d -2*v0 -4 <= 0; value: 0 a -5/2 <= 0; value: -5/2 a v2 -87/4 <= 0; value: -75/4 d -5*v0 -6*v3 + 5 = 0; value: 0 0: 1 5 2 4 3 1: 1 2 4 2: 4 3: 1 2 3 4 5 0: 1 -> -2 1: 2 -> -21/8 2: 3 -> 3 3: 0 -> 5/2 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 + 6*v3 -25 = 0; value: 0 a 5*v1 -6*v3 + 20 = 0; value: 0 a v0 -3*v3 + 15 = 0; value: 0 a -2*v0 -4*v1 + v3 + 3 = 0; value: 0 a v2 + 3*v3 -20 = 0; value: 0 0: 3 4 1: 2 4 2: 1 5 3: 1 2 3 4 5 optimal: -4 a -4 <= 0; value: -4 d -1*v2 + 6*v3 -25 = 0; value: 0 d 5*v1 -6*v3 + 20 = 0; value: 0 d v0 = 0; value: 0 a = 0; value: 0 d 3/2*v2 -15/2 = 0; value: 0 0: 3 4 1: 2 4 2: 1 5 3 4 3: 1 2 3 4 5 0: 0 -> 0 1: 2 -> 2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 6 a -3*v0 + 3*v1 -5*v3 + 9 = 0; value: 0 a -1*v3 <= 0; value: 0 a v0 -7 <= 0; value: -3 a -1*v0 + 3 <= 0; value: -1 a v0 + 6*v2 + 6*v3 -41 <= 0; value: -7 0: 1 3 4 5 1: 1 2: 5 3: 1 2 5 optimal: 6 a + 6 <= 0; value: 6 d -3*v0 + 3*v1 -5*v3 + 9 = 0; value: 0 d -1*v3 <= 0; value: 0 a v0 -7 <= 0; value: -3 a -1*v0 + 3 <= 0; value: -1 a v0 + 6*v2 -41 <= 0; value: -7 0: 1 3 4 5 1: 1 2: 5 3: 1 2 5 0: 4 -> 4 1: 1 -> 1 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 = 0; value: 0 a -3*v0 + 2*v3 -5 < 0; value: -3 a -2*v2 -1 < 0; value: -3 a -4*v0 -2*v1 -2*v2 + 3 < 0; value: -7 0: 1 2 4 1: 4 2: 3 4 3: 2 optimal: oo a 6*v0 + 2*v2 -3 < 0; value: -1 a -1*v0 = 0; value: 0 a -3*v0 + 2*v3 -5 < 0; value: -3 a -2*v2 -1 < 0; value: -3 d -4*v0 -2*v1 -2*v2 + 3 < 0; value: -2 0: 1 2 4 1: 4 2: 3 4 3: 2 0: 0 -> 0 1: 4 -> 3/2 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 8 a -4*v0 -5*v3 -23 <= 0; value: -63 a v1 + 2*v3 -19 <= 0; value: -10 a -5*v2 -2 <= 0; value: -17 a 3*v0 + 4*v1 -28 < 0; value: -9 a -5*v0 -3*v2 -5*v3 + 3 <= 0; value: -51 0: 1 4 5 1: 2 4 2: 3 5 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a -4*v0 -5*v3 -23 <= 0; value: -63 a v1 + 2*v3 -19 <= 0; value: -10 a -5*v2 -2 <= 0; value: -17 a 3*v0 + 4*v1 -28 < 0; value: -9 a -5*v0 -3*v2 -5*v3 + 3 <= 0; value: -51 0: 1 4 5 1: 2 4 2: 3 5 3: 1 2 5 0: 5 -> 5 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 2*v0 + 2*v2 + 6*v3 -105 <= 0; value: -65 a v0 -2*v1 + v3 -3 = 0; value: 0 a -2*v0 -2*v1 + 3*v2 -13 = 0; value: 0 a -2*v1 -3*v2 -6*v3 + 47 = 0; value: 0 a -4*v1 + v2 -1 <= 0; value: 0 0: 1 2 3 1: 2 3 4 5 2: 1 3 4 5 3: 1 2 4 optimal: 577/4 a + 577/4 <= 0; value: 577/4 d 2/3*v0 -65 <= 0; value: 0 d v0 -2*v1 + v3 -3 = 0; value: 0 d -20/7*v0 + 24/7*v2 -120/7 = 0; value: 0 d -1*v0 -3*v2 -7*v3 + 50 = 0; value: 0 a -65/4 <= 0; value: -65/4 0: 1 2 3 4 5 1: 2 3 4 5 2: 1 3 4 5 3: 1 2 4 3 5 0: 0 -> 195/2 1: 1 -> 203/8 2: 5 -> 345/4 3: 5 -> -175/4 a 2*v0 -2*v1 <= 0; value: -4 a -1*v0 -1*v2 + 1 < 0; value: -3 a -6*v1 + 5*v2 -16 < 0; value: -8 a 3*v1 + 2*v2 -23 < 0; value: -9 a -1*v1 + 4*v2 -31 < 0; value: -17 a -5*v0 + 3*v1 -11 < 0; value: -5 0: 1 5 1: 2 3 4 5 2: 1 2 3 4 3: optimal: oo a 11/3*v0 + 11/3 < 0; value: 11/3 d -1*v0 -1*v2 + 1 < 0; value: -1 d -6*v1 + 5*v2 -16 < 0; value: -6 a -9/2*v0 -53/2 < 0; value: -53/2 a -19/6*v0 -151/6 < 0; value: -151/6 a -15/2*v0 -33/2 < 0; value: -33/2 0: 1 5 3 4 1: 2 3 4 5 2: 1 2 3 4 5 3: 0: 0 -> 0 1: 2 -> 0 2: 4 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 -2*v2 -6*v3 + 22 <= 0; value: -14 a v1 -4*v2 -6*v3 + 5 <= 0; value: -11 a -1*v3 + 2 <= 0; value: 0 a 6*v0 -5*v2 -39 < 0; value: -25 a 5*v0 + 2*v1 + v3 -72 <= 0; value: -42 0: 4 5 1: 1 2 5 2: 1 2 4 3: 1 2 3 5 optimal: oo a 2*v0 + 4/5*v2 + 12/5*v3 -44/5 <= 0; value: 28/5 d -5*v1 -2*v2 -6*v3 + 22 <= 0; value: 0 a -22/5*v2 -36/5*v3 + 47/5 <= 0; value: -69/5 a -1*v3 + 2 <= 0; value: 0 a 6*v0 -5*v2 -39 < 0; value: -25 a 5*v0 -4/5*v2 -7/5*v3 -316/5 <= 0; value: -238/5 0: 4 5 1: 1 2 5 2: 1 2 4 5 3: 1 2 3 5 0: 4 -> 4 1: 4 -> 6/5 2: 2 -> 2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -6*v1 -1*v2 + 18 = 0; value: 0 a -6*v0 -6*v1 + 4*v2 + 23 <= 0; value: -25 a 3*v0 -5*v1 + 6*v2 = 0; value: 0 a 3*v0 -19 < 0; value: -4 a -5*v2 + 3*v3 -18 <= 0; value: -6 0: 2 3 4 1: 1 2 3 2: 1 2 3 5 3: 5 optimal: (796/123 -e*1) a + 796/123 < 0; value: 796/123 d -6*v1 -1*v2 + 18 = 0; value: 0 a -1473/41 < 0; value: -1473/41 d 3*v0 + 41/6*v2 -15 = 0; value: 0 d 3*v0 -19 < 0; value: -2 a 3*v3 -618/41 <= 0; value: -126/41 0: 2 3 4 5 1: 1 2 3 2: 1 2 3 5 3: 5 0: 5 -> 17/3 1: 3 -> 125/41 2: 0 -> -12/41 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -3*v2 -6*v3 -4 <= 0; value: -16 a 4*v0 + 5*v1 -59 <= 0; value: -22 a -1*v3 <= 0; value: 0 a 3*v1 -2*v2 -15 < 0; value: -8 a 6*v0 -2*v1 -11 <= 0; value: -3 0: 2 5 1: 2 4 5 2: 1 4 3: 1 3 optimal: oo a -4*v0 + 11 <= 0; value: -1 a -3*v2 -6*v3 -4 <= 0; value: -16 a 19*v0 -173/2 <= 0; value: -59/2 a -1*v3 <= 0; value: 0 a 9*v0 -2*v2 -63/2 < 0; value: -25/2 d 6*v0 -2*v1 -11 <= 0; value: 0 0: 2 5 4 1: 2 4 5 2: 1 4 3: 1 3 0: 3 -> 3 1: 5 -> 7/2 2: 4 -> 4 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a -3*v1 + v2 + 5 <= 0; value: -2 a v0 + 2*v1 -16 <= 0; value: -8 a -2*v0 -3*v3 + 9 < 0; value: -3 a 3*v2 + 6*v3 -62 < 0; value: -23 a -1*v0 -2*v1 + 4*v3 -8 <= 0; value: 0 0: 2 3 5 1: 1 2 5 2: 1 4 3: 3 4 5 optimal: oo a 17/3*v0 -4 < 0; value: -4 d 3/2*v0 + v2 -6*v3 + 17 <= 0; value: 0 a -8/3*v0 -12 < 0; value: -12 d -11/4*v0 -1/2*v2 + 1/2 < 0; value: -1/2 a -41/2*v0 -41 < 0; value: -41 d -1*v0 -2*v1 + 4*v3 -8 <= 0; value: 0 0: 2 3 5 1 4 2 1: 1 2 5 2: 1 4 3 2 3: 3 4 5 1 2 0: 0 -> 0 1: 4 -> 7/3 2: 5 -> 2 3: 4 -> 19/6 a 2*v0 -2*v1 <= 0; value: 8 a -3*v0 + 3*v2 + 2*v3 = 0; value: 0 a v3 = 0; value: 0 a 2*v2 -19 <= 0; value: -11 a -6*v1 -5*v2 -18 < 0; value: -38 a 5*v1 -3*v2 + 9 < 0; value: -3 0: 1 1: 4 5 2: 1 3 4 5 3: 1 2 optimal: (245/6 -e*1) a + 245/6 < 0; value: 245/6 d -3*v0 + 3*v2 + 2*v3 = 0; value: 0 d v3 = 0; value: 0 d 2*v0 -19 <= 0; value: 0 d -6*v1 -5*v2 -18 < 0; value: -6 a -889/12 < 0; value: -889/12 0: 1 3 5 1: 4 5 2: 1 3 4 5 3: 1 2 3 5 0: 4 -> 19/2 1: 0 -> -119/12 2: 4 -> 19/2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -8 a 2*v0 -3*v3 + 13 = 0; value: 0 a -4*v1 + 5*v3 -8 < 0; value: -3 a 3*v1 + 3*v2 + 3*v3 -59 < 0; value: -29 a 4*v1 + 2*v3 -63 <= 0; value: -33 a -3*v0 + 3*v3 -17 <= 0; value: -5 0: 1 5 1: 2 3 4 2: 3 3: 1 2 3 4 5 optimal: (-55/14 -e*1) a -55/14 < 0; value: -55/14 d 2*v0 -3*v3 + 13 = 0; value: 0 d -4*v1 + 5*v3 -8 < 0; value: -4 d 9/2*v0 + 3*v2 -143/4 < 0; value: -9/2 d -28/9*v2 -97/27 <= 0; value: 0 a -89/7 < 0; value: -89/7 0: 1 5 3 4 1: 2 3 4 2: 3 4 5 3: 1 2 3 4 5 0: 1 -> 54/7 1: 5 -> 911/84 2: 0 -> -97/84 3: 5 -> 199/21 a 2*v0 -2*v1 <= 0; value: 4 a v3 -3 = 0; value: 0 a 5*v0 + 2*v1 -36 <= 0; value: -19 a -2*v0 + v1 + 4 <= 0; value: -1 a -3*v1 -1*v2 + 2*v3 <= 0; value: -2 a v0 -2*v1 -6*v3 + 17 = 0; value: 0 0: 2 3 5 1: 2 3 4 5 2: 4 3: 1 4 5 optimal: 43/6 a + 43/6 <= 0; value: 43/6 d v3 -3 = 0; value: 0 d 6*v0 -37 <= 0; value: 0 a -23/4 <= 0; value: -23/4 a -1*v2 -7/4 <= 0; value: -27/4 d v0 -2*v1 -6*v3 + 17 = 0; value: 0 0: 2 3 5 4 1: 2 3 4 5 2: 4 3: 1 4 5 2 3 0: 3 -> 37/6 1: 1 -> 31/12 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 + 3*v3 -5 = 0; value: 0 a 6*v0 -1*v2 -1*v3 -4 <= 0; value: 0 a -1*v3 + 2 = 0; value: 0 a 5*v1 + v2 -27 <= 0; value: -17 a -3*v0 + 4*v1 -5 = 0; value: 0 0: 1 2 5 1: 4 5 2: 2 4 3: 1 2 3 optimal: -2 a -2 <= 0; value: -2 d -1*v0 + 3*v3 -5 = 0; value: 0 d -1*v2 + 17*v3 -34 <= 0; value: 0 d -1/17*v2 = 0; value: 0 a -17 <= 0; value: -17 d -3*v0 + 4*v1 -5 = 0; value: 0 0: 1 2 5 4 1: 4 5 2: 2 4 3 3: 1 2 3 4 0: 1 -> 1 1: 2 -> 2 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 2 a v1 + 2*v3 -9 = 0; value: 0 a 3*v2 -25 < 0; value: -13 a 4*v0 + 3*v1 -25 = 0; value: 0 a 2*v0 -5*v2 -11 <= 0; value: -23 a 5*v1 -2*v3 -10 <= 0; value: -1 0: 3 4 1: 1 3 5 2: 2 4 3: 1 5 optimal: (956/9 -e*1) a + 956/9 < 0; value: 956/9 d v1 + 2*v3 -9 = 0; value: 0 d 3*v2 -25 < 0; value: -3 d 4*v0 -6*v3 + 2 = 0; value: 0 d 2*v0 -5*v2 -11 <= 0; value: 0 a -539/3 < 0; value: -539/3 0: 3 4 5 1: 1 3 5 2: 2 4 5 3: 1 5 3 0: 4 -> 143/6 1: 3 -> -211/9 2: 4 -> 22/3 3: 3 -> 146/9 a 2*v0 -2*v1 <= 0; value: 2 a -3*v3 -7 <= 0; value: -22 a 3*v2 + 3*v3 -37 <= 0; value: -7 a 6*v2 + v3 -35 = 0; value: 0 a -6*v0 -1*v1 -1*v2 -7 <= 0; value: -25 a -1*v1 + v2 -4 <= 0; value: 0 0: 4 1: 4 5 2: 2 3 4 5 3: 1 2 3 optimal: oo a 2*v0 -16/15 <= 0; value: 44/15 a -152/5 <= 0; value: -152/5 d 5/2*v3 -39/2 <= 0; value: 0 d 6*v2 + v3 -35 = 0; value: 0 a -6*v0 -181/15 <= 0; value: -361/15 d -1*v1 + v2 -4 <= 0; value: 0 0: 4 1: 4 5 2: 2 3 4 5 3: 1 2 3 4 0: 2 -> 2 1: 1 -> 8/15 2: 5 -> 68/15 3: 5 -> 39/5 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -3*v3 <= 0; value: 0 a 5*v1 -2*v2 + v3 + 6 = 0; value: 0 a -1*v3 <= 0; value: 0 a 3*v1 -3*v2 + 6*v3 + 8 < 0; value: -1 d = 0; value: 0 0: 1: 1 2 4 2: 2 4 3: 1 2 3 4 optimal: oo a 2*v0 + 4/9 < 0; value: 4/9 a -4/9 <= 0; value: -4/9 d 5*v1 -2*v2 + v3 + 6 = 0; value: 0 d -1/3*v2 + 22/27 < 0; value: -5/54 d -9/5*v2 + 27/5*v3 + 22/5 < 0; value: -1/4 d = 0; value: 0 0: 1: 1 2 4 2: 2 4 1 3 3: 1 2 3 4 0: 0 -> 0 1: 0 -> -13/108 2: 3 -> 49/18 3: 0 -> 5/108 a 2*v0 -2*v1 <= 0; value: 2 a -2*v1 -1*v3 + 9 = 0; value: 0 a -2*v0 -4*v1 -6*v2 -9 <= 0; value: -41 a 5*v0 + v3 -23 = 0; value: 0 a v0 -3*v2 -1 <= 0; value: -3 a -2*v2 + 5*v3 -11 = 0; value: 0 0: 2 3 4 1: 1 2 2: 2 4 5 3: 1 3 5 optimal: oo a 6/25*v2 + 38/25 <= 0; value: 2 d -2*v1 -1*v3 + 9 = 0; value: 0 a -126/25*v2 -773/25 <= 0; value: -41 d 5*v0 + v3 -23 = 0; value: 0 a -77/25*v2 + 79/25 <= 0; value: -3 d -25*v0 -2*v2 + 104 = 0; value: 0 0: 2 3 4 5 1: 1 2 2: 2 4 5 3: 1 3 5 2 0: 4 -> 4 1: 3 -> 3 2: 2 -> 2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a v0 -4 = 0; value: 0 a 5*v0 + 5*v1 -2*v3 -67 <= 0; value: -37 a v1 + 2*v2 + 2*v3 -8 <= 0; value: -2 a -6*v0 -5*v1 + 4*v3 -21 <= 0; value: -55 a 5*v0 -52 < 0; value: -32 0: 1 2 4 5 1: 2 3 4 2: 3 3: 2 3 4 optimal: oo a 22/5*v0 -8/5*v3 + 42/5 <= 0; value: 26 a v0 -4 = 0; value: 0 a -1*v0 + 2*v3 -88 <= 0; value: -92 a -6/5*v0 + 2*v2 + 14/5*v3 -61/5 <= 0; value: -13 d -6*v0 -5*v1 + 4*v3 -21 <= 0; value: 0 a 5*v0 -52 < 0; value: -32 0: 1 2 4 5 3 1: 2 3 4 2: 3 3: 2 3 4 0: 4 -> 4 1: 2 -> -9 2: 2 -> 2 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 + 2 = 0; value: 0 a v0 -1*v3 + 2 = 0; value: 0 a -5*v1 + v3 -11 <= 0; value: -7 a -1*v3 + 4 = 0; value: 0 a 5*v2 -11 < 0; value: -6 0: 1 2 1: 3 2: 5 3: 2 3 4 optimal: 34/5 a + 34/5 <= 0; value: 34/5 d -1*v0 + 2 = 0; value: 0 d v0 -1*v3 + 2 = 0; value: 0 d -5*v1 + v3 -11 <= 0; value: 0 a = 0; value: 0 a 5*v2 -11 < 0; value: -6 0: 1 2 4 1: 3 2: 5 3: 2 3 4 0: 2 -> 2 1: 0 -> -7/5 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v1 + 11 <= 0; value: -7 a -5*v1 -6*v2 + 33 = 0; value: 0 a 6*v1 -6*v2 -2*v3 -1 <= 0; value: -11 a -3*v1 -4*v2 + 17 < 0; value: -4 a 2*v2 -1*v3 -1 = 0; value: 0 0: 1: 1 2 3 4 2: 2 3 4 5 3: 3 5 optimal: oo a 2*v0 -11/3 <= 0; value: 7/3 d 18/5*v3 -25 <= 0; value: 0 d -5*v1 -6*v2 + 33 = 0; value: 0 a -499/18 <= 0; value: -499/18 a -79/18 < 0; value: -79/18 d 2*v2 -1*v3 -1 = 0; value: 0 0: 1: 1 2 3 4 2: 2 3 4 5 1 3: 3 5 1 4 0: 3 -> 3 1: 3 -> 11/6 2: 3 -> 143/36 3: 5 -> 125/18 a 2*v0 -2*v1 <= 0; value: -6 a 6*v1 -3*v3 -49 <= 0; value: -28 a v2 -5*v3 <= 0; value: -1 a 5*v1 -43 < 0; value: -23 a -1*v1 + v2 -1*v3 <= 0; value: -1 a 2*v1 -2*v2 -4*v3 + 1 <= 0; value: -3 0: 1: 1 3 4 5 2: 2 4 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v2 + 2*v3 <= 0; value: -4 a 6*v2 -9*v3 -49 <= 0; value: -34 a v2 -5*v3 <= 0; value: -1 a 5*v2 -5*v3 -43 < 0; value: -28 d -1*v1 + v2 -1*v3 <= 0; value: 0 a -6*v3 + 1 <= 0; value: -5 0: 1: 1 3 4 5 2: 2 4 5 1 3 3: 1 2 4 5 3 0: 1 -> 1 1: 4 -> 3 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -6*v1 -5 <= 0; value: -17 a 2*v0 + 2*v2 -15 <= 0; value: -3 a -1*v0 -5*v1 -4*v2 + 22 = 0; value: 0 a 6*v1 + 4*v2 -1*v3 -19 = 0; value: 0 a 3*v0 + 5*v1 + 4*v3 -30 < 0; value: -4 0: 2 3 5 1: 1 3 4 5 2: 2 3 4 3: 4 5 optimal: (100/11 -e*1) a + 100/11 < 0; value: 100/11 a -241/11 < 0; value: -241/11 d -1*v0 -5/2*v3 + 7/2 <= 0; value: 0 d -1*v0 -5*v1 -4*v2 + 22 = 0; value: 0 d -6/5*v0 -4/5*v2 -1*v3 + 37/5 = 0; value: 0 d 22/5*v0 -162/5 < 0; value: -22/5 0: 2 3 5 1 4 1: 1 3 4 5 2: 2 3 4 1 5 3: 4 5 2 1 0: 4 -> 70/11 1: 2 -> 122/55 2: 2 -> 25/22 3: 1 -> -63/55 a 2*v0 -2*v1 <= 0; value: -10 a 3*v0 -2*v1 -3*v3 + 25 = 0; value: 0 a 6*v2 + 4*v3 -107 < 0; value: -57 a -5*v0 -4*v1 + 3*v2 + 5 = 0; value: 0 a v1 + 2*v3 -41 < 0; value: -26 a -1*v2 -1*v3 + 10 = 0; value: 0 0: 1 3 1: 1 3 4 2: 2 3 5 3: 1 2 4 5 optimal: (68 -e*1) a + 68 < 0; value: 68 d 3*v0 -2*v1 -3*v3 + 25 = 0; value: 0 a -571/5 < 0; value: -571/5 d -11*v0 -3*v2 + 15 = 0; value: 0 d 10/3*v0 -26 < 0; value: -10/3 d -1*v2 -1*v3 + 10 = 0; value: 0 0: 1 3 4 2 1: 1 3 4 2: 2 3 5 4 3: 1 2 4 5 3 0: 0 -> 34/5 1: 5 -> -111/5 2: 5 -> -299/15 3: 5 -> 449/15 a 2*v0 -2*v1 <= 0; value: -8 a -4*v0 + 5*v2 -1*v3 -22 = 0; value: 0 a -1*v0 <= 0; value: 0 a -1*v2 + 5 = 0; value: 0 a 3*v0 -3*v1 -2*v2 + 22 = 0; value: 0 a -6*v1 + 5*v2 -1 <= 0; value: 0 0: 1 2 4 1: 4 5 2: 1 3 4 5 3: 1 optimal: -8 a -8 <= 0; value: -8 d -4*v0 + 5*v2 -1*v3 -22 = 0; value: 0 a -1*v0 <= 0; value: 0 d -4/5*v0 -1/5*v3 + 3/5 = 0; value: 0 d 3*v0 -3*v1 -2*v2 + 22 = 0; value: 0 a -6*v0 <= 0; value: 0 0: 1 2 4 5 3 1: 4 5 2: 1 3 4 5 3: 1 3 5 0: 0 -> 0 1: 4 -> 4 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -10 a 6*v0 -2*v1 -5*v3 -5 <= 0; value: -20 a -6*v3 -1 < 0; value: -7 a -1*v0 -3*v3 -1 <= 0; value: -4 a -1*v1 -6*v2 + 24 <= 0; value: -5 0: 1 3 1: 1 4 2: 4 3: 1 2 3 optimal: oo a -4*v0 + 5*v3 + 5 <= 0; value: 10 d 6*v0 + 12*v2 -5*v3 -53 <= 0; value: 0 a -6*v3 -1 < 0; value: -7 a -1*v0 -3*v3 -1 <= 0; value: -4 d -1*v1 -6*v2 + 24 <= 0; value: 0 0: 1 3 1: 1 4 2: 4 1 3: 1 2 3 0: 0 -> 0 1: 5 -> -5 2: 4 -> 29/6 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 + 4*v2 -58 <= 0; value: -22 a 5*v0 + v2 -24 = 0; value: 0 a -3*v1 + 5*v2 + 6*v3 -49 <= 0; value: -26 a 5*v1 + 4*v2 -41 = 0; value: 0 a -1*v1 + 5*v3 -27 <= 0; value: -17 0: 1 2 1: 3 4 5 2: 1 2 3 4 3: 3 5 optimal: 34/5 a + 34/5 <= 0; value: 34/5 d -90/37*v3 -154/37 <= 0; value: 0 d 5*v0 + v2 -24 = 0; value: 0 d -37*v0 + 6*v3 + 104 <= 0; value: 0 d 5*v1 + 4*v2 -41 = 0; value: 0 a -1561/45 <= 0; value: -1561/45 0: 1 2 3 5 1: 3 4 5 2: 1 2 3 4 5 3: 3 5 1 0: 4 -> 38/15 1: 5 -> -13/15 2: 4 -> 34/3 3: 3 -> -77/45 a 2*v0 -2*v1 <= 0; value: 4 a v1 -1*v2 <= 0; value: 0 a 5*v0 -3*v2 -12 <= 0; value: -2 a -5*v0 + 3*v1 + 5*v3 + 3 < 0; value: -7 a -1*v1 <= 0; value: 0 a 3*v1 + 5*v2 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 2 5 3: 3 optimal: 24/5 a + 24/5 <= 0; value: 24/5 a <= 0; value: 0 d 5*v0 -3*v2 -12 <= 0; value: 0 a 5*v3 -9 < 0; value: -9 d -1*v1 <= 0; value: 0 d 5*v2 = 0; value: 0 0: 2 3 1: 1 3 4 5 2: 1 2 5 3 3: 3 0: 2 -> 12/5 1: 0 -> 0 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 -3*v2 -4 = 0; value: 0 a -1*v0 -1*v3 + 7 = 0; value: 0 a -3*v1 -6*v2 + 2*v3 -18 < 0; value: -38 a 3*v0 -17 <= 0; value: -2 a -2*v0 -1*v1 -6 <= 0; value: -20 0: 1 2 4 5 1: 3 5 2: 1 3 3: 2 3 optimal: (94/3 -e*1) a + 94/3 < 0; value: 94/3 d 2*v0 -3*v2 -4 = 0; value: 0 d -1*v0 -1*v3 + 7 = 0; value: 0 d -3*v1 -6*v2 + 2*v3 -18 < 0; value: -3 d 3*v0 -17 <= 0; value: 0 a -22/3 <= 0; value: -22/3 0: 1 2 4 5 1: 3 5 2: 1 3 5 3: 2 3 5 0: 5 -> 17/3 1: 4 -> -9 2: 2 -> 22/9 3: 2 -> 4/3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v3 -3 < 0; value: -1 a -3*v0 -4*v1 -1*v3 -7 <= 0; value: -32 a -1*v0 -2 < 0; value: -6 a v0 + 2*v2 -8 <= 0; value: 0 a 2*v0 -6*v1 -5*v2 -14 <= 0; value: -34 0: 2 3 4 5 1: 2 5 2: 4 5 3: 1 2 optimal: oo a 1/2*v0 + 34/3 <= 0; value: 40/3 a 2*v3 -3 < 0; value: -1 a -6*v0 -1*v3 + 47/3 <= 0; value: -28/3 a -1*v0 -2 < 0; value: -6 d v0 + 2*v2 -8 <= 0; value: 0 d 2*v0 -6*v1 -5*v2 -14 <= 0; value: 0 0: 2 3 4 5 1: 2 5 2: 4 5 2 3: 1 2 0: 4 -> 4 1: 3 -> -8/3 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -5*v1 -3*v3 + 7 <= 0; value: -14 a -1*v3 + 2 = 0; value: 0 a 3*v0 -4*v3 -16 <= 0; value: -9 a -1*v0 -2*v2 + 7 = 0; value: 0 a 3*v0 -25 < 0; value: -10 0: 3 4 5 1: 1 2: 4 3: 1 2 3 optimal: 78/5 a + 78/5 <= 0; value: 78/5 d -5*v1 -3*v3 + 7 <= 0; value: 0 d -1*v3 + 2 = 0; value: 0 d -6*v2 -3 <= 0; value: 0 d -1*v0 -2*v2 + 7 = 0; value: 0 a -1 < 0; value: -1 0: 3 4 5 1: 1 2: 4 3 5 3: 1 2 3 0: 5 -> 8 1: 3 -> 1/5 2: 1 -> -1/2 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a v2 -1 = 0; value: 0 a -3*v1 + v2 -4*v3 + 2 <= 0; value: -5 a 6*v1 -4*v2 + 3 <= 0; value: -1 a 5*v1 + 4*v3 -17 <= 0; value: -9 a -1*v3 -1 <= 0; value: -3 0: 1: 2 3 4 2: 1 2 3 3: 2 4 5 optimal: oo a 2*v0 -2/3*v2 + 8/3*v3 -4/3 <= 0; value: 34/3 a v2 -1 = 0; value: 0 d -3*v1 + v2 -4*v3 + 2 <= 0; value: 0 a -2*v2 -8*v3 + 7 <= 0; value: -11 a 5/3*v2 -8/3*v3 -41/3 <= 0; value: -52/3 a -1*v3 -1 <= 0; value: -3 0: 1: 2 3 4 2: 1 2 3 4 3: 2 4 5 3 0: 4 -> 4 1: 0 -> -5/3 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a v2 -3*v3 + 10 = 0; value: 0 a -6*v1 -4*v3 -3 <= 0; value: -53 a 3*v0 + 3*v1 -2*v2 -50 <= 0; value: -33 a -5*v0 + 5*v1 -9 < 0; value: -4 a 3*v0 -4*v1 <= 0; value: -8 0: 3 4 5 1: 2 3 4 5 2: 1 3 3: 1 2 optimal: oo a 4/7*v3 + 20/7 <= 0; value: 40/7 d v2 -3*v3 + 10 = 0; value: 0 a -64/7*v3 -201/7 <= 0; value: -521/7 d 21/4*v0 -2*v2 -50 <= 0; value: 0 a -10/7*v3 -113/7 < 0; value: -163/7 d 3*v0 -4*v1 <= 0; value: 0 0: 3 4 5 2 1: 2 3 4 5 2: 1 3 4 2 3: 1 2 4 0: 4 -> 80/7 1: 5 -> 60/7 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -4*v0 -1*v2 + 6*v3 -31 < 0; value: -19 a -2*v1 + v2 <= 0; value: 0 a -5*v0 -5*v3 -26 < 0; value: -56 a -4*v0 + v1 < 0; value: -6 a 2*v2 + 3*v3 -52 <= 0; value: -32 0: 1 3 4 1: 2 4 2: 1 2 5 3: 1 3 5 optimal: oo a 12*v0 + 311/5 < 0; value: 431/5 d -4*v0 -1*v2 + 6*v3 -31 < 0; value: -1 d -2*v1 + v2 <= 0; value: 0 d -5*v0 -5*v3 -26 < 0; value: -5 a -9*v0 -311/10 < 0; value: -491/10 a -23*v0 -192 < 0; value: -238 0: 1 3 4 5 1: 2 4 2: 1 2 5 4 3: 1 3 5 4 0: 2 -> 2 1: 2 -> -188/5 2: 4 -> -376/5 3: 4 -> -31/5 a 2*v0 -2*v1 <= 0; value: -4 a 5*v0 + 2*v1 -6 <= 0; value: -2 a 3*v2 -1*v3 + 1 <= 0; value: 0 a v2 -5*v3 + 1 < 0; value: -4 a -3*v1 -2*v3 + 8 = 0; value: 0 0: 1 1: 1 4 2: 2 3 3: 2 3 4 optimal: oo a 2*v0 + 4/3*v3 -16/3 <= 0; value: -4 a 5*v0 -4/3*v3 -2/3 <= 0; value: -2 a 3*v2 -1*v3 + 1 <= 0; value: 0 a v2 -5*v3 + 1 < 0; value: -4 d -3*v1 -2*v3 + 8 = 0; value: 0 0: 1 1: 1 4 2: 2 3 3: 2 3 4 1 0: 0 -> 0 1: 2 -> 2 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -3*v1 -5*v3 <= 0; value: 0 a 6*v0 -4*v2 -3*v3 + 1 <= 0; value: -1 a 3*v0 + 2*v1 -4*v2 -3 < 0; value: -8 a -1*v1 + 3 = 0; value: 0 a 4*v1 -2*v3 -29 < 0; value: -17 0: 1 2 3 1: 1 3 4 5 2: 2 3 3: 1 2 5 optimal: oo a 40/21*v2 -190/21 <= 0; value: 10/21 d 3*v0 -3*v1 -5*v3 <= 0; value: 0 d 21/5*v0 -4*v2 + 32/5 <= 0; value: 0 a -8/7*v2 -11/7 < 0; value: -51/7 d -1*v0 + 5/3*v3 + 3 = 0; value: 0 a -8/7*v2 -81/7 < 0; value: -121/7 0: 1 2 3 4 5 1: 1 3 4 5 2: 2 3 5 3: 1 2 5 4 3 0: 3 -> 68/21 1: 3 -> 3 2: 5 -> 5 3: 0 -> 1/7 a 2*v0 -2*v1 <= 0; value: 0 a -5*v1 + 6*v3 + 13 <= 0; value: -7 a -1*v2 + 2 < 0; value: -1 a -3*v0 -2*v1 -12 <= 0; value: -32 a -2*v1 + 3*v2 -1 <= 0; value: 0 a v0 -11 < 0; value: -7 0: 3 5 1: 1 3 4 2: 2 4 3: 1 optimal: (17 -e*1) a + 17 < 0; value: 17 d -15/2*v2 + 6*v3 + 31/2 <= 0; value: 0 d -4/5*v3 -1/15 < 0; value: -1/30 a -50 < 0; value: -50 d -2*v1 + 3*v2 -1 <= 0; value: 0 d v0 -11 < 0; value: -1 0: 3 5 1: 1 3 4 2: 2 4 3 1 3: 1 3 2 0: 4 -> 10 1: 4 -> 51/20 2: 3 -> 61/30 3: 0 -> -1/24 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -1*v1 -6*v3 + 18 = 0; value: 0 a 3*v0 -20 <= 0; value: -11 a -4*v1 + 6*v2 -11 < 0; value: -5 a -3*v1 + 2*v3 -1 <= 0; value: 0 a v0 -1*v2 <= 0; value: 0 0: 1 2 5 1: 1 3 4 2: 3 5 3: 1 4 optimal: (5/4 -e*1) a + 5/4 < 0; value: 5/4 d 5*v0 -1*v1 -6*v3 + 18 = 0; value: 0 a -29/4 <= 0; value: -29/4 d 4*v2 -17 < 0; value: -5/2 d -15*v0 + 20*v3 -55 <= 0; value: 0 d v0 -1*v2 <= 0; value: 0 0: 1 2 5 3 4 1: 1 3 4 2: 3 5 2 3: 1 4 3 0: 3 -> 29/8 1: 3 -> 53/16 2: 3 -> 29/8 3: 5 -> 175/32 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 2*v1 + v2 -12 <= 0; value: -6 a -3*v0 + 2*v2 -17 <= 0; value: -9 a -2*v0 -1*v2 + 4 = 0; value: 0 a -6*v0 -3*v1 + 6*v2 -40 <= 0; value: -19 a v1 -2 < 0; value: -1 0: 1 2 3 4 1: 1 4 5 2: 1 2 3 4 3: optimal: oo a 14*v0 + 32/3 <= 0; value: 32/3 a -16*v0 -56/3 <= 0; value: -56/3 a -7*v0 -9 <= 0; value: -9 d -2*v0 -1*v2 + 4 = 0; value: 0 d -6*v0 -3*v1 + 6*v2 -40 <= 0; value: 0 a -6*v0 -22/3 < 0; value: -22/3 0: 1 2 3 4 5 1: 1 4 5 2: 1 2 3 4 5 3: 0: 0 -> 0 1: 1 -> -16/3 2: 4 -> 4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 4*v0 -6*v1 -1*v3 -1 <= 0; value: -12 a -3*v1 -5*v2 + 5*v3 -17 <= 0; value: -10 a -4*v2 -1 < 0; value: -13 a v1 -1*v2 + 6*v3 -48 <= 0; value: -20 a 6*v0 -5*v2 + 15 = 0; value: 0 0: 1 5 1: 1 2 4 2: 2 3 4 5 3: 1 2 4 optimal: 1579/328 a + 1579/328 <= 0; value: 1579/328 d 4*v0 -6*v1 -1*v3 -1 <= 0; value: 0 d -2*v0 -5*v2 + 11/2*v3 -33/2 <= 0; value: 0 a -1945/82 < 0; value: -1945/82 d 1312/165*v0 -586/33 <= 0; value: 0 d 6*v0 -5*v2 + 15 = 0; value: 0 0: 1 5 2 4 3 1: 1 2 4 2: 2 3 4 5 3: 1 2 4 0: 0 -> 1465/656 1: 1 -> -57/328 2: 3 -> 1863/328 3: 5 -> 368/41 a 2*v0 -2*v1 <= 0; value: 0 a -6*v1 -5*v2 + 4*v3 -3 <= 0; value: -9 a -1*v0 + 5*v1 + 6*v3 -8 <= 0; value: -4 a -5*v0 + 4*v3 + 1 <= 0; value: -4 a 3*v1 + v2 + 5*v3 -3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 1 4 3: 1 2 3 4 optimal: oo a 181/18*v0 -101/18 <= 0; value: 40/9 d -3*v2 + 14*v3 -9 <= 0; value: 0 a -491/36*v0 + 163/36 <= 0; value: -82/9 d -5*v0 + 6/7*v2 + 25/7 <= 0; value: 0 d 3*v1 + v2 + 5*v3 -3 = 0; value: 0 0: 2 3 1: 1 2 4 2: 1 4 2 3 3: 1 2 3 4 0: 1 -> 1 1: 1 -> -11/9 2: 0 -> 5/3 3: 0 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a -3*v3 + 11 < 0; value: -1 a 4*v0 -5*v2 + 2 <= 0; value: -3 a 5*v1 -4*v2 -3*v3 -5 < 0; value: -27 a -3*v2 + 3*v3 -1 <= 0; value: -4 a -2*v0 -9 <= 0; value: -19 0: 2 5 1: 3 2: 2 3 4 3: 1 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a -3*v3 + 11 < 0; value: -1 a 4*v0 -5*v2 + 2 <= 0; value: -3 a 5*v1 -4*v2 -3*v3 -5 < 0; value: -27 a -3*v2 + 3*v3 -1 <= 0; value: -4 a -2*v0 -9 <= 0; value: -19 0: 2 5 1: 3 2: 2 3 4 3: 1 3 4 0: 5 -> 5 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 5*v0 -6*v1 + 1 <= 0; value: 0 a 3*v0 -1*v2 + 2 <= 0; value: 0 a v3 -2 = 0; value: 0 a -3*v0 -3*v1 + v3 + 4 = 0; value: 0 a 4*v1 -4*v2 + 5*v3 -3 < 0; value: -9 0: 1 2 4 1: 1 4 5 2: 2 5 3: 3 4 5 optimal: 0 a <= 0; value: 0 d 5*v0 -6*v1 + 1 <= 0; value: 0 d 3*v0 -1*v2 + 2 <= 0; value: 0 d v3 -2 = 0; value: 0 d -11/6*v2 + v3 + 43/6 = 0; value: 0 a -9 < 0; value: -9 0: 1 2 4 5 1: 1 4 5 2: 2 5 4 3: 3 4 5 0: 1 -> 1 1: 1 -> 1 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -4*v1 -5*v2 -6*v3 + 19 = 0; value: 0 a -1*v2 -1*v3 + 2 = 0; value: 0 a -4*v2 -1*v3 -2 <= 0; value: -7 a -3*v0 -8 <= 0; value: -23 a 3*v0 + 3*v1 + 5*v2 -46 <= 0; value: -20 0: 4 5 1: 1 5 2: 1 2 3 5 3: 1 2 3 optimal: 265/9 a + 265/9 <= 0; value: 265/9 d -4*v1 -5*v2 -6*v3 + 19 = 0; value: 0 d -1*v2 -1*v3 + 2 = 0; value: 0 d -3*v2 -4 <= 0; value: 0 a -677/12 <= 0; value: -677/12 d 3*v0 -581/12 <= 0; value: 0 0: 4 5 1: 1 5 2: 1 2 3 5 3: 1 2 3 5 0: 5 -> 581/36 1: 2 -> 17/12 2: 1 -> -4/3 3: 1 -> 10/3 a 2*v0 -2*v1 <= 0; value: -2 a -5*v1 -5*v3 -9 < 0; value: -39 a 6*v0 + 5*v2 -71 < 0; value: -40 a -4*v2 + v3 + 16 = 0; value: 0 a -4*v1 -5*v2 + 33 = 0; value: 0 0: 2 1: 1 4 2: 2 3 4 3: 1 3 optimal: oo a -1*v0 + 19 < 0; value: 18 a 33/2*v0 -331/2 < 0; value: -149 d 6*v0 + 5/4*v3 -51 < 0; value: -5/4 d -4*v2 + v3 + 16 = 0; value: 0 d -4*v1 -5*v2 + 33 = 0; value: 0 0: 2 1 1: 1 4 2: 2 3 4 1 3: 1 3 2 0: 1 -> 1 1: 2 -> -123/16 2: 5 -> 51/4 3: 4 -> 35 a 2*v0 -2*v1 <= 0; value: 8 a 4*v2 -45 <= 0; value: -29 a v0 -5 = 0; value: 0 a -3*v0 -5*v2 + 35 = 0; value: 0 a -6*v1 -2*v2 + 2*v3 -1 < 0; value: -13 a -3*v1 -2*v2 -1 <= 0; value: -12 0: 2 3 1: 4 5 2: 1 3 4 5 3: 4 optimal: (16 -e*1) a + 16 < 0; value: 16 a -29 <= 0; value: -29 d v0 -5 = 0; value: 0 d -3*v0 -5*v2 + 35 = 0; value: 0 d -6*v1 -2*v2 + 2*v3 -1 < 0; value: -6 d -1*v2 -1*v3 -1/2 <= 0; value: 0 0: 2 3 1 1: 4 5 2: 1 3 4 5 3: 4 5 0: 5 -> 5 1: 1 -> -2 2: 4 -> 4 3: 1 -> -9/2 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 + v2 -1 = 0; value: 0 a -3*v0 -4*v1 -3*v2 + 4 < 0; value: -7 a -1*v0 <= 0; value: 0 a -2*v0 -6*v2 -3 <= 0; value: -9 a 3*v0 + 2*v1 -2*v3 + 4 = 0; value: 0 0: 1 2 3 4 5 1: 2 5 2: 1 2 4 3: 5 optimal: oo a 8*v0 -1/2 < 0; value: -1/2 d -3*v0 + v2 -1 = 0; value: 0 d 3*v0 -3*v2 -4*v3 + 12 < 0; value: -7/2 a -1*v0 <= 0; value: 0 a -20*v0 -9 <= 0; value: -9 d 3*v0 + 2*v1 -2*v3 + 4 = 0; value: 0 0: 1 2 3 4 5 1: 2 5 2: 1 2 4 3: 5 2 0: 0 -> 0 1: 2 -> 9/8 2: 1 -> 1 3: 4 -> 25/8 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + 4*v2 + 2*v3 -99 <= 0; value: -55 a -3*v0 -2*v2 -12 <= 0; value: -33 a 5*v2 + v3 -31 <= 0; value: -15 a 6*v0 + 4*v1 -5*v2 -40 <= 0; value: -13 a -4*v1 + 2*v3 -7 <= 0; value: -17 0: 1 2 4 1: 4 5 2: 1 2 3 4 3: 1 3 5 optimal: oo a 2*v0 -1*v3 + 7/2 <= 0; value: 25/2 a 6*v0 + 4*v2 + 2*v3 -99 <= 0; value: -55 a -3*v0 -2*v2 -12 <= 0; value: -33 a 5*v2 + v3 -31 <= 0; value: -15 a 6*v0 -5*v2 + 2*v3 -47 <= 0; value: -30 d -4*v1 + 2*v3 -7 <= 0; value: 0 0: 1 2 4 1: 4 5 2: 1 2 3 4 3: 1 3 5 4 0: 5 -> 5 1: 3 -> -5/4 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a -4*v1 + 3*v2 + 7 < 0; value: -1 a -4*v0 -5*v2 -13 < 0; value: -53 a 3*v1 -22 <= 0; value: -7 a -2*v0 + 3*v1 -13 <= 0; value: -8 a 2*v3 -7 <= 0; value: -1 0: 2 4 1: 1 3 4 2: 1 2 3: 5 optimal: oo a 16/5*v0 + 2/5 < 0; value: 82/5 d -4*v1 + 3*v2 + 7 < 0; value: -4 d -4*v0 -5*v2 -13 < 0; value: -5 a -9/5*v0 -113/5 < 0; value: -158/5 a -19/5*v0 -68/5 < 0; value: -163/5 a 2*v3 -7 <= 0; value: -1 0: 2 4 3 1: 1 3 4 2: 1 2 3 4 3: 5 0: 5 -> 5 1: 5 -> -29/20 2: 4 -> -28/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -4*v1 + 5*v3 + 1 <= 0; value: -1 a -1*v0 + 5 = 0; value: 0 a 5*v1 + 2*v2 + v3 -51 <= 0; value: -32 a -4*v1 + 3*v2 -5*v3 -7 <= 0; value: -26 a 3*v0 + 4*v2 -19 = 0; value: 0 0: 2 5 1: 1 3 4 2: 3 4 5 3: 1 3 4 optimal: 43/4 a + 43/4 <= 0; value: 43/4 d -4*v1 + 5*v3 + 1 <= 0; value: 0 d -1*v0 + 5 = 0; value: 0 a -411/8 <= 0; value: -411/8 d 3*v2 -10*v3 -8 <= 0; value: 0 d 3*v0 + 4*v2 -19 = 0; value: 0 0: 2 5 3 1: 1 3 4 2: 3 4 5 3: 1 3 4 0: 5 -> 5 1: 3 -> -3/8 2: 1 -> 1 3: 2 -> -1/2 a 2*v0 -2*v1 <= 0; value: -4 a -5*v0 + v2 + 6*v3 -13 = 0; value: 0 a 5*v0 -5*v1 -6 <= 0; value: -16 a 2*v0 -1*v2 < 0; value: -1 a -2*v0 -3*v2 + 4*v3 -5 = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 3 4 3: 1 4 optimal: 12/5 a + 12/5 <= 0; value: 12/5 a -5*v0 + v2 + 6*v3 -13 = 0; value: 0 d 5*v0 -5*v1 -6 <= 0; value: 0 a 2*v0 -1*v2 < 0; value: -1 a -2*v0 -3*v2 + 4*v3 -5 = 0; value: 0 0: 1 2 3 4 1: 2 2: 1 3 4 3: 1 4 0: 0 -> 0 1: 2 -> -6/5 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 8 a -2*v1 -5*v2 + 15 = 0; value: 0 a -1*v1 + 4*v2 -27 <= 0; value: -15 a -5*v0 + 3*v2 + 11 = 0; value: 0 a -5*v0 + 6*v1 + 13 < 0; value: -7 a 2*v0 -21 < 0; value: -13 0: 3 4 5 1: 1 2 4 2: 1 2 3 3: optimal: 290/13 a + 290/13 <= 0; value: 290/13 d -2*v1 -5*v2 + 15 = 0; value: 0 d 65/6*v0 -175/3 <= 0; value: 0 d -5*v0 + 3*v2 + 11 = 0; value: 0 a -631/13 < 0; value: -631/13 a -133/13 < 0; value: -133/13 0: 3 4 5 2 1: 1 2 4 2: 1 2 3 4 3: 0: 4 -> 70/13 1: 0 -> -75/13 2: 3 -> 69/13 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 4 a -3*v2 -2*v3 + 2 < 0; value: -5 a 3*v0 -2*v3 -2 = 0; value: 0 a -3*v0 + v3 + 4 <= 0; value: 0 a -5*v0 -4*v1 + 4*v2 < 0; value: -6 0: 2 3 4 1: 4 2: 1 4 3: 1 2 3 optimal: oo a 13/2*v0 -8/3 < 0; value: 31/3 d -3*v2 -2*v3 + 2 < 0; value: -5/2 d 3*v0 -2*v3 -2 = 0; value: 0 a -3/2*v0 + 3 <= 0; value: 0 d -5*v0 -4*v1 + 4*v2 < 0; value: -4 0: 2 3 4 1: 4 2: 1 4 3: 1 2 3 0: 2 -> 2 1: 0 -> -4/3 2: 1 -> 1/6 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -8 a v1 + 3*v3 -20 <= 0; value: -4 a -2*v0 + 3*v2 = 0; value: 0 a 3*v0 -2*v3 + 8 = 0; value: 0 a v1 + v3 -8 = 0; value: 0 0: 2 3 1: 1 4 2: 2 3: 1 3 4 optimal: -4/3 a -4/3 <= 0; value: -4/3 d 9/2*v2 -4 <= 0; value: 0 d -2*v0 + 3*v2 = 0; value: 0 d 3*v0 -2*v3 + 8 = 0; value: 0 d v1 + v3 -8 = 0; value: 0 0: 2 3 1 1: 1 4 2: 2 1 3: 1 3 4 0: 0 -> 4/3 1: 4 -> 2 2: 0 -> 8/9 3: 4 -> 6 a 2*v0 -2*v1 <= 0; value: 2 a -1*v2 <= 0; value: 0 a 5*v0 -2*v1 -5*v2 -8 <= 0; value: 0 a 2*v0 + 4*v1 -4*v2 -19 <= 0; value: -11 a -1*v3 <= 0; value: -4 a 3*v0 + 3*v3 -37 < 0; value: -19 0: 2 3 5 1: 2 3 2: 1 2 3 3: 4 5 optimal: oo a -3*v0 + 5*v2 + 8 <= 0; value: 2 a -1*v2 <= 0; value: 0 d 5*v0 -2*v1 -5*v2 -8 <= 0; value: 0 a 12*v0 -14*v2 -35 <= 0; value: -11 a -1*v3 <= 0; value: -4 a 3*v0 + 3*v3 -37 < 0; value: -19 0: 2 3 5 1: 2 3 2: 1 2 3 3: 4 5 0: 2 -> 2 1: 1 -> 1 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a -6*v0 -6*v3 + 1 <= 0; value: -11 a 6*v0 -3*v3 -4 <= 0; value: -1 a 4*v0 + 4*v2 + 5*v3 -58 <= 0; value: -33 a 2*v0 + 3*v1 + 4*v3 -15 = 0; value: 0 0: 1 2 3 4 1: 4 2: 3 3: 1 2 3 4 optimal: oo a 6/5*v0 -32/15*v2 + 314/15 <= 0; value: 68/5 a -6/5*v0 + 24/5*v2 -343/5 <= 0; value: -253/5 a 42/5*v0 + 12/5*v2 -194/5 <= 0; value: -104/5 d 4*v0 + 4*v2 + 5*v3 -58 <= 0; value: 0 d 2*v0 + 3*v1 + 4*v3 -15 = 0; value: 0 0: 1 2 3 4 1: 4 2: 3 1 2 3: 1 2 3 4 0: 1 -> 1 1: 3 -> -29/5 2: 4 -> 4 3: 1 -> 38/5 a 2*v0 -2*v1 <= 0; value: 2 a -2*v0 + 5*v1 + 6*v2 -16 = 0; value: 0 a 5*v0 + v3 -27 < 0; value: -11 a -2*v0 -2*v1 + 2*v2 -1 <= 0; value: -7 a -3*v1 -5*v2 + 6*v3 + 6 < 0; value: -4 a v0 + v1 -6 <= 0; value: -1 0: 1 2 3 5 1: 1 3 4 5 2: 1 3 4 3: 2 4 optimal: (128/7 -e*1) a + 128/7 < 0; value: 128/7 d -2*v0 + 5*v1 + 6*v2 -16 = 0; value: 0 d 5*v0 + v3 -27 < 0; value: -5 d -14/5*v0 + 22/5*v2 -37/5 <= 0; value: 0 a -1217/14 < 0; value: -1217/14 d -7/55*v3 -76/55 <= 0; value: 0 0: 1 2 3 5 4 1: 1 3 4 5 2: 1 3 4 5 3: 2 4 5 0: 3 -> 46/7 1: 2 -> -93/77 2: 2 -> 129/22 3: 1 -> -76/7 a 2*v0 -2*v1 <= 0; value: -4 a -4*v0 + 4*v2 + 3*v3 -2 < 0; value: -1 a 2*v1 + 5*v3 -33 < 0; value: -8 a -2*v2 + 1 <= 0; value: -1 a -2*v0 -6*v2 + 5 <= 0; value: -7 a v0 + v3 -6 = 0; value: 0 0: 1 4 5 1: 2 2: 1 3 4 3: 1 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -4*v0 + 4*v2 + 3*v3 -2 < 0; value: -1 a 2*v1 + 5*v3 -33 < 0; value: -8 a -2*v2 + 1 <= 0; value: -1 a -2*v0 -6*v2 + 5 <= 0; value: -7 a v0 + v3 -6 = 0; value: 0 0: 1 4 5 1: 2 2: 1 3 4 3: 1 2 5 0: 3 -> 3 1: 5 -> 5 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a 2*v0 -2*v2 -3*v3 + 1 <= 0; value: 0 a v0 -1*v3 -4 = 0; value: 0 a -2*v0 -1*v1 + 2*v2 + 2 = 0; value: 0 a -1*v1 <= 0; value: 0 a 5*v0 -4*v2 -15 <= 0; value: -6 0: 1 2 3 5 1: 3 4 2: 1 3 5 3: 1 2 optimal: 10 a + 10 <= 0; value: 10 d 2*v0 -2*v2 -3*v3 + 1 <= 0; value: 0 d v0 -1*v3 -4 = 0; value: 0 d -2*v0 -1*v1 + 2*v2 + 2 = 0; value: 0 d 3*v0 -15 <= 0; value: 0 a -6 <= 0; value: -6 0: 1 2 3 5 4 4 1: 3 4 2: 1 3 5 4 3: 1 2 5 4 0: 5 -> 5 1: 0 -> 0 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a -6*v0 -11 <= 0; value: -23 a -6*v1 -7 <= 0; value: -25 a 5*v0 + v2 -15 <= 0; value: 0 a v1 -6*v3 + 21 = 0; value: 0 a 3*v0 -2*v1 <= 0; value: 0 0: 1 3 5 1: 2 4 5 2: 3 3: 4 optimal: 7/9 a + 7/9 <= 0; value: 7/9 a -19/3 <= 0; value: -19/3 d -9*v0 -7 <= 0; value: 0 a v2 -170/9 <= 0; value: -125/9 d v1 -6*v3 + 21 = 0; value: 0 d 3*v0 -12*v3 + 42 <= 0; value: 0 0: 1 3 5 2 1: 2 4 5 2: 3 3: 4 2 5 0: 2 -> -7/9 1: 3 -> -7/6 2: 5 -> 5 3: 4 -> 119/36 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 -5*v1 + 1 <= 0; value: -24 a -3*v2 + 4*v3 -2 <= 0; value: -5 a 2*v2 -13 <= 0; value: -3 a -5*v1 + v3 -7 <= 0; value: -19 a v1 -1*v2 + 2 = 0; value: 0 0: 1 1: 1 4 5 2: 2 3 5 3: 2 4 optimal: oo a 2*v0 + 40/17 <= 0; value: 108/17 a -5*v0 + 117/17 <= 0; value: -53/17 d -3*v2 + 4*v3 -2 <= 0; value: 0 a -193/17 <= 0; value: -193/17 d -17/3*v3 + 19/3 <= 0; value: 0 d v1 -1*v2 + 2 = 0; value: 0 0: 1 1: 1 4 5 2: 2 3 5 1 4 3: 2 4 1 3 0: 2 -> 2 1: 3 -> -20/17 2: 5 -> 14/17 3: 3 -> 19/17 a 2*v0 -2*v1 <= 0; value: 2 a 2*v0 + v3 -8 = 0; value: 0 a -6*v1 -3*v3 + 8 <= 0; value: -10 a 5*v1 + v2 -45 <= 0; value: -29 a v0 -3*v3 -6 <= 0; value: -2 a -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 4 1: 2 3 5 2: 3 5 3: 1 2 4 optimal: 16/3 a + 16/3 <= 0; value: 16/3 d 2*v0 + v3 -8 = 0; value: 0 d 6*v2 -3*v3 -16 <= 0; value: 0 a 4*v0 -155/3 <= 0; value: -107/3 a 7*v0 -30 <= 0; value: -2 d -1*v1 -1*v2 + 4 = 0; value: 0 0: 1 4 3 1: 2 3 5 2: 3 5 2 3: 1 2 4 3 0: 4 -> 4 1: 3 -> 4/3 2: 1 -> 8/3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a -5*v1 -1*v2 + 1 <= 0; value: 0 a -3*v0 -3*v1 -1*v2 -2 < 0; value: -6 a -1*v1 + v3 -2 <= 0; value: -1 a 2*v1 + 5*v2 -13 <= 0; value: -8 a 4*v0 + 4*v2 -15 <= 0; value: -7 0: 2 5 1: 1 2 3 4 2: 1 2 4 5 3: 3 optimal: 125/46 a + 125/46 <= 0; value: 125/46 d -5*v1 -1*v2 + 1 <= 0; value: 0 a -619/92 < 0; value: -619/92 a v3 -38/23 <= 0; value: -15/23 d 23/5*v2 -63/5 <= 0; value: 0 d 4*v0 -93/23 <= 0; value: 0 0: 2 5 1: 1 2 3 4 2: 1 2 4 5 3 3: 3 0: 1 -> 93/92 1: 0 -> -8/23 2: 1 -> 63/23 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -1*v2 + 1 <= 0; value: 0 a 2*v0 -3*v1 -2 < 0; value: -8 a v2 -2*v3 < 0; value: -1 a 3*v2 + 3*v3 -7 <= 0; value: -1 a 4*v0 + 5*v2 -14 < 0; value: -9 0: 2 5 1: 2 2: 1 3 4 5 3: 3 4 optimal: (17/6 -e*1) a + 17/6 < 0; value: 17/6 d -1*v2 + 1 <= 0; value: 0 d 2*v0 -3*v1 -2 < 0; value: -11/4 a -2*v3 + 1 < 0; value: -1 a 3*v3 -4 <= 0; value: -1 d 4*v0 + 5*v2 -14 < 0; value: -4 0: 2 5 1: 2 2: 1 3 4 5 3: 3 4 0: 0 -> 5/4 1: 2 -> 13/12 2: 1 -> 1 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -5*v2 + 4*v3 + 12 = 0; value: 0 a 3*v0 -6*v2 + 4*v3 + 10 = 0; value: 0 a -1*v1 + 2*v2 + v3 -8 <= 0; value: -3 a 2*v0 + 5*v2 + v3 -74 <= 0; value: -48 a -1*v3 + 1 < 0; value: -1 0: 2 4 1: 3 2: 1 2 3 4 3: 1 2 3 4 5 optimal: (14/3 -e*1) a + 14/3 < 0; value: 14/3 d -5*v2 + 4*v3 + 12 = 0; value: 0 d 3*v0 -1*v2 -2 = 0; value: 0 d -1*v1 + 2*v2 + v3 -8 <= 0; value: 0 a -803/15 < 0; value: -803/15 d -15/4*v0 + 13/2 < 0; value: -1/2 0: 2 4 5 1: 3 2: 1 2 3 4 5 3: 1 2 3 4 5 0: 2 -> 28/15 1: 5 -> 7/10 2: 4 -> 18/5 3: 2 -> 3/2 a 2*v0 -2*v1 <= 0; value: -4 a -4*v2 -6*v3 -3 <= 0; value: -23 a -2*v0 + 5*v3 -1 < 0; value: -5 a -1*v3 <= 0; value: 0 a -6*v0 + 5*v2 -3*v3 -37 <= 0; value: -24 a -3*v0 + 2 <= 0; value: -4 0: 2 4 5 1: 2: 1 4 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a -4*v2 -6*v3 -3 <= 0; value: -23 a -2*v0 + 5*v3 -1 < 0; value: -5 a -1*v3 <= 0; value: 0 a -6*v0 + 5*v2 -3*v3 -37 <= 0; value: -24 a -3*v0 + 2 <= 0; value: -4 0: 2 4 5 1: 2: 1 4 3: 1 2 3 4 0: 2 -> 2 1: 4 -> 4 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -5*v1 + 11 < 0; value: -2 a -1*v3 -2 < 0; value: -7 a -1*v1 + v3 <= 0; value: 0 a 5*v1 -33 < 0; value: -8 a -2*v0 + 4*v2 -3*v3 -16 < 0; value: -35 0: 1 5 1: 1 3 4 2: 5 3: 2 3 5 optimal: (22/15 -e*1) a + 22/15 < 0; value: 22/15 d 3*v0 -5*v3 + 11 < 0; value: -5/2 a -43/5 < 0; value: -43/5 d -1*v1 + v3 <= 0; value: 0 d 3*v0 -22 < 0; value: -3 a 4*v2 -757/15 < 0; value: -697/15 0: 1 5 2 4 1: 1 3 4 2: 5 3: 2 3 5 1 4 0: 4 -> 19/3 1: 5 -> 13/2 2: 1 -> 1 3: 5 -> 13/2 a 2*v0 -2*v1 <= 0; value: 2 a 5*v3 -19 < 0; value: -9 a -6*v0 -3*v2 -5*v3 + 22 <= 0; value: -27 a -4*v0 + 3*v2 + 5 <= 0; value: -6 a 3*v0 -3*v3 -19 <= 0; value: -10 a -3*v2 -4*v3 -13 < 0; value: -30 0: 2 3 4 1: 2: 2 3 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a 5*v3 -19 < 0; value: -9 a -6*v0 -3*v2 -5*v3 + 22 <= 0; value: -27 a -4*v0 + 3*v2 + 5 <= 0; value: -6 a 3*v0 -3*v3 -19 <= 0; value: -10 a -3*v2 -4*v3 -13 < 0; value: -30 0: 2 3 4 1: 2: 2 3 5 3: 1 2 4 5 0: 5 -> 5 1: 4 -> 4 2: 3 -> 3 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a -2*v0 -5*v2 + 3*v3 -6 < 0; value: -14 a -2*v1 + v2 + 4*v3 -23 <= 0; value: -3 a 4*v0 + 3*v3 -20 <= 0; value: -8 a v3 -4 = 0; value: 0 a -3*v0 -2*v1 = 0; value: 0 0: 1 3 5 1: 2 5 2: 1 2 3: 1 2 3 4 optimal: 10 a + 10 <= 0; value: 10 a -3 < 0; value: -3 d 3*v0 + v2 + 4*v3 -23 <= 0; value: 0 d -4/3*v2 + 4/3 <= 0; value: 0 d v3 -4 = 0; value: 0 d -3*v0 -2*v1 = 0; value: 0 0: 1 3 5 2 1: 2 5 2: 1 2 3 3: 1 2 3 4 0: 0 -> 2 1: 0 -> -3 2: 4 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 + 2*v2 -1*v3 -7 <= 0; value: -15 a 5*v1 + 2*v2 -45 < 0; value: -28 a -3*v2 -2*v3 -8 <= 0; value: -19 a -5*v1 + 3*v2 + 3 <= 0; value: -9 d = 0; value: 0 0: 1: 1 2 4 2: 1 2 3 4 3: 1 3 optimal: oo a 2*v0 + 4/5*v3 + 2 <= 0; value: 56/5 a -23/15*v3 -31/3 <= 0; value: -247/15 a -10/3*v3 -166/3 < 0; value: -206/3 d -3*v2 -2*v3 -8 <= 0; value: 0 d -5*v1 + 3*v2 + 3 <= 0; value: 0 d = 0; value: 0 0: 1: 1 2 4 2: 1 2 3 4 3: 1 3 2 0: 3 -> 3 1: 3 -> -13/5 2: 1 -> -16/3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 a -1*v0 -1*v3 -1 <= 0; value: -7 a 5*v0 -1*v2 + 2*v3 -39 < 0; value: -24 a -5*v0 + v2 + 1 < 0; value: -6 a -1*v0 + v1 -1*v2 + 3 = 0; value: 0 0: 1 2 3 4 5 1: 5 2: 3 4 5 3: 2 3 optimal: (76 -e*1) a + 76 < 0; value: 76 d -1*v0 + 2 = 0; value: 0 d -1*v0 -1*v3 -1 <= 0; value: 0 d 5*v0 -1*v2 + 2*v3 -39 < 0; value: -1 a -44 < 0; value: -44 d -1*v0 + v1 -1*v2 + 3 = 0; value: 0 0: 1 2 3 4 5 4 1: 5 2: 3 4 5 3: 2 3 4 0: 2 -> 2 1: 2 -> -35 2: 3 -> -34 3: 4 -> -3 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 + 3*v3 -17 <= 0; value: -1 a -2*v0 + 5*v3 = 0; value: 0 a -6*v1 -4*v2 + 5*v3 + 16 <= 0; value: -4 a -1*v0 -4*v1 -3*v3 + 18 <= 0; value: -13 a 5*v0 + 5*v1 + 4*v3 -151 <= 0; value: -93 0: 2 4 5 1: 1 3 4 5 2: 3 3: 1 2 3 4 5 optimal: 7274/77 a + 7274/77 <= 0; value: 7274/77 a -359/77 <= 0; value: -359/77 d -2*v0 + 5*v3 = 0; value: 0 d -6*v1 -4*v2 + 5*v3 + 16 <= 0; value: 0 d -53/15*v0 + 8/3*v2 + 22/3 <= 0; value: 0 d 77/20*v0 -257/2 <= 0; value: 0 0: 2 4 5 1 1: 1 3 4 5 2: 3 4 1 5 3: 1 2 3 4 5 0: 5 -> 2570/77 1: 5 -> -97/7 2: 0 -> 6387/154 3: 2 -> 1028/77 a 2*v0 -2*v1 <= 0; value: 2 a 2*v3 -3 < 0; value: -1 a -2*v1 -2*v2 -3 < 0; value: -13 a -4*v0 -1*v2 + 3 <= 0; value: -6 a v0 -3*v1 -1 <= 0; value: 0 a 3*v1 + 4*v2 + 3*v3 -28 <= 0; value: -5 0: 3 4 1: 2 4 5 2: 2 3 5 3: 1 5 optimal: oo a -16/3*v2 -4*v3 + 118/3 <= 0; value: 26/3 a 2*v3 -3 < 0; value: -1 a 2/3*v2 + 2*v3 -65/3 < 0; value: -49/3 a 15*v2 + 12*v3 -113 <= 0; value: -26 d v0 -3*v1 -1 <= 0; value: 0 d v0 + 4*v2 + 3*v3 -29 <= 0; value: 0 0: 3 4 2 5 1: 2 4 5 2: 2 3 5 3: 1 5 3 2 0: 1 -> 6 1: 0 -> 5/3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a 2*v2 + 3*v3 -17 = 0; value: 0 a v1 -2*v3 + 6 = 0; value: 0 a -3*v0 + 5*v1 -3*v2 -2 = 0; value: 0 a -5*v3 -8 <= 0; value: -33 a v1 -1*v2 -5 <= 0; value: -2 0: 3 1: 2 3 5 2: 1 3 5 3: 1 2 4 optimal: 110/21 a + 110/21 <= 0; value: 110/21 d 2*v2 + 3*v3 -17 = 0; value: 0 d v1 -2*v3 + 6 = 0; value: 0 d -3*v0 -29/3*v2 + 74/3 = 0; value: 0 a -251/7 <= 0; value: -251/7 d 21/29*v0 -163/29 <= 0; value: 0 0: 3 4 5 1: 2 3 5 2: 1 3 5 4 3: 1 2 4 3 5 0: 5 -> 163/21 1: 4 -> 36/7 2: 1 -> 1/7 3: 5 -> 39/7 a 2*v0 -2*v1 <= 0; value: 8 a v1 <= 0; value: 0 a 2*v0 -3*v2 -3 <= 0; value: -1 a -1*v1 <= 0; value: 0 a 2*v0 + 4*v2 -3*v3 -1 <= 0; value: 0 a -3*v0 + 2 <= 0; value: -10 0: 2 4 5 1: 1 3 2: 2 4 3: 4 optimal: oo a 3*v2 + 3 <= 0; value: 9 a <= 0; value: 0 d -7*v2 + 3*v3 -2 <= 0; value: 0 d -1*v1 <= 0; value: 0 d 2*v0 + 4*v2 -3*v3 -1 <= 0; value: 0 a -9/2*v2 -5/2 <= 0; value: -23/2 0: 2 4 5 1: 1 3 2: 2 4 5 3: 4 2 5 0: 4 -> 9/2 1: 0 -> 0 2: 2 -> 2 3: 5 -> 16/3 a 2*v0 -2*v1 <= 0; value: 4 a -1*v0 <= 0; value: -4 a -1*v0 -3*v1 + 10 = 0; value: 0 a -3*v0 + 2*v2 + 10 <= 0; value: 0 a 3*v0 + v3 -44 <= 0; value: -29 0: 1 2 3 4 1: 2 2: 3 3: 4 optimal: oo a -8/9*v3 + 292/9 <= 0; value: 268/9 a 1/3*v3 -44/3 <= 0; value: -41/3 d -1*v0 -3*v1 + 10 = 0; value: 0 a 2*v2 + v3 -34 <= 0; value: -29 d 3*v0 + v3 -44 <= 0; value: 0 0: 1 2 3 4 1: 2 2: 3 3: 4 1 3 0: 4 -> 41/3 1: 2 -> -11/9 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a v0 -1*v3 + 3 = 0; value: 0 a v0 <= 0; value: 0 a -1*v0 -6*v3 + 18 = 0; value: 0 a v3 -3 = 0; value: 0 a v0 + 2*v2 + v3 -5 = 0; value: 0 0: 1 2 3 5 1: 2: 5 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a v0 -1*v3 + 3 = 0; value: 0 a v0 <= 0; value: 0 a -1*v0 -6*v3 + 18 = 0; value: 0 a v3 -3 = 0; value: 0 a v0 + 2*v2 + v3 -5 = 0; value: 0 0: 1 2 3 5 1: 2: 5 3: 1 3 4 5 0: 0 -> 0 1: 3 -> 3 2: 1 -> 1 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 + 3*v1 -21 <= 0; value: -7 a -1*v1 -1 <= 0; value: -3 a -2*v1 + v2 + 3*v3 -13 = 0; value: 0 a -3*v0 + 6*v3 -28 < 0; value: -4 a 3*v0 + 5*v2 -16 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 3 5 3: 3 4 optimal: 14 a + 14 <= 0; value: 14 d -20/3*v2 -8/3 <= 0; value: 0 d -1/2*v2 -3/2*v3 + 11/2 <= 0; value: 0 d -2*v1 + v2 + 3*v3 -13 = 0; value: 0 a -116/5 < 0; value: -116/5 d 3*v0 + 5*v2 -16 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 3 5 2 1 4 1 3: 3 4 2 1 0: 2 -> 6 1: 2 -> -1 2: 2 -> -2/5 3: 5 -> 19/5 a 2*v0 -2*v1 <= 0; value: 6 a v2 <= 0; value: 0 a -5*v1 + 4*v3 + 6 = 0; value: 0 a -6*v0 + v1 + 23 <= 0; value: -5 a 3*v0 + 2*v3 -33 <= 0; value: -16 a -3*v1 -6*v2 -4*v3 + 6 <= 0; value: -4 0: 3 4 1: 2 3 5 2: 1 5 3: 2 4 5 optimal: 37/2 a + 37/2 <= 0; value: 37/2 d v2 <= 0; value: 0 d -5*v1 + 4*v3 + 6 = 0; value: 0 a -40 <= 0; value: -40 d 3*v0 -129/4 <= 0; value: 0 d -6*v2 -32/5*v3 + 12/5 <= 0; value: 0 0: 3 4 1: 2 3 5 2: 1 5 4 3 3: 2 4 5 3 0: 5 -> 43/4 1: 2 -> 3/2 2: 0 -> 0 3: 1 -> 3/8 a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 + 6*v2 + 4*v3 -41 <= 0; value: -25 a -1*v0 + 2*v3 <= 0; value: 0 a -4*v0 + 6*v1 -1*v3 < 0; value: -9 a v2 -2 = 0; value: 0 a 2*v0 + 2*v1 + v2 -11 <= 0; value: -5 0: 2 3 5 1: 1 3 5 2: 1 4 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a 4*v1 + 6*v2 + 4*v3 -41 <= 0; value: -25 a -1*v0 + 2*v3 <= 0; value: 0 a -4*v0 + 6*v1 -1*v3 < 0; value: -9 a v2 -2 = 0; value: 0 a 2*v0 + 2*v1 + v2 -11 <= 0; value: -5 0: 2 3 5 1: 1 3 5 2: 1 4 5 3: 1 2 3 0: 2 -> 2 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a -2*v0 -9 <= 0; value: -19 a v0 -5*v1 -3 <= 0; value: -13 a 3*v0 + 3*v2 + 4*v3 -55 < 0; value: -29 a -5*v2 -3 <= 0; value: -8 a -2*v0 + 4*v3 + 1 <= 0; value: -1 0: 1 2 3 5 1: 2 2: 3 4 3: 3 5 optimal: oo a -8/5*v2 -32/15*v3 + 458/15 < 0; value: 74/3 a 2*v2 + 8/3*v3 -137/3 < 0; value: -115/3 d v0 -5*v1 -3 <= 0; value: 0 d 3*v0 + 3*v2 + 4*v3 -55 < 0; value: -3 a -5*v2 -3 <= 0; value: -8 a 2*v2 + 20/3*v3 -107/3 < 0; value: -61/3 0: 1 2 3 5 1: 2 2: 3 4 1 5 3: 3 5 1 0: 5 -> 41/3 1: 3 -> 32/15 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a 3*v0 -20 <= 0; value: -11 a 3*v2 -3*v3 + 1 <= 0; value: -2 a 3*v0 -1*v1 + 6*v2 -6 = 0; value: 0 a v1 -1*v2 -3*v3 <= 0; value: 0 a -4*v0 + v1 -2*v2 + 7 <= 0; value: -2 0: 1 3 5 1: 3 4 5 2: 2 3 4 5 3: 2 4 optimal: oo a -4*v0 -12*v2 + 12 <= 0; value: 0 a 3*v0 -20 <= 0; value: -11 a 3*v2 -3*v3 + 1 <= 0; value: -2 d 3*v0 -1*v1 + 6*v2 -6 = 0; value: 0 a 3*v0 + 5*v2 -3*v3 -6 <= 0; value: 0 a -1*v0 + 4*v2 + 1 <= 0; value: -2 0: 1 3 5 4 1: 3 4 5 2: 2 3 4 5 3: 2 4 0: 3 -> 3 1: 3 -> 3 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a v3 -1 = 0; value: 0 a 2*v2 -11 <= 0; value: -5 a -3*v2 + 2*v3 + 7 = 0; value: 0 a -6*v0 -3*v1 -5 <= 0; value: -23 a -2*v0 -1*v1 + 4*v2 -11 <= 0; value: -5 0: 4 5 1: 4 5 2: 2 3 5 3: 1 3 optimal: oo a 6*v0 -2 <= 0; value: 4 d v3 -1 = 0; value: 0 a -5 <= 0; value: -5 d -3*v2 + 2*v3 + 7 = 0; value: 0 a -8 <= 0; value: -8 d -2*v0 -1*v1 + 4*v2 -11 <= 0; value: 0 0: 4 5 1: 4 5 2: 2 3 5 4 3: 1 3 4 2 0: 1 -> 1 1: 4 -> -1 2: 3 -> 3 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -2 a 3*v0 -1*v3 -4 <= 0; value: 0 a 2*v0 + 3*v2 -5*v3 -4 <= 0; value: -1 a -3*v2 -5*v3 -5 <= 0; value: -24 a 3*v1 -11 <= 0; value: -2 a v0 -2*v1 + 2 <= 0; value: -2 0: 1 2 5 1: 4 5 2: 2 3 3: 1 2 3 optimal: 10/3 a + 10/3 <= 0; value: 10/3 d 3*v0 -1*v3 -4 <= 0; value: 0 a 3*v2 -160/3 <= 0; value: -133/3 a -3*v2 -65 <= 0; value: -74 d 1/2*v3 -6 <= 0; value: 0 d v0 -2*v1 + 2 <= 0; value: 0 0: 1 2 5 4 1: 4 5 2: 2 3 3: 1 2 3 4 0: 2 -> 16/3 1: 3 -> 11/3 2: 3 -> 3 3: 2 -> 12 a 2*v0 -2*v1 <= 0; value: 2 a -5*v2 + 6*v3 -1 <= 0; value: -8 a -3*v0 + v3 <= 0; value: 0 a 5*v1 + 6*v3 -25 <= 0; value: -7 a v0 + 4*v1 -1 <= 0; value: 0 a 2*v2 -17 <= 0; value: -7 0: 2 4 1: 3 4 2: 1 5 3: 1 2 3 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -5*v2 + 6*v3 -1 <= 0; value: -8 a -3*v0 + v3 <= 0; value: 0 a 5*v1 + 6*v3 -25 <= 0; value: -7 a v0 + 4*v1 -1 <= 0; value: 0 a 2*v2 -17 <= 0; value: -7 0: 2 4 1: 3 4 2: 1 5 3: 1 2 3 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -6 a 3*v0 -1*v2 -2 <= 0; value: -1 a 2*v0 + 3*v1 -29 < 0; value: -15 a v3 -8 < 0; value: -3 a -1*v0 + 1 = 0; value: 0 a -1*v0 -2*v2 + 4 <= 0; value: -1 0: 1 2 4 5 1: 2 2: 1 5 3: 3 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a 3*v0 -1*v2 -2 <= 0; value: -1 a 2*v0 + 3*v1 -29 < 0; value: -15 a v3 -8 < 0; value: -3 a -1*v0 + 1 = 0; value: 0 a -1*v0 -2*v2 + 4 <= 0; value: -1 0: 1 2 4 5 1: 2 2: 1 5 3: 3 0: 1 -> 1 1: 4 -> 4 2: 2 -> 2 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -2*v0 + 6*v1 -19 <= 0; value: -9 a 3*v1 + v3 -11 = 0; value: 0 a 3*v0 + 2*v1 -8 < 0; value: -1 a -4*v3 + 11 < 0; value: -9 a -4*v1 + 3 < 0; value: -5 0: 1 3 1: 1 2 3 5 2: 3: 2 4 optimal: (17/6 -e*1) a + 17/6 < 0; value: 17/6 a -113/6 < 0; value: -113/6 d 3*v1 + v3 -11 = 0; value: 0 d 3*v0 -13/2 < 0; value: -7/4 a -24 < 0; value: -24 d 4/3*v3 -35/3 < 0; value: -4/3 0: 1 3 1: 1 2 3 5 2: 3: 2 4 5 1 3 0: 1 -> 19/12 1: 2 -> 13/12 2: 1 -> 1 3: 5 -> 31/4 a 2*v0 -2*v1 <= 0; value: 8 a v1 + 4*v2 -2 < 0; value: -1 a -2*v2 -3*v3 -4 < 0; value: -19 a v2 <= 0; value: 0 a 2*v0 + v1 -4*v2 -14 <= 0; value: -3 a -5*v0 + 2*v3 + 12 <= 0; value: -3 0: 4 5 1: 1 4 2: 1 2 3 4 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 8 a v1 + 4*v2 -2 < 0; value: -1 a -2*v2 -3*v3 -4 < 0; value: -19 a v2 <= 0; value: 0 a 2*v0 + v1 -4*v2 -14 <= 0; value: -3 a -5*v0 + 2*v3 + 12 <= 0; value: -3 0: 4 5 1: 1 4 2: 1 2 3 4 3: 2 5 0: 5 -> 5 1: 1 -> 1 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 + 5*v2 -3*v3 + 5 < 0; value: -4 a v0 + 3*v2 -12 = 0; value: 0 a -4*v0 + 2*v1 + 7 <= 0; value: -3 a 2*v2 -3*v3 + 5 < 0; value: -1 a -4*v3 -3 <= 0; value: -19 0: 1 2 3 1: 3 2: 1 2 4 3: 1 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 4 a -4*v0 + 5*v2 -3*v3 + 5 < 0; value: -4 a v0 + 3*v2 -12 = 0; value: 0 a -4*v0 + 2*v1 + 7 <= 0; value: -3 a 2*v2 -3*v3 + 5 < 0; value: -1 a -4*v3 -3 <= 0; value: -19 0: 1 2 3 1: 3 2: 1 2 4 3: 1 4 5 0: 3 -> 3 1: 1 -> 1 2: 3 -> 3 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 6 a -1*v0 + 3*v1 -2 <= 0; value: -1 a 4*v2 -1*v3 -19 = 0; value: 0 a 2*v0 -6*v1 + 5*v3 -3 <= 0; value: 0 a 6*v0 -3*v1 + 2*v3 -76 <= 0; value: -50 a 2*v1 + 3*v3 -10 <= 0; value: -3 0: 1 3 4 1: 1 3 4 5 2: 2 3: 2 3 4 5 optimal: oo a -46/3*v0 + 748/3 <= 0; value: 518/3 a 25*v0 -376 <= 0; value: -251 d 4*v2 -1*v3 -19 = 0; value: 0 d 2*v0 -6*v1 + 5*v3 -3 <= 0; value: 0 d 5*v0 -2*v2 -65 <= 0; value: 0 a 142/3*v0 -2119/3 <= 0; value: -1409/3 0: 1 3 4 5 1 1: 1 3 4 5 2: 2 4 5 1 3: 2 3 4 5 1 0: 5 -> 5 1: 2 -> -244/3 2: 5 -> -20 3: 1 -> -99 a 2*v0 -2*v1 <= 0; value: -6 a -2*v0 -3*v1 + 6 < 0; value: -3 a -5*v1 + 6*v3 + 1 <= 0; value: -14 a -1*v1 -2 < 0; value: -5 a v0 + v1 -3 = 0; value: 0 a -1*v3 <= 0; value: 0 0: 1 4 1: 1 2 3 4 2: 3: 2 5 optimal: 26/5 a + 26/5 <= 0; value: 26/5 a -1/5 < 0; value: -1/5 d 5*v0 + 6*v3 -14 <= 0; value: 0 a -11/5 < 0; value: -11/5 d v0 + v1 -3 = 0; value: 0 d -1*v3 <= 0; value: 0 0: 1 4 2 3 1: 1 2 3 4 2: 3: 2 5 1 3 0: 0 -> 14/5 1: 3 -> 1/5 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -6 a -6*v0 -5*v3 + 17 = 0; value: 0 a v2 + 2*v3 -10 < 0; value: -5 a -1*v2 + 3 <= 0; value: 0 a -2*v1 -1*v2 -9 <= 0; value: -22 a v0 + 3*v1 -33 <= 0; value: -16 0: 1 5 1: 4 5 2: 2 3 4 3: 1 2 optimal: oo a 22/5*v0 + 61/5 < 0; value: 21 d -6*v0 -5*v3 + 17 = 0; value: 0 d v2 + 2*v3 -10 < 0; value: -1 a -12/5*v0 -1/5 < 0; value: -5 d -2*v1 -1*v2 -9 <= 0; value: 0 a -13/5*v0 -513/10 < 0; value: -113/2 0: 1 5 3 1: 4 5 2: 2 3 4 5 3: 1 2 3 5 0: 2 -> 2 1: 5 -> -8 2: 3 -> 7 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a v1 + 2*v3 -9 = 0; value: 0 a 2*v3 -17 <= 0; value: -11 a 3*v1 + 4*v2 -44 <= 0; value: -27 a 2*v1 + 5*v2 -40 <= 0; value: -24 a -2*v3 -5 <= 0; value: -11 0: 1: 1 3 4 2: 3 4 3: 1 2 5 optimal: oo a 2*v0 + 16 <= 0; value: 18 d v1 + 2*v3 -9 = 0; value: 0 d 2*v3 -17 <= 0; value: 0 a 4*v2 -68 <= 0; value: -60 a 5*v2 -56 <= 0; value: -46 a -22 <= 0; value: -22 0: 1: 1 3 4 2: 3 4 3: 1 2 5 3 4 0: 1 -> 1 1: 3 -> -8 2: 2 -> 2 3: 3 -> 17/2 a 2*v0 -2*v1 <= 0; value: 0 a v2 -2*v3 + 1 <= 0; value: -5 a -1*v0 + 2*v1 -4*v2 + 13 = 0; value: 0 a -1*v3 -3 < 0; value: -8 a -1*v1 + 3 = 0; value: 0 a 5*v0 + 2*v1 -6*v3 + 9 = 0; value: 0 0: 2 5 1: 2 4 5 2: 1 2 3: 1 3 5 optimal: oo a 12/5*v3 -12 <= 0; value: 0 a -23/10*v3 + 13/2 <= 0; value: -5 d -1*v0 + 2*v1 -4*v2 + 13 = 0; value: 0 a -1*v3 -3 < 0; value: -8 d -1/2*v0 -2*v2 + 19/2 = 0; value: 0 d 5*v0 -6*v3 + 15 = 0; value: 0 0: 2 5 4 1 1: 2 4 5 2: 1 2 4 5 3: 1 3 5 0: 3 -> 3 1: 3 -> 3 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -1*v2 + v3 -13 < 0; value: -8 a 4*v0 -5*v2 -3*v3 + 31 = 0; value: 0 a -6*v0 + 3*v2 -14 <= 0; value: -8 a v0 + v1 + 3*v3 -28 < 0; value: -11 0: 1 2 3 4 1: 4 2: 1 2 3 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a 4*v0 -1*v2 + v3 -13 < 0; value: -8 a 4*v0 -5*v2 -3*v3 + 31 = 0; value: 0 a -6*v0 + 3*v2 -14 <= 0; value: -8 a v0 + v1 + 3*v3 -28 < 0; value: -11 0: 1 2 3 4 1: 4 2: 1 2 3 3: 1 2 4 0: 1 -> 1 1: 1 -> 1 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -3*v2 + v3 + 5 = 0; value: 0 a -2*v0 + 3*v3 + 2 = 0; value: 0 a -3*v3 + 1 < 0; value: -5 a -1*v0 + v1 <= 0; value: 0 a 3*v1 -4*v2 + 8 <= 0; value: 0 0: 2 4 1: 1 4 5 2: 1 5 3: 1 2 3 optimal: oo a 8/3*v0 -3*v2 + 13/3 <= 0; value: 0 d 2*v1 -3*v2 + v3 + 5 = 0; value: 0 d -2*v0 + 3*v3 + 2 = 0; value: 0 a -2*v0 + 3 < 0; value: -5 a -4/3*v0 + 3/2*v2 -13/6 <= 0; value: 0 a -1*v0 + 1/2*v2 + 3/2 <= 0; value: 0 0: 2 4 3 5 1: 1 4 5 2: 1 5 4 3: 1 2 3 4 5 0: 4 -> 4 1: 4 -> 4 2: 5 -> 5 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -2 a -1*v0 <= 0; value: 0 a 5*v0 + v1 -5*v2 + 7 <= 0; value: -2 a -2*v0 -3*v1 + 3 <= 0; value: 0 a -3*v0 -5*v1 + v2 + 2 <= 0; value: -1 a -2*v1 -1*v3 + 5 = 0; value: 0 0: 1 2 3 4 1: 2 3 4 5 2: 2 4 3: 5 optimal: 17/9 a + 17/9 <= 0; value: 17/9 a -7/6 <= 0; value: -7/6 d -5*v2 + 13/4*v3 -7/4 <= 0; value: 0 d -2*v0 -3*v1 + 3 <= 0; value: 0 d 18/13*v2 -47/13 <= 0; value: 0 d 4/3*v0 -1*v3 + 3 = 0; value: 0 0: 1 2 3 4 5 1: 2 3 4 5 2: 2 4 1 3: 5 4 2 1 0: 0 -> 7/6 1: 1 -> 2/9 2: 2 -> 47/18 3: 3 -> 41/9 a 2*v0 -2*v1 <= 0; value: 0 a -5*v2 + 4*v3 + 1 < 0; value: -11 a v0 + v2 -3*v3 -2 < 0; value: -1 a v3 -2 = 0; value: 0 a 5*v0 -2*v2 -13 < 0; value: -6 a -1*v1 + v3 <= 0; value: -1 0: 2 4 1: 5 2: 1 2 4 3: 1 2 3 5 optimal: (30/7 -e*1) a + 30/7 < 0; value: 30/7 a -72/7 < 0; value: -72/7 d v0 + v2 -8 < 0; value: -4/7 d v3 -2 = 0; value: 0 d -7*v2 + 27 <= 0; value: 0 d -1*v1 + v3 <= 0; value: 0 0: 2 4 1: 5 2: 1 2 4 3: 1 2 3 5 0: 3 -> 25/7 1: 3 -> 2 2: 4 -> 27/7 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a -2*v1 -1*v3 -1 <= 0; value: -8 a 3*v3 -22 <= 0; value: -13 a -3*v2 -2*v3 + 13 <= 0; value: -8 a -4*v1 -4*v3 + 15 < 0; value: -5 a -3*v0 + v1 -5*v2 + 29 <= 0; value: -6 0: 5 1: 1 4 5 2: 3 5 3: 1 2 3 4 optimal: oo a 2*v0 + 43/6 < 0; value: 91/6 a -7/6 <= 0; value: -7/6 d 3*v3 -22 <= 0; value: 0 a -3*v2 -5/3 <= 0; value: -50/3 d -4*v1 -4*v3 + 15 < 0; value: -4 a -3*v0 -5*v2 + 305/12 < 0; value: -139/12 0: 5 1: 1 4 5 2: 3 5 3: 1 2 3 4 5 0: 4 -> 4 1: 2 -> -31/12 2: 5 -> 5 3: 3 -> 22/3 a 2*v0 -2*v1 <= 0; value: 4 a 2*v1 -5*v3 -9 <= 0; value: -5 a 6*v0 -49 <= 0; value: -25 a 5*v0 -6*v2 + v3 -45 <= 0; value: -25 a -3*v0 -6*v1 + 3*v2 + 17 <= 0; value: -7 a v0 -6*v1 -3*v3 < 0; value: -8 0: 2 3 4 5 1: 1 4 5 2: 3 4 3: 1 3 5 optimal: (1177/63 -e*1) a + 1177/63 < 0; value: 1177/63 a -4625/126 < 0; value: -4625/126 d 6*v0 -49 <= 0; value: 0 d -3*v0 + 7*v3 -11 <= 0; value: 0 d -3*v0 -6*v1 + 3*v2 + 17 <= 0; value: 0 d 4*v0 -3*v2 -3*v3 -17 < 0; value: -19/84 0: 2 3 4 5 1 1: 1 4 5 2: 3 4 5 1 3: 1 3 5 0: 4 -> 49/6 1: 2 -> -191/168 2: 0 -> 19/84 3: 0 -> 71/14 a 2*v0 -2*v1 <= 0; value: 10 a 5*v0 -1*v1 -5*v2 -40 <= 0; value: -25 a 2*v0 + 2*v1 -2*v3 -19 <= 0; value: -9 a 5*v2 -2*v3 -27 <= 0; value: -17 a -3*v0 + v3 <= 0; value: -15 a v3 <= 0; value: 0 0: 1 2 4 1: 1 2 2: 1 3 3: 2 3 4 5 optimal: 134 a + 134 <= 0; value: 134 d 5*v0 -1*v1 -5*v2 -40 <= 0; value: 0 a -153 <= 0; value: -153 d 5*v2 -2*v3 -27 <= 0; value: 0 d -3*v0 <= 0; value: 0 d v3 <= 0; value: 0 0: 1 2 4 1: 1 2 2: 1 3 2 3: 2 3 4 5 0: 5 -> 0 1: 0 -> -67 2: 2 -> 27/5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a 5*v1 -6*v2 + 18 = 0; value: 0 a -2*v0 + v2 -5 <= 0; value: -12 a -1*v1 + 2*v2 -1*v3 -6 <= 0; value: 0 a -2*v2 -3*v3 + 6 = 0; value: 0 a -5*v0 + 3*v3 + 25 = 0; value: 0 0: 2 5 1: 1 3 2: 1 2 3 4 3: 3 4 5 optimal: oo a 8*v0 -30 <= 0; value: 10 d 5*v1 -6*v2 + 18 = 0; value: 0 a -9/2*v0 + 21/2 <= 0; value: -12 a -11/3*v0 + 55/3 <= 0; value: 0 d -2*v2 -3*v3 + 6 = 0; value: 0 d -5*v0 + 3*v3 + 25 = 0; value: 0 0: 2 5 3 1: 1 3 2: 1 2 3 4 3: 3 4 5 2 0: 5 -> 5 1: 0 -> 0 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 2 a 5*v1 -4*v2 -2 <= 0; value: -1 a -1*v1 + 1 <= 0; value: 0 a 5*v0 + 6*v2 -22 <= 0; value: -6 a -3*v0 + 5 <= 0; value: -1 a -4*v1 + 5*v2 -2 < 0; value: -1 0: 3 4 1: 1 2 5 2: 1 3 5 3: optimal: 5 a + 5 <= 0; value: 5 d -4*v2 + 3 <= 0; value: 0 d -1*v1 + 1 <= 0; value: 0 d 5*v0 + 6*v2 -22 <= 0; value: 0 a -11/2 <= 0; value: -11/2 a -9/4 < 0; value: -9/4 0: 3 4 1: 1 2 5 2: 1 3 5 4 3: 0: 2 -> 7/2 1: 1 -> 1 2: 1 -> 3/4 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -6*v3 + 15 <= 0; value: -20 a v0 -1 = 0; value: 0 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a 4*v0 -1*v2 -5 <= 0; value: -1 0: 1 2 5 1: 2: 3 4 5 3: 1 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 -6*v3 + 15 <= 0; value: -20 a v0 -1 = 0; value: 0 a -1*v2 <= 0; value: 0 a v2 <= 0; value: 0 a 4*v0 -1*v2 -5 <= 0; value: -1 0: 1 2 5 1: 2: 3 4 5 3: 1 0: 1 -> 1 1: 0 -> 0 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a v3 -5 = 0; value: 0 a -2*v0 -1*v1 + 5*v3 -30 <= 0; value: -11 a -3*v1 -5*v2 + 12 = 0; value: 0 a 2*v0 -5 <= 0; value: -3 a 2*v1 -3*v3 + 7 = 0; value: 0 0: 2 4 1: 2 3 5 2: 3 3: 1 2 5 optimal: -3 a -3 <= 0; value: -3 d v3 -5 = 0; value: 0 a -14 <= 0; value: -14 d -3*v1 -5*v2 + 12 = 0; value: 0 d 2*v0 -5 <= 0; value: 0 d -10/3*v2 -3*v3 + 15 = 0; value: 0 0: 2 4 1: 2 3 5 2: 3 2 5 3: 1 2 5 0: 1 -> 5/2 1: 4 -> 4 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -6 a -4*v1 + 6*v3 -17 <= 0; value: -7 a 2*v0 + v3 -21 <= 0; value: -12 a v0 + 5*v2 -36 <= 0; value: -19 a -4*v1 -1*v2 -3 < 0; value: -26 a -2*v0 -1*v1 + 6*v3 -21 = 0; value: 0 0: 2 3 5 1: 1 4 5 2: 3 4 3: 1 2 5 optimal: 45/22 a + 45/22 <= 0; value: 45/22 d 8*v0 -18*v3 + 67 <= 0; value: 0 d 22/9*v0 -311/18 <= 0; value: 0 a 5*v2 -1273/44 <= 0; value: -613/44 a -1*v2 -299/11 < 0; value: -332/11 d -2*v0 -1*v1 + 6*v3 -21 = 0; value: 0 0: 2 3 5 4 1 1: 1 4 5 2: 3 4 3: 1 2 5 4 0: 2 -> 311/44 1: 5 -> 133/22 2: 3 -> 3 3: 5 -> 151/22 a 2*v0 -2*v1 <= 0; value: 0 a 5*v1 + 6*v3 -31 = 0; value: 0 a 4*v2 -5*v3 -20 < 0; value: -13 a -6*v0 -5*v1 -6*v2 + 40 <= 0; value: -33 a 3*v0 + v1 -45 <= 0; value: -25 a -4*v1 -3*v2 + 17 <= 0; value: -12 0: 3 4 1: 1 3 4 5 2: 2 3 5 3: 1 2 optimal: (1742/21 -e*1) a + 1742/21 < 0; value: 1742/21 d 5*v1 + 6*v3 -31 = 0; value: 0 d 7/8*v2 -225/8 < 0; value: -7/8 a -1283/7 < 0; value: -1283/7 d 3*v0 -454/7 < 0; value: -3 d -3*v2 + 24/5*v3 -39/5 <= 0; value: 0 0: 3 4 1: 1 3 4 5 2: 2 3 5 4 3: 1 2 3 5 4 0: 5 -> 433/21 1: 5 -> -535/28 2: 3 -> 218/7 3: 1 -> 1181/56 a 2*v0 -2*v1 <= 0; value: -8 a -4*v1 -4*v3 + 11 < 0; value: -21 a -5*v0 + v2 -4*v3 + 13 < 0; value: -3 a 2*v0 + 3*v3 -11 = 0; value: 0 a -3*v0 + 3*v1 -6*v3 -4 <= 0; value: -10 a 3*v0 + 3*v1 + v2 -19 = 0; value: 0 0: 2 3 4 5 1: 1 4 5 2: 2 5 3: 1 2 3 4 optimal: (161/44 -e*1) a + 161/44 < 0; value: 161/44 d 88/9*v0 -241/9 <= 0; value: 0 d -5*v0 + v2 -4*v3 + 13 < 0; value: -1 d 2*v0 + 3*v3 -11 = 0; value: 0 a -1807/88 < 0; value: -1807/88 d 3*v0 + 3*v1 + v2 -19 = 0; value: 0 0: 2 3 4 5 1 1: 1 4 5 2: 2 5 1 4 3: 1 2 3 4 0: 1 -> 241/88 1: 5 -> 41/33 2: 1 -> 621/88 3: 3 -> 81/44 a 2*v0 -2*v1 <= 0; value: -10 a -2*v0 + v1 -6*v2 -22 <= 0; value: -47 a v0 + 5*v1 -25 = 0; value: 0 a -1*v1 -2*v2 + 5 <= 0; value: -10 a 2*v2 + 5*v3 -80 < 0; value: -50 a 5*v0 + 4*v1 + 2*v3 -65 <= 0; value: -37 0: 1 2 5 1: 1 2 3 5 2: 1 3 4 3: 4 5 optimal: oo a 24*v2 -10 <= 0; value: 110 a -28*v2 -17 <= 0; value: -157 d v0 + 5*v1 -25 = 0; value: 0 d -2*v2 -2/21*v3 + 15/7 <= 0; value: 0 a -103*v2 + 65/2 < 0; value: -965/2 d 21/5*v0 + 2*v3 -45 <= 0; value: 0 0: 1 2 5 3 1: 1 2 3 5 2: 1 3 4 3: 4 5 3 1 0: 0 -> 50 1: 5 -> -5 2: 5 -> 5 3: 4 -> -165/2 a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -2*v3 -11 < 0; value: -4 a -1*v3 + 4 = 0; value: 0 a v0 -5 <= 0; value: 0 a -3*v0 -2*v2 -9 <= 0; value: -24 a -5*v0 + 13 <= 0; value: -12 0: 1 3 4 5 1: 2: 4 3: 1 2 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 3*v0 -2*v3 -11 < 0; value: -4 a -1*v3 + 4 = 0; value: 0 a v0 -5 <= 0; value: 0 a -3*v0 -2*v2 -9 <= 0; value: -24 a -5*v0 + 13 <= 0; value: -12 0: 1 3 4 5 1: 2: 4 3: 1 2 0: 5 -> 5 1: 2 -> 2 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -2*v2 + 5*v3 + 5 <= 0; value: 0 a 2*v0 + v3 -3 = 0; value: 0 a -5*v0 -1*v3 + 4 < 0; value: -2 a -4*v2 + 5*v3 + 11 <= 0; value: -4 a 2*v0 -1*v3 -1 = 0; value: 0 0: 2 3 5 1: 2: 1 4 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -2*v2 + 5*v3 + 5 <= 0; value: 0 a 2*v0 + v3 -3 = 0; value: 0 a -5*v0 -1*v3 + 4 < 0; value: -2 a -4*v2 + 5*v3 + 11 <= 0; value: -4 a 2*v0 -1*v3 -1 = 0; value: 0 0: 2 3 5 1: 2: 1 4 3: 1 2 3 4 5 0: 1 -> 1 1: 1 -> 1 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 4 a v0 -4*v1 + 4 = 0; value: 0 a -3*v0 + 6*v1 -6*v3 + 11 < 0; value: -13 a -3*v1 + 2*v3 -3 <= 0; value: -1 a v3 -4 = 0; value: 0 a -1*v1 -1*v2 + 7 = 0; value: 0 0: 1 2 1: 1 2 3 5 2: 5 3: 2 3 4 optimal: oo a -6*v2 + 34 <= 0; value: 4 d v0 -4*v1 + 4 = 0; value: 0 a 6*v2 -6*v3 -19 < 0; value: -13 a 3*v2 + 2*v3 -24 <= 0; value: -1 a v3 -4 = 0; value: 0 d -1/4*v0 -1*v2 + 6 = 0; value: 0 0: 1 2 3 5 1: 1 2 3 5 2: 5 2 3 3: 2 3 4 0: 4 -> 4 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a v0 + v1 -2 = 0; value: 0 a 5*v0 -4*v1 -4*v2 + 7 = 0; value: 0 a 2*v0 -3 <= 0; value: -1 a -3*v0 + v3 <= 0; value: -2 a 5*v2 -2*v3 -21 <= 0; value: -13 0: 1 2 3 4 1: 1 2 2: 2 5 3: 4 5 optimal: 2 a + 2 <= 0; value: 2 d v0 + v1 -2 = 0; value: 0 d 9*v0 -4*v2 -1 = 0; value: 0 d 8/9*v2 -25/9 <= 0; value: 0 a v3 -9/2 <= 0; value: -7/2 a -2*v3 -43/8 <= 0; value: -59/8 0: 1 2 3 4 1: 1 2 2: 2 5 3 4 3: 4 5 0: 1 -> 3/2 1: 1 -> 1/2 2: 2 -> 25/8 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a v0 -2 < 0; value: -1 a 6*v0 -3*v1 + 2*v2 <= 0; value: 0 a v0 + 6*v2 -1*v3 -36 <= 0; value: -20 a 4*v1 -1*v2 -13 = 0; value: 0 a v2 -4*v3 < 0; value: -9 0: 1 2 3 1: 2 4 2: 2 3 4 5 3: 3 5 optimal: (-8/5 -e*1) a -8/5 < 0; value: -8/5 d v0 -2 < 0; value: -1/2 d 6*v0 -3*v1 + 2*v2 <= 0; value: 0 a -1*v3 -224/5 < 0; value: -239/5 d 8*v0 + 5/3*v2 -13 = 0; value: 0 a -4*v3 -9/5 < 0; value: -69/5 0: 1 2 3 4 5 1: 2 4 2: 2 3 4 5 3: 3 5 0: 1 -> 3/2 1: 4 -> 17/5 2: 3 -> 3/5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -4 a -5*v0 -6*v3 + 10 <= 0; value: -30 a -2*v1 -3 < 0; value: -11 a -5*v0 -4*v1 + 26 <= 0; value: 0 a -1*v2 + 5 = 0; value: 0 a 3*v0 -6*v2 -17 <= 0; value: -41 0: 1 3 5 1: 2 3 2: 4 5 3: 1 optimal: (79/5 -e*1) a + 79/5 < 0; value: 79/5 a -6*v3 -22 < 0; value: -52 d 5/2*v0 -16 < 0; value: -5/2 d -5*v0 -4*v1 + 26 <= 0; value: 0 a -1*v2 + 5 = 0; value: 0 a -6*v2 + 11/5 <= 0; value: -139/5 0: 1 3 5 2 1: 2 3 2: 4 5 3: 1 0: 2 -> 27/5 1: 4 -> -1/4 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v3 -10 < 0; value: -4 a 5*v2 -22 <= 0; value: -12 a -3*v0 + 4*v3 + 4 <= 0; value: 0 a -1*v0 -2*v1 + 3*v2 -1 <= 0; value: -7 a -5*v0 -2*v2 + 21 < 0; value: -3 0: 3 4 5 1: 1 4 2: 2 4 5 3: 1 3 optimal: oo a 21/2*v0 -61/2 < 0; value: 23/2 a -17/2*v0 -1*v3 + 41/2 < 0; value: -31/2 a -25/2*v0 + 61/2 < 0; value: -39/2 a -3*v0 + 4*v3 + 4 <= 0; value: 0 d -1*v0 -2*v1 + 3*v2 -1 <= 0; value: 0 d -5*v0 -2*v2 + 21 < 0; value: -3/2 0: 3 4 5 1 2 1: 1 4 2: 2 4 5 1 3: 1 3 0: 4 -> 4 1: 4 -> -5/8 2: 2 -> 5/4 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 0 a v0 -1*v3 = 0; value: 0 a -6*v1 + v3 -8 < 0; value: -33 a 2*v2 + v3 -13 = 0; value: 0 a -1*v3 -1 < 0; value: -6 0: 1 1: 2 2: 3 3: 1 2 3 4 optimal: oo a -10/3*v2 + 73/3 < 0; value: 11 d v0 -1*v3 = 0; value: 0 d -6*v1 + v3 -8 < 0; value: -6 d v0 + 2*v2 -13 = 0; value: 0 a 2*v2 -14 < 0; value: -6 0: 1 3 4 1: 2 2: 3 4 3: 1 2 3 4 0: 5 -> 5 1: 5 -> 1/2 2: 4 -> 4 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 0 a -2*v1 + v2 -3 = 0; value: 0 a 2*v0 + 6*v1 -4*v3 -7 <= 0; value: -19 a 3*v1 + 4*v2 -12 = 0; value: 0 a -2*v3 -1 <= 0; value: -7 a -1*v1 <= 0; value: 0 0: 2 1: 1 2 3 5 2: 1 3 3: 2 4 optimal: oo a 4*v3 + 7 <= 0; value: 19 d -2*v1 + v2 -3 = 0; value: 0 d 2*v0 -4*v3 -7 <= 0; value: 0 d 11/2*v2 -33/2 = 0; value: 0 a -2*v3 -1 <= 0; value: -7 a <= 0; value: 0 0: 2 1: 1 2 3 5 2: 1 3 5 2 3: 2 4 0: 0 -> 19/2 1: 0 -> 0 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -4*v0 -5*v1 -8 <= 0; value: -39 a 5*v0 + v1 -25 <= 0; value: -2 a -3*v1 + 5*v3 -1 = 0; value: 0 a -2*v0 + 2*v2 + 6*v3 -25 <= 0; value: -13 a -5*v1 + 4*v2 -1 <= 0; value: 0 0: 1 2 4 1: 1 2 3 5 2: 4 5 3: 3 4 optimal: 26 a + 26 <= 0; value: 26 d -4*v0 -4*v2 -7 <= 0; value: 0 d 21/5*v0 -133/5 <= 0; value: 0 d -3*v1 + 5*v3 -1 = 0; value: 0 a -2299/30 <= 0; value: -2299/30 d 4*v2 -25/3*v3 + 2/3 <= 0; value: 0 0: 1 2 4 1: 1 2 3 5 2: 4 5 1 2 3: 3 4 1 5 2 0: 4 -> 19/3 1: 3 -> -20/3 2: 4 -> -97/12 3: 2 -> -19/5 a 2*v0 -2*v1 <= 0; value: 10 a v1 + 2*v3 -8 <= 0; value: -2 a -6*v3 -17 < 0; value: -35 a 4*v2 -27 < 0; value: -15 a -2*v2 -5*v3 -8 < 0; value: -29 a 5*v1 + v2 -6 <= 0; value: -3 0: 1: 1 5 2: 3 4 5 3: 1 2 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 10 a v1 + 2*v3 -8 <= 0; value: -2 a -6*v3 -17 < 0; value: -35 a 4*v2 -27 < 0; value: -15 a -2*v2 -5*v3 -8 < 0; value: -29 a 5*v1 + v2 -6 <= 0; value: -3 0: 1: 1 5 2: 3 4 5 3: 1 2 4 0: 5 -> 5 1: 0 -> 0 2: 3 -> 3 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 8 a 5*v0 + 6*v2 -109 < 0; value: -71 a -1*v0 -1*v1 <= 0; value: -4 a 4*v0 + 2*v2 -61 <= 0; value: -39 a 2*v0 + 2*v1 -9 <= 0; value: -1 a 5*v0 + 2*v1 + 3*v3 -26 <= 0; value: 0 0: 1 2 3 4 5 1: 2 4 5 2: 1 3 3: 5 optimal: oo a -2*v2 + 61 <= 0; value: 55 a 7/2*v2 -131/4 < 0; value: -89/4 d -1*v0 -1*v1 <= 0; value: 0 d 2*v2 -4*v3 -79/3 <= 0; value: 0 a -9 <= 0; value: -9 d 3*v0 + 3*v3 -26 <= 0; value: 0 0: 1 2 3 4 5 1: 2 4 5 2: 1 3 3: 5 1 3 0: 4 -> 55/4 1: 0 -> -55/4 2: 3 -> 3 3: 2 -> -61/12 a 2*v0 -2*v1 <= 0; value: -6 a -1*v3 = 0; value: 0 a -1*v2 -4*v3 + 1 <= 0; value: -2 a 3*v2 + 6*v3 -16 <= 0; value: -7 a 4*v1 + 5*v2 -5*v3 -37 <= 0; value: -10 a v3 = 0; value: 0 0: 1: 4 2: 2 3 4 3: 1 2 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -6 a -1*v3 = 0; value: 0 a -1*v2 -4*v3 + 1 <= 0; value: -2 a 3*v2 + 6*v3 -16 <= 0; value: -7 a 4*v1 + 5*v2 -5*v3 -37 <= 0; value: -10 a v3 = 0; value: 0 0: 1: 4 2: 2 3 4 3: 1 2 3 4 5 0: 0 -> 0 1: 3 -> 3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 4 a v0 -2*v1 -2 = 0; value: 0 a -5*v0 + 5*v3 -6 <= 0; value: -16 a -2*v0 -1*v2 -8 <= 0; value: -17 a v2 -5 = 0; value: 0 a v2 -3*v3 -6 < 0; value: -1 0: 1 2 3 1: 1 2: 3 4 5 3: 2 5 optimal: oo a v0 + 2 <= 0; value: 4 d v0 -2*v1 -2 = 0; value: 0 a -5*v0 + 5*v3 -6 <= 0; value: -16 a -2*v0 -1*v2 -8 <= 0; value: -17 a v2 -5 = 0; value: 0 a v2 -3*v3 -6 < 0; value: -1 0: 1 2 3 1: 1 2: 3 4 5 3: 2 5 0: 2 -> 2 1: 0 -> 0 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -10 a -1*v1 + 5 <= 0; value: 0 a -5*v1 + 11 <= 0; value: -14 a 3*v0 -2*v3 -1 <= 0; value: -7 a v0 + 6*v2 -38 <= 0; value: -14 d <= 0; value: 0 0: 3 4 1: 1 2 2: 4 3: 3 optimal: oo a -12*v2 + 66 <= 0; value: 18 d -1*v1 + 5 <= 0; value: 0 a -14 <= 0; value: -14 d 3*v0 -2*v3 -1 <= 0; value: 0 d 6*v2 + 2/3*v3 -113/3 <= 0; value: 0 d <= 0; value: 0 0: 3 4 1: 1 2 2: 4 3: 3 4 0: 0 -> 14 1: 5 -> 5 2: 4 -> 4 3: 3 -> 41/2 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 + 3*v2 -9 = 0; value: 0 a 2*v0 -1*v2 + 1 = 0; value: 0 a -1*v0 < 0; value: -2 a 2*v1 -3*v2 <= 0; value: -9 a v1 -3 = 0; value: 0 0: 2 3 1: 1 4 5 2: 1 2 4 3: optimal: -2 a -2 <= 0; value: -2 d -2*v1 + 3*v2 -9 = 0; value: 0 d 2*v0 -1*v2 + 1 = 0; value: 0 a -2 < 0; value: -2 a -9 <= 0; value: -9 d 3*v0 -6 = 0; value: 0 0: 2 3 5 1: 1 4 5 2: 1 2 4 5 3: 0: 2 -> 2 1: 3 -> 3 2: 5 -> 5 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 6 a v0 + 4*v3 -7 = 0; value: 0 a 2*v3 -5 <= 0; value: -3 a 2*v3 -3 <= 0; value: -1 a -6*v2 + 6*v3 -5 <= 0; value: -11 a 2*v0 + v2 -8 <= 0; value: 0 0: 1 5 1: 2: 4 5 3: 1 2 3 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a v0 + 4*v3 -7 = 0; value: 0 a 2*v3 -5 <= 0; value: -3 a 2*v3 -3 <= 0; value: -1 a -6*v2 + 6*v3 -5 <= 0; value: -11 a 2*v0 + v2 -8 <= 0; value: 0 0: 1 5 1: 2: 4 5 3: 1 2 3 4 0: 3 -> 3 1: 0 -> 0 2: 2 -> 2 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a v1 -2 = 0; value: 0 a -5*v0 + 3*v1 -3*v3 <= 0; value: 0 a 5*v0 + v2 + 6*v3 -13 = 0; value: 0 a 4*v2 + 4*v3 -33 <= 0; value: -21 a -1*v0 + v3 -2 = 0; value: 0 0: 2 3 5 1: 1 2 2: 3 4 3: 2 3 4 5 optimal: oo a -2/11*v2 -42/11 <= 0; value: -4 d v1 -2 = 0; value: 0 a 8/11*v2 -8/11 <= 0; value: 0 d 5*v0 + v2 + 6*v3 -13 = 0; value: 0 a 40/11*v2 -271/11 <= 0; value: -21 d 1/5*v2 + 11/5*v3 -23/5 = 0; value: 0 0: 2 3 5 1: 1 2 2: 3 4 5 2 3: 2 3 4 5 0: 0 -> 0 1: 2 -> 2 2: 1 -> 1 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 4 a 3*v1 -11 < 0; value: -2 a v0 -5*v1 -2*v3 + 18 = 0; value: 0 a -5*v1 + 2*v3 -6 <= 0; value: -13 a v1 + 2*v3 -11 = 0; value: 0 a -3*v2 -5*v3 + 31 <= 0; value: -1 0: 2 1: 1 2 3 4 2: 5 3: 2 3 4 5 optimal: (8 -e*1) a + 8 < 0; value: 8 d 18/5*v2 -76/5 < 0; value: -2/5 d v0 -5*v1 -2*v3 + 18 = 0; value: 0 a -17 < 0; value: -17 d 1/5*v0 + 8/5*v3 -37/5 = 0; value: 0 d 5/8*v0 -3*v2 + 63/8 <= 0; value: 0 0: 2 3 4 1 5 1: 1 2 3 4 2: 5 1 3 3: 2 3 4 5 1 0: 5 -> 107/15 1: 3 -> 53/15 2: 4 -> 37/9 3: 4 -> 56/15 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -6*v2 -1 < 0; value: -4 a -2*v3 -5 < 0; value: -15 a 4*v0 -5*v2 -8 < 0; value: -4 a 5*v0 -1*v2 -14 <= 0; value: -9 a 2*v1 + v3 -16 <= 0; value: -7 0: 1 3 4 1: 5 2: 1 3 4 3: 2 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 -6*v2 -1 < 0; value: -4 a -2*v3 -5 < 0; value: -15 a 4*v0 -5*v2 -8 < 0; value: -4 a 5*v0 -1*v2 -14 <= 0; value: -9 a 2*v1 + v3 -16 <= 0; value: -7 0: 1 3 4 1: 5 2: 1 3 4 3: 2 5 0: 1 -> 1 1: 2 -> 2 2: 0 -> 0 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -4 a -4*v1 -1*v2 + 3*v3 -6 <= 0; value: -13 a -1*v0 <= 0; value: -1 a 5*v1 + 6*v2 -46 < 0; value: -25 a -1*v2 -1*v3 + 2 <= 0; value: -1 a -3*v0 + 6*v3 -22 <= 0; value: -13 0: 2 5 1: 1 3 2: 1 3 4 3: 1 4 5 optimal: oo a 2*v0 + 92 < 0; value: 94 d -4*v1 -1*v2 + 3*v3 -6 <= 0; value: 0 a -1*v0 <= 0; value: -1 d v2 -46 < 0; value: -1 d -1*v2 -1*v3 + 2 <= 0; value: 0 a -3*v0 -286 < 0; value: -289 0: 2 5 1: 1 3 2: 1 3 4 5 3: 1 4 5 3 0: 1 -> 1 1: 3 -> -45 2: 1 -> 45 3: 2 -> -43 a 2*v0 -2*v1 <= 0; value: -8 a -2*v0 -2*v2 + 5*v3 -51 < 0; value: -31 a 4*v2 -1*v3 + 4 = 0; value: 0 a -5*v0 + 3*v1 -12 <= 0; value: 0 a -1*v2 -2*v3 + 8 = 0; value: 0 a -4*v0 -1*v3 -3 <= 0; value: -7 0: 1 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -8 a -2*v0 -2*v2 + 5*v3 -51 < 0; value: -31 a 4*v2 -1*v3 + 4 = 0; value: 0 a -5*v0 + 3*v1 -12 <= 0; value: 0 a -1*v2 -2*v3 + 8 = 0; value: 0 a -4*v0 -1*v3 -3 <= 0; value: -7 0: 1 3 5 1: 3 2: 1 2 4 3: 1 2 4 5 0: 0 -> 0 1: 4 -> 4 2: 0 -> 0 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -4 a 3*v3 -29 <= 0; value: -14 a -2*v0 -3*v1 + 2*v2 <= 0; value: -14 a -1*v2 + 1 = 0; value: 0 a -1*v1 + 5*v2 -1 <= 0; value: 0 a -3*v0 + v2 + 5 = 0; value: 0 0: 2 5 1: 2 4 2: 2 3 4 5 3: 1 optimal: -4 a -4 <= 0; value: -4 a 3*v3 -29 <= 0; value: -14 a -14 <= 0; value: -14 d -1*v2 + 1 = 0; value: 0 d -1*v1 + 5*v2 -1 <= 0; value: 0 d -3*v0 + 6 = 0; value: 0 0: 2 5 1: 2 4 2: 2 3 4 5 3: 1 0: 2 -> 2 1: 4 -> 4 2: 1 -> 1 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 3*v3 -16 <= 0; value: -9 a -5*v0 -6*v1 + 14 < 0; value: -3 a -2*v0 -1*v3 -4 < 0; value: -10 a -1*v0 + 5*v1 -3*v3 + 1 <= 0; value: -2 a 5*v1 + 2*v2 -6*v3 + 2 <= 0; value: -2 0: 1 2 3 4 1: 2 4 5 2: 5 3: 1 3 4 5 optimal: oo a 11/3*v0 -14/3 < 0; value: -1 a -5*v0 + 3*v3 -16 <= 0; value: -9 d -5*v0 -6*v1 + 14 < 0; value: -3/2 a -2*v0 -1*v3 -4 < 0; value: -10 a -31/6*v0 -3*v3 + 38/3 < 0; value: -9/2 a -25/6*v0 + 2*v2 -6*v3 + 41/3 < 0; value: -9/2 0: 1 2 3 4 5 1: 2 4 5 2: 5 3: 1 3 4 5 0: 1 -> 1 1: 2 -> 7/4 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a 2*v2 + v3 -9 < 0; value: -3 a -1*v0 -1*v1 + 1 <= 0; value: -1 a -3*v0 + v2 -1 < 0; value: -3 a 4*v0 -5*v1 + 1 <= 0; value: 0 a -2*v1 -1 < 0; value: -3 0: 2 3 4 1: 2 4 5 2: 1 3 3: 1 optimal: oo a 2/5*v0 -2/5 <= 0; value: 0 a 2*v2 + v3 -9 < 0; value: -3 a -9/5*v0 + 4/5 <= 0; value: -1 a -3*v0 + v2 -1 < 0; value: -3 d 4*v0 -5*v1 + 1 <= 0; value: 0 a -8/5*v0 -7/5 < 0; value: -3 0: 2 3 4 5 1: 2 4 5 2: 1 3 3: 1 0: 1 -> 1 1: 1 -> 1 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -6 a 6*v0 -5*v2 -1*v3 <= 0; value: -29 a v0 + 4*v1 + 2*v3 -59 <= 0; value: -39 a 6*v1 -5*v2 + 5 <= 0; value: -2 a v0 -1*v1 + 3 = 0; value: 0 a 4*v2 -53 <= 0; value: -33 0: 1 2 4 1: 2 3 4 2: 1 3 5 3: 1 2 optimal: -6 a -6 <= 0; value: -6 a 6*v0 -5*v2 -1*v3 <= 0; value: -29 a 5*v0 + 2*v3 -47 <= 0; value: -39 a 6*v0 -5*v2 + 23 <= 0; value: -2 d v0 -1*v1 + 3 = 0; value: 0 a 4*v2 -53 <= 0; value: -33 0: 1 2 4 3 1: 2 3 4 2: 1 3 5 3: 1 2 0: 0 -> 0 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 4 a 6*v0 + 5*v1 -15 <= 0; value: -3 a v0 -3*v3 -3 < 0; value: -1 a 2*v2 -19 <= 0; value: -11 a 2*v0 -4*v1 -5*v3 -7 <= 0; value: -3 a -2*v1 -4*v2 -7 <= 0; value: -23 0: 1 2 4 1: 1 4 5 2: 3 5 3: 2 4 optimal: 175/2 a + 175/2 <= 0; value: 175/2 d 6*v0 -255/2 <= 0; value: 0 a -1141/20 < 0; value: -1141/20 d 2*v2 -19 <= 0; value: 0 d 2*v0 -4*v1 -5*v3 -7 <= 0; value: 0 d -1*v0 -4*v2 + 5/2*v3 -7/2 <= 0; value: 0 0: 1 2 4 5 1: 1 4 5 2: 3 5 2 1 3: 2 4 5 1 0: 2 -> 85/4 1: 0 -> -45/2 2: 4 -> 19/2 3: 0 -> 251/10 a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 + v3 -2 < 0; value: -1 a 3*v1 + v3 -46 <= 0; value: -30 a v0 -3 <= 0; value: 0 a 2*v0 + v2 -2*v3 -9 < 0; value: -5 a 3*v0 + 4*v2 + 2*v3 -12 < 0; value: -1 0: 3 4 5 1: 2 2: 1 4 5 3: 1 2 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: -4 a 3*v2 + v3 -2 < 0; value: -1 a 3*v1 + v3 -46 <= 0; value: -30 a v0 -3 <= 0; value: 0 a 2*v0 + v2 -2*v3 -9 < 0; value: -5 a 3*v0 + 4*v2 + 2*v3 -12 < 0; value: -1 0: 3 4 5 1: 2 2: 1 4 5 3: 1 2 4 5 0: 3 -> 3 1: 5 -> 5 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -8 a 3*v2 + 4*v3 -31 < 0; value: -19 a 2*v0 -2*v3 + 3 <= 0; value: -1 a 3*v0 + 3*v2 + 5*v3 -48 <= 0; value: -30 a -1*v0 -6*v1 + 6*v3 + 12 <= 0; value: -1 a -1*v1 + 5 = 0; value: 0 0: 2 3 4 1: 4 5 2: 1 3 3: 1 2 3 4 optimal: -32/5 a -32/5 <= 0; value: -32/5 a 3*v2 -89/5 < 0; value: -89/5 d 2*v0 -2*v3 + 3 <= 0; value: 0 a 3*v2 -261/10 <= 0; value: -261/10 d 5*v3 -33/2 <= 0; value: 0 d -1*v1 + 5 = 0; value: 0 0: 2 3 4 1: 4 5 2: 1 3 3: 1 2 3 4 0: 1 -> 9/5 1: 5 -> 5 2: 0 -> 0 3: 3 -> 33/10 a 2*v0 -2*v1 <= 0; value: 8 a 4*v2 + 4*v3 -59 < 0; value: -27 a -5*v0 + 4*v1 -1*v3 + 25 = 0; value: 0 a -3*v1 -2 < 0; value: -5 a v0 + 6*v1 + 3*v2 -59 <= 0; value: -36 a -4*v1 + v2 = 0; value: 0 0: 2 4 1: 2 3 4 5 2: 1 4 5 3: 1 2 optimal: (430/3 -e*1) a + 430/3 < 0; value: 430/3 a -4201/3 < 0; value: -4201/3 d -5*v0 + 4*v1 -1*v3 + 25 = 0; value: 0 d -3/4*v2 -2 < 0; value: -3/4 d v0 -71 < 0; value: -1 d -5*v0 + v2 -1*v3 + 25 = 0; value: 0 0: 2 4 3 5 1 1: 2 3 4 5 2: 1 4 5 3 3: 1 2 3 5 4 0: 5 -> 70 1: 1 -> -5/12 2: 4 -> -5/3 3: 4 -> -980/3 a 2*v0 -2*v1 <= 0; value: 2 a 2*v2 -4*v3 -5 <= 0; value: -1 a v1 -4 = 0; value: 0 a -4*v0 + v2 + 11 <= 0; value: -5 a -1*v1 <= 0; value: -4 a -3*v2 + 6*v3 -1 < 0; value: -7 0: 3 1: 2 4 2: 1 3 5 3: 1 5 optimal: oo a 2*v0 -8 <= 0; value: 2 a 2*v2 -4*v3 -5 <= 0; value: -1 d v1 -4 = 0; value: 0 a -4*v0 + v2 + 11 <= 0; value: -5 a -4 <= 0; value: -4 a -3*v2 + 6*v3 -1 < 0; value: -7 0: 3 1: 2 4 2: 1 3 5 3: 1 5 0: 5 -> 5 1: 4 -> 4 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -4 a -1*v1 + 2 = 0; value: 0 a -5*v0 -3*v1 -4*v3 -20 <= 0; value: -42 a 3*v0 + 4*v2 -2*v3 -14 <= 0; value: -2 a 2*v2 -25 <= 0; value: -15 a v3 -4 = 0; value: 0 0: 2 3 1: 1 2 2: 3 4 3: 2 3 5 optimal: oo a -8/3*v2 + 32/3 <= 0; value: -8/3 d -1*v1 + 2 = 0; value: 0 a 20/3*v2 -236/3 <= 0; value: -136/3 d 3*v0 + 4*v2 -2*v3 -14 <= 0; value: 0 a 2*v2 -25 <= 0; value: -15 d v3 -4 = 0; value: 0 0: 2 3 1: 1 2 2: 3 4 2 3: 2 3 5 0: 0 -> 2/3 1: 2 -> 2 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -8 a 3*v2 + 5*v3 -23 = 0; value: 0 a 4*v0 -5*v2 -4 < 0; value: -9 a 6*v1 -2*v3 -17 <= 0; value: -1 a -2*v1 + 3*v2 + 4 <= 0; value: -1 a -5*v1 -6*v3 + 22 <= 0; value: -22 0: 2 1: 3 4 5 2: 1 2 4 3: 1 3 5 optimal: (0 -e*1) a < 0; value: 0 d 3*v2 + 5*v3 -23 = 0; value: 0 d 4*v0 + 25/3*v3 -127/3 < 0; value: -25/3 a -55 < 0; value: -55 d -2*v1 + 3*v2 + 4 <= 0; value: 0 d -78/25*v0 -312/25 <= 0; value: 0 0: 2 5 3 1: 3 4 5 2: 1 2 4 5 3 3: 1 3 5 2 0: 0 -> -4 1: 4 -> -3/2 2: 1 -> -7/3 3: 4 -> 6 a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -7 <= 0; value: -3 a -2*v2 + 5*v3 -15 <= 0; value: -8 a -1*v3 + 3 = 0; value: 0 a -1*v2 -1 <= 0; value: -5 a 3*v1 -2*v3 <= 0; value: 0 0: 1: 1 5 2: 2 4 3: 2 3 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 6 a 2*v1 -7 <= 0; value: -3 a -2*v2 + 5*v3 -15 <= 0; value: -8 a -1*v3 + 3 = 0; value: 0 a -1*v2 -1 <= 0; value: -5 a 3*v1 -2*v3 <= 0; value: 0 0: 1: 1 5 2: 2 4 3: 2 3 5 0: 5 -> 5 1: 2 -> 2 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -1*v0 -1*v1 + 7 < 0; value: -1 a v0 -4 = 0; value: 0 a -1*v0 -1*v2 + 1 < 0; value: -3 a -1*v1 -1*v3 + 5 = 0; value: 0 a 6*v0 -4*v2 -29 < 0; value: -5 0: 1 2 3 5 1: 1 4 2: 3 5 3: 4 optimal: (2 -e*1) a + 2 < 0; value: 2 d -1*v0 + v3 + 2 < 0; value: -1/2 d v0 -4 = 0; value: 0 a -1*v2 -3 < 0; value: -3 d -1*v1 -1*v3 + 5 = 0; value: 0 a -4*v2 -5 < 0; value: -5 0: 1 2 3 5 1: 1 4 2: 3 5 3: 4 1 0: 4 -> 4 1: 4 -> 7/2 2: 0 -> 0 3: 1 -> 3/2 a 2*v0 -2*v1 <= 0; value: -6 a -5*v1 + 5*v2 + 2*v3 + 23 = 0; value: 0 a 5*v0 -19 <= 0; value: -9 a v1 + 3*v3 -12 <= 0; value: -4 a -1*v2 <= 0; value: 0 a 5*v0 -6*v2 -24 < 0; value: -14 0: 2 5 1: 1 3 2: 1 4 5 3: 1 3 optimal: oo a 2*v0 -2*v2 -4/5*v3 -46/5 <= 0; value: -6 d -5*v1 + 5*v2 + 2*v3 + 23 = 0; value: 0 a 5*v0 -19 <= 0; value: -9 a v2 + 17/5*v3 -37/5 <= 0; value: -4 a -1*v2 <= 0; value: 0 a 5*v0 -6*v2 -24 < 0; value: -14 0: 2 5 1: 1 3 2: 1 4 5 3 3: 1 3 0: 2 -> 2 1: 5 -> 5 2: 0 -> 0 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 0 a v1 + 6*v3 -41 < 0; value: -14 a -2*v0 -5*v3 + 26 = 0; value: 0 a -5*v0 + 2*v1 + 9 <= 0; value: 0 a 2*v1 -1*v2 -1 = 0; value: 0 0: 2 3 1: 1 3 4 2: 4 3: 1 2 optimal: oo a 2*v0 -1*v2 -1 <= 0; value: 0 a 1/2*v2 + 6*v3 -81/2 < 0; value: -14 a -2*v0 -5*v3 + 26 = 0; value: 0 a -5*v0 + v2 + 10 <= 0; value: 0 d 2*v1 -1*v2 -1 = 0; value: 0 0: 2 3 1: 1 3 4 2: 4 1 3 3: 1 2 0: 3 -> 3 1: 3 -> 3 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -5*v0 + 6*v2 -19 <= 0; value: -5 a -3*v0 -4*v2 -2 < 0; value: -24 a -1*v2 -6*v3 + 2 < 0; value: -20 a -2*v1 -5*v2 + 26 <= 0; value: 0 0: 1 2 1: 4 2: 1 2 3 4 3: 3 optimal: oo a 37/6*v0 -61/6 <= 0; value: 13/6 d -5*v0 + 6*v2 -19 <= 0; value: 0 a -19/3*v0 -44/3 < 0; value: -82/3 a -5/6*v0 -6*v3 -7/6 < 0; value: -125/6 d -2*v1 -5*v2 + 26 <= 0; value: 0 0: 1 2 3 1: 4 2: 1 2 3 4 3: 3 0: 2 -> 2 1: 3 -> 11/12 2: 4 -> 29/6 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 0 a -3*v2 -6*v3 -2 <= 0; value: -14 a -1*v0 + 2 = 0; value: 0 a -2*v0 -1*v1 + v3 + 3 < 0; value: -1 a 2*v3 -9 <= 0; value: -5 a 5*v0 + 4*v1 -21 <= 0; value: -3 0: 2 3 5 1: 3 5 2: 1 3: 1 3 4 optimal: oo a 6*v0 + v2 -16/3 < 0; value: 20/3 d -3*v2 -6*v3 -2 <= 0; value: 0 a -1*v0 + 2 = 0; value: 0 d -2*v0 -1*v1 + v3 + 3 < 0; value: -1 a -1*v2 -29/3 <= 0; value: -29/3 a -3*v0 -2*v2 -31/3 < 0; value: -49/3 0: 2 3 5 1: 3 5 2: 1 4 5 3: 1 3 4 5 0: 2 -> 2 1: 2 -> -1/3 2: 0 -> 0 3: 2 -> -1/3 a 2*v0 -2*v1 <= 0; value: 4 a 6*v2 + 2*v3 -29 <= 0; value: -1 a 5*v1 -3*v3 -4 = 0; value: 0 a v0 + v2 -17 <= 0; value: -9 a -3*v2 -4*v3 + 11 < 0; value: -9 a 3*v0 + 4*v1 + 3*v2 -47 <= 0; value: -15 0: 3 5 1: 2 5 2: 1 3 4 5 3: 1 2 4 optimal: (919/45 -e*1) a + 919/45 < 0; value: 919/45 d 9/2*v2 -47/2 < 0; value: -11/4 d 5*v1 -3*v3 -4 = 0; value: 0 a -22/15 <= 0; value: -22/15 d -3*v2 -4*v3 + 11 < 0; value: -4 d 3*v0 -464/15 <= 0; value: 0 0: 3 5 1: 2 5 2: 1 3 4 5 3: 1 2 4 5 0: 4 -> 464/45 1: 2 -> 39/40 2: 4 -> 83/18 3: 2 -> 7/24 a 2*v0 -2*v1 <= 0; value: 10 a -1*v2 <= 0; value: 0 a 2*v0 + 5*v2 -10 = 0; value: 0 a 4*v0 -2*v1 -3*v2 -32 <= 0; value: -12 a v0 + v1 -11 < 0; value: -6 a -4*v0 -5*v1 + 4*v2 + 7 <= 0; value: -13 0: 2 3 4 5 1: 3 4 5 2: 1 2 3 5 3: optimal: 76/5 a + 76/5 <= 0; value: 76/5 d -1*v2 <= 0; value: 0 d 2*v0 -10 = 0; value: 0 a -34/5 <= 0; value: -34/5 a -43/5 < 0; value: -43/5 d -4*v0 -5*v1 + 4*v2 + 7 <= 0; value: 0 0: 2 3 4 5 1: 3 4 5 2: 1 2 3 5 4 3: 0: 5 -> 5 1: 0 -> -13/5 2: 0 -> 0 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a -3*v0 + v2 + 4 <= 0; value: -1 a -1*v1 + 4 = 0; value: 0 a 6*v0 + v1 -32 <= 0; value: -10 a 3*v1 -2*v2 -10 <= 0; value: -6 a -1*v1 + 6*v2 -6*v3 -14 = 0; value: 0 0: 1 3 1: 2 3 4 5 2: 1 4 5 3: 5 optimal: 4/3 a + 4/3 <= 0; value: 4/3 a v2 -10 <= 0; value: -6 d -1*v1 + 4 = 0; value: 0 d 6*v0 -28 <= 0; value: 0 a -2*v2 + 2 <= 0; value: -6 a 6*v2 -6*v3 -18 = 0; value: 0 0: 1 3 1: 2 3 4 5 2: 1 4 5 3: 5 0: 3 -> 14/3 1: 4 -> 4 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 6*v1 -1*v3 -6 < 0; value: -15 a -1*v0 + 2*v1 + 1 <= 0; value: 0 a 3*v0 -2*v3 + 5 = 0; value: 0 a 5*v2 + 6*v3 -49 = 0; value: 0 a 3*v1 -2*v3 -2 < 0; value: -10 0: 1 2 3 1: 1 2 5 2: 4 3: 1 3 4 5 optimal: oo a 2*v0 -2*v1 <= 0; value: 2 a -5*v0 + 6*v1 -1*v3 -6 < 0; value: -15 a -1*v0 + 2*v1 + 1 <= 0; value: 0 a 3*v0 -2*v3 + 5 = 0; value: 0 a 5*v2 + 6*v3 -49 = 0; value: 0 a 3*v1 -2*v3 -2 < 0; value: -10 0: 1 2 3 1: 1 2 5 2: 4 3: 1 3 4 5 0: 1 -> 1 1: 0 -> 0 2: 5 -> 5 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -2*v2 -37 <= 0; value: -23 a -4*v0 -2*v2 + 7 <= 0; value: -15 a -3*v0 + 2*v1 -2*v2 -2 <= 0; value: -10 a -1*v1 -4 < 0; value: -9 0: 1 2 3 1: 3 4 2: 1 2 3 3: optimal: oo a 4/5*v2 + 114/5 < 0; value: 126/5 d 5*v0 -2*v2 -37 <= 0; value: 0 a -18/5*v2 -113/5 <= 0; value: -167/5 a -16/5*v2 -161/5 < 0; value: -209/5 d -1*v1 -4 < 0; value: -1 0: 1 2 3 1: 3 4 2: 1 2 3 3: 0: 4 -> 43/5 1: 5 -> -3 2: 3 -> 3 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 2*v3 -1 < 0; value: -6 a -1*v0 -5*v2 + 26 <= 0; value: 0 a -5*v0 -2 <= 0; value: -7 a 3*v0 + 2*v3 -4 <= 0; value: -1 0: 2 3 4 1: 2: 1 2 3: 1 4 optimal: oo a 2*v0 -2*v1 <= 0; value: 0 a -1*v2 + 2*v3 -1 < 0; value: -6 a -1*v0 -5*v2 + 26 <= 0; value: 0 a -5*v0 -2 <= 0; value: -7 a 3*v0 + 2*v3 -4 <= 0; value: -1 0: 2 3 4 1: 2: 1 2 3: 1 4 0: 1 -> 1 1: 1 -> 1 2: 5 -> 5 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a 6*v0 -1*v1 + 6*v2 -59 < 0; value: -11 a -4*v0 -3*v2 + 22 <= 0; value: -7 a v0 + 5*v1 -5 = 0; value: 0 a -3*v1 -4*v3 + 3 <= 0; value: -13 a -1*v0 + v3 <= 0; value: -1 0: 1 2 3 5 1: 1 3 4 2: 1 2 3: 4 5 optimal: oo a 16*v3 -2 < 0; value: 62 d 31/5*v0 + 6*v2 -60 < 0; value: -31/5 a -6*v3 -8 < 0; value: -32 d v0 + 5*v1 -5 = 0; value: 0 d -18/31*v2 -4*v3 + 180/31 <= 0; value: 0 a -17/3*v3 < 0; value: -68/3 0: 1 2 3 5 4 1: 1 3 4 2: 1 2 4 5 3: 4 5 2 0: 5 -> 77/3 1: 0 -> -62/15 2: 3 -> -158/9 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: -2 a -2*v1 + v3 <= 0; value: -1 a -2*v1 + 2*v2 -9 <= 0; value: -3 a -1*v0 -6*v3 + 6 = 0; value: 0 a v0 -5*v1 + 2 < 0; value: -3 a v0 <= 0; value: 0 0: 3 4 5 1: 1 2 4 2: 2 3: 1 3 optimal: -1 a -1 <= 0; value: -1 d -2*v1 + v3 <= 0; value: 0 a 2*v2 -10 <= 0; value: -2 d -1*v0 -6*v3 + 6 = 0; value: 0 a -1/2 < 0; value: -1/2 d v0 <= 0; value: 0 0: 3 4 5 2 1: 1 2 4 2: 2 3: 1 3 2 4 0: 0 -> 0 1: 1 -> 1/2 2: 4 -> 4 3: 1 -> 1 a 2*v0 -2*v1 <= 0; value: -6 a -1*v1 -1*v2 + 8 <= 0; value: 0 a 5*v1 -1*v2 + v3 -28 <= 0; value: -18 a 3*v0 -6*v1 -14 < 0; value: -32 a 3*v1 -4*v2 -3*v3 + 11 = 0; value: 0 a -6*v1 + 4*v2 -5 <= 0; value: -3 0: 3 1: 1 2 3 4 5 2: 1 2 4 5 3: 2 4 optimal: (221/15 -e*1) a + 221/15 < 0; value: 221/15 d -1*v1 -1*v2 + 8 <= 0; value: 0 a -41/2 <= 0; value: -41/2 d 3*v0 -151/5 < 0; value: -3 d -7*v2 -3*v3 + 35 = 0; value: 0 d -30/7*v3 -3 <= 0; value: 0 0: 3 1: 1 2 3 4 5 2: 1 2 4 5 3 3: 2 4 5 3 0: 0 -> 136/15 1: 3 -> 27/10 2: 5 -> 53/10 3: 0 -> -7/10 a 2*v0 -2*v1 <= 0; value: 0 a 6*v2 + 3*v3 -35 < 0; value: -17 a -5*v1 -6*v2 -1 <= 0; value: -23 a 4*v0 + 6*v3 -41 <= 0; value: -21 a v0 -2 = 0; value: 0 a -4*v3 -3 <= 0; value: -11 0: 3 4 1: 2 2: 1 2 3: 1 3 5 optimal: (193/10 -e*1) a + 193/10 < 0; value: 193/10 d 6*v2 + 3*v3 -35 < 0; value: -6 d -5*v1 -6*v2 -1 <= 0; value: 0 a -75/2 <= 0; value: -75/2 d v0 -2 = 0; value: 0 d -4*v3 -3 <= 0; value: 0 0: 3 4 1: 2 2: 1 2 3: 1 3 5 0: 2 -> 2 1: 2 -> -129/20 2: 2 -> 125/24 3: 2 -> -3/4 a 2*v0 -2*v1 <= 0; value: -2 a 5*v0 -6*v3 + 10 <= 0; value: -14 a 6*v3 -35 <= 0; value: -11 a -5*v0 -1*v3 + 2 <= 0; value: -2 a 6*v0 -1*v1 < 0; value: -1 a -1*v0 -5*v1 -5*v2 + 15 < 0; value: -10 0: 1 3 4 5 1: 4 5 2: 5 3: 1 2 3 optimal: (23/3 -e*1) a + 23/3 < 0; value: 23/3 a -173/6 <= 0; value: -173/6 d 6*v3 -35 <= 0; value: 0 d 25/31*v2 -1*v3 -13/31 <= 0; value: 0 d 6*v0 -1*v1 < 0; value: -1 d -31*v0 -5*v2 + 15 <= 0; value: 0 0: 1 3 4 5 1: 4 5 2: 5 3 1 3: 1 2 3 0: 0 -> -23/30 1: 1 -> -18/5 2: 4 -> 1163/150 3: 4 -> 35/6 a 2*v0 -2*v1 <= 0; value: -8 a -4*v1 + 4*v2 -1 < 0; value: -5 a -3*v0 + 4*v1 + v2 -50 <= 0; value: -31 a -4*v0 + 3*v1 + v3 -31 < 0; value: -19 a 6*v0 -2*v1 + 3 < 0; value: -5 a 3*v1 + 5*v2 -27 = 0; value: 0 0: 2 3 4 1: 1 2 3 4 5 2: 1 2 5 3: 3 optimal: (-127/24 -e*1) a -127/24 < 0; value: -127/24 d 32/3*v2 -37 < 0; value: -5/2 a -283/8 < 0; value: -283/8 a v3 -2269/96 < 0; value: -2269/96 d 6*v0 -55/16 <= 0; value: 0 d 3*v1 + 5*v2 -27 = 0; value: 0 0: 2 3 4 1: 1 2 3 4 5 2: 1 2 5 4 3 3: 3 0: 0 -> 55/96 1: 4 -> 231/64 2: 3 -> 207/64 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 8 a v0 -5 = 0; value: 0 a -1*v0 -2*v2 + 3*v3 <= 0; value: -2 a -6*v1 -1*v2 -2 <= 0; value: -8 a 3*v1 + 3*v2 -4*v3 <= 0; value: -1 a -6*v0 + 3*v2 -3*v3 + 31 <= 0; value: -2 0: 1 2 5 1: 3 4 2: 2 3 4 5 3: 2 4 5 optimal: 12 a + 12 <= 0; value: 12 d v0 -5 = 0; value: 0 d -5*v0 + v3 + 62/3 <= 0; value: 0 d -6*v1 -1*v2 -2 <= 0; value: 0 a -25/3 <= 0; value: -25/3 d -6*v0 + 3*v2 -3*v3 + 31 <= 0; value: 0 0: 1 2 5 4 1: 3 4 2: 2 3 4 5 3: 2 4 5 0: 5 -> 5 1: 1 -> -1 2: 0 -> 4 3: 1 -> 13/3 a 2*v0 -2*v1 <= 0; value: -8 a -1*v3 + 3 = 0; value: 0 a 3*v2 -14 < 0; value: -2 a -2*v0 -1*v3 -3 <= 0; value: -8 a 2*v0 -3*v1 + 3 <= 0; value: -10 a -3*v0 -4*v2 -3*v3 + 28 = 0; value: 0 0: 3 4 5 1: 4 2: 2 5 3: 1 3 5 optimal: oo a -8/9*v2 + 20/9 <= 0; value: -4/3 d -1*v3 + 3 = 0; value: 0 a 3*v2 -14 < 0; value: -2 a 8/3*v2 -56/3 <= 0; value: -8 d 2*v0 -3*v1 + 3 <= 0; value: 0 d -3*v0 -4*v2 -3*v3 + 28 = 0; value: 0 0: 3 4 5 1: 4 2: 2 5 3 3: 1 3 5 0: 1 -> 1 1: 5 -> 5/3 2: 4 -> 4 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 2 a -1*v2 + 4 <= 0; value: 0 a -5*v1 + 4 < 0; value: -1 a 5*v0 -16 < 0; value: -6 a 6*v1 + 5*v2 -44 <= 0; value: -18 a v1 + v2 -5 = 0; value: 0 0: 3 1: 2 4 5 2: 1 4 5 3: optimal: (24/5 -e*1) a + 24/5 < 0; value: 24/5 a -1/5 < 0; value: -1/5 d 5*v2 -21 < 0; value: -1/2 d 5*v0 -16 < 0; value: -3 a -91/5 < 0; value: -91/5 d v1 + v2 -5 = 0; value: 0 0: 3 1: 2 4 5 2: 1 4 5 2 3: 0: 2 -> 13/5 1: 1 -> 9/10 2: 4 -> 41/10 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 0 a -6*v0 + 3*v1 + 5*v3 -35 <= 0; value: -20 a -1*v0 -2*v3 + 4 <= 0; value: -2 a -1*v0 -5*v3 -13 <= 0; value: -28 a 6*v1 + 5*v2 -25 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 3 5 1: 1 4 2: 4 3: 1 2 3 optimal: oo a 2*v0 + 5/3*v2 -25/3 <= 0; value: 0 a -6*v0 -5/2*v2 + 5*v3 -45/2 <= 0; value: -20 a -1*v0 -2*v3 + 4 <= 0; value: -2 a -1*v0 -5*v3 -13 <= 0; value: -28 d 6*v1 + 5*v2 -25 = 0; value: 0 a -1*v0 <= 0; value: 0 0: 1 2 3 5 1: 1 4 2: 4 1 3: 1 2 3 0: 0 -> 0 1: 0 -> 0 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -2 a 3*v2 -5 <= 0; value: -2 a 3*v0 -2*v3 -3 = 0; value: 0 a -3*v0 -1*v1 -3*v3 -15 <= 0; value: -37 a 2*v3 -7 <= 0; value: -1 a -5*v1 -4*v2 -3 < 0; value: -27 0: 2 3 1: 3 5 2: 1 5 3: 2 3 4 optimal: (158/15 -e*1) a + 158/15 < 0; value: 158/15 d 3*v2 -5 <= 0; value: 0 d 3*v0 -2*v3 -3 = 0; value: 0 a -1007/30 <= 0; value: -1007/30 d 2*v3 -7 <= 0; value: 0 d -5*v1 -4*v2 -3 < 0; value: -5 0: 2 3 1: 3 5 2: 1 5 3 3: 2 3 4 0: 3 -> 10/3 1: 4 -> -14/15 2: 1 -> 5/3 3: 3 -> 7/2 a 2*v0 -2*v1 <= 0; value: -2 a v0 + v1 + 3*v3 -65 < 0; value: -43 a 2*v0 -5*v1 + 3*v2 -5 < 0; value: -19 a 5*v0 + 2*v3 -66 <= 0; value: -41 a 2*v1 + v3 -36 < 0; value: -23 a -2*v0 -1*v2 -3 <= 0; value: -9 0: 1 2 3 5 1: 1 2 4 2: 2 5 3: 1 3 4 optimal: oo a -36/25*v3 + 1328/25 < 0; value: 1148/25 a 73/25*v3 -1629/25 < 0; value: -1264/25 d 2*v0 -5*v1 + 3*v2 -5 < 0; value: -5 d 5*v0 + 2*v3 -66 <= 0; value: 0 a 41/25*v3 -1568/25 < 0; value: -1363/25 d -2*v0 -1*v2 -3 <= 0; value: 0 0: 1 2 3 5 4 1: 1 2 4 2: 2 5 1 4 3: 1 3 4 0: 3 -> 56/5 1: 4 -> -269/25 2: 0 -> -127/5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: 2 a 2*v1 + 3*v3 -10 = 0; value: 0 a -4*v1 + 5 <= 0; value: -3 a -6*v0 -1*v3 + 20 = 0; value: 0 a -1*v0 + 2*v2 + v3 -8 <= 0; value: -3 a -3*v1 -5*v2 -5*v3 + 10 <= 0; value: -21 0: 3 4 1: 1 2 5 2: 4 5 3: 1 3 4 5 optimal: 10/3 a + 10/3 <= 0; value: 10/3 d 2*v1 + 3*v3 -10 = 0; value: 0 d -36*v0 + 105 <= 0; value: 0 d -6*v0 -1*v3 + 20 = 0; value: 0 a 2*v2 -101/12 <= 0; value: -29/12 a -5*v2 -25/4 <= 0; value: -85/4 0: 3 4 2 5 1: 1 2 5 2: 4 5 3: 1 3 4 5 2 0: 3 -> 35/12 1: 2 -> 5/4 2: 3 -> 3 3: 2 -> 5/2 a 2*v0 -2*v1 <= 0; value: 2 a 5*v0 -4*v1 -3*v2 -7 <= 0; value: -2 a 2*v1 + 3*v2 -2*v3 -1 = 0; value: 0 a -2*v2 + 5*v3 -18 = 0; value: 0 a -1*v0 -1*v2 -4 <= 0; value: -9 a -1*v0 + 4*v3 -34 <= 0; value: -22 0: 1 4 5 1: 1 2 2: 1 2 3 4 3: 2 3 5 optimal: 1050/47 a + 1050/47 <= 0; value: 1050/47 d 5*v0 + 7/5*v2 -117/5 <= 0; value: 0 d 2*v1 + 3*v2 -2*v3 -1 = 0; value: 0 d -2*v2 + 5*v3 -18 = 0; value: 0 a -845/47 <= 0; value: -845/47 d -47/7*v0 + 50/7 <= 0; value: 0 0: 1 4 5 1: 1 2 2: 1 2 3 4 5 3: 2 3 5 1 0: 4 -> 50/47 1: 3 -> -475/47 2: 1 -> 607/47 3: 4 -> 412/47 a 2*v0 -2*v1 <= 0; value: -6 a -3*v0 -6*v3 -10 <= 0; value: -22 a 2*v1 + 3*v2 -21 = 0; value: 0 a v0 <= 0; value: 0 a 6*v1 + 5*v2 -79 <= 0; value: -36 a 4*v2 -3*v3 -21 < 0; value: -7 0: 1 3 1: 2 4 2: 2 4 5 3: 1 5 optimal: oo a 2*v0 + 9/4*v3 -21/4 < 0; value: -3/4 a -3*v0 -6*v3 -10 <= 0; value: -22 d 2*v1 + 3*v2 -21 = 0; value: 0 a v0 <= 0; value: 0 a -3*v3 -37 < 0; value: -43 d 4*v2 -3*v3 -21 < 0; value: -7/2 0: 1 3 1: 2 4 2: 2 4 5 3: 1 5 4 0: 0 -> 0 1: 3 -> 27/16 2: 5 -> 47/8 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: 6 a -2*v1 -1*v3 + 4 = 0; value: 0 a 4*v0 + 3*v2 -53 < 0; value: -21 a -2*v0 + v3 + 8 <= 0; value: -2 a -3*v0 + v2 + 2*v3 -10 < 0; value: -21 a v1 -3*v2 + 10 = 0; value: 0 0: 2 3 4 1: 1 5 2: 2 4 5 3: 1 3 4 optimal: (112/3 -e*1) a + 112/3 < 0; value: 112/3 d -2*v1 -1*v3 + 4 = 0; value: 0 d 3*v0 -37 < 0; value: -3 d -2*v0 -6*v2 + 32 <= 0; value: 0 a -112/9 <= 0; value: -112/9 d -3*v2 -1/2*v3 + 12 = 0; value: 0 0: 2 3 4 1: 1 5 2: 2 4 5 3 3: 1 3 4 5 0: 5 -> 34/3 1: 2 -> -16/3 2: 4 -> 14/9 3: 0 -> 44/3 a 2*v0 -2*v1 <= 0; value: -2 a -3*v3 -5 <= 0; value: -20 a v0 -1*v3 + 2 = 0; value: 0 a -5*v0 + 6*v1 -9 <= 0; value: 0 a -2*v1 + 1 <= 0; value: -7 a 3*v1 -31 < 0; value: -19 0: 2 3 1: 3 4 5 2: 3: 1 2 optimal: oo a 2*v3 -5 <= 0; value: 5 a -3*v3 -5 <= 0; value: -20 d v0 -1*v3 + 2 = 0; value: 0 a -5*v3 + 4 <= 0; value: -21 d -2*v1 + 1 <= 0; value: 0 a -59/2 < 0; value: -59/2 0: 2 3 1: 3 4 5 2: 3: 1 2 3 0: 3 -> 3 1: 4 -> 1/2 2: 5 -> 5 3: 5 -> 5 a 2*v0 -2*v1 <= 0; value: -2 a v0 -1*v2 + 3 = 0; value: 0 a -1*v1 + 4*v2 -6*v3 + 1 <= 0; value: 0 a -4*v2 + 6*v3 + 1 <= 0; value: -1 a 6*v0 + 4*v2 + 2*v3 -73 <= 0; value: -35 a -5*v0 + 4*v2 -29 <= 0; value: -19 0: 1 4 5 1: 2 2: 1 2 3 4 5 3: 2 3 4 optimal: 104/17 a + 104/17 <= 0; value: 104/17 d v0 -1*v2 + 3 = 0; value: 0 d -1*v1 + 4*v2 -6*v3 + 1 <= 0; value: 0 d -4*v2 + 6*v3 + 1 <= 0; value: 0 d 34/3*v2 -274/3 <= 0; value: 0 a -375/17 <= 0; value: -375/17 0: 1 4 5 1: 2 2: 1 2 3 4 5 3: 2 3 4 0: 2 -> 86/17 1: 3 -> 2 2: 5 -> 137/17 3: 3 -> 177/34 a 2*v0 -2*v1 <= 0; value: 4 a -1*v1 + 6*v2 + 2 = 0; value: 0 a -4*v0 -5*v1 -18 <= 0; value: -44 a v3 -3 <= 0; value: 0 a -6*v0 -6*v1 + 5*v3 + 21 <= 0; value: 0 a v0 -3*v1 -2*v3 -4 <= 0; value: -12 0: 2 4 5 1: 1 2 4 5 2: 1 3: 3 4 5 optimal: 16 a + 16 <= 0; value: 16 d -1*v1 + 6*v2 + 2 = 0; value: 0 a -41 <= 0; value: -41 d 8/9*v0 -56/9 <= 0; value: 0 d -6*v0 -36*v2 + 5*v3 + 9 <= 0; value: 0 d 4*v0 -9/2*v3 -29/2 <= 0; value: 0 0: 2 4 5 3 1: 1 2 4 5 2: 1 2 4 5 3: 3 4 5 2 0: 4 -> 7 1: 2 -> -1 2: 0 -> -1/2 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: 10 a -1*v1 -4*v3 + 8 = 0; value: 0 a -4*v0 -1*v2 -2*v3 + 24 = 0; value: 0 a -5*v0 + 3*v1 -5*v3 + 35 = 0; value: 0 a 3*v1 + 2*v3 -4 <= 0; value: 0 a 3*v0 + 4*v3 -43 <= 0; value: -20 0: 2 3 5 1: 1 3 4 2: 2 3: 1 2 3 4 5 optimal: oo a -6/17*v0 + 200/17 <= 0; value: 10 d -1*v1 -4*v3 + 8 = 0; value: 0 d -4*v0 -1*v2 -2*v3 + 24 = 0; value: 0 d 29*v0 + 17/2*v2 -145 = 0; value: 0 a 50/17*v0 -250/17 <= 0; value: 0 a 31/17*v0 -495/17 <= 0; value: -20 0: 2 3 5 4 1: 1 3 4 2: 2 3 5 4 3: 1 2 3 4 5 0: 5 -> 5 1: 0 -> 0 2: 0 -> 0 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a -3*v0 -6*v1 -6*v2 + 4 <= 0; value: -53 a -1*v3 + 2 = 0; value: 0 a -5*v0 -1*v1 + 6*v2 + 2 <= 0; value: 0 a -1*v1 -4*v2 -3*v3 + 23 = 0; value: 0 a -6*v0 -3*v1 + 14 < 0; value: -19 0: 1 3 5 1: 1 3 4 5 2: 1 3 4 3: 2 4 optimal: 49 a + 49 <= 0; value: 49 d 6*v0 -71 <= 0; value: 0 d -1*v3 + 2 = 0; value: 0 d -5*v0 -1*v1 + 6*v2 + 2 <= 0; value: 0 d 5*v0 -10*v2 -3*v3 + 21 = 0; value: 0 a -19 < 0; value: -19 0: 1 3 5 4 1: 1 3 4 5 2: 1 3 4 5 3: 2 4 1 5 0: 3 -> 71/6 1: 5 -> -38/3 2: 3 -> 89/12 3: 2 -> 2 a 2*v0 -2*v1 <= 0; value: -4 a 4*v1 -1*v2 -12 = 0; value: 0 a -1*v0 + 4*v1 -6*v3 -20 < 0; value: -9 a v0 -2*v3 -2 <= 0; value: -1 0: 2 3 1: 1 2 2: 1 3: 2 3 optimal: oo a 2*v0 -1/2*v2 -6 <= 0; value: -4 d 4*v1 -1*v2 -12 = 0; value: 0 a -1*v0 + v2 -6*v3 -8 < 0; value: -9 a v0 -2*v3 -2 <= 0; value: -1 0: 2 3 1: 1 2 2: 1 2 3: 2 3 0: 1 -> 1 1: 3 -> 3 2: 0 -> 0 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: -2 a -1*v2 + 5 = 0; value: 0 a -1*v1 + 2*v2 -9 = 0; value: 0 a -2*v1 -1 <= 0; value: -3 a 6*v1 + v3 -23 <= 0; value: -14 a 3*v2 + v3 -52 <= 0; value: -34 0: 1: 2 3 4 2: 1 2 5 3: 4 5 optimal: oo a 2*v0 -2 <= 0; value: -2 d -1*v2 + 5 = 0; value: 0 d -1*v1 + 2*v2 -9 = 0; value: 0 a -3 <= 0; value: -3 a v3 -17 <= 0; value: -14 a v3 -37 <= 0; value: -34 0: 1: 2 3 4 2: 1 2 5 3 4 3: 4 5 0: 0 -> 0 1: 1 -> 1 2: 5 -> 5 3: 3 -> 3 a 2*v0 -2*v1 <= 0; value: -8 a -1*v0 + 1 = 0; value: 0 a -5*v0 -4*v2 + 9 = 0; value: 0 a -3*v1 -5*v2 + 11 <= 0; value: -9 a -4*v0 -4*v1 -3*v2 + 10 <= 0; value: -17 a 5*v1 -2*v2 -33 <= 0; value: -10 0: 1 2 4 1: 3 4 5 2: 2 3 4 5 3: optimal: -2 a -2 <= 0; value: -2 d -1*v0 + 1 = 0; value: 0 d -5*v0 -4*v2 + 9 = 0; value: 0 d -3*v1 -5*v2 + 11 <= 0; value: 0 a -5 <= 0; value: -5 a -25 <= 0; value: -25 0: 1 2 4 5 1: 3 4 5 2: 2 3 4 5 3: 0: 1 -> 1 1: 5 -> 2 2: 1 -> 1 3: 4 -> 4 a 2*v0 -2*v1 <= 0; value: 2 a -1*v0 + 4*v1 -4*v3 -9 <= 0; value: -4 a -2*v1 + 6*v2 -1*v3 -49 < 0; value: -29 a -1*v1 -2*v2 + 6 < 0; value: -4 a 3*v0 + 5*v2 -2*v3 -72 < 0; value: -43 a 2*v0 -1*v3 -6 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 2 3 4 3: 1 2 4 5 optimal: oo a 14/5*v0 + 10 < 0; value: 92/5 a -53/5*v0 -5 < 0; value: -184/5 d 10*v2 -1*v3 -61 <= 0; value: 0 d -1*v1 -2*v2 + 6 < 0; value: -1 a -65/2 < 0; value: -65/2 d 2*v0 -1*v3 -6 = 0; value: 0 0: 1 4 5 1: 1 2 3 2: 2 3 4 1 3: 1 2 4 5 0: 3 -> 3 1: 2 -> -26/5 2: 4 -> 61/10 3: 0 -> 0 a 2*v0 -2*v1 <= 0; value: 10 a -6*v1 -3*v2 -1 <= 0; value: -7 a v0 + 6*v1 -1*v2 -6 <= 0; value: -3 a -2*v0 -3*v1 -2*v2 + 14 = 0; value: 0 a 3*v1 + v3 -3 <= 0; value: -1 a v1 = 0; value: 0 0: 2 3 1: 1 2 3 4 5 2: 1 2 3 3: 4 optimal: 13 a + 13 <= 0; value: 13 a -5/2 <= 0; value: -5/2 d 2*v0 -13 <= 0; value: 0 d -2*v0 -3*v1 -2*v2 + 14 = 0; value: 0 a v3 -3 <= 0; value: -1 d -2/3*v0 -2/3*v2 + 14/3 = 0; value: 0 0: 2 3 1 5 4 1: 1 2 3 4 5 2: 1 2 3 5 4 3: 4 0: 5 -> 13/2 1: 0 -> 0 2: 2 -> 1/2 3: 2 -> 2 10 x: 5 y: 5 z: 5 u: 6 10 oo (10 -e*1) x: 4 y: 5 z: 5 u: 6 v3 d <= 0; value: 0 a v0 -1*v3 <= 0; value: -3 a v0 -1*v2 <= 0; value: -2 d v1 -1*v3 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 0: 1 2 1: 1 3 2: 2 4 3: 3 4 1 + 3 d <= 0; value: 0 a v0 -1*v3 <= 0; value: -3 a v0 -1*v2 <= 0; value: -2 d v1 -1*v3 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 0: 1 2 1: 1 3 2: 2 4 3: 3 4 1 v3 -1 d <= 0; value: 0 a v0 -1*v3 <= 0; value: -3 a v0 -1*v3 + 1 <= 0; value: -2 d v1 -1*v3 <= 0; value: -2 d v2 -1*v3 + 1 <= 0; value: 0 0: 1 2 1: 1 3 2: 2 4 3: 3 4 1 2 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -2 a v1 -1*v2 <= 0; value: -1 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 a v2 -1*v6 + 1 <= 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 v1 d <= 0; value: 0 a v0 -1*v1 <= 0; value: -1 d v1 -1*v2 <= 0; value: -1 a v1 -1*v4 <= 0; value: -3 a v1 -1*v3 + 1 <= 0; value: -1 a v1 -1*v5 + 1 <= 0; value: -3 a v1 -1*v6 + 1 <= 0; value: -3 0: 1 1: 2 3 4 5 6 1 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -1 a v1 -1*v2 < 0; value: -2 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 a v2 -1*v6 + 1 < 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 v0 d <= 0; value: 0 d v0 -1*v2 <= 0; value: -1 a -1*v0 + v1 < 0; value: -1 a v0 -1*v4 <= 0; value: -3 a v0 -1*v3 + 1 <= 0; value: -1 a v0 -1*v5 + 1 <= 0; value: -3 a v0 -1*v6 + 1 < 0; value: -3 0: 1 3 4 5 6 2 1: 2 2: 1 2 3 4 5 6 3: 4 4: 3 5: 5 6: 6 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -1 a v1 -1*v2 < 0; value: -2 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v0 d <= 0; value: 0 a v0 -1*v5 + 1 <= 0; value: -3 a v1 -1*v5 + 1 < 0; value: -4 d v2 -1*v4 <= 0; value: -2 d v2 -1*v3 + 1 <= 0; value: 0 d v2 -1*v5 + 1 <= 0; value: -2 a v0 -1*v4 <= 0; value: -3 a v1 -1*v4 < 0; value: -4 a v0 -1*v3 + 1 <= 0; value: -1 a v1 -1*v3 + 1 < 0; value: -2 0: 1 6 8 1: 2 7 9 2: 1 2 3 4 5 6 7 8 9 3: 4 8 9 4: 3 6 7 5: 5 1 2 d <= 0; value: 0 a v0 -1*v2 <= 0; value: -1 a v1 -1*v2 + 1 <= 0; value: -1 a v2 -1*v4 <= 0; value: -2 a v2 -1*v3 + 1 <= 0; value: 0 a v2 -1*v5 + 1 <= 0; value: -2 0: 1 1: 2 2: 1 2 3 4 5 3: 4 4: 3 5: 5 v0 d <= 0; value: 0 a v0 -1*v5 + 1 <= 0; value: -3 a v1 -1*v5 + 2 <= 0; value: -3 d v2 -1*v4 <= 0; value: -2 d v2 -1*v3 + 1 <= 0; value: 0 d v2 -1*v5 + 1 <= 0; value: -2 a v0 -1*v4 <= 0; value: -3 a v1 -1*v4 + 1 <= 0; value: -3 a v0 -1*v3 + 1 <= 0; value: -1 a v1 -1*v3 + 2 <= 0; value: -1 0: 1 6 8 1: 2 7 9 2: 1 2 3 4 5 6 7 8 9 3: 4 8 9 4: 3 6 7 5: 5 1 2 d <= 0; value: 0 a v0 -2*v1 <= 0; value: 0 a 2*v1 -1*v2 <= 0; value: -1 0: 1 1: 1 2 2: 2 v2 / 2 d <= 0; value: 0 a 2*v0 -2*v2 + 1 <= 0; value: -1 d 2*v1 -1*v2 <= 0; value: -1 0: 1 1: 1 2 2: 2 1 d <= 0; value: 0 a v0 -2*v1 <= 0; value: -1 a 2*v1 -1*v2 <= 0; value: 0 0: 1 1: 1 2 2: 2 v2 / 2 d <= 0; value: 0 a 2*v0 -2*v2 + 1 <= 0; value: -1 d 2*v1 -1*v2 <= 0; value: 0 0: 1 1: 1 2 2: 2 1 PASS (test model_based_opt :time 0.05 :before-memory 17.68 :after-memory 17.68) (<= 0.0 (* 2.0 z z)) -> (or (= 0.0 (- 2.0)) (= 0.0 z) (< (- 2.0) 0.0)) PASS (test factor_rewriter :time 0.00 :before-memory 17.68 :after-memory 17.68) (<= 0.0 (* 2.0 z z)) -> (or (= 0.0 (- 2.0)) (= 0.0 z) (< (- 2.0) 0.0)) PASS (test factor_rewriter :time 0.00 :before-memory 17.68 :after-memory 17.68) spec: (declare-datatypes (T) ((list (nil) (cons (car T) (cdr list))))) (declare-const x Int) (declare-const l (list Int)) (declare-fun f ((list Int)) Bool) (assert (f (cons x l))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-datatypes ((list 1)) ((par (k!00)((nil) (cons (car k!00) (cdr (list k!00))))))) (declare-fun f ((list Int)) Bool) (declare-fun l () (list Int)) (declare-fun x () Int) (assert (let (($x8 (f (cons x l)))) (and $x8))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (f (cons x l)))) done printing spec: (declare-const x Int) (declare-const a (Array Int Int)) (declare-const b (Array (Array Int Int) Bool)) (assert (select b a)) (assert (= b ((as const (Array (Array Int Int) Bool)) true))) (assert (= b (store b a true))) (declare-const b1 (Array Bool Bool)) (declare-const b2 (Array Bool Bool)) (assert (= ((as const (Array Bool Bool)) false) ((_ map and) b1 b2))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-fun b2 () (Array Bool Bool)) (declare-fun b1 () (Array Bool Bool)) (declare-fun a () (Array Int Int)) (declare-fun b () (Array (Array Int Int) Bool)) (assert (let (($x16 (= ((as const (Array Bool Bool)) false) ((_ map and ) b1 b2)))) (let (($x11 (= b (store b a true)))) (let (($x9 (= b ((as const (Array (Array Int Int) Bool)) true)))) (let (($x7 (select b a))) (and $x7 $x9 $x11 $x16)))))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (select b a) (= b ((as const (Array (Array Int Int) Bool)) true)) (= b (store b a true)) (= ((as const (Array Bool Bool)) false) ((_ map (and (Bool Bool) Bool)) b1 b2)))) done printing spec: (declare-datatypes () ((list (nil) (cons (car tree) (cdr list))) (tree (leaf) (node (n list))))) (declare-const x tree) (declare-const l list) (declare-fun f (list) Bool) (assert (f (cons x l))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-datatypes ((tree 0) (list 0)) (((leaf) (node (n list))) ((nil) (cons (car tree) (cdr list))))) (declare-fun f (list) Bool) (declare-fun l () list) (declare-fun x () tree) (assert (let (($x8 (f (cons x l)))) (and $x8))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (f (cons x l)))) done printing spec: (declare-const x Real) (declare-const y Int) (assert (= x 0.0)) (assert (= y 6)) (assert (> (/ x 1.4) (to_real y))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-fun y () Int) (declare-fun x () Real) (assert (let (($x14 (> (/ x (/ 7.0 5.0)) (to_real y)))) (let (($x10 (= y 6))) (let (($x7 (= x 0.0))) (and $x7 $x10 $x14))))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (= x 0.0) (= y 6) (> (/ x (/ 7.0 5.0)) (to_real y)))) done printing spec: (declare-const x (_ BitVec 4)) (declare-const y (_ BitVec 4)) (assert (bvule x (bvmul y (concat ((_ extract 2 0) x) ((_ extract 3 3) #xf0))))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-fun x () (_ BitVec 4)) (declare-fun y () (_ BitVec 4)) (assert (let (($x12 (bvule x (bvmul y (concat ((_ extract 2 0) x) ((_ extract 3 3) (_ bv240 8))))))) (and $x12))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (let ((a!1 (bvule x (bvmul y (concat ((_ extract 2 0) x) ((_ extract 3 3) #xf0)))))) (and a!1))) done printing spec: (assert (= "abc" "abc")) done parsing spec1: benchmark->string ; test (set-info :status unknown) (assert (let (($x6 (= "abc" "abc"))) (and $x6))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (= "abc" "abc"))) done printing PASS (test smt2print_parse :time 0.02 :before-memory 17.68 :after-memory 17.70) spec: (declare-datatypes (T) ((list (nil) (cons (car T) (cdr list))))) (declare-const x Int) (declare-const l (list Int)) (declare-fun f ((list Int)) Bool) (assert (f (cons x l))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-datatypes ((list 1)) ((par (k!00)((nil) (cons (car k!00) (cdr (list k!00))))))) (declare-fun f ((list Int)) Bool) (declare-fun l () (list Int)) (declare-fun x () Int) (assert (let (($x8 (f (cons x l)))) (and $x8))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (f (cons x l)))) done printing spec: (declare-const x Int) (declare-const a (Array Int Int)) (declare-const b (Array (Array Int Int) Bool)) (assert (select b a)) (assert (= b ((as const (Array (Array Int Int) Bool)) true))) (assert (= b (store b a true))) (declare-const b1 (Array Bool Bool)) (declare-const b2 (Array Bool Bool)) (assert (= ((as const (Array Bool Bool)) false) ((_ map and) b1 b2))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-fun b2 () (Array Bool Bool)) (declare-fun b1 () (Array Bool Bool)) (declare-fun a () (Array Int Int)) (declare-fun b () (Array (Array Int Int) Bool)) (assert (let (($x16 (= ((as const (Array Bool Bool)) false) ((_ map and ) b1 b2)))) (let (($x11 (= b (store b a true)))) (let (($x9 (= b ((as const (Array (Array Int Int) Bool)) true)))) (let (($x7 (select b a))) (and $x7 $x9 $x11 $x16)))))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (select b a) (= b ((as const (Array (Array Int Int) Bool)) true)) (= b (store b a true)) (= ((as const (Array Bool Bool)) false) ((_ map (and (Bool Bool) Bool)) b1 b2)))) done printing spec: (declare-datatypes () ((list (nil) (cons (car tree) (cdr list))) (tree (leaf) (node (n list))))) (declare-const x tree) (declare-const l list) (declare-fun f (list) Bool) (assert (f (cons x l))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-datatypes ((tree 0) (list 0)) (((leaf) (node (n list))) ((nil) (cons (car tree) (cdr list))))) (declare-fun f (list) Bool) (declare-fun l () list) (declare-fun x () tree) (assert (let (($x8 (f (cons x l)))) (and $x8))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (f (cons x l)))) done printing spec: (declare-const x Real) (declare-const y Int) (assert (= x 0.0)) (assert (= y 6)) (assert (> (/ x 1.4) (to_real y))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-fun y () Int) (declare-fun x () Real) (assert (let (($x14 (> (/ x (/ 7.0 5.0)) (to_real y)))) (let (($x10 (= y 6))) (let (($x7 (= x 0.0))) (and $x7 $x10 $x14))))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (= x 0.0) (= y 6) (> (/ x (/ 7.0 5.0)) (to_real y)))) done printing spec: (declare-const x (_ BitVec 4)) (declare-const y (_ BitVec 4)) (assert (bvule x (bvmul y (concat ((_ extract 2 0) x) ((_ extract 3 3) #xf0))))) done parsing spec1: benchmark->string ; test (set-info :status unknown) (declare-fun x () (_ BitVec 4)) (declare-fun y () (_ BitVec 4)) (assert (let (($x12 (bvule x (bvmul y (concat ((_ extract 2 0) x) ((_ extract 3 3) (_ bv240 8))))))) (and $x12))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (let ((a!1 (bvule x (bvmul y (concat ((_ extract 2 0) x) ((_ extract 3 3) #xf0)))))) (and a!1))) done printing spec: (assert (= "abc" "abc")) done parsing spec1: benchmark->string ; test (set-info :status unknown) (assert (let (($x6 (= "abc" "abc"))) (and $x6))) (check-sat) attempting to parse spec1... parse successful, converting ast->string spec2: string->ast->string (ast-vector (and (= "abc" "abc"))) done printing PASS (test smt2print_parse :time 0.02 :before-memory 17.70 :after-memory 17.70) VAR 0:0 --> 0 (:var 1) PASS (test substitution :time 0.00 :before-memory 17.70 :after-memory 17.68) VAR 0:0 --> 0 (:var 1) PASS (test substitution :time 0.00 :before-memory 17.68 :after-memory 17.68) --------- p: x0 x1^2 + x0 x1 + x1 + 2 q: x0 x1 + 3 S_0: - x0^2 + 6 x0 --------- p: x0 x1^4 + x0 x1^3 + x1^3 + 2 q: x0 x1^3 + 3 S_0: - x0^4 + 72 x0^3 - 27 x0^2 - 27 x0 S_1: 9 x0^3 --------- p: x9^4 + x0 x9^2 + x1 x9 + x2 q: 4 x9^3 + 2 x0 x9 + x1 S_0: 256 x2^3 - 4 x0^3 x1^2 - 128 x0^2 x2^2 + 144 x0 x1^2 x2 - 27 x1^4 + 16 x0^4 x2 S_1: - 32 x0 x2 + 8 x0^3 + 36 x1^2 S_2: 8 x0 --------- p: x9 x10^2 - x10^2 + 6 x9 - 6 - x9^2 x10 - x10 q: - x9 x10^2 - x9^2 + 6 x10 - 6 + x9^2 x10 - x9 S_0: 2 x9^6 - 22 x9^5 + 102 x9^4 - 274 x9^3 + 488 x9^2 - 552 x9 + 288 S_1: - x9^2 - 6 + 5 x9 --------- p: x9 x10^3 - x10^3 + 6 x9 - 6 - x9^3 x10 - x10 q: - x9 x10^3 - x9^3 + 6 x10 - 6 + x9^3 x10 - x9 S_0: 3 x9^11 - 3 x9^10 - 37 x9^9 + 99 x9^8 + 51 x9^7 - 621 x9^6 + 1089 x9^5 - 39 x9^4 - 3106 x9^3 + 5868 x9^2 - 4968 x9 + 1728 S_1: x9^6 - 10 x9^4 + 12 x9^3 + 25 x9^2 - 60 x9 + 36 --------- p: x9^6 + x0 x9^3 + x1 q: x9^6 + x2 x9^3 + x3 S_0: x3^6 + 3 x0^4 x2^2 x3^3 - 3 x0^5 x2 x3^3 + x0^6 x3^3 + 3 x0^2 x1 x2^4 x3^2 - 9 x0^3 x1 x2^3 x3^2 + 9 x0^4 x1 x2^2 x3^2 - 3 x0^5 x1 x2 x3^2 - 3 x0 x1^2 x2^5 x3 + 9 x0^2 x1^2 x2^4 x3 - 9 x0^3 x1^2 x2^3 x3 + 3 x0^4 x1^2 x2^2 x3 + x1^3 x2^6 - 3 x0 x1^3 x2^5 + 3 x0^2 x1^3 x2^4 - x0^3 x1^3 x2^3 + 3 x0^2 x2^2 x3^4 - 6 x0^3 x2 x3^4 + 3 x0^4 x3^4 - 6 x0 x1 x2^3 x3^3 + 6 x0^2 x1 x2^2 x3^3 + 6 x0^3 x1 x2 x3^3 - 6 x0^4 x1 x3^3 + 3 x1^2 x2^4 x3^2 + 6 x0 x1^2 x2^3 x3^2 - 18 x0^2 x1^2 x2^2 x3^2 + 6 x0^3 x1^2 x2 x3^2 + 3 x0^4 x1^2 x3^2 - 6 x1^3 x2^4 x3 + 6 x0 x1^3 x2^3 x3 + 6 x0^2 x1^3 x2^2 x3 - 6 x0^3 x1^3 x2 x3 + 3 x1^4 x2^4 - 6 x0 x1^4 x2^3 + 3 x0^2 x1^4 x2^2 - 3 x0 x2 x3^5 + 3 x0^2 x3^5 + 3 x1 x2^2 x3^4 + 9 x0 x1 x2 x3^4 - 12 x0^2 x1 x3^4 - 12 x1^2 x2^2 x3^3 - 6 x0 x1^2 x2 x3^3 + 18 x0^2 x1^2 x3^3 + 18 x1^3 x2^2 x3^2 - 6 x0 x1^3 x2 x3^2 - 12 x0^2 x1^3 x3^2 - 12 x1^4 x2^2 x3 + 9 x0 x1^4 x2 x3 + 3 x0^2 x1^4 x3 + 3 x1^5 x2^2 - 3 x0 x1^5 x2 - x0^3 x2^3 x3^3 - 6 x1 x3^5 + 15 x1^2 x3^4 - 20 x1^3 x3^3 + 15 x1^4 x3^2 - 6 x1^5 x3 + x1^6 S_1: x2^3 - 3 x0 x2^2 + 3 x0^2 x2 - x0^3 --------- p: x9 q: x0 x9 + x1 x2 + x3 - x4 S_0: - x4 + x3 + x1 x2 --------- p: x0 x3 x9 + x0 x2 x5 + x0 x4 - x0 x1 q: x3 x9 + x2 x5 + x4 - x1 S_0: 0 PASS (test polynomial :time 0.00 :before-memory 17.68 :after-memory 17.69) --------- p: x0 x1^2 + x0 x1 + x1 + 2 q: x0 x1 + 3 S_0: - x0^2 + 6 x0 --------- p: x0 x1^4 + x0 x1^3 + x1^3 + 2 q: x0 x1^3 + 3 S_0: - x0^4 + 72 x0^3 - 27 x0^2 - 27 x0 S_1: 9 x0^3 --------- p: x9^4 + x0 x9^2 + x1 x9 + x2 q: 4 x9^3 + 2 x0 x9 + x1 S_0: 256 x2^3 - 4 x0^3 x1^2 - 128 x0^2 x2^2 + 144 x0 x1^2 x2 - 27 x1^4 + 16 x0^4 x2 S_1: - 32 x0 x2 + 8 x0^3 + 36 x1^2 S_2: 8 x0 --------- p: x9 x10^2 - x10^2 + 6 x9 - 6 - x9^2 x10 - x10 q: - x9 x10^2 - x9^2 + 6 x10 - 6 + x9^2 x10 - x9 S_0: 2 x9^6 - 22 x9^5 + 102 x9^4 - 274 x9^3 + 488 x9^2 - 552 x9 + 288 S_1: - x9^2 - 6 + 5 x9 --------- p: x9 x10^3 - x10^3 + 6 x9 - 6 - x9^3 x10 - x10 q: - x9 x10^3 - x9^3 + 6 x10 - 6 + x9^3 x10 - x9 S_0: 3 x9^11 - 3 x9^10 - 37 x9^9 + 99 x9^8 + 51 x9^7 - 621 x9^6 + 1089 x9^5 - 39 x9^4 - 3106 x9^3 + 5868 x9^2 - 4968 x9 + 1728 S_1: x9^6 - 10 x9^4 + 12 x9^3 + 25 x9^2 - 60 x9 + 36 --------- p: x9^6 + x0 x9^3 + x1 q: x9^6 + x2 x9^3 + x3 S_0: x3^6 + 3 x0^4 x2^2 x3^3 - 3 x0^5 x2 x3^3 + x0^6 x3^3 + 3 x0^2 x1 x2^4 x3^2 - 9 x0^3 x1 x2^3 x3^2 + 9 x0^4 x1 x2^2 x3^2 - 3 x0^5 x1 x2 x3^2 - 3 x0 x1^2 x2^5 x3 + 9 x0^2 x1^2 x2^4 x3 - 9 x0^3 x1^2 x2^3 x3 + 3 x0^4 x1^2 x2^2 x3 + x1^3 x2^6 - 3 x0 x1^3 x2^5 + 3 x0^2 x1^3 x2^4 - x0^3 x1^3 x2^3 + 3 x0^2 x2^2 x3^4 - 6 x0^3 x2 x3^4 + 3 x0^4 x3^4 - 6 x0 x1 x2^3 x3^3 + 6 x0^2 x1 x2^2 x3^3 + 6 x0^3 x1 x2 x3^3 - 6 x0^4 x1 x3^3 + 3 x1^2 x2^4 x3^2 + 6 x0 x1^2 x2^3 x3^2 - 18 x0^2 x1^2 x2^2 x3^2 + 6 x0^3 x1^2 x2 x3^2 + 3 x0^4 x1^2 x3^2 - 6 x1^3 x2^4 x3 + 6 x0 x1^3 x2^3 x3 + 6 x0^2 x1^3 x2^2 x3 - 6 x0^3 x1^3 x2 x3 + 3 x1^4 x2^4 - 6 x0 x1^4 x2^3 + 3 x0^2 x1^4 x2^2 - 3 x0 x2 x3^5 + 3 x0^2 x3^5 + 3 x1 x2^2 x3^4 + 9 x0 x1 x2 x3^4 - 12 x0^2 x1 x3^4 - 12 x1^2 x2^2 x3^3 - 6 x0 x1^2 x2 x3^3 + 18 x0^2 x1^2 x3^3 + 18 x1^3 x2^2 x3^2 - 6 x0 x1^3 x2 x3^2 - 12 x0^2 x1^3 x3^2 - 12 x1^4 x2^2 x3 + 9 x0 x1^4 x2 x3 + 3 x0^2 x1^4 x3 + 3 x1^5 x2^2 - 3 x0 x1^5 x2 - x0^3 x2^3 x3^3 - 6 x1 x3^5 + 15 x1^2 x3^4 - 20 x1^3 x3^3 + 15 x1^4 x3^2 - 6 x1^5 x3 + x1^6 S_1: x2^3 - 3 x0 x2^2 + 3 x0^2 x2 - x0^3 --------- p: x9 q: x0 x9 + x1 x2 + x3 - x4 S_0: - x4 + x3 + x1 x2 --------- p: x0 x3 x9 + x0 x2 x5 + x0 x4 - x0 x1 q: x3 x9 + x2 x5 + x4 - x1 S_0: 0 PASS (test polynomial :time 0.00 :before-memory 17.69 :after-memory 17.69) Testing GCD _p: 13 x^18 - 1560 x^17 + 86931 x^16 - 2987504 x^15 + 70923060 x^14 - 1234660752 x^13 + 16329634620 x^12 - 167746338864 x^11 + 1356661565766 x^10 - 8703145006400 x^9 + 44396368299114 x^8 - 179697656333520 x^7 + 572988784985188 x^6 - 1420294907137392 x^5 + 2677652713464300 x^4 - 3706435590858000 x^3 + 3548919735343125 x^2 - 2098635449625000 x + 577124748646875 _q: 234 x^17 - 26520 x^16 + 1390896 x^15 - 44812560 x^14 + 992922840 x^13 - 16050589776 x^12 + 195955615440 x^11 - 1845209727504 x^10 + 13566615657660 x^9 - 78328305057600 x^8 + 355170946392912 x^7 - 1257883594334640 x^6 + 3437932709911128 x^5 - 7101474535686960 x^4 + 10710610853857200 x^3 - 11119306772574000 x^2 + 7097839470686250 x - 2098635449625000 gcd: 13 x^15 - 1313 x^14 + 60645 x^13 - 1697865 x^12 + 32200545 x^11 - 437963877 x^10 + 4411517097 x^9 - 33504144765 x^8 + 193432514535 x^7 - 849099998435 x^6 + 2811735445519 x^5 - 6901018131579 x^4 + 12159189854955 x^3 - 14529083829975 x^2 + 10535573923875 x - 3497725749375 _p: 13 x^18 - 1560 x^17 + 86931 x^16 - 2987504 x^15 + 70923060 x^14 - 1234660752 x^13 + 16329634620 x^12 - 167746338864 x^11 + 1356661565766 x^10 - 8703145006400 x^9 + 44396368299114 x^8 - 179697656333520 x^7 + 572988784985188 x^6 - 1420294907137392 x^5 + 2677652713464300 x^4 - 3706435590858000 x^3 + 3548919735343125 x^2 - 2098635449625000 x + 577124748646875 _q: 234 x^17 - 26520 x^16 + 1390896 x^15 - 44812560 x^14 + 992922840 x^13 - 16050589776 x^12 + 195955615440 x^11 - 1845209727504 x^10 + 13566615657660 x^9 - 78328305057600 x^8 + 355170946392912 x^7 - 1257883594334640 x^6 + 3437932709911128 x^5 - 7101474535686960 x^4 + 10710610853857200 x^3 - 11119306772574000 x^2 + 7097839470686250 x - 2098635449625000 subresultant_gcd: x^15 - 101 x^14 + 4665 x^13 - 130605 x^12 + 2476965 x^11 - 33689529 x^10 + 339347469 x^9 - 2577241905 x^8 + 14879424195 x^7 - 65315384495 x^6 + 216287341963 x^5 - 530847548583 x^4 + 935322296535 x^3 - 1117621833075 x^2 + 810428763375 x - 269055826875 --------------- p: x0^2 - 2 _p: x^2 - 2 _p: x^2 - 2 k: 1 --------------- p: x0^5 _p: x^5 _p: x^5 k: 1 --------------- p: 64 x0^4 - 120 x0^3 + 70 x0^2 - 15 x0 + 1 _p: 64 x^4 - 120 x^3 + 70 x^2 - 15 x + 1 _p: 64 x^4 - 120 x^3 + 70 x^2 - 15 x + 1 k: 5 --------------- p: 1024 x0^5 - 1984 x0^4 + 1240 x0^3 - 310 x0^2 + 31 x0 - 1 _p: 1024 x^5 - 1984 x^4 + 1240 x^3 - 310 x^2 + 31 x - 1 _p: 1024 x^5 - 1984 x^4 + 1240 x^3 - 310 x^2 + 31 x - 1 k: 6 --------------- p: 1024 x0^8 - 1984 x0^7 + 1240 x0^6 - 310 x0^5 + 31 x0^4 - x0^3 _p: 1024 x^8 - 1984 x^7 + 1240 x^6 - 310 x^5 + 31 x^4 - x^3 _p: 1024 x^8 - 1984 x^7 + 1240 x^6 - 310 x^5 + 31 x^4 - x^3 k: 6 --------------- p: x0^5 - x0 - 1 _p: x^5 - x - 1 _p: x^5 - x - 1 k: 2 --------------- p: 1000 x0^2 - 1001 x0 + 1 _p: 1000 x^2 - 1001 x + 1 _p: 1000 x^2 - 1001 x + 1 k: 11 --------------- p: 1024 x0^5 + 704 x0^4 - 440 x0^3 - 110 x0^2 + 11 x0 + 1 _p: 1024 x^5 + 704 x^4 - 440 x^3 - 110 x^2 + 11 x + 1 _p: 1024 x^5 + 704 x^4 - 440 x^3 - 110 x^2 + 11 x + 1 k: 5 --------------- p: 1024 x0^5 + 1984 x0^4 + 1240 x0^3 + 310 x0^2 + 31 x0 + 1 _p: 1024 x^5 + 1984 x^4 + 1240 x^3 + 310 x^2 + 31 x + 1 _p: 1024 x^5 + 1984 x^4 + 1240 x^3 + 310 x^2 + 31 x + 1 k: 6 --------------- p: x0^10 - 10 x0^8 + 38 x0^6 - 2 x0^5 - 100 x0^4 - 40 x0^3 + 121 x0^2 - 38 x0 - 17 _p: x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17 _p: x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17 k: 3 --------------- p: x0^33 - 4 x0^30 - 12 x0^27 - 12 x0^29 - 5 x0^26 + 18 x0^23 - 24 x0^28 + 42 x0^25 + 9 x0^22 - 2 x0^19 + 51 x0^24 - 19 x0^21 - 8 x0^18 - 10 x0^20 - 5 x0^17 + 5 x0^32 - 94 x0^16 + 3 x0^31 - 91 x0^15 + 22 x0^14 + 18 x0^13 + 62 x0^12 + 62 x0^11 + 19 x0^10 + 2 x0^9 + 10 x0^7 - 9 x0^6 + 10 x0^8 - 64 x0^5 - 44 x0^4 - 4 x0^3 + 40 x0^2 + 56 x0 + 28 _p: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 _p: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 k: 3 --------------- p: 900 x0^19 - 6000113760 x0^18 + 10000758403594816 x0^17 - 1264023965440000000 x0^16 + 39942400000000000000 x0^15 - 2700000000000 x0^14 + 18000341280000000000 x0^13 - 30002275210784448000000000 x0^12 + 3792071896320000000000000000 x0^11 - 119827200000000000000000000000 x0^10 + 2700000000000000000000 x0^9 - 18000341280000000000000000000 x0^8 + 30002275210784448000000000000000000 x0^7 - 3792071896320000000000000000000000000 x0^6 + 119827200000000000000000000000000000000 x0^5 - 900000000000000000000000000000 x0^4 + 6000113760000000000000000000000000000 x0^3 - 10000758403594816000000000000000000000000000 x0^2 + 1264023965440000000000000000000000000000000000 x0 - 39942400000000000000000000000000000000000000000 _p: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 _p: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 k: 1 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 3) factors: 1 *(x^2 + 5)^1 *(x - 2)^1 *(x + 2)^1 3 3 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^4 + x^2 - 20)^1 1 1 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^4 + x^2 - 20)^1 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34)^1 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34)^1 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34)^1 1 1 --------------- p: x0^10 - 10 x0^8 + 38 x0^6 - 2 x0^5 - 100 x0^4 - 40 x0^3 + 121 x0^2 - 38 x0 - 17 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17)^1 1 1 --------------- p: x0^4 - 404 x0^2 + 39204 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^2 - 242)^1 *(x^2 - 162)^1 2 2 --------------- p: - x0^8 + 3 x0^7 - 5 x0^6 + 4 x0^5 - 3 x0^4 + 4 x0^3 - 5 x0 + 3 (polynomial-factorization :at GF_5) (polynomial-factorization :num-candidate-factors 4) (polynomial-factorization :search-size 4) (polynomial-factorization :distinct-factors 3) factors: -1 *(x^2 - 2 x + 3)^1 *(x - 1)^1 *(x^5 - x^2 + 1)^1 3 3 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 3) factors: 1 *(x^2 + 5)^1 *(x - 2)^1 *(x + 2)^1 3 3 --------------- p: 11 x0^8 - 33 x0^7 + 55 x0^6 - 44 x0^5 + 33 x0^4 - 44 x0^3 + 55 x0 - 33 (polynomial-factorization :at GF_5) (polynomial-factorization :num-candidate-factors 4) (polynomial-factorization :search-size 4) (polynomial-factorization :distinct-factors 3) factors: 11 *(x^2 - 2 x + 3)^1 *(x - 1)^1 *(x^5 - x^2 + 1)^1 3 3 --------------- p: - 2 x0^2 + x0 + 1 (polynomial-factorization :distinct-factors 2) factors: -1 *(x - 1)^1 *(2 x + 1)^1 2 2 --------------- p: 13 x0^18 - 1560 x0^17 + 86931 x0^16 - 2987504 x0^15 + 70923060 x0^14 - 1234660752 x0^13 + 16329634620 x0^12 - 167746338864 x0^11 + 1356661565766 x0^10 - 8703145006400 x0^9 + 44396368299114 x0^8 - 179697656333520 x0^7 + 572988784985188 x0^6 - 1420294907137392 x0^5 + 2677652713464300 x0^4 - 3706435590858000 x0^3 + 3548919735343125 x0^2 - 2098635449625000 x0 + 577124748646875 (polynomial-factorization :distinct-factors 3) factors: 13 *(x - 5)^5 *(x - 3)^6 *(x - 11)^7 3 3 --------------- p: x0^30 + 30 x0^29 + 435 x0^28 + 4060 x0^27 + 27405 x0^26 + 142506 x0^25 + 593775 x0^24 + 2035800 x0^23 + 5852925 x0^22 + 14307150 x0^21 + 30045015 x0^20 + 54627300 x0^19 + 86493225 x0^18 + 119759850 x0^17 + 145422675 x0^16 + 155117520 x0^15 + 145422675 x0^14 + 119759850 x0^13 + 86493225 x0^12 + 54627300 x0^11 + 30045015 x0^10 + 14307150 x0^9 + 5852925 x0^8 + 2035800 x0^7 + 593775 x0^6 + 142506 x0^5 + 27405 x0^4 + 4060 x0^3 + 435 x0^2 + 30 x0 + 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x + 1)^30 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 7) (polynomial-factorization :search-size 17) (polynomial-factorization :distinct-factors 3) factors: 1 *(x^10 - 4 x^5 + 2)^1 *(x^50 - 10 x^40 + 38 x^30 - 2 x^25 - 100 x^20 - 40 x^15 + 121 x^10 - 38 x^5 - 17)^1 *(x^10 - 2 x^5 - 1)^1 3 3 --------------- p: x0^4 - 8 x0^2 (polynomial-factorization :distinct-factors 2) factors: 1 *(x^2 - 8)^1 *(x)^2 2 2 --------------- p: x0^5 - 2 x0^3 + x0 - 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^5 - 2 x^3 + x - 1)^1 1 1 --------------- p: x0^25 - 4 x0^21 - 5 x0^20 + 6 x0^17 + 11 x0^16 + 10 x0^15 - 4 x0^13 - 7 x0^12 - 9 x0^11 - 10 x0^10 + x0^9 + x0^8 + x0^7 + x0^6 + 3 x0^5 + x0 - 1 (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 2 x^3 + x - 1)^1 *(x^10 + x^8 - x^6 - 2 x^5 - x^4 - x^3 + 1)^2 2 2 --------------- p: x0^25 - 10 x0^21 - 10 x0^20 - 95 x0^17 - 470 x0^16 - 585 x0^15 - 40 x0^13 - 1280 x0^12 - 4190 x0^11 - 3830 x0^10 + 400 x0^9 + 1760 x0^8 + 760 x0^7 - 2280 x0^6 + 449 x0^5 + 640 x0^3 - 640 x0^2 + 240 x0 - 32 (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 16 x - 32)^1 *(x^10 + 3 x^6 + 11 x^5 - 4 x^2 + 4 x - 1)^2 2 2 --------------- p: x0^10 (polynomial-factorization :distinct-factors 1) factors: 1 *(x)^10 1 1 --------------- p: x0^2 - 1 (polynomial-factorization :distinct-factors 2) factors: 1 *(x - 1)^1 *(x + 1)^1 2 2 --------------- p: - 2 x0^2 + 2 (polynomial-factorization :distinct-factors 2) factors: -2 *(x - 1)^1 *(x + 1)^1 2 2 --------------- p: 0 (polynomial-factorization :distinct-factors 0) factors: 0 0 0 --------------- p: 3 (polynomial-factorization :distinct-factors 0) factors: 3 0 0 --------------- p: x0 + 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x + 1)^1 1 1 --------------- p: x0 - 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x - 1)^1 1 1 --------------- p: - x0 - 1 (polynomial-factorization :distinct-factors 1) factors: -1 *(x + 1)^1 1 1 --------------- p: - x0 + 1 (polynomial-factorization :distinct-factors 1) factors: -1 *(x - 1)^1 1 1 --------------- p: x0^10 - 10 x0^8 + 38 x0^6 - 2 x0^5 - 100 x0^4 - 40 x0^3 + 121 x0^2 - 38 x0 - 17 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17)^1 1 1 --------------- p: x0^50 - 10 x0^40 + 38 x0^30 - 2 x0^25 - 100 x0^20 - 40 x0^15 + 121 x0^10 - 38 x0^5 - 17 (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) factors: 1 *(x^50 - 10 x^40 + 38 x^30 - 2 x^25 - 100 x^20 - 40 x^15 + 121 x^10 - 38 x^5 - 17)^1 1 1 --------------- p: x0^50 + 50 x0^49 + 1225 x0^48 + 19600 x0^47 + 230300 x0^46 + 2118760 x0^45 + 15890700 x0^44 + 99884400 x0^43 + 536878650 x0^42 + 2505433700 x0^41 + 10272278160 x0^40 + 37353738400 x0^39 + 121399643300 x0^38 + 354860419800 x0^37 + 937844742400 x0^36 + 2250822995040 x0^35 + 4923651311775 x0^34 + 9847192955550 x0^33 + 18052759836925 x0^32 + 30403208994400 x0^31 + 47120735638718 x0^30 + 67304328049540 x0^29 + 88693946746330 x0^28 + 107922921291080 x0^27 + 121316591779290 x0^26 + 126008358402418 x0^25 + 120920161583200 x0^24 + 107156006937400 x0^23 + 87616235053150 x0^22 + 66015165625200 x0^21 + 45751888559970 x0^20 + 29095194780400 x0^19 + 16923012027925 x0^18 + 8964604200300 x0^17 + 4300690170275 x0^16 + 1854462502360 x0^15 + 711289628150 x0^14 + 239061007300 x0^13 + 68794843050 x0^12 + 16285796400 x0^11 + 2912250341 x0^10 + 293635660 x0^9 - 24769155 x0^8 - 18147080 x0^7 - 4334640 x0^6 - 792418 x0^5 - 181390 x0^4 - 47580 x0^3 - 8780 x0^2 - 840 x0 - 47 (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) factors: 1 *(x^50 + 50 x^49 + 1225 x^48 + 19600 x^47 + 230300 x^46 + 2118760 x^45 + 15890700 x^44 + 99884400 x^43 + 536878650 x^42 + 2505433700 x^41 + 10272278160 x^40 + 37353738400 x^39 + 121399643300 x^38 + 354860419800 x^37 + 937844742400 x^36 + 2250822995040 x^35 + 4923651311775 x^34 + 9847192955550 x^33 + 18052759836925 x^32 + 30403208994400 x^31 + 47120735638718 x^30 + 67304328049540 x^29 + 88693946746330 x^28 + 107922921291080 x^27 + 121316591779290 x^26 + 126008358402418 x^25 + 120920161583200 x^24 + 107156006937400 x^23 + 87616235053150 x^22 + 66015165625200 x^21 + 45751888559970 x^20 + 29095194780400 x^19 + 16923012027925 x^18 + 8964604200300 x^17 + 4300690170275 x^16 + 1854462502360 x^15 + 711289628150 x^14 + 239061007300 x^13 + 68794843050 x^12 + 16285796400 x^11 + 2912250341 x^10 + 293635660 x^9 - 24769155 x^8 - 18147080 x^7 - 4334640 x^6 - 792418 x^5 - 181390 x^4 - 47580 x^3 - 8780 x^2 - 840 x - 47)^1 1 1 --------------- p: x0^4 - 404 x0^2 + 39204 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^2 - 242)^1 *(x^2 - 162)^1 2 2 --------------- p: x0^25 - 31260 x0^20 + 383062540 x0^15 - 2590282000080 x0^10 + 7334282001000080 x0^5 - 9552011721875500032 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 7) (polynomial-factorization :search-size 19) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 15552)^1 *(x^20 - 15708 x^15 + 138771724 x^10 - 432104148432 x^5 + 614198284585616)^1 2 2 --------------- p: x0^25 - 3125 x0^21 - 15630 x0^20 + 3888750 x0^17 + 38684375 x0^16 + 95765635 x0^15 - 2489846500 x0^13 - 37650481875 x0^12 - 190548065625 x0^11 - 323785250010 x0^10 + 750249453025 x0^9 + 14962295699875 x0^8 + 111775113235000 x0^7 + 370399286731250 x0^6 + 362903064503129 x0^5 - 2387239013984400 x0^4 - 23872390139844000 x0^3 - 119361950699220000 x0^2 - 298404876748050000 x0 - 298500366308609376 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 5) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 1296 x - 7776)^1 *(x^20 - 1829 x^16 - 7854 x^15 + 1518366 x^12 + 14283287 x^11 + 34692931 x^10 - 522044164 x^8 - 7332527907 x^7 - 34519187337 x^6 - 54013018554 x^5 + 73680216481 x^4 + 1399924113139 x^3 + 10020509441416 x^2 + 31977213952754 x + 38387392786601)^1 2 2 --------------- p: - x0^27 + 54 x0^24 - 324 x0^21 + 17496 x0^18 - 34992 x0^15 + 1889568 x0^12 - 1259712 x0^9 + 68024448 x0^6 (polynomial-factorization :distinct-factors 3) factors: -1 *(x^3 - 54)^1 *(x^6 + 108)^3 *(x)^6 3 3 --------------- p: x0^27 - 648 x0^24 + 105300 x0^21 - 3639168 x0^18 - 521485776 x0^15 - 40761760896 x0^12 - 8435982634560 x0^9 - 326907538633728 x0^6 - 904871002816512 x0^3 - 34835065137266688 (polynomial-factorization :at GF_17) (polynomial-factorization :num-candidate-factors 11) (polynomial-factorization :search-size 83) (polynomial-factorization :distinct-factors 5) factors: 1 *(x^3 - 432)^1 *(x^6 + 6912)^1 *(x^6 - 324 x^3 + 37044)^1 *(x^6 + 108)^1 *(x^3 + 54)^2 5 5 --------------- p: x0^54 - 54 x0^52 - 1296 x0^51 + 1404 x0^50 + 607104 x0^48 - 1057536 x0^47 - 22401792 x0^46 - 131347008 x0^45 + 385174656 x0^44 + 4556424960 x0^43 + 10518648048 x0^42 + 54432 x0^49 - 69060148992 x0^41 - 565617303648 x0^40 + 445518434304 x0^39 + 8781044678784 x0^38 + 32843377234944 x0^37 - 131307918402048 x0^36 - 1186720516915200 x0^35 + 736520460602112 x0^34 + 18979903288608768 x0^33 - 112345961528001024 x0^32 + 1270197317039357952 x0^31 - 1541064534072996096 x0^30 + 16614053352447639552 x0^29 - 64121868468546937344 x0^28 - 441603923048400752640 x0^27 + 3907490603726606515200 x0^26 - 9940058828597411831808 x0^25 + 37842357616860755976192 x0^24 - 207493394698593727119360 x0^23 + 7974899726119384485888 x0^22 + 2119713138903354441449472 x0^21 - 1236506243331227840225280 x0^20 + 15633879365645789187538944 x0^19 + 135073233715906678961491968 x0^18 - 283501898470995378000297984 x0^17 - 103789476798964165693218816 x0^16 + 2149475050405063712005816320 x0^15 + 11401046311106270759794900992 x0^14 - 42594459367486176885626634240 x0^13 + 144038627307565998906953170944 x0^12 + 51604015948240925730371272704 x0^11 - 250947536887982891503528574976 x0^10 + 3480976544954551737609272426496 x0^9 + 10434520207534987392729183682560 x0^8 + 42130058836708565940278805921792 x0^7 + 28392667475502927445585073012736 x0^6 + 292548838778373337946194100355072 x0^5 + 732626185252271205256762862075904 x0^4 + 490660485015010178556685461749760 x0^3 + 1356203807400073270301299496189952 x0^2 + 436594705270365747351637721088000 x0 + 1395158047392035876769798396313600 (polynomial-factorization :at GF_23) (polynomial-factorization :num-candidate-factors 22) (polynomial-factorization :search-size 14448) (polynomial-factorization :distinct-factors 5) factors: 1 *(x^6 - 6 x^4 - 864 x^3 + 12 x^2 - 5184 x + 186616)^1 *(x^12 - 12 x^10 + 60 x^8 + 56 x^6 + 6720 x^4 + 12768 x^2 + 13456)^1 *(x^12 - 12 x^10 - 648 x^9 + 60 x^8 + 178904 x^6 + 15552 x^5 + 1593024 x^4 - 24045984 x^3 + 5704800 x^2 - 143995968 x + 1372010896)^1 *(x^12 - 12 x^10 + 60 x^8 + 13664 x^6 + 414960 x^4 + 829248 x^2 + 47886400)^1 *(x^6 - 6 x^4 + 108 x^3 + 12 x^2 + 648 x + 2908)^2 5 5 --------------- p: x0^2 + x0 q: x0 r: 0 --------------- p: x0^2 + x0 + 1 q: x0 r: 1 --------------- p: x0^2 + 2 x0 + 1 q: 2 x0 + 2 r: 0 ------ p1: x^3 - 6 x^2 + 11 x - 6 p2: x^2 - 3 x + 2 r: x - 3 expected: x - 3 ------ p1: 2 x^3 - 12 x^2 + 22 x - 12 p2: x^2 - 3 x + 2 r: 2 x - 6 expected: 2 x - 6 ------ p1: 2 x^3 - 12 x^2 + 22 x - 12 p2: x^3 - 7 x^2 + 14 x - 8 ------ p1: x - 3 p2: x - 1 ------ p1: 0 p2: x^3 - 7 x^2 + 14 x - 8 r: 0 expected: 0 ------ p1: x^3 - 7 x^2 + 14 x - 8 p2: 0 ------ p1: 0 p2: 0 ------ p1: 2 x - 2 p2: x - 1 r: 2 expected: 2 ------ p1: 2 x - 2 p2: 4 x - 4 ------ p1: 6 x - 4 p2: 2 r: 3 x - 2 expected: 3 x - 2 isolating roots of: x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34 (isolate time :time 0.01 :before-memory 17.70 :after-memory 17.89) (sturm time :time 0.00 :before-memory 17.89 :after-memory 17.89) square free part: x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34 (sqf time :time 0.00 :before-memory 17.89 :after-memory 17.89) (fourier time :time 0.00 :before-memory 17.89 :after-memory 17.89) num. roots: 6 sign var(-oo): 16 sign var(+oo): 10 roots: intervals: (1.25, 1.5) (1.203125, 1.21875) (1.1875, 1.203125) (0, 1) (-0.875, -0.8125) (-0.8125, -0.75)(interval check :time 0.01 :before-memory 17.89 :after-memory 17.99) isolating roots of: x^2 - 3 x + 2 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - 3 x + 2 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 2 intervals: (0, 2)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - 2 x^4 + x^3 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - x (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 0 intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - x - 1 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 - x - 1 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 1 sign var(-oo): 2 sign var(+oo): 1 roots: intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^6 - x^5 - 16 x^4 + 10 x^3 + 69 x^2 - 9 x - 54 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 + 2 x^4 - 10 x^3 - 20 x^2 + 9 x + 18 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 5 sign var(-oo): 5 sign var(+oo): 0 roots: -2 intervals: (2, 4) (0, 2) (-4, -2) (-2, 0)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 100000000 x^2 - 630000 x + 992 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 100000000 x^2 - 630000 x + 992 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: intervals: (0.0031738281?, 0.0034179687?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 3 sign var(-oo): 3 sign var(+oo): 0 roots: intervals: (0.0032958984?, 0.0034179687?) (0.0031738281?, 0.0032958984?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.78) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.78) square free part: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 11 sign var(-oo): 11 sign var(+oo): 0 roots: 64 32 16 8 4 2 0.5 0.25 0.125 0.0625 intervals: (0, 0.0625)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 1000000 x^22 - 2334000 x^21 + 1361889 x^20 - 4000000 x^17 + 9336000 x^16 - 5447556 x^15 - 2000000 x^14 + 4668000 x^13 + 3276222 x^12 - 14004000 x^11 + 8171334 x^10 + 4000000 x^9 - 9336000 x^8 + 1447556 x^7 + 10336000 x^6 - 7781556 x^5 - 638111 x^4 + 4668000 x^3 - 1723778 x^2 - 2334000 x + 1361889 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.88) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 10 sign var(+oo): 7 roots: intervals: (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^25 + 5 x^24 + 3 x^23 - 2 x^22 - x^21 - 12 x^20 - 8 x^19 - 8 x^18 + 3 x^17 + 6 x^16 - 20 x^15 + 5 x^14 + 14 x^13 - x^12 + 26 x^11 + 15 x^10 - 6 x^9 - x^8 - 6 x^7 + 13 x^6 - x^5 - 7 x^4 - x^3 + 6 x^2 + 14 x + 14 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 5 sign var(-oo): 15 sign var(+oo): 10 roots: intervals: (1.25, 1.5) (1, 1.25) (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: 15 x^7 - 50000948 x^6 + 3160000000 x^5 - 15000000000 x^2 + 50000948000000000 x - 3160000000000000000 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 5 sign var(+oo): 2 roots: intervals: (2097152, 4194304) (63.125, 63.25) (63, 63.125)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) upolynomial sturm seq... x^16 - 136 x^14 + 6476 x^12 - 141912 x^10 + 1513334 x^8 - 7453176 x^6 + 13950764 x^4 - 5596840 x^2 + 46225 16 x^31 - 3184 x^29 + 266896 x^27 - 12504176 x^25 + 365186736 x^23 - 7016366800 x^21 + 91296632240 x^19 - 816781071440 x^17 + 5048153319680 x^15 - 21441099366400 x^13 + 61546497478656 x^11 - 115751532406784 x^9 + 135609801916416 x^7 - 91405602717696 x^5 + 30893429293056 x^3 - 3713794375680 x -1 x^16 + 136 x^14 - 6476 x^12 + 141912 x^10 - 1513334 x^8 + 7453176 x^6 - 13950764 x^4 + 5596840 x^2 - 46225 -1127661677367 x^15 + 80685790700977 x^13 - 2102726493398207 x^11 + 24514705741043569 x^9 - 126650346236335533 x^7 + 242589935638940027 x^5 - 97920676059890653 x^3 + 808873659526115 x -14535239484187 x^14 + 1040002105846097 x^12 - 27102803643492427 x^10 + 315975682124035209 x^8 - 1632414202846505513 x^6 + 3126764251346253547 x^4 - 1262106621739038833 x^2 + 10425232207257915 -167716660671508667641 x^13 + 8401333185842706888530 x^11 - 134511192706723391471287 x^9 + 821751607340566559868924 x^7 - 1705905612159036016144823 x^5 + 712068977650176642124114 x^3 - 10375158858866309689337 x -46388284262096386474101 x^12 + 2297177756962323065528714 x^10 - 36402788774274131831901243 x^8 + 220799657664499131685981196 x^6 - 455864002600254932618175227 x^4 + 187578869474987904058942602 x^2 - 1550540527908097632341045 -4781966315926860973699105567 x^11 + 144464930716069568218159788243 x^9 - 1169427211740981342868979217166 x^7 + 2878829227828597116284471589262 x^5 - 1689381939540688922079704055699 x^3 + 237821093214524613444114401119 x -5108074971655853552979774902899 x^10 + 142894793305009146385089605918283 x^8 - 1099846101471960685926906955737574 x^6 + 2506082302169705625991475997146542 x^4 - 1056500552045609715416888450812743 x^2 + 8841855718148765940369646193383 -98120336193551253677921935999799283 x^9 + 1282821860598696804541403875934437348 x^7 - 4888580553822740399599176292389184402 x^5 + 6426442235002716205008267522870828260 x^3 - 2106362515913203012578123667196293235 x -1561728884476847525112813341042616474011 x^8 + 17345591286879038944880672380421451809732 x^6 - 44557170670678936833666488386470071966338 x^4 + 19428144317367539496215506533408444604612 x^2 - 181424501621876268050477659663628874267 -48718567339545057971709193441047126509 x^7 + 527268188685058585740868192019254318421 x^5 - 1313868868153889289084379514485509676183 x^3 + 528737651333486566371183339800760756103 x -220162280897461356833414966265382012563279 x^6 + 1211314214555794584950776751645547954082463 x^4 - 1230799847361844990126616667707906905070125 x^2 + 90080631010818812189690298672496136915141 -4567940256921478185902666831705495050259 x^5 + 18353182476718620132475356289264733969914 x^3 - 8965983880068785028294729109994152212011 x -16568849839314393995007704109417733998971 x^4 + 40499812984358514784159551770437344409066 x^2 - 4567940256921478185902666831705495050259 -211307826015503935324666261 x^3 + 226566446302093673740485799 x -1051673563609695326877268183 x^2 + 211307826015503935324666261 -1 x -1 p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (1/3, 7/5) (0.3333333333?, 1.4) after (1/2, 21/2^4) (0.5, 1.3125) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (1/2, 7/5) (0.5, 1.4) after (1/2, 21/2^4) (0.5, 1.3125) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (3/7, 3/2) (0.4285714285?, 1.5) after (3/2^2, 3/2) (0.75, 1.5) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (0, 3/2) (0, 1.5) after (0, 3/2) (0, 1.5) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (0, 23/21) (0, 1.0952380952?) after (0, 69/2^6) (0, 1.078125) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (7/2, 5) (3.5, 5) after (7/2, 5) (3.5, 5) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (999/1000, 1001/1000) (0.999, 1.001) after (1047951/2^20, 524475/2^19) (0.9994039535?, 1.0003566741?) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (9999/10000, 10001/10000) (0.9999, 1.0001) after (67103289/2^26, 8389161/2^23) (0.9999169260?, 1.0000659227?) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (39999/10000, 40001/10000) (3.9999, 4.0001) after (268433289/2^26, 1073746843/2^28) (3.9999677091?, 4.0000186972?) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 q: 81 x^4 - 702 x^3 + 2079 x^2 - 2418 x + 880 p: 24 x^4 - 50 x^3 + 35 x^2 - 10 x + 1 Refining intervals p: x0^5 - x0 - 1 before (1, 2) new (2448013/2^21, 1224007/2^20) as decimal: 1.16730356216430664062? p: x0^2 - 2 before (1, 2) new (1136276788042180458070828951474823657989790988021617205464301/2^199, 4545107152168721832283315805899294631959163952086468821857205/2^201) as decimal: 1.4142135623730950488016887242096980785696718753769480731766796228945468916789744311432405157464679368195737862332593934694025131023094144793931710987557973124330301661899511600495316088199615478515625 Refinable intervals p: 4 x0^3 - 27 x0^2 + 56 x0 - 33 before (1, 3) new root: 11/2^2 before (2, 3) new root: 11/2^2 before (5/2, 3) new root: 11/2^2 p: 5 x0^3 - 31 x0^2 + 59 x0 - 33 before (1, 3) new (2, 5/2) before (2, 3) new (2, 5/2) before (3/2, 3) new (3/2, 9/2^2) before (1, 5/2) new (7/2^2, 5/2) before (3/2, 5/2) new (3/2, 5/2) p: x0^3 - 6 x0^2 + 11 x0 - 6 before (1, 3) new root: 2 Sturm Seq upolynomial sturm seq... 7 x^10 + 3 x^9 + x^8 + x^6 + 10 x^4 + 10 x^3 + 8 x^2 + 2 x + 8 70 x^9 + 27 x^8 + 8 x^7 + 6 x^5 + 40 x^3 + 30 x^2 + 16 x + 2 -59 x^8 + 24 x^7 - 280 x^6 + 18 x^5 - 4200 x^4 - 4780 x^3 - 4390 x^2 - 1212 x - 5594 1500 x^7 + 1203 x^6 + 24666 x^5 + 47840 x^4 + 48052 x^3 + 27528 x^2 + 38592 x + 26146 -136383 x^6 - 156626 x^5 + 987760 x^4 + 1288828 x^3 + 900792 x^2 + 434888 x + 1473094 -447977461 x^5 - 722331988 x^4 - 657814810 x^3 - 358104882 x^2 - 658907000 x - 254616997 -35151054357362 x^4 - 42237581647498 x^3 - 34012218049812 x^2 - 13572653161293 x - 46516612622356 32579335587662 x^3 + 71643021991321 x^2 - 50595120825621 x + 112457692722850 2904057856460384409 x^2 - 2842891454868987857 x + 2936283658205629262 -2803684606075989760487 x - 1222930252896030111592 -1 _p: 4 x^3 - 12 x^2 - x + 3 _r: 16 x^2 - 40 x - 24 _q: 16 x^2 - 40 x - 24 isolating roots of: x^2 - 3 x + 2 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - 3 x + 2 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 2 intervals: (0, 2)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - 2 x^4 + x^3 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - x (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 0 intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - x - 1 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 - x - 1 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 1 sign var(-oo): 2 sign var(+oo): 1 roots: intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^6 - x^5 - 16 x^4 + 10 x^3 + 69 x^2 - 9 x - 54 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 + 2 x^4 - 10 x^3 - 20 x^2 + 9 x + 18 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 5 sign var(-oo): 5 sign var(+oo): 0 roots: -2 intervals: (2, 4) (0, 2) (-4, -2) (-2, 0)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 100000000 x^2 - 630000 x + 992 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 100000000 x^2 - 630000 x + 992 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: intervals: (0.0031738281?, 0.0034179687?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 3 sign var(-oo): 3 sign var(+oo): 0 roots: intervals: (0.0032958984?, 0.0034179687?) (0.0031738281?, 0.0032958984?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.78) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.78) square free part: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 11 sign var(-oo): 11 sign var(+oo): 0 roots: 64 32 16 8 4 2 0.5 0.25 0.125 0.0625 intervals: (0, 0.0625)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 1000000 x^22 - 2334000 x^21 + 1361889 x^20 - 4000000 x^17 + 9336000 x^16 - 5447556 x^15 - 2000000 x^14 + 4668000 x^13 + 3276222 x^12 - 14004000 x^11 + 8171334 x^10 + 4000000 x^9 - 9336000 x^8 + 1447556 x^7 + 10336000 x^6 - 7781556 x^5 - 638111 x^4 + 4668000 x^3 - 1723778 x^2 - 2334000 x + 1361889 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.88) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 10 sign var(+oo): 7 roots: intervals: (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^25 + 5 x^24 + 3 x^23 - 2 x^22 - x^21 - 12 x^20 - 8 x^19 - 8 x^18 + 3 x^17 + 6 x^16 - 20 x^15 + 5 x^14 + 14 x^13 - x^12 + 26 x^11 + 15 x^10 - 6 x^9 - x^8 - 6 x^7 + 13 x^6 - x^5 - 7 x^4 - x^3 + 6 x^2 + 14 x + 14 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 5 sign var(-oo): 15 sign var(+oo): 10 roots: intervals: (1.25, 1.5) (1, 1.25) (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: 15 x^7 - 50000948 x^6 + 3160000000 x^5 - 15000000000 x^2 + 50000948000000000 x - 3160000000000000000 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 5 sign var(+oo): 2 roots: intervals: (2097152, 4194304) (63.125, 63.25) (63, 63.125)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) p: x0^5 + 2 x0^4 - 10 x0^3 - 20 x0^2 + 9 x0 + 18 q: x^5 + 2 x^4 - 10 x^3 - 20 x^2 + 9 x + 18 degree(q): 5 expanded q: 18 9 -20 -10 2 1 new q: 2 x^5 + 3 x^4 - 9 x^3 - 19 x^2 + 10 x + 19 new q^2: 4 x^10 + 12 x^9 - 27 x^8 - 130 x^7 + 7 x^6 + 478 x^5 + 295 x^4 - 722 x^3 - 622 x^2 + 380 x + 361 new (q^2)^3: 64 x^30 + 576 x^29 + 432 x^28 - 12288 x^27 - 40020 x^26 + 79284 x^25 + 586149 x^24 + 235698 x^23 - 4140627 x^22 - 6895030 x^21 + 15251184 x^20 + 49873788 x^19 - 16794929 x^18 - 201145074 x^17 - 108039945 x^16 + 499210576 x^15 + 614825733 x^14 - 724261014 x^13 - 1616514344 x^12 + 376952670 x^11 + 2580727584 x^10 + 671496040 x^9 - 2571049230 x^8 - 1605401010 x^7 + 1474343885 x^6 + 1530682218 x^5 - 329384703 x^4 - 739359046 x^3 - 86793786 x^2 + 148565940 x + 47045881 Testing Z_p GCD in Z[x] _p: x^4 + 2 x^3 + 2 x^2 + x _q: x^3 + x + 1 gcd: 1 _p: x^4 + 2 x^3 + 2 x^2 + x _q: x^3 + x + 1 subresultant_gcd: 1 GCD in Z_3[x] _p: x^4 - x^3 - x^2 + x _q: x^3 + x + 1 gcd: x - 1 _p: x^4 - x^3 - x^2 + x _q: x^3 + x + 1 subresultant_gcd: x - 1 Testing Z_p GCD in Z[x] _p: x^8 + x^6 + 10 x^4 + 10 x^3 + 8 x^2 + 2 x + 8 _q: x^6 + 5 x^5 + 9 x^4 + 5 x^2 + 5 x gcd: 1 _p: x^8 + x^6 + 10 x^4 + 10 x^3 + 8 x^2 + 2 x + 8 _q: x^6 + 5 x^5 + 9 x^4 + 5 x^2 + 5 x subresultant_gcd: 1 GCD in Z_13[x] _p: x^8 + x^6 - 3 x^4 - 3 x^3 - 5 x^2 + 2 x - 5 _q: x^6 + 5 x^5 - 4 x^4 + 5 x^2 + 5 x gcd: x^5 + 5 x^4 - 4 x^3 + 5 x + 5 _p: x^8 + x^6 - 3 x^4 - 3 x^3 - 5 x^2 + 2 x - 5 _q: x^6 + 5 x^5 - 4 x^4 + 5 x^2 + 5 x subresultant_gcd: x^5 + 5 x^4 - 4 x^3 + 5 x + 5 Extended GCD GCD in Z_13[x] A: x^6 + 5 x^5 - 4 x^4 + 5 x^2 + 5 x B: x^8 + x^6 - 3 x^4 - 3 x^3 - 5 x^2 + 2 x - 5 U: x^2 - 5 x + 4 V: -1 D: x^5 + 5 x^4 - 4 x^3 + 5 x + 5 Extended GCD in Z_7 GCD in Z_7[x] A: x^3 + 2 B: -1 x^2 - 1 U: 3 x - 1 V: 3 x^2 - x - 3 D: 1 PASS (test upolynomial :time 0.41 :before-memory 17.69 :after-memory 17.68) Testing GCD _p: 13 x^18 - 1560 x^17 + 86931 x^16 - 2987504 x^15 + 70923060 x^14 - 1234660752 x^13 + 16329634620 x^12 - 167746338864 x^11 + 1356661565766 x^10 - 8703145006400 x^9 + 44396368299114 x^8 - 179697656333520 x^7 + 572988784985188 x^6 - 1420294907137392 x^5 + 2677652713464300 x^4 - 3706435590858000 x^3 + 3548919735343125 x^2 - 2098635449625000 x + 577124748646875 _q: 234 x^17 - 26520 x^16 + 1390896 x^15 - 44812560 x^14 + 992922840 x^13 - 16050589776 x^12 + 195955615440 x^11 - 1845209727504 x^10 + 13566615657660 x^9 - 78328305057600 x^8 + 355170946392912 x^7 - 1257883594334640 x^6 + 3437932709911128 x^5 - 7101474535686960 x^4 + 10710610853857200 x^3 - 11119306772574000 x^2 + 7097839470686250 x - 2098635449625000 gcd: 13 x^15 - 1313 x^14 + 60645 x^13 - 1697865 x^12 + 32200545 x^11 - 437963877 x^10 + 4411517097 x^9 - 33504144765 x^8 + 193432514535 x^7 - 849099998435 x^6 + 2811735445519 x^5 - 6901018131579 x^4 + 12159189854955 x^3 - 14529083829975 x^2 + 10535573923875 x - 3497725749375 _p: 13 x^18 - 1560 x^17 + 86931 x^16 - 2987504 x^15 + 70923060 x^14 - 1234660752 x^13 + 16329634620 x^12 - 167746338864 x^11 + 1356661565766 x^10 - 8703145006400 x^9 + 44396368299114 x^8 - 179697656333520 x^7 + 572988784985188 x^6 - 1420294907137392 x^5 + 2677652713464300 x^4 - 3706435590858000 x^3 + 3548919735343125 x^2 - 2098635449625000 x + 577124748646875 _q: 234 x^17 - 26520 x^16 + 1390896 x^15 - 44812560 x^14 + 992922840 x^13 - 16050589776 x^12 + 195955615440 x^11 - 1845209727504 x^10 + 13566615657660 x^9 - 78328305057600 x^8 + 355170946392912 x^7 - 1257883594334640 x^6 + 3437932709911128 x^5 - 7101474535686960 x^4 + 10710610853857200 x^3 - 11119306772574000 x^2 + 7097839470686250 x - 2098635449625000 subresultant_gcd: x^15 - 101 x^14 + 4665 x^13 - 130605 x^12 + 2476965 x^11 - 33689529 x^10 + 339347469 x^9 - 2577241905 x^8 + 14879424195 x^7 - 65315384495 x^6 + 216287341963 x^5 - 530847548583 x^4 + 935322296535 x^3 - 1117621833075 x^2 + 810428763375 x - 269055826875 --------------- p: x0^2 - 2 _p: x^2 - 2 _p: x^2 - 2 k: 1 --------------- p: x0^5 _p: x^5 _p: x^5 k: 1 --------------- p: 64 x0^4 - 120 x0^3 + 70 x0^2 - 15 x0 + 1 _p: 64 x^4 - 120 x^3 + 70 x^2 - 15 x + 1 _p: 64 x^4 - 120 x^3 + 70 x^2 - 15 x + 1 k: 5 --------------- p: 1024 x0^5 - 1984 x0^4 + 1240 x0^3 - 310 x0^2 + 31 x0 - 1 _p: 1024 x^5 - 1984 x^4 + 1240 x^3 - 310 x^2 + 31 x - 1 _p: 1024 x^5 - 1984 x^4 + 1240 x^3 - 310 x^2 + 31 x - 1 k: 6 --------------- p: 1024 x0^8 - 1984 x0^7 + 1240 x0^6 - 310 x0^5 + 31 x0^4 - x0^3 _p: 1024 x^8 - 1984 x^7 + 1240 x^6 - 310 x^5 + 31 x^4 - x^3 _p: 1024 x^8 - 1984 x^7 + 1240 x^6 - 310 x^5 + 31 x^4 - x^3 k: 6 --------------- p: x0^5 - x0 - 1 _p: x^5 - x - 1 _p: x^5 - x - 1 k: 2 --------------- p: 1000 x0^2 - 1001 x0 + 1 _p: 1000 x^2 - 1001 x + 1 _p: 1000 x^2 - 1001 x + 1 k: 11 --------------- p: 1024 x0^5 + 704 x0^4 - 440 x0^3 - 110 x0^2 + 11 x0 + 1 _p: 1024 x^5 + 704 x^4 - 440 x^3 - 110 x^2 + 11 x + 1 _p: 1024 x^5 + 704 x^4 - 440 x^3 - 110 x^2 + 11 x + 1 k: 5 --------------- p: 1024 x0^5 + 1984 x0^4 + 1240 x0^3 + 310 x0^2 + 31 x0 + 1 _p: 1024 x^5 + 1984 x^4 + 1240 x^3 + 310 x^2 + 31 x + 1 _p: 1024 x^5 + 1984 x^4 + 1240 x^3 + 310 x^2 + 31 x + 1 k: 6 --------------- p: x0^10 - 10 x0^8 + 38 x0^6 - 2 x0^5 - 100 x0^4 - 40 x0^3 + 121 x0^2 - 38 x0 - 17 _p: x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17 _p: x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17 k: 3 --------------- p: x0^33 - 4 x0^30 - 12 x0^27 - 12 x0^29 - 5 x0^26 + 18 x0^23 - 24 x0^28 + 42 x0^25 + 9 x0^22 - 2 x0^19 + 51 x0^24 - 19 x0^21 - 8 x0^18 - 10 x0^20 - 5 x0^17 + 5 x0^32 - 94 x0^16 + 3 x0^31 - 91 x0^15 + 22 x0^14 + 18 x0^13 + 62 x0^12 + 62 x0^11 + 19 x0^10 + 2 x0^9 + 10 x0^7 - 9 x0^6 + 10 x0^8 - 64 x0^5 - 44 x0^4 - 4 x0^3 + 40 x0^2 + 56 x0 + 28 _p: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 _p: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 k: 3 --------------- p: 900 x0^19 - 6000113760 x0^18 + 10000758403594816 x0^17 - 1264023965440000000 x0^16 + 39942400000000000000 x0^15 - 2700000000000 x0^14 + 18000341280000000000 x0^13 - 30002275210784448000000000 x0^12 + 3792071896320000000000000000 x0^11 - 119827200000000000000000000000 x0^10 + 2700000000000000000000 x0^9 - 18000341280000000000000000000 x0^8 + 30002275210784448000000000000000000 x0^7 - 3792071896320000000000000000000000000 x0^6 + 119827200000000000000000000000000000000 x0^5 - 900000000000000000000000000000 x0^4 + 6000113760000000000000000000000000000 x0^3 - 10000758403594816000000000000000000000000000 x0^2 + 1264023965440000000000000000000000000000000000 x0 - 39942400000000000000000000000000000000000000000 _p: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 _p: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 k: 1 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 3) factors: 1 *(x^2 + 5)^1 *(x - 2)^1 *(x + 2)^1 3 3 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^4 + x^2 - 20)^1 1 1 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^4 + x^2 - 20)^1 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34)^1 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34)^1 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34)^1 1 1 --------------- p: x0^10 - 10 x0^8 + 38 x0^6 - 2 x0^5 - 100 x0^4 - 40 x0^3 + 121 x0^2 - 38 x0 - 17 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17)^1 1 1 --------------- p: x0^4 - 404 x0^2 + 39204 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^2 - 242)^1 *(x^2 - 162)^1 2 2 --------------- p: - x0^8 + 3 x0^7 - 5 x0^6 + 4 x0^5 - 3 x0^4 + 4 x0^3 - 5 x0 + 3 (polynomial-factorization :at GF_5) (polynomial-factorization :num-candidate-factors 4) (polynomial-factorization :search-size 4) (polynomial-factorization :distinct-factors 3) factors: -1 *(x^2 - 2 x + 3)^1 *(x - 1)^1 *(x^5 - x^2 + 1)^1 3 3 --------------- p: x0^4 + x0^2 - 20 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 3) factors: 1 *(x^2 + 5)^1 *(x - 2)^1 *(x + 2)^1 3 3 --------------- p: 11 x0^8 - 33 x0^7 + 55 x0^6 - 44 x0^5 + 33 x0^4 - 44 x0^3 + 55 x0 - 33 (polynomial-factorization :at GF_5) (polynomial-factorization :num-candidate-factors 4) (polynomial-factorization :search-size 4) (polynomial-factorization :distinct-factors 3) factors: 11 *(x^2 - 2 x + 3)^1 *(x - 1)^1 *(x^5 - x^2 + 1)^1 3 3 --------------- p: - 2 x0^2 + x0 + 1 (polynomial-factorization :distinct-factors 2) factors: -1 *(x - 1)^1 *(2 x + 1)^1 2 2 --------------- p: 13 x0^18 - 1560 x0^17 + 86931 x0^16 - 2987504 x0^15 + 70923060 x0^14 - 1234660752 x0^13 + 16329634620 x0^12 - 167746338864 x0^11 + 1356661565766 x0^10 - 8703145006400 x0^9 + 44396368299114 x0^8 - 179697656333520 x0^7 + 572988784985188 x0^6 - 1420294907137392 x0^5 + 2677652713464300 x0^4 - 3706435590858000 x0^3 + 3548919735343125 x0^2 - 2098635449625000 x0 + 577124748646875 (polynomial-factorization :distinct-factors 3) factors: 13 *(x - 5)^5 *(x - 3)^6 *(x - 11)^7 3 3 --------------- p: x0^30 + 30 x0^29 + 435 x0^28 + 4060 x0^27 + 27405 x0^26 + 142506 x0^25 + 593775 x0^24 + 2035800 x0^23 + 5852925 x0^22 + 14307150 x0^21 + 30045015 x0^20 + 54627300 x0^19 + 86493225 x0^18 + 119759850 x0^17 + 145422675 x0^16 + 155117520 x0^15 + 145422675 x0^14 + 119759850 x0^13 + 86493225 x0^12 + 54627300 x0^11 + 30045015 x0^10 + 14307150 x0^9 + 5852925 x0^8 + 2035800 x0^7 + 593775 x0^6 + 142506 x0^5 + 27405 x0^4 + 4060 x0^3 + 435 x0^2 + 30 x0 + 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x + 1)^30 1 1 --------------- p: x0^70 - 6 x0^65 - x0^60 + 60 x0^55 - 54 x0^50 - 230 x0^45 + 274 x0^40 + 542 x0^35 - 615 x0^30 - 1120 x0^25 + 1500 x0^20 - 160 x0^15 - 395 x0^10 + 76 x0^5 + 34 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 7) (polynomial-factorization :search-size 17) (polynomial-factorization :distinct-factors 3) factors: 1 *(x^10 - 4 x^5 + 2)^1 *(x^50 - 10 x^40 + 38 x^30 - 2 x^25 - 100 x^20 - 40 x^15 + 121 x^10 - 38 x^5 - 17)^1 *(x^10 - 2 x^5 - 1)^1 3 3 --------------- p: x0^4 - 8 x0^2 (polynomial-factorization :distinct-factors 2) factors: 1 *(x^2 - 8)^1 *(x)^2 2 2 --------------- p: x0^5 - 2 x0^3 + x0 - 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^5 - 2 x^3 + x - 1)^1 1 1 --------------- p: x0^25 - 4 x0^21 - 5 x0^20 + 6 x0^17 + 11 x0^16 + 10 x0^15 - 4 x0^13 - 7 x0^12 - 9 x0^11 - 10 x0^10 + x0^9 + x0^8 + x0^7 + x0^6 + 3 x0^5 + x0 - 1 (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 2 x^3 + x - 1)^1 *(x^10 + x^8 - x^6 - 2 x^5 - x^4 - x^3 + 1)^2 2 2 --------------- p: x0^25 - 10 x0^21 - 10 x0^20 - 95 x0^17 - 470 x0^16 - 585 x0^15 - 40 x0^13 - 1280 x0^12 - 4190 x0^11 - 3830 x0^10 + 400 x0^9 + 1760 x0^8 + 760 x0^7 - 2280 x0^6 + 449 x0^5 + 640 x0^3 - 640 x0^2 + 240 x0 - 32 (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 16 x - 32)^1 *(x^10 + 3 x^6 + 11 x^5 - 4 x^2 + 4 x - 1)^2 2 2 --------------- p: x0^10 (polynomial-factorization :distinct-factors 1) factors: 1 *(x)^10 1 1 --------------- p: x0^2 - 1 (polynomial-factorization :distinct-factors 2) factors: 1 *(x - 1)^1 *(x + 1)^1 2 2 --------------- p: - 2 x0^2 + 2 (polynomial-factorization :distinct-factors 2) factors: -2 *(x - 1)^1 *(x + 1)^1 2 2 --------------- p: 0 (polynomial-factorization :distinct-factors 0) factors: 0 0 0 --------------- p: 3 (polynomial-factorization :distinct-factors 0) factors: 3 0 0 --------------- p: x0 + 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x + 1)^1 1 1 --------------- p: x0 - 1 (polynomial-factorization :distinct-factors 1) factors: 1 *(x - 1)^1 1 1 --------------- p: - x0 - 1 (polynomial-factorization :distinct-factors 1) factors: -1 *(x + 1)^1 1 1 --------------- p: - x0 + 1 (polynomial-factorization :distinct-factors 1) factors: -1 *(x - 1)^1 1 1 --------------- p: x0^10 - 10 x0^8 + 38 x0^6 - 2 x0^5 - 100 x0^4 - 40 x0^3 + 121 x0^2 - 38 x0 - 17 (polynomial-factorization :distinct-factors 1) factors: 1 *(x^10 - 10 x^8 + 38 x^6 - 2 x^5 - 100 x^4 - 40 x^3 + 121 x^2 - 38 x - 17)^1 1 1 --------------- p: x0^50 - 10 x0^40 + 38 x0^30 - 2 x0^25 - 100 x0^20 - 40 x0^15 + 121 x0^10 - 38 x0^5 - 17 (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) factors: 1 *(x^50 - 10 x^40 + 38 x^30 - 2 x^25 - 100 x^20 - 40 x^15 + 121 x^10 - 38 x^5 - 17)^1 1 1 --------------- p: x0^50 + 50 x0^49 + 1225 x0^48 + 19600 x0^47 + 230300 x0^46 + 2118760 x0^45 + 15890700 x0^44 + 99884400 x0^43 + 536878650 x0^42 + 2505433700 x0^41 + 10272278160 x0^40 + 37353738400 x0^39 + 121399643300 x0^38 + 354860419800 x0^37 + 937844742400 x0^36 + 2250822995040 x0^35 + 4923651311775 x0^34 + 9847192955550 x0^33 + 18052759836925 x0^32 + 30403208994400 x0^31 + 47120735638718 x0^30 + 67304328049540 x0^29 + 88693946746330 x0^28 + 107922921291080 x0^27 + 121316591779290 x0^26 + 126008358402418 x0^25 + 120920161583200 x0^24 + 107156006937400 x0^23 + 87616235053150 x0^22 + 66015165625200 x0^21 + 45751888559970 x0^20 + 29095194780400 x0^19 + 16923012027925 x0^18 + 8964604200300 x0^17 + 4300690170275 x0^16 + 1854462502360 x0^15 + 711289628150 x0^14 + 239061007300 x0^13 + 68794843050 x0^12 + 16285796400 x0^11 + 2912250341 x0^10 + 293635660 x0^9 - 24769155 x0^8 - 18147080 x0^7 - 4334640 x0^6 - 792418 x0^5 - 181390 x0^4 - 47580 x0^3 - 8780 x0^2 - 840 x0 - 47 (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) factors: 1 *(x^50 + 50 x^49 + 1225 x^48 + 19600 x^47 + 230300 x^46 + 2118760 x^45 + 15890700 x^44 + 99884400 x^43 + 536878650 x^42 + 2505433700 x^41 + 10272278160 x^40 + 37353738400 x^39 + 121399643300 x^38 + 354860419800 x^37 + 937844742400 x^36 + 2250822995040 x^35 + 4923651311775 x^34 + 9847192955550 x^33 + 18052759836925 x^32 + 30403208994400 x^31 + 47120735638718 x^30 + 67304328049540 x^29 + 88693946746330 x^28 + 107922921291080 x^27 + 121316591779290 x^26 + 126008358402418 x^25 + 120920161583200 x^24 + 107156006937400 x^23 + 87616235053150 x^22 + 66015165625200 x^21 + 45751888559970 x^20 + 29095194780400 x^19 + 16923012027925 x^18 + 8964604200300 x^17 + 4300690170275 x^16 + 1854462502360 x^15 + 711289628150 x^14 + 239061007300 x^13 + 68794843050 x^12 + 16285796400 x^11 + 2912250341 x^10 + 293635660 x^9 - 24769155 x^8 - 18147080 x^7 - 4334640 x^6 - 792418 x^5 - 181390 x^4 - 47580 x^3 - 8780 x^2 - 840 x - 47)^1 1 1 --------------- p: x0^4 - 404 x0^2 + 39204 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^2 - 242)^1 *(x^2 - 162)^1 2 2 --------------- p: x0^25 - 31260 x0^20 + 383062540 x0^15 - 2590282000080 x0^10 + 7334282001000080 x0^5 - 9552011721875500032 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 7) (polynomial-factorization :search-size 19) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 15552)^1 *(x^20 - 15708 x^15 + 138771724 x^10 - 432104148432 x^5 + 614198284585616)^1 2 2 --------------- p: x0^25 - 3125 x0^21 - 15630 x0^20 + 3888750 x0^17 + 38684375 x0^16 + 95765635 x0^15 - 2489846500 x0^13 - 37650481875 x0^12 - 190548065625 x0^11 - 323785250010 x0^10 + 750249453025 x0^9 + 14962295699875 x0^8 + 111775113235000 x0^7 + 370399286731250 x0^6 + 362903064503129 x0^5 - 2387239013984400 x0^4 - 23872390139844000 x0^3 - 119361950699220000 x0^2 - 298404876748050000 x0 - 298500366308609376 (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 5) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) factors: 1 *(x^5 - 1296 x - 7776)^1 *(x^20 - 1829 x^16 - 7854 x^15 + 1518366 x^12 + 14283287 x^11 + 34692931 x^10 - 522044164 x^8 - 7332527907 x^7 - 34519187337 x^6 - 54013018554 x^5 + 73680216481 x^4 + 1399924113139 x^3 + 10020509441416 x^2 + 31977213952754 x + 38387392786601)^1 2 2 --------------- p: - x0^27 + 54 x0^24 - 324 x0^21 + 17496 x0^18 - 34992 x0^15 + 1889568 x0^12 - 1259712 x0^9 + 68024448 x0^6 (polynomial-factorization :distinct-factors 3) factors: -1 *(x^3 - 54)^1 *(x^6 + 108)^3 *(x)^6 3 3 --------------- p: x0^27 - 648 x0^24 + 105300 x0^21 - 3639168 x0^18 - 521485776 x0^15 - 40761760896 x0^12 - 8435982634560 x0^9 - 326907538633728 x0^6 - 904871002816512 x0^3 - 34835065137266688 (polynomial-factorization :at GF_17) (polynomial-factorization :num-candidate-factors 11) (polynomial-factorization :search-size 83) (polynomial-factorization :distinct-factors 5) factors: 1 *(x^3 - 432)^1 *(x^6 + 6912)^1 *(x^6 - 324 x^3 + 37044)^1 *(x^6 + 108)^1 *(x^3 + 54)^2 5 5 --------------- p: x0^54 - 54 x0^52 - 1296 x0^51 + 1404 x0^50 + 607104 x0^48 - 1057536 x0^47 - 22401792 x0^46 - 131347008 x0^45 + 385174656 x0^44 + 4556424960 x0^43 + 10518648048 x0^42 + 54432 x0^49 - 69060148992 x0^41 - 565617303648 x0^40 + 445518434304 x0^39 + 8781044678784 x0^38 + 32843377234944 x0^37 - 131307918402048 x0^36 - 1186720516915200 x0^35 + 736520460602112 x0^34 + 18979903288608768 x0^33 - 112345961528001024 x0^32 + 1270197317039357952 x0^31 - 1541064534072996096 x0^30 + 16614053352447639552 x0^29 - 64121868468546937344 x0^28 - 441603923048400752640 x0^27 + 3907490603726606515200 x0^26 - 9940058828597411831808 x0^25 + 37842357616860755976192 x0^24 - 207493394698593727119360 x0^23 + 7974899726119384485888 x0^22 + 2119713138903354441449472 x0^21 - 1236506243331227840225280 x0^20 + 15633879365645789187538944 x0^19 + 135073233715906678961491968 x0^18 - 283501898470995378000297984 x0^17 - 103789476798964165693218816 x0^16 + 2149475050405063712005816320 x0^15 + 11401046311106270759794900992 x0^14 - 42594459367486176885626634240 x0^13 + 144038627307565998906953170944 x0^12 + 51604015948240925730371272704 x0^11 - 250947536887982891503528574976 x0^10 + 3480976544954551737609272426496 x0^9 + 10434520207534987392729183682560 x0^8 + 42130058836708565940278805921792 x0^7 + 28392667475502927445585073012736 x0^6 + 292548838778373337946194100355072 x0^5 + 732626185252271205256762862075904 x0^4 + 490660485015010178556685461749760 x0^3 + 1356203807400073270301299496189952 x0^2 + 436594705270365747351637721088000 x0 + 1395158047392035876769798396313600 (polynomial-factorization :at GF_23) (polynomial-factorization :num-candidate-factors 22) (polynomial-factorization :search-size 14448) (polynomial-factorization :distinct-factors 5) factors: 1 *(x^6 - 6 x^4 - 864 x^3 + 12 x^2 - 5184 x + 186616)^1 *(x^12 - 12 x^10 + 60 x^8 + 56 x^6 + 6720 x^4 + 12768 x^2 + 13456)^1 *(x^12 - 12 x^10 - 648 x^9 + 60 x^8 + 178904 x^6 + 15552 x^5 + 1593024 x^4 - 24045984 x^3 + 5704800 x^2 - 143995968 x + 1372010896)^1 *(x^12 - 12 x^10 + 60 x^8 + 13664 x^6 + 414960 x^4 + 829248 x^2 + 47886400)^1 *(x^6 - 6 x^4 + 108 x^3 + 12 x^2 + 648 x + 2908)^2 5 5 --------------- p: x0^2 + x0 q: x0 r: 0 --------------- p: x0^2 + x0 + 1 q: x0 r: 1 --------------- p: x0^2 + 2 x0 + 1 q: 2 x0 + 2 r: 0 ------ p1: x^3 - 6 x^2 + 11 x - 6 p2: x^2 - 3 x + 2 r: x - 3 expected: x - 3 ------ p1: 2 x^3 - 12 x^2 + 22 x - 12 p2: x^2 - 3 x + 2 r: 2 x - 6 expected: 2 x - 6 ------ p1: 2 x^3 - 12 x^2 + 22 x - 12 p2: x^3 - 7 x^2 + 14 x - 8 ------ p1: x - 3 p2: x - 1 ------ p1: 0 p2: x^3 - 7 x^2 + 14 x - 8 r: 0 expected: 0 ------ p1: x^3 - 7 x^2 + 14 x - 8 p2: 0 ------ p1: 0 p2: 0 ------ p1: 2 x - 2 p2: x - 1 r: 2 expected: 2 ------ p1: 2 x - 2 p2: 4 x - 4 ------ p1: 6 x - 4 p2: 2 r: 3 x - 2 expected: 3 x - 2 isolating roots of: x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34 (isolate time :time 0.01 :before-memory 17.70 :after-memory 17.89) (sturm time :time 0.00 :before-memory 17.89 :after-memory 17.89) square free part: x^70 - 6 x^65 - x^60 + 60 x^55 - 54 x^50 - 230 x^45 + 274 x^40 + 542 x^35 - 615 x^30 - 1120 x^25 + 1500 x^20 - 160 x^15 - 395 x^10 + 76 x^5 + 34 (sqf time :time 0.00 :before-memory 17.89 :after-memory 17.89) (fourier time :time 0.00 :before-memory 17.89 :after-memory 17.89) num. roots: 6 sign var(-oo): 16 sign var(+oo): 10 roots: intervals: (1.25, 1.5) (1.203125, 1.21875) (1.1875, 1.203125) (0, 1) (-0.875, -0.8125) (-0.8125, -0.75)(interval check :time 0.01 :before-memory 17.89 :after-memory 17.99) isolating roots of: x^2 - 3 x + 2 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - 3 x + 2 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 2 intervals: (0, 2)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - 2 x^4 + x^3 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - x (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 0 intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - x - 1 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 - x - 1 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 1 sign var(-oo): 2 sign var(+oo): 1 roots: intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^6 - x^5 - 16 x^4 + 10 x^3 + 69 x^2 - 9 x - 54 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 + 2 x^4 - 10 x^3 - 20 x^2 + 9 x + 18 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 5 sign var(-oo): 5 sign var(+oo): 0 roots: -2 intervals: (2, 4) (0, 2) (-4, -2) (-2, 0)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 100000000 x^2 - 630000 x + 992 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 100000000 x^2 - 630000 x + 992 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: intervals: (0.0031738281?, 0.0034179687?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 3 sign var(-oo): 3 sign var(+oo): 0 roots: intervals: (0.0032958984?, 0.0034179687?) (0.0031738281?, 0.0032958984?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.78) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.78) square free part: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 11 sign var(-oo): 11 sign var(+oo): 0 roots: 64 32 16 8 4 2 0.5 0.25 0.125 0.0625 intervals: (0, 0.0625)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 1000000 x^22 - 2334000 x^21 + 1361889 x^20 - 4000000 x^17 + 9336000 x^16 - 5447556 x^15 - 2000000 x^14 + 4668000 x^13 + 3276222 x^12 - 14004000 x^11 + 8171334 x^10 + 4000000 x^9 - 9336000 x^8 + 1447556 x^7 + 10336000 x^6 - 7781556 x^5 - 638111 x^4 + 4668000 x^3 - 1723778 x^2 - 2334000 x + 1361889 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.88) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 10 sign var(+oo): 7 roots: intervals: (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^25 + 5 x^24 + 3 x^23 - 2 x^22 - x^21 - 12 x^20 - 8 x^19 - 8 x^18 + 3 x^17 + 6 x^16 - 20 x^15 + 5 x^14 + 14 x^13 - x^12 + 26 x^11 + 15 x^10 - 6 x^9 - x^8 - 6 x^7 + 13 x^6 - x^5 - 7 x^4 - x^3 + 6 x^2 + 14 x + 14 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 5 sign var(-oo): 15 sign var(+oo): 10 roots: intervals: (1.25, 1.5) (1, 1.25) (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: 15 x^7 - 50000948 x^6 + 3160000000 x^5 - 15000000000 x^2 + 50000948000000000 x - 3160000000000000000 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 5 sign var(+oo): 2 roots: intervals: (2097152, 4194304) (63.125, 63.25) (63, 63.125)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) upolynomial sturm seq... x^16 - 136 x^14 + 6476 x^12 - 141912 x^10 + 1513334 x^8 - 7453176 x^6 + 13950764 x^4 - 5596840 x^2 + 46225 16 x^31 - 3184 x^29 + 266896 x^27 - 12504176 x^25 + 365186736 x^23 - 7016366800 x^21 + 91296632240 x^19 - 816781071440 x^17 + 5048153319680 x^15 - 21441099366400 x^13 + 61546497478656 x^11 - 115751532406784 x^9 + 135609801916416 x^7 - 91405602717696 x^5 + 30893429293056 x^3 - 3713794375680 x -1 x^16 + 136 x^14 - 6476 x^12 + 141912 x^10 - 1513334 x^8 + 7453176 x^6 - 13950764 x^4 + 5596840 x^2 - 46225 -1127661677367 x^15 + 80685790700977 x^13 - 2102726493398207 x^11 + 24514705741043569 x^9 - 126650346236335533 x^7 + 242589935638940027 x^5 - 97920676059890653 x^3 + 808873659526115 x -14535239484187 x^14 + 1040002105846097 x^12 - 27102803643492427 x^10 + 315975682124035209 x^8 - 1632414202846505513 x^6 + 3126764251346253547 x^4 - 1262106621739038833 x^2 + 10425232207257915 -167716660671508667641 x^13 + 8401333185842706888530 x^11 - 134511192706723391471287 x^9 + 821751607340566559868924 x^7 - 1705905612159036016144823 x^5 + 712068977650176642124114 x^3 - 10375158858866309689337 x -46388284262096386474101 x^12 + 2297177756962323065528714 x^10 - 36402788774274131831901243 x^8 + 220799657664499131685981196 x^6 - 455864002600254932618175227 x^4 + 187578869474987904058942602 x^2 - 1550540527908097632341045 -4781966315926860973699105567 x^11 + 144464930716069568218159788243 x^9 - 1169427211740981342868979217166 x^7 + 2878829227828597116284471589262 x^5 - 1689381939540688922079704055699 x^3 + 237821093214524613444114401119 x -5108074971655853552979774902899 x^10 + 142894793305009146385089605918283 x^8 - 1099846101471960685926906955737574 x^6 + 2506082302169705625991475997146542 x^4 - 1056500552045609715416888450812743 x^2 + 8841855718148765940369646193383 -98120336193551253677921935999799283 x^9 + 1282821860598696804541403875934437348 x^7 - 4888580553822740399599176292389184402 x^5 + 6426442235002716205008267522870828260 x^3 - 2106362515913203012578123667196293235 x -1561728884476847525112813341042616474011 x^8 + 17345591286879038944880672380421451809732 x^6 - 44557170670678936833666488386470071966338 x^4 + 19428144317367539496215506533408444604612 x^2 - 181424501621876268050477659663628874267 -48718567339545057971709193441047126509 x^7 + 527268188685058585740868192019254318421 x^5 - 1313868868153889289084379514485509676183 x^3 + 528737651333486566371183339800760756103 x -220162280897461356833414966265382012563279 x^6 + 1211314214555794584950776751645547954082463 x^4 - 1230799847361844990126616667707906905070125 x^2 + 90080631010818812189690298672496136915141 -4567940256921478185902666831705495050259 x^5 + 18353182476718620132475356289264733969914 x^3 - 8965983880068785028294729109994152212011 x -16568849839314393995007704109417733998971 x^4 + 40499812984358514784159551770437344409066 x^2 - 4567940256921478185902666831705495050259 -211307826015503935324666261 x^3 + 226566446302093673740485799 x -1051673563609695326877268183 x^2 + 211307826015503935324666261 -1 x -1 p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (1/3, 7/5) (0.3333333333?, 1.4) after (1/2, 21/2^4) (0.5, 1.3125) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (1/2, 7/5) (0.5, 1.4) after (1/2, 21/2^4) (0.5, 1.3125) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (3/7, 3/2) (0.4285714285?, 1.5) after (3/2^2, 3/2) (0.75, 1.5) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (0, 3/2) (0, 1.5) after (0, 3/2) (0, 1.5) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (0, 23/21) (0, 1.0952380952?) after (0, 69/2^6) (0, 1.078125) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (7/2, 5) (3.5, 5) after (7/2, 5) (3.5, 5) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (999/1000, 1001/1000) (0.999, 1.001) after (1047951/2^20, 524475/2^19) (0.9994039535?, 1.0003566741?) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (9999/10000, 10001/10000) (0.9999, 1.0001) after (67103289/2^26, 8389161/2^23) (0.9999169260?, 1.0000659227?) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 before (39999/10000, 40001/10000) (3.9999, 4.0001) after (268433289/2^26, 1073746843/2^28) (3.9999677091?, 4.0000186972?) p: x^4 - 10 x^3 + 35 x^2 - 50 x + 24 q: 81 x^4 - 702 x^3 + 2079 x^2 - 2418 x + 880 p: 24 x^4 - 50 x^3 + 35 x^2 - 10 x + 1 Refining intervals p: x0^5 - x0 - 1 before (1, 2) new (2448013/2^21, 1224007/2^20) as decimal: 1.16730356216430664062? p: x0^2 - 2 before (1, 2) new (1136276788042180458070828951474823657989790988021617205464301/2^199, 4545107152168721832283315805899294631959163952086468821857205/2^201) as decimal: 1.4142135623730950488016887242096980785696718753769480731766796228945468916789744311432405157464679368195737862332593934694025131023094144793931710987557973124330301661899511600495316088199615478515625 Refinable intervals p: 4 x0^3 - 27 x0^2 + 56 x0 - 33 before (1, 3) new root: 11/2^2 before (2, 3) new root: 11/2^2 before (5/2, 3) new root: 11/2^2 p: 5 x0^3 - 31 x0^2 + 59 x0 - 33 before (1, 3) new (2, 5/2) before (2, 3) new (2, 5/2) before (3/2, 3) new (3/2, 9/2^2) before (1, 5/2) new (7/2^2, 5/2) before (3/2, 5/2) new (3/2, 5/2) p: x0^3 - 6 x0^2 + 11 x0 - 6 before (1, 3) new root: 2 Sturm Seq upolynomial sturm seq... 7 x^10 + 3 x^9 + x^8 + x^6 + 10 x^4 + 10 x^3 + 8 x^2 + 2 x + 8 70 x^9 + 27 x^8 + 8 x^7 + 6 x^5 + 40 x^3 + 30 x^2 + 16 x + 2 -59 x^8 + 24 x^7 - 280 x^6 + 18 x^5 - 4200 x^4 - 4780 x^3 - 4390 x^2 - 1212 x - 5594 1500 x^7 + 1203 x^6 + 24666 x^5 + 47840 x^4 + 48052 x^3 + 27528 x^2 + 38592 x + 26146 -136383 x^6 - 156626 x^5 + 987760 x^4 + 1288828 x^3 + 900792 x^2 + 434888 x + 1473094 -447977461 x^5 - 722331988 x^4 - 657814810 x^3 - 358104882 x^2 - 658907000 x - 254616997 -35151054357362 x^4 - 42237581647498 x^3 - 34012218049812 x^2 - 13572653161293 x - 46516612622356 32579335587662 x^3 + 71643021991321 x^2 - 50595120825621 x + 112457692722850 2904057856460384409 x^2 - 2842891454868987857 x + 2936283658205629262 -2803684606075989760487 x - 1222930252896030111592 -1 _p: 4 x^3 - 12 x^2 - x + 3 _r: 16 x^2 - 40 x - 24 _q: 16 x^2 - 40 x - 24 isolating roots of: x^2 - 3 x + 2 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - 3 x + 2 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 2 intervals: (0, 2)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - 2 x^4 + x^3 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^2 - x (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: 0 intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^5 - x - 1 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 - x - 1 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 1 sign var(-oo): 2 sign var(+oo): 1 roots: intervals: (0, 4)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: x^6 - x^5 - 16 x^4 + 10 x^3 + 69 x^2 - 9 x - 54 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: x^5 + 2 x^4 - 10 x^3 - 20 x^2 + 9 x + 18 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 5 sign var(-oo): 5 sign var(+oo): 0 roots: -2 intervals: (2, 4) (0, 2) (-4, -2) (-2, 0)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 100000000 x^2 - 630000 x + 992 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 100000000 x^2 - 630000 x + 992 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 2 sign var(-oo): 2 sign var(+oo): 0 roots: intervals: (0.0031738281?, 0.0034179687?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.68) square free part: 1000000000000 x^3 - 9600000000 x^2 + 30710000 x - 32736 (sqf time :time 0.00 :before-memory 17.68 :after-memory 17.68) (fourier time :time 0.00 :before-memory 17.68 :after-memory 17.68) num. roots: 3 sign var(-oo): 3 sign var(+oo): 0 roots: intervals: (0.0032958984?, 0.0034179687?) (0.0031738281?, 0.0032958984?) (0.0029296875, 0.0031738281?)(interval check :time 0.00 :before-memory 17.68 :after-memory 17.68) isolating roots of: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (isolate time :time 0.00 :before-memory 17.68 :after-memory 17.68) (sturm time :time 0.00 :before-memory 17.68 :after-memory 17.78) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.78) square free part: 32768 x^11 - 4160512 x^10 + 174665408 x^9 - 3092100952 x^8 + 24729859214 x^7 - 89699170501 x^6 + 140975222734 x^5 - 87882836696 x^4 + 23405003968 x^3 - 2729126912 x^2 + 132087808 x - 2097152 (sqf time :time 0.00 :before-memory 17.78 :after-memory 17.78) (fourier time :time 0.00 :before-memory 17.78 :after-memory 17.78) num. roots: 11 sign var(-oo): 11 sign var(+oo): 0 roots: 64 32 16 8 4 2 0.5 0.25 0.125 0.0625 intervals: (0, 0.0625)(interval check :time 0.00 :before-memory 17.78 :after-memory 17.78) isolating roots of: 1000000 x^22 - 2334000 x^21 + 1361889 x^20 - 4000000 x^17 + 9336000 x^16 - 5447556 x^15 - 2000000 x^14 + 4668000 x^13 + 3276222 x^12 - 14004000 x^11 + 8171334 x^10 + 4000000 x^9 - 9336000 x^8 + 1447556 x^7 + 10336000 x^6 - 7781556 x^5 - 638111 x^4 + 4668000 x^3 - 1723778 x^2 - 2334000 x + 1361889 (isolate time :time 0.00 :before-memory 17.78 :after-memory 17.78) (sturm time :time 0.00 :before-memory 17.78 :after-memory 17.88) square free part: 1000 x^11 - 1167 x^10 - 2000 x^6 + 2334 x^5 - 1000 x^3 + 1167 x^2 + 1000 x - 1167 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 6 sign var(+oo): 3 roots: intervals: (1.1672363281?, 1.1674804687?) (1.1669921875, 1.1672363281?) (0, 1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^17 + 5 x^16 + 3 x^15 + 10 x^13 + 13 x^10 + x^9 + 8 x^5 + 3 x^2 + 7 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 10 sign var(+oo): 7 roots: intervals: (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: x^33 + 5 x^32 + 3 x^31 - 4 x^30 - 12 x^29 - 24 x^28 - 12 x^27 - 5 x^26 + 42 x^25 + 51 x^24 + 18 x^23 + 9 x^22 - 19 x^21 - 10 x^20 - 2 x^19 - 8 x^18 - 5 x^17 - 94 x^16 - 91 x^15 + 22 x^14 + 18 x^13 + 62 x^12 + 62 x^11 + 19 x^10 + 2 x^9 + 10 x^8 + 10 x^7 - 9 x^6 - 64 x^5 - 44 x^4 - 4 x^3 + 40 x^2 + 56 x + 28 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: x^25 + 5 x^24 + 3 x^23 - 2 x^22 - x^21 - 12 x^20 - 8 x^19 - 8 x^18 + 3 x^17 + 6 x^16 - 20 x^15 + 5 x^14 + 14 x^13 - x^12 + 26 x^11 + 15 x^10 - 6 x^9 - x^8 - 6 x^7 + 13 x^6 - x^5 - 7 x^4 - x^3 + 6 x^2 + 14 x + 14 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 5 sign var(-oo): 15 sign var(+oo): 10 roots: intervals: (1.25, 1.5) (1, 1.25) (-8, -4) (-2, -1.5) (-1.5, -1)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) isolating roots of: 900 x^19 - 6000113760 x^18 + 10000758403594816 x^17 - 1264023965440000000 x^16 + 39942400000000000000 x^15 - 2700000000000 x^14 + 18000341280000000000 x^13 - 30002275210784448000000000 x^12 + 3792071896320000000000000000 x^11 - 119827200000000000000000000000 x^10 + 2700000000000000000000 x^9 - 18000341280000000000000000000 x^8 + 30002275210784448000000000000000000 x^7 - 3792071896320000000000000000000000000 x^6 + 119827200000000000000000000000000000000 x^5 - 900000000000000000000000000000 x^4 + 6000113760000000000000000000000000000 x^3 - 10000758403594816000000000000000000000000000 x^2 + 1264023965440000000000000000000000000000000000 x - 39942400000000000000000000000000000000000000000 (isolate time :time 0.00 :before-memory 17.88 :after-memory 17.88) (sturm time :time 0.00 :before-memory 17.88 :after-memory 17.88) square free part: 15 x^7 - 50000948 x^6 + 3160000000 x^5 - 15000000000 x^2 + 50000948000000000 x - 3160000000000000000 (sqf time :time 0.00 :before-memory 17.88 :after-memory 17.88) (fourier time :time 0.00 :before-memory 17.88 :after-memory 17.88) num. roots: 3 sign var(-oo): 5 sign var(+oo): 2 roots: intervals: (2097152, 4194304) (63.125, 63.25) (63, 63.125)(interval check :time 0.00 :before-memory 17.88 :after-memory 17.88) p: x0^5 + 2 x0^4 - 10 x0^3 - 20 x0^2 + 9 x0 + 18 q: x^5 + 2 x^4 - 10 x^3 - 20 x^2 + 9 x + 18 degree(q): 5 expanded q: 18 9 -20 -10 2 1 new q: 2 x^5 + 3 x^4 - 9 x^3 - 19 x^2 + 10 x + 19 new q^2: 4 x^10 + 12 x^9 - 27 x^8 - 130 x^7 + 7 x^6 + 478 x^5 + 295 x^4 - 722 x^3 - 622 x^2 + 380 x + 361 new (q^2)^3: 64 x^30 + 576 x^29 + 432 x^28 - 12288 x^27 - 40020 x^26 + 79284 x^25 + 586149 x^24 + 235698 x^23 - 4140627 x^22 - 6895030 x^21 + 15251184 x^20 + 49873788 x^19 - 16794929 x^18 - 201145074 x^17 - 108039945 x^16 + 499210576 x^15 + 614825733 x^14 - 724261014 x^13 - 1616514344 x^12 + 376952670 x^11 + 2580727584 x^10 + 671496040 x^9 - 2571049230 x^8 - 1605401010 x^7 + 1474343885 x^6 + 1530682218 x^5 - 329384703 x^4 - 739359046 x^3 - 86793786 x^2 + 148565940 x + 47045881 Testing Z_p GCD in Z[x] _p: x^4 + 2 x^3 + 2 x^2 + x _q: x^3 + x + 1 gcd: 1 _p: x^4 + 2 x^3 + 2 x^2 + x _q: x^3 + x + 1 subresultant_gcd: 1 GCD in Z_3[x] _p: x^4 - x^3 - x^2 + x _q: x^3 + x + 1 gcd: x - 1 _p: x^4 - x^3 - x^2 + x _q: x^3 + x + 1 subresultant_gcd: x - 1 Testing Z_p GCD in Z[x] _p: x^8 + x^6 + 10 x^4 + 10 x^3 + 8 x^2 + 2 x + 8 _q: x^6 + 5 x^5 + 9 x^4 + 5 x^2 + 5 x gcd: 1 _p: x^8 + x^6 + 10 x^4 + 10 x^3 + 8 x^2 + 2 x + 8 _q: x^6 + 5 x^5 + 9 x^4 + 5 x^2 + 5 x subresultant_gcd: 1 GCD in Z_13[x] _p: x^8 + x^6 - 3 x^4 - 3 x^3 - 5 x^2 + 2 x - 5 _q: x^6 + 5 x^5 - 4 x^4 + 5 x^2 + 5 x gcd: x^5 + 5 x^4 - 4 x^3 + 5 x + 5 _p: x^8 + x^6 - 3 x^4 - 3 x^3 - 5 x^2 + 2 x - 5 _q: x^6 + 5 x^5 - 4 x^4 + 5 x^2 + 5 x subresultant_gcd: x^5 + 5 x^4 - 4 x^3 + 5 x + 5 Extended GCD GCD in Z_13[x] A: x^6 + 5 x^5 - 4 x^4 + 5 x^2 + 5 x B: x^8 + x^6 - 3 x^4 - 3 x^3 - 5 x^2 + 2 x - 5 U: x^2 - 5 x + 4 V: -1 D: x^5 + 5 x^4 - 4 x^3 + 5 x + 5 Extended GCD in Z_7 GCD in Z_7[x] A: x^3 + 2 B: -1 x^2 - 1 U: 3 x - 1 V: 3 x^2 - x - 3 D: 1 PASS (test upolynomial :time 0.41 :before-memory 17.68 :after-memory 17.68) p: 507962865083498496 x0^10 + 102100535881783197696 x0^9 - 14783112447185507561472 x0^8 - 2001324733200883839555072 x0^7 + 195168383210843217999079936 x0^6 + 38119811955608999164032 x0^5 + 9215524544769908136049956 x0^4 - 733241058456905205563830332 x0^3 - 15888459782104331950227 x0^2 - 10235992917286431461226534 x0 + 688689757310708660505387921 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 1) (polynomial-factorization :distinct-factors 1) numbers in decimal: -199.0000036564? -199.0000002927? 98.5000019176? 98.5000019191? numbers as root objects (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 1) (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 2) (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 3) (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 4) numbers as intervals (-52166657/2^18, -104333313/2^19) (-104333313/2^19, -199) (13220446465/2^27, 26440892931/2^28) (26440892931/2^28, 6610223233/2^26) numbers in decimal: -199.6334841049? 0.6335535718? 1.2450962798? 98.5000019267? numbers as root objects (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 1) (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 2) (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 3) (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 4) numbers as intervals (-256, -128) (0, 1) (1, 2) (64, 128) a:98.5000019176? a:(13220446465/2^27, 26440892931/2^28) a:(507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 3) b:98.5000019191? b:(26440892931/2^28, 6610223233/2^26) b:(507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 4) c:98.5000019267? c:(64, 128) c:(1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 4) c < a sturm 0 0 (expecting 0) b < a 0 c < b sturm 0 0 root: 2 root: (#^4 - 4, 2) -------------- p: x1 x3 + 1 x0 -> (#, 1) x1 -> (#, 1) x2 -> (#, 1) roots: signs: + -------------- p: x1 x3 + 1 x0 -> (#, 1) x1 -> (# - 1, 1) x2 -> (#, 1) (polynomial-factorization :distinct-factors 1) roots: (# + 1, 1) -1 signs: - 0 + -------------- p: x1 x3 + 1 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#, 1) (polynomial-factorization :distinct-factors 1) roots: (2 #^2 - 1, 1) -0.7071067811? signs: - 0 + -------------- p: x2 x3 + x1 x3 + 1 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 1) roots: (8 #^2 - 1, 1) -0.3535533905? signs: - 0 + -------------- p: x2 x3 + x1 x3 + x1 x2 + 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 2) roots: (#^2 - 2, 1) -1.4142135623? signs: - 0 + -------------- p: x2 x3^3 + x1 x3^3 + x1 x2 + 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 1) roots: (#^6 - 2, 1) -1.1224620483? signs: - 0 + -------------- p: x2 x3^2 + x1 x3^2 - x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 1) roots: (#^4 - 2, 1) -1.1892071150? (#^4 - 2, 2) 1.1892071150? signs: + 0 - 0 + -------------- p: x0 x2 x3^2 + x0 x1 x3^2 - x0 x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) roots: signs: - -------------- p: - x2 x3 + x1 x3 + x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 2) roots: signs: 0 -------------- p: - x2 x3^3 + x1 x3^3 + x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) roots: signs: 0 -------------- p: x3^2 - 2 x0 x3 - x1 x3 + x0^2 + x0 x1 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 3, 2) x2 -> (#, 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) roots: (#^2 - 2, 2) 1.4142135623? (#^4 - 10 #^2 + 1, 4) 3.1462643699? signs: + 0 - 0 + -------------- p: x3^3 - 3 x0 x3^2 - 2 x1 x3^2 + 3 x0^2 x3 + 4 x0 x1 x3 + x1^2 x3 - x0^3 - 2 x0^2 x1 - x0 x1^2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 3, 2) x2 -> (#, 1) (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 2) roots: (#^2 - 2, 2) 1.4142135623? (#^4 - 10 #^2 + 1, 4) 3.1462643699? signs: - 0 + 0 + -------------- p: x3^5 - x1 x3^4 - 4 x3^4 + 4 x1 x3^3 + 5 x3^3 - 5 x1 x3^2 - 2 x3^2 + 2 x1 x3 - x0 x3^4 + x0 x1 x3^3 + 4 x0 x3^3 - 4 x0 x1 x3^2 - 5 x0 x3^2 + 5 x0 x1 x3 + 2 x0 x3 - 2 x0 x1 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 3, 2) x2 -> (#, 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 4) roots: (# - 1, 1) 1 (#^2 - 2, 2) 1.4142135623? (#^2 - 3, 2) 1.7320508075? (# - 2, 1) 2 signs: - 0 - 0 + 0 - 0 + d: 1 p: (x2^2) (x1) (0) (2 x2 + x1) p': (x1) (0) (6 x2 + 3 x1) h2: (6 x2^3 + 3 x1 x2^2) (4 x1 x2 + 2 x1^2) d: 2 h3: (216 x2^7 + 324 x1 x2^6 + 162 x1^2 x2^5 + 16 x1^3 x2^2 + 16 x1^4 x2 + 4 x1^5 + 27 x1^3 x2^4) sign(h3(v1,v2)): 1 sign(h2(v1,v2)): 1 sign(p'(v1,v2)): 1 sign(p(v1,v2)): -1 tmp: -1/2 -0.5 v0: -0.5 sign(h2(v1,v2)): 1 sign(p'(v1,v2)): 1 sign(p(v1,v2)): 1 -------------- p: x2 + x0 x1 + x1^2 + 2 x0 -> (#, 1) x1 -> (#, 1) x2 -> (#, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#, 1) x1 -> (#, 1) x2 -> (# + 2, 1) sign: 0 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (# + 3, 1) x1 -> (# - 1, 1) x2 -> (# + 2, 1) sign: -1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#, 1) x2 -> (# + 2, 1) sign: 0 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#, 1) x2 -> (# - 1, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#, 1) x2 -> (# + 3, 1) sign: -1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (# - 1, 1) x2 -> (# + 3, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (# - 1, 1) x2 -> (# + 4, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (# - 1, 1) x2 -> (# + 5, 1) sign: -1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 2, 2) x2 -> (# + 2, 1) sign: 0 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 2, 2) x2 -> (# + 3, 1) sign: -1 -------------- p: - x2 + x0 x1 + x1^2 + 2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 2, 2) x2 -> (# + 3, 1) sign: 1 ---------- lower: 1/2^3 as decimal: 0.125 upper: 3/2^2 as decimal: 0.75 choice: 1/2 as decimal: 0.5 ---------- lower: 1220703125/2^27 as decimal: 9.09494701? upper: 1375/2^7 as decimal: 10.7421875 choice: 10 as decimal: 10 ---------- lower: 1220703125/2^27 as decimal: 9.09494701? upper: 10001/2^10 as decimal: 9.76660156? choice: 19/2 as decimal: 9.5 ---------- lower: 1 as decimal: 1 upper: 1 as decimal: 1 choice: 1 as decimal: 1 ---------- lower: 1 as decimal: 1 upper: 2 as decimal: 2 choice: 1 as decimal: 1 ---------- lower: -1 as decimal: -1 upper: -1 as decimal: -1 choice: -1 as decimal: -1 ---------- lower: -2 as decimal: -2 upper: -1 as decimal: -1 choice: -2 as decimal: -2 ---------- lower: 0 as decimal: 0 upper: 275/2^8 as decimal: 1.07421875 choice: 0 as decimal: 0 ---------- lower: 7/2^3 as decimal: 0.875 upper: 1001/2^10 as decimal: 0.97753906? choice: 7/2^3 as decimal: 0.875 ---------- lower: 125/2^7 as decimal: 0.9765625 upper: 1001/2^10 as decimal: 0.97753906? choice: 125/2^7 as decimal: 0.9765625 ---------- lower: 4457915684525902395869512133369841539490161434991526715513934826241/2^192 as decimal: 710186941.75287040? upper: 2228957842262951197934756066684920769745080717495763357756967413121/2^191 as decimal: 710186941.75287040? choice: 2228957842262951197934756066684920769745080717495763357756967413121/2^191 as decimal: 710186941.75287040? ---------- lower: 4457915684525902395869512133369841539490161434991526715513934826241/2^192 as decimal: 710186941.75287040? upper: 4457915684525902395869512133369841539490161434991526715513934826497/2^192 as decimal: 710186941.75287040? choice: 4353433285669826558466320442743985878408360776358912808119076979/2^182 as decimal: 710186941.75287040? two101: 1.0650410894? (#^11 - 2, 1) two103: 1.1040895136? (#^7 - 2, 1) (polynomial-factorization :at GF_5) (polynomial-factorization :num-candidate-factors 6) (polynomial-factorization :search-size 41) (polynomial-factorization :distinct-factors 1) sum1: 2.1691306031? (#^77 - 22 #^70 - 14 #^66 + 220 #^63 - 544236 #^59 - 1320 #^56 + 84 #^55 - 97853448 #^52 + 5280 #^49 - 25531352 #^48 - 2670956288 #^45 - 280 #^44 - 14784 #^42 + 20445649840 #^41 - 20052576544 #^38 - 155813504 #^37 + 29568 #^35 - 850951467520 #^34 + 560 #^33 - 50308241984 #^31 - 120170824928 #^30 - 42240 #^28 + 4024746461120 #^27 - 186825408 #^26 - 43405281920 #^24 - 1992710577088 #^23 - 672 #^22 + 42240 #^21 - 2544211567744 #^20 + 34723106880 #^19 - 11504100608 #^17 - 1268310460032 #^16 - 37166976 #^15 - 28160 #^14 + 171371574528 #^13 - 38011467648 #^12 + 448 #^11 - 650890240 #^10 - 20646191104 #^9 - 198253440 #^8 + 11264 #^7 - 495599104 #^6 + 96233984 #^5 - 295680 #^4 - 2050048 #^3 - 670208 #^2 - 19712 # - 2176, 1) Wilkinson's polynomial: x0^20 - 210 x0^19 + 20615 x0^18 - 1256850 x0^17 + 53327946 x0^16 - 1672280820 x0^15 + 40171771630 x0^14 - 756111184500 x0^13 + 11310276995381 x0^12 - 135585182899530 x0^11 + 1307535010540395 x0^10 - 10142299865511450 x0^9 + 63030812099294896 x0^8 - 311333643161390640 x0^7 + 1206647803780373360 x0^6 - 3599979517947607200 x0^5 + 8037811822645051776 x0^4 - 12870931245150988800 x0^3 + 13803759753640704000 x0^2 - 8752948036761600000 x0 + 2432902008176640000 p: x0^20 - 210 x0^19 + 20615 x0^18 - 1256850 x0^17 + 53327946 x0^16 - 1672280820 x0^15 + 40171771630 x0^14 - 756111184500 x0^13 + 11310276995381 x0^12 - 135585182899530 x0^11 + 1307535010540395 x0^10 - 10142299865511450 x0^9 + 63030812099294896 x0^8 - 311333643161390640 x0^7 + 1206647803780373360 x0^6 - 3599979517947607200 x0^5 + 8037811822645051776 x0^4 - 12870931245150988800 x0^3 + 13803759753640704000 x0^2 - 8752948036761600000 x0 + 2432902008176640000 (polynomial-factorization :at GF_29) (polynomial-factorization :num-candidate-factors 20) (polynomial-factorization :search-size 20) (polynomial-factorization :distinct-factors 20) numbers in decimal: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 numbers as root objects (# - 1, 1) (# - 2, 1) (# - 3, 1) (# - 4, 1) (# - 5, 1) (# - 6, 1) (# - 7, 1) (# - 8, 1) (# - 9, 1) (# - 10, 1) (# - 11, 1) (# - 12, 1) (# - 13, 1) (# - 14, 1) (# - 15, 1) (# - 16, 1) (# - 17, 1) (# - 18, 1) (# - 19, 1) (# - 20, 1) numbers as intervals [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10] [11, 11] [12, 12] [13, 13] [14, 14] [15, 15] [16, 16] [17, 17] [18, 18] [19, 19] [20, 20] p: 3 x0 - 2 (polynomial-factorization :distinct-factors 1) numbers in decimal: 0.6666666666? numbers as root objects (3 # - 2, 1) numbers as intervals [2/3, 2/3] p: x0^2 - 2 (polynomial-factorization :distinct-factors 1) numbers in decimal: -1.4142135623? 1.4142135623? numbers as root objects (#^2 - 2, 1) (#^2 - 2, 2) numbers as intervals (-4, 0) (0, 4) sqrt(2) + 1/3: 1.7475468957? (1/2, 13/2^2) (9 #^2 - 6 # - 17, 2) -sqrt(2) + 1/3: -1.0808802290? (-11/2^2, 0) (9 #^2 - 6 # - 17, 1) p: x0^7 - 3 x0^6 + 2 x0^5 - x0^3 + 2 x0^2 + x0 - 2 (polynomial-factorization :at GF_3) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 3) numbers in decimal: 1 1.1673039782? 2 numbers as root objects (# - 1, 1) (#^5 - # - 1, 1) (# - 2, 1) numbers as intervals [1, 1] (0, 4) [2, 2] compare(1.4142135623?, 1.1673039782?): 1 (:algebraic-compare-cheap 2 :algebraic-compare-refine 4) p: x0^4 - 5 x0^2 + 6 (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) numbers in decimal: -1.7320508075? -1.4142135623? 1.4142135623? 1.7320508075? numbers as root objects (#^2 - 3, 1) (#^2 - 2, 1) (#^2 - 2, 2) (#^2 - 3, 2) numbers as intervals (-2, -3/2) (-3/2, -1) (1, 3/2) (3/2, 2) compare(1.4142135623?, 1.4142135623?): 0 (:algebraic-compare-cheap 10 :algebraic-compare-poly 1 :algebraic-compare-refine 10) sqrt(2)^4: (polynomial-factorization :distinct-factors 1) 4 (polynomial-factorization :distinct-factors 1) (polynomial-factorization :distinct-factors 1) (polynomial-factorization :distinct-factors 1) sqrt2 + gauss: 2.5815175406? (#^10 - 10 #^8 + 38 #^6 - 2 #^5 - 100 #^4 - 40 #^3 + 121 #^2 - 38 # - 17, 2) sqrt2*sqrt2: (polynomial-factorization :distinct-factors 2) 2 sqrt2*sqrt2 == 2: (polynomial-factorization :distinct-factors 2) 1 (-3)^(1/5): -1.2457309396? sqrt(2)^(1/3): (polynomial-factorization :distinct-factors 1) 1.1224620483? as-root-object(sqrt(2)^(1/3)): (polynomial-factorization :distinct-factors 1) (#^6 - 2, 2) (sqrt(2) + 1)^(1/3): (polynomial-factorization :distinct-factors 1) 1.3415037626? as-root-object((sqrt(2) + 1)^(1/3)): (polynomial-factorization :distinct-factors 1) (#^6 - 2 #^3 - 1, 2) (sqrt(2) + gauss)^(1/5): (polynomial-factorization :distinct-factors 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) 1.2088572404? as-root-object(sqrt(2) + gauss)^(1/5): (polynomial-factorization :distinct-factors 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) (#^50 - 10 #^40 + 38 #^30 - 2 #^25 - 100 #^20 - 40 #^15 + 121 #^10 - 38 #^5 - 17, 2) (sqrt(2) / sqrt(2)): (polynomial-factorization :distinct-factors 2) 1 (sqrt(2) / gauss): (polynomial-factorization :distinct-factors 1) 1.2115212392? (sqrt(2) / gauss) 30 digits: (polynomial-factorization :distinct-factors 1) 1.211521239291433957983023270852? as-root-object(sqrt(2) / gauss): (polynomial-factorization :distinct-factors 1) (#^10 - 2 #^8 + 16 #^4 - 32, 2) is_int(sqrt(2)^(1/3)): (polynomial-factorization :distinct-factors 1) 0 1/sqrt(2): 0.7071067811? 4*1/sqrt(2): 2.8284271247? (#^2 - 8, 2) (polynomial-factorization :distinct-factors 2) sqrt(2)*4*(1/sqrt2): 4 (# - 4, 1) is_int(sqrt(2)*4*(1/sqrt2)): 1, after is-int: 4 p: 998 x0^3 - 14970 x0 - 1414 x0^2 + 21210 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) is-rational(sqrt2): 0 qr: (499 # - 707, 1), is-rational: 1, val: (499 # - 707, 1) using refine upper... 5/2^3 < 5/7 < 5/2^2 0.625 < 0.71428571428571428571? < 1.25 5/2^3 < 5/7 < 15/2^4 0.625 < 0.71428571428571428571? < 0.9375 5/2^3 < 5/7 < 25/2^5 0.625 < 0.71428571428571428571? < 0.78125 45/2^6 < 5/7 < 95/2^7 0.703125 < 0.71428571428571428571? < 0.7421875 45/2^6 < 5/7 < 185/2^8 0.703125 < 0.71428571428571428571? < 0.72265625 365/2^9 < 5/7 < 735/2^10 0.712890625 < 0.71428571428571428571? < 0.7177734375 365/2^9 < 5/7 < 1465/2^11 0.712890625 < 0.71428571428571428571? < 0.71533203125 2925/2^12 < 5/7 < 5855/2^13 0.714111328125 < 0.71428571428571428571? < 0.7147216796875 2925/2^12 < 5/7 < 11705/2^14 0.714111328125 < 0.71428571428571428571? < 0.71441650390625 23405/2^15 < 5/7 < 46815/2^16 0.714263916015625 < 0.71428571428571428571? < 0.7143402099609375 23405/2^15 < 5/7 < 93625/2^17 0.714263916015625 < 0.71428571428571428571? < 0.71430206298828125 187245/2^18 < 5/7 < 374495/2^19 0.714282989501953125 < 0.71428571428571428571? < 0.7142925262451171875 187245/2^18 < 5/7 < 748985/2^20 0.714282989501953125 < 0.71428571428571428571? < 0.71428775787353515625 1497965/2^21 < 5/7 < 2995935/2^22 0.71428537368774414062? < 0.71428571428571428571? < 0.71428656578063964843? 1497965/2^21 < 5/7 < 5991865/2^23 0.71428537368774414062? < 0.71428571428571428571? < 0.71428596973419189453? 11983725/2^24 < 5/7 < 23967455/2^25 0.71428567171096801757? < 0.71428571428571428571? < 0.71428582072257995605? 11983725/2^24 < 5/7 < 47934905/2^26 0.71428567171096801757? < 0.71428571428571428571? < 0.71428574621677398681? 95869805/2^27 < 5/7 < 191739615/2^28 0.71428570896387100219? < 0.71428571428571428571? < 0.71428572759032249450? 95869805/2^27 < 5/7 < 383479225/2^29 0.71428570896387100219? < 0.71428571428571428571? < 0.71428571827709674835? 766958445/2^30 < 5/7 < 1533916895/2^31 0.71428571362048387527? < 0.71428571428571428571? < 0.71428571594879031181? using refine lower... 5/2^3 < 5/7 < 5/2^2 0.625 < 0.71428571428571428571? < 1.25 45/2^6 < 5/7 < 25/2^5 0.703125 < 0.71428571428571428571? < 0.78125 365/2^9 < 5/7 < 185/2^8 0.712890625 < 0.71428571428571428571? < 0.72265625 2925/2^12 < 5/7 < 1465/2^11 0.714111328125 < 0.71428571428571428571? < 0.71533203125 23405/2^15 < 5/7 < 11705/2^14 0.714263916015625 < 0.71428571428571428571? < 0.71441650390625 187245/2^18 < 5/7 < 93625/2^17 0.714282989501953125 < 0.71428571428571428571? < 0.71430206298828125 1497965/2^21 < 5/7 < 748985/2^20 0.71428537368774414062? < 0.71428571428571428571? < 0.71428775787353515625 11983725/2^24 < 5/7 < 5991865/2^23 0.71428567171096801757? < 0.71428571428571428571? < 0.71428596973419189453? 95869805/2^27 < 5/7 < 47934905/2^26 0.71428570896387100219? < 0.71428571428571428571? < 0.71428574621677398681? 766958445/2^30 < 5/7 < 383479225/2^29 0.71428571362048387527? < 0.71428571428571428571? < 0.71428571827709674835? 6135667565/2^33 < 5/7 < 3067833785/2^32 0.71428571420256048440? < 0.71428571428571428571? < 0.71428571478463709354? 49085340525/2^36 < 5/7 < 24542670265/2^35 0.71428571427532006055? < 0.71428571428571428571? < 0.71428571434807963669? 392682724205/2^39 < 5/7 < 196341362105/2^38 0.71428571428441500756? < 0.71428571428571428571? < 0.71428571429350995458? 3141461793645/2^42 < 5/7 < 1570730896825/2^41 0.71428571428555187594? < 0.71428571428571428571? < 0.71428571428668874432? 25131694349165/2^45 < 5/7 < 12565847174585/2^44 0.71428571428569398449? < 0.71428571428571428571? < 0.71428571428583609304? 201053554793325/2^48 < 5/7 < 100526777396665/2^47 0.71428571428571174806? < 0.71428571428571428571? < 0.71428571428572951163? 1608428438346605/2^51 < 5/7 < 804214219173305/2^50 0.71428571428571396850? < 0.71428571428571428571? < 0.71428571428571618895? 12867427506772845/2^54 < 5/7 < 6433713753386425/2^53 0.71428571428571424606? < 0.71428571428571428571? < 0.71428571428571452361? 102939420054182765/2^57 < 5/7 < 51469710027091385/2^56 0.71428571428571428075? < 0.71428571428571428571? < 0.71428571428571431545? 823515360433462125/2^60 < 5/7 < 411757680216731065/2^59 0.71428571428571428509? < 0.71428571428571428571? < 0.71428571428571428943? PASS (test algebraic :time 0.80 :before-memory 17.68 :after-memory 17.68) p: 507962865083498496 x0^10 + 102100535881783197696 x0^9 - 14783112447185507561472 x0^8 - 2001324733200883839555072 x0^7 + 195168383210843217999079936 x0^6 + 38119811955608999164032 x0^5 + 9215524544769908136049956 x0^4 - 733241058456905205563830332 x0^3 - 15888459782104331950227 x0^2 - 10235992917286431461226534 x0 + 688689757310708660505387921 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 1) (polynomial-factorization :distinct-factors 1) numbers in decimal: -199.0000036564? -199.0000002927? 98.5000019176? 98.5000019191? numbers as root objects (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 1) (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 2) (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 3) (507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 4) numbers as intervals (-52166657/2^18, -104333313/2^19) (-104333313/2^19, -199) (13220446465/2^27, 26440892931/2^28) (26440892931/2^28, 6610223233/2^26) numbers in decimal: -199.6334841049? 0.6335535718? 1.2450962798? 98.5000019267? numbers as root objects (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 1) (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 2) (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 3) (1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 4) numbers as intervals (-256, -128) (0, 1) (1, 2) (64, 128) a:98.5000019176? a:(13220446465/2^27, 26440892931/2^28) a:(507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 3) b:98.5000019191? b:(26440892931/2^28, 6610223233/2^26) b:(507962865083498496 #^10 + 102100535881783197696 #^9 - 14783112447185507561472 #^8 - 2001324733200883839555072 #^7 + 195168383210843217999079936 #^6 + 38119811955608999164032 #^5 + 9215524544769908136049956 #^4 - 733241058456905205563830332 #^3 - 15888459782104331950227 #^2 - 10235992917286431461226534 # + 688689757310708660505387921, 4) c:98.5000019267? c:(64, 128) c:(1286741608255488 #^6 + 129317531629676544 #^5 - 25384908626459170944 #^4 + 16014650289587907456 #^3 + 2042137943326838560 #^2 + 44729821875714513846 # - 29154410578758924855, 4) c < a sturm 0 0 (expecting 0) b < a 0 c < b sturm 0 0 root: 2 root: (#^4 - 4, 2) -------------- p: x1 x3 + 1 x0 -> (#, 1) x1 -> (#, 1) x2 -> (#, 1) roots: signs: + -------------- p: x1 x3 + 1 x0 -> (#, 1) x1 -> (# - 1, 1) x2 -> (#, 1) (polynomial-factorization :distinct-factors 1) roots: (# + 1, 1) -1 signs: - 0 + -------------- p: x1 x3 + 1 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#, 1) (polynomial-factorization :distinct-factors 1) roots: (2 #^2 - 1, 1) -0.7071067811? signs: - 0 + -------------- p: x2 x3 + x1 x3 + 1 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 1) roots: (8 #^2 - 1, 1) -0.3535533905? signs: - 0 + -------------- p: x2 x3 + x1 x3 + x1 x2 + 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 2) roots: (#^2 - 2, 1) -1.4142135623? signs: - 0 + -------------- p: x2 x3^3 + x1 x3^3 + x1 x2 + 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 1) roots: (#^6 - 2, 1) -1.1224620483? signs: - 0 + -------------- p: x2 x3^2 + x1 x3^2 - x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 1) roots: (#^4 - 2, 1) -1.1892071150? (#^4 - 2, 2) 1.1892071150? signs: + 0 - 0 + -------------- p: x0 x2 x3^2 + x0 x1 x3^2 - x0 x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) roots: signs: - -------------- p: - x2 x3 + x1 x3 + x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) (polynomial-factorization :distinct-factors 2) roots: signs: 0 -------------- p: - x2 x3^3 + x1 x3^3 + x1 x2 - 2 x0 -> (#, 1) x1 -> (#^2 - 2, 2) x2 -> (#^2 - 2, 2) (polynomial-factorization :distinct-factors 2) roots: signs: 0 -------------- p: x3^2 - 2 x0 x3 - x1 x3 + x0^2 + x0 x1 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 3, 2) x2 -> (#, 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) roots: (#^2 - 2, 2) 1.4142135623? (#^4 - 10 #^2 + 1, 4) 3.1462643699? signs: + 0 - 0 + -------------- p: x3^3 - 3 x0 x3^2 - 2 x1 x3^2 + 3 x0^2 x3 + 4 x0 x1 x3 + x1^2 x3 - x0^3 - 2 x0^2 x1 - x0 x1^2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 3, 2) x2 -> (#, 1) (polynomial-factorization :at GF_11) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 2) roots: (#^2 - 2, 2) 1.4142135623? (#^4 - 10 #^2 + 1, 4) 3.1462643699? signs: - 0 + 0 + -------------- p: x3^5 - x1 x3^4 - 4 x3^4 + 4 x1 x3^3 + 5 x3^3 - 5 x1 x3^2 - 2 x3^2 + 2 x1 x3 - x0 x3^4 + x0 x1 x3^3 + 4 x0 x3^3 - 4 x0 x1 x3^2 - 5 x0 x3^2 + 5 x0 x1 x3 + 2 x0 x3 - 2 x0 x1 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 3, 2) x2 -> (#, 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 4) roots: (# - 1, 1) 1 (#^2 - 2, 2) 1.4142135623? (#^2 - 3, 2) 1.7320508075? (# - 2, 1) 2 signs: - 0 - 0 + 0 - 0 + d: 1 p: (x2^2) (x1) (0) (2 x2 + x1) p': (x1) (0) (6 x2 + 3 x1) h2: (6 x2^3 + 3 x1 x2^2) (4 x1 x2 + 2 x1^2) d: 2 h3: (216 x2^7 + 324 x1 x2^6 + 162 x1^2 x2^5 + 16 x1^3 x2^2 + 16 x1^4 x2 + 4 x1^5 + 27 x1^3 x2^4) sign(h3(v1,v2)): 1 sign(h2(v1,v2)): 1 sign(p'(v1,v2)): 1 sign(p(v1,v2)): -1 tmp: -1/2 -0.5 v0: -0.5 sign(h2(v1,v2)): 1 sign(p'(v1,v2)): 1 sign(p(v1,v2)): 1 -------------- p: x2 + x0 x1 + x1^2 + 2 x0 -> (#, 1) x1 -> (#, 1) x2 -> (#, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#, 1) x1 -> (#, 1) x2 -> (# + 2, 1) sign: 0 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (# + 3, 1) x1 -> (# - 1, 1) x2 -> (# + 2, 1) sign: -1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#, 1) x2 -> (# + 2, 1) sign: 0 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#, 1) x2 -> (# - 1, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#, 1) x2 -> (# + 3, 1) sign: -1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (# - 1, 1) x2 -> (# + 3, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (# - 1, 1) x2 -> (# + 4, 1) sign: 1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (# - 1, 1) x2 -> (# + 5, 1) sign: -1 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 2, 2) x2 -> (# + 2, 1) sign: 0 -------------- p: x2 + x1^2 + x0 x1 + 2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 2, 2) x2 -> (# + 3, 1) sign: -1 -------------- p: - x2 + x0 x1 + x1^2 + 2 x0 -> (#^2 - 2, 2) x1 -> (#^2 - 2, 2) x2 -> (# + 3, 1) sign: 1 ---------- lower: 1/2^3 as decimal: 0.125 upper: 3/2^2 as decimal: 0.75 choice: 1/2 as decimal: 0.5 ---------- lower: 1220703125/2^27 as decimal: 9.09494701? upper: 1375/2^7 as decimal: 10.7421875 choice: 10 as decimal: 10 ---------- lower: 1220703125/2^27 as decimal: 9.09494701? upper: 10001/2^10 as decimal: 9.76660156? choice: 19/2 as decimal: 9.5 ---------- lower: 1 as decimal: 1 upper: 1 as decimal: 1 choice: 1 as decimal: 1 ---------- lower: 1 as decimal: 1 upper: 2 as decimal: 2 choice: 1 as decimal: 1 ---------- lower: -1 as decimal: -1 upper: -1 as decimal: -1 choice: -1 as decimal: -1 ---------- lower: -2 as decimal: -2 upper: -1 as decimal: -1 choice: -2 as decimal: -2 ---------- lower: 0 as decimal: 0 upper: 275/2^8 as decimal: 1.07421875 choice: 0 as decimal: 0 ---------- lower: 7/2^3 as decimal: 0.875 upper: 1001/2^10 as decimal: 0.97753906? choice: 7/2^3 as decimal: 0.875 ---------- lower: 125/2^7 as decimal: 0.9765625 upper: 1001/2^10 as decimal: 0.97753906? choice: 125/2^7 as decimal: 0.9765625 ---------- lower: 4457915684525902395869512133369841539490161434991526715513934826241/2^192 as decimal: 710186941.75287040? upper: 2228957842262951197934756066684920769745080717495763357756967413121/2^191 as decimal: 710186941.75287040? choice: 2228957842262951197934756066684920769745080717495763357756967413121/2^191 as decimal: 710186941.75287040? ---------- lower: 4457915684525902395869512133369841539490161434991526715513934826241/2^192 as decimal: 710186941.75287040? upper: 4457915684525902395869512133369841539490161434991526715513934826497/2^192 as decimal: 710186941.75287040? choice: 4353433285669826558466320442743985878408360776358912808119076979/2^182 as decimal: 710186941.75287040? two101: 1.0650410894? (#^11 - 2, 1) two103: 1.1040895136? (#^7 - 2, 1) (polynomial-factorization :at GF_5) (polynomial-factorization :num-candidate-factors 6) (polynomial-factorization :search-size 41) (polynomial-factorization :distinct-factors 1) sum1: 2.1691306031? (#^77 - 22 #^70 - 14 #^66 + 220 #^63 - 544236 #^59 - 1320 #^56 + 84 #^55 - 97853448 #^52 + 5280 #^49 - 25531352 #^48 - 2670956288 #^45 - 280 #^44 - 14784 #^42 + 20445649840 #^41 - 20052576544 #^38 - 155813504 #^37 + 29568 #^35 - 850951467520 #^34 + 560 #^33 - 50308241984 #^31 - 120170824928 #^30 - 42240 #^28 + 4024746461120 #^27 - 186825408 #^26 - 43405281920 #^24 - 1992710577088 #^23 - 672 #^22 + 42240 #^21 - 2544211567744 #^20 + 34723106880 #^19 - 11504100608 #^17 - 1268310460032 #^16 - 37166976 #^15 - 28160 #^14 + 171371574528 #^13 - 38011467648 #^12 + 448 #^11 - 650890240 #^10 - 20646191104 #^9 - 198253440 #^8 + 11264 #^7 - 495599104 #^6 + 96233984 #^5 - 295680 #^4 - 2050048 #^3 - 670208 #^2 - 19712 # - 2176, 1) Wilkinson's polynomial: x0^20 - 210 x0^19 + 20615 x0^18 - 1256850 x0^17 + 53327946 x0^16 - 1672280820 x0^15 + 40171771630 x0^14 - 756111184500 x0^13 + 11310276995381 x0^12 - 135585182899530 x0^11 + 1307535010540395 x0^10 - 10142299865511450 x0^9 + 63030812099294896 x0^8 - 311333643161390640 x0^7 + 1206647803780373360 x0^6 - 3599979517947607200 x0^5 + 8037811822645051776 x0^4 - 12870931245150988800 x0^3 + 13803759753640704000 x0^2 - 8752948036761600000 x0 + 2432902008176640000 p: x0^20 - 210 x0^19 + 20615 x0^18 - 1256850 x0^17 + 53327946 x0^16 - 1672280820 x0^15 + 40171771630 x0^14 - 756111184500 x0^13 + 11310276995381 x0^12 - 135585182899530 x0^11 + 1307535010540395 x0^10 - 10142299865511450 x0^9 + 63030812099294896 x0^8 - 311333643161390640 x0^7 + 1206647803780373360 x0^6 - 3599979517947607200 x0^5 + 8037811822645051776 x0^4 - 12870931245150988800 x0^3 + 13803759753640704000 x0^2 - 8752948036761600000 x0 + 2432902008176640000 (polynomial-factorization :at GF_29) (polynomial-factorization :num-candidate-factors 20) (polynomial-factorization :search-size 20) (polynomial-factorization :distinct-factors 20) numbers in decimal: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 numbers as root objects (# - 1, 1) (# - 2, 1) (# - 3, 1) (# - 4, 1) (# - 5, 1) (# - 6, 1) (# - 7, 1) (# - 8, 1) (# - 9, 1) (# - 10, 1) (# - 11, 1) (# - 12, 1) (# - 13, 1) (# - 14, 1) (# - 15, 1) (# - 16, 1) (# - 17, 1) (# - 18, 1) (# - 19, 1) (# - 20, 1) numbers as intervals [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10] [11, 11] [12, 12] [13, 13] [14, 14] [15, 15] [16, 16] [17, 17] [18, 18] [19, 19] [20, 20] p: 3 x0 - 2 (polynomial-factorization :distinct-factors 1) numbers in decimal: 0.6666666666? numbers as root objects (3 # - 2, 1) numbers as intervals [2/3, 2/3] p: x0^2 - 2 (polynomial-factorization :distinct-factors 1) numbers in decimal: -1.4142135623? 1.4142135623? numbers as root objects (#^2 - 2, 1) (#^2 - 2, 2) numbers as intervals (-4, 0) (0, 4) sqrt(2) + 1/3: 1.7475468957? (1/2, 13/2^2) (9 #^2 - 6 # - 17, 2) -sqrt(2) + 1/3: -1.0808802290? (-11/2^2, 0) (9 #^2 - 6 # - 17, 1) p: x0^7 - 3 x0^6 + 2 x0^5 - x0^3 + 2 x0^2 + x0 - 2 (polynomial-factorization :at GF_3) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 3) numbers in decimal: 1 1.1673039782? 2 numbers as root objects (# - 1, 1) (#^5 - # - 1, 1) (# - 2, 1) numbers as intervals [1, 1] (0, 4) [2, 2] compare(1.4142135623?, 1.1673039782?): 1 (:algebraic-compare-cheap 2 :algebraic-compare-refine 4) p: x0^4 - 5 x0^2 + 6 (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) numbers in decimal: -1.7320508075? -1.4142135623? 1.4142135623? 1.7320508075? numbers as root objects (#^2 - 3, 1) (#^2 - 2, 1) (#^2 - 2, 2) (#^2 - 3, 2) numbers as intervals (-2, -3/2) (-3/2, -1) (1, 3/2) (3/2, 2) compare(1.4142135623?, 1.4142135623?): 0 (:algebraic-compare-cheap 10 :algebraic-compare-poly 1 :algebraic-compare-refine 10) sqrt(2)^4: (polynomial-factorization :distinct-factors 1) 4 (polynomial-factorization :distinct-factors 1) (polynomial-factorization :distinct-factors 1) (polynomial-factorization :distinct-factors 1) sqrt2 + gauss: 2.5815175406? (#^10 - 10 #^8 + 38 #^6 - 2 #^5 - 100 #^4 - 40 #^3 + 121 #^2 - 38 # - 17, 2) sqrt2*sqrt2: (polynomial-factorization :distinct-factors 2) 2 sqrt2*sqrt2 == 2: (polynomial-factorization :distinct-factors 2) 1 (-3)^(1/5): -1.2457309396? sqrt(2)^(1/3): (polynomial-factorization :distinct-factors 1) 1.1224620483? as-root-object(sqrt(2)^(1/3)): (polynomial-factorization :distinct-factors 1) (#^6 - 2, 2) (sqrt(2) + 1)^(1/3): (polynomial-factorization :distinct-factors 1) 1.3415037626? as-root-object((sqrt(2) + 1)^(1/3)): (polynomial-factorization :distinct-factors 1) (#^6 - 2 #^3 - 1, 2) (sqrt(2) + gauss)^(1/5): (polynomial-factorization :distinct-factors 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) 1.2088572404? as-root-object(sqrt(2) + gauss)^(1/5): (polynomial-factorization :distinct-factors 1) (polynomial-factorization :at GF_7) (polynomial-factorization :num-candidate-factors 3) (polynomial-factorization :search-size 3) (polynomial-factorization :distinct-factors 1) (#^50 - 10 #^40 + 38 #^30 - 2 #^25 - 100 #^20 - 40 #^15 + 121 #^10 - 38 #^5 - 17, 2) (sqrt(2) / sqrt(2)): (polynomial-factorization :distinct-factors 2) 1 (sqrt(2) / gauss): (polynomial-factorization :distinct-factors 1) 1.2115212392? (sqrt(2) / gauss) 30 digits: (polynomial-factorization :distinct-factors 1) 1.211521239291433957983023270852? as-root-object(sqrt(2) / gauss): (polynomial-factorization :distinct-factors 1) (#^10 - 2 #^8 + 16 #^4 - 32, 2) is_int(sqrt(2)^(1/3)): (polynomial-factorization :distinct-factors 1) 0 1/sqrt(2): 0.7071067811? 4*1/sqrt(2): 2.8284271247? (#^2 - 8, 2) (polynomial-factorization :distinct-factors 2) sqrt(2)*4*(1/sqrt2): 4 (# - 4, 1) is_int(sqrt(2)*4*(1/sqrt2)): 1, after is-int: 4 p: 998 x0^3 - 14970 x0 - 1414 x0^2 + 21210 (polynomial-factorization :at GF_13) (polynomial-factorization :num-candidate-factors 2) (polynomial-factorization :search-size 2) (polynomial-factorization :distinct-factors 2) is-rational(sqrt2): 0 qr: (499 # - 707, 1), is-rational: 1, val: (499 # - 707, 1) using refine upper... 5/2^3 < 5/7 < 5/2^2 0.625 < 0.71428571428571428571? < 1.25 5/2^3 < 5/7 < 15/2^4 0.625 < 0.71428571428571428571? < 0.9375 5/2^3 < 5/7 < 25/2^5 0.625 < 0.71428571428571428571? < 0.78125 45/2^6 < 5/7 < 95/2^7 0.703125 < 0.71428571428571428571? < 0.7421875 45/2^6 < 5/7 < 185/2^8 0.703125 < 0.71428571428571428571? < 0.72265625 365/2^9 < 5/7 < 735/2^10 0.712890625 < 0.71428571428571428571? < 0.7177734375 365/2^9 < 5/7 < 1465/2^11 0.712890625 < 0.71428571428571428571? < 0.71533203125 2925/2^12 < 5/7 < 5855/2^13 0.714111328125 < 0.71428571428571428571? < 0.7147216796875 2925/2^12 < 5/7 < 11705/2^14 0.714111328125 < 0.71428571428571428571? < 0.71441650390625 23405/2^15 < 5/7 < 46815/2^16 0.714263916015625 < 0.71428571428571428571? < 0.7143402099609375 23405/2^15 < 5/7 < 93625/2^17 0.714263916015625 < 0.71428571428571428571? < 0.71430206298828125 187245/2^18 < 5/7 < 374495/2^19 0.714282989501953125 < 0.71428571428571428571? < 0.7142925262451171875 187245/2^18 < 5/7 < 748985/2^20 0.714282989501953125 < 0.71428571428571428571? < 0.71428775787353515625 1497965/2^21 < 5/7 < 2995935/2^22 0.71428537368774414062? < 0.71428571428571428571? < 0.71428656578063964843? 1497965/2^21 < 5/7 < 5991865/2^23 0.71428537368774414062? < 0.71428571428571428571? < 0.71428596973419189453? 11983725/2^24 < 5/7 < 23967455/2^25 0.71428567171096801757? < 0.71428571428571428571? < 0.71428582072257995605? 11983725/2^24 < 5/7 < 47934905/2^26 0.71428567171096801757? < 0.71428571428571428571? < 0.71428574621677398681? 95869805/2^27 < 5/7 < 191739615/2^28 0.71428570896387100219? < 0.71428571428571428571? < 0.71428572759032249450? 95869805/2^27 < 5/7 < 383479225/2^29 0.71428570896387100219? < 0.71428571428571428571? < 0.71428571827709674835? 766958445/2^30 < 5/7 < 1533916895/2^31 0.71428571362048387527? < 0.71428571428571428571? < 0.71428571594879031181? using refine lower... 5/2^3 < 5/7 < 5/2^2 0.625 < 0.71428571428571428571? < 1.25 45/2^6 < 5/7 < 25/2^5 0.703125 < 0.71428571428571428571? < 0.78125 365/2^9 < 5/7 < 185/2^8 0.712890625 < 0.71428571428571428571? < 0.72265625 2925/2^12 < 5/7 < 1465/2^11 0.714111328125 < 0.71428571428571428571? < 0.71533203125 23405/2^15 < 5/7 < 11705/2^14 0.714263916015625 < 0.71428571428571428571? < 0.71441650390625 187245/2^18 < 5/7 < 93625/2^17 0.714282989501953125 < 0.71428571428571428571? < 0.71430206298828125 1497965/2^21 < 5/7 < 748985/2^20 0.71428537368774414062? < 0.71428571428571428571? < 0.71428775787353515625 11983725/2^24 < 5/7 < 5991865/2^23 0.71428567171096801757? < 0.71428571428571428571? < 0.71428596973419189453? 95869805/2^27 < 5/7 < 47934905/2^26 0.71428570896387100219? < 0.71428571428571428571? < 0.71428574621677398681? 766958445/2^30 < 5/7 < 383479225/2^29 0.71428571362048387527? < 0.71428571428571428571? < 0.71428571827709674835? 6135667565/2^33 < 5/7 < 3067833785/2^32 0.71428571420256048440? < 0.71428571428571428571? < 0.71428571478463709354? 49085340525/2^36 < 5/7 < 24542670265/2^35 0.71428571427532006055? < 0.71428571428571428571? < 0.71428571434807963669? 392682724205/2^39 < 5/7 < 196341362105/2^38 0.71428571428441500756? < 0.71428571428571428571? < 0.71428571429350995458? 3141461793645/2^42 < 5/7 < 1570730896825/2^41 0.71428571428555187594? < 0.71428571428571428571? < 0.71428571428668874432? 25131694349165/2^45 < 5/7 < 12565847174585/2^44 0.71428571428569398449? < 0.71428571428571428571? < 0.71428571428583609304? 201053554793325/2^48 < 5/7 < 100526777396665/2^47 0.71428571428571174806? < 0.71428571428571428571? < 0.71428571428572951163? 1608428438346605/2^51 < 5/7 < 804214219173305/2^50 0.71428571428571396850? < 0.71428571428571428571? < 0.71428571428571618895? 12867427506772845/2^54 < 5/7 < 6433713753386425/2^53 0.71428571428571424606? < 0.71428571428571428571? < 0.71428571428571452361? 102939420054182765/2^57 < 5/7 < 51469710027091385/2^56 0.71428571428571428075? < 0.71428571428571428571? < 0.71428571428571431545? 823515360433462125/2^60 < 5/7 < 411757680216731065/2^59 0.71428571428571428509? < 0.71428571428571428571? < 0.71428571428571428943? PASS (test algebraic :time 0.80 :before-memory 17.68 :after-memory 17.68) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839, 17851, 17863, 17881, 17891, 17903, 17909, 17911, 17921, 17923, 17929, 17939, 17957, 17959, 17971, 17977, 17981, 17987, 17989, 18013, 18041, 18043, 18047, 18049, 18059, 18061, 18077, 18089, 18097, 18119, 18121, 18127, 18131, 18133, 18143, 18149, 18169, 18181, 18191, 18199, 18211, 18217, 18223, 18229, 18233, 18251, 18253, 18257, 18269, 18287, 18289, 18301, 18307, 18311, 18313, 18329, 18341, 18353, 18367, 18371, 18379, 18397, 18401, 18413, 18427, 18433, 18439, 18443, 18451, 18457, 18461, 18481, 18493, 18503, 18517, 18521, 18523, 18539, 18541, 18553, 18583, 18587, 18593, 18617, 18637, 18661, 18671, 18679, 18691, 18701, 18713, 18719, 18731, 18743, 18749, 18757, 18773, 18787, 18793, 18797, 18803, 18839, 18859, 18869, 18899, 18911, 18913, 18917, 18919, 18947, 18959, 18973, 18979, 19001, 19009, 19013, 19031, 19037, 19051, 19069, 19073, 19079, 19081, 19087, 19121, 19139, 19141, 19157, 19163, 19181, 19183, 19207, 19211, 19213, 19219, 19231, 19237, 19249, 19259, 19267, 19273, 19289, 19301, 19309, 19319, 19333, 19373, 19379, 19381, 19387, 19391, 19403, 19417, 19421, 19423, 19427, 19429, 19433, 19441, 19447, 19457, 19463, 19469, 19471, 19477, 19483, 19489, 19501, 19507, 19531, 19541, 19543, 19553, 19559, 19571, 19577, 19583, 19597, 19603, 19609, 19661, 19681, 19687, 19697, 19699, 19709, 19717, 19727, 19739, 19751, 19753, 19759, 19763, 19777, 19793, 19801, 19813, 19819, 19841, 19843, 19853, 19861, 19867, 19889, 19891, 19913, 19919, 19927, 19937, 19949, 19961, 19963, 19973, 19979, 19991, 19993, 19997, 20011, 20021, 20023, 20029, 20047, 20051, 20063, 20071, 20089, 20101, 20107, 20113, 20117, 20123, 20129, 20143, 20147, 20149, 20161, 20173, 20177, 20183, 20201, 20219, 20231, 20233, 20249, 20261, 20269, 20287, 20297, 20323, 20327, 20333, 20341, 20347, 20353, 20357, 20359, 20369, 20389, 20393, 20399, 20407, 20411, 20431, 20441, 20443, 20477, 20479, 20483, 20507, 20509, 20521, 20533, 20543, 20549, 20551, 20563, 20593, 20599, 20611, 20627, 20639, 20641, 20663, 20681, 20693, 20707, 20717, 20719, 20731, 20743, 20747, 20749, 20753, 20759, 20771, 20773, 20789, 20807, 20809, 20849, 20857, 20873, 20879, 20887, 20897, 20899, 20903, 20921, 20929, 20939, 20947, 20959, 20963, 20981, 20983, 21001, 21011, 21013, 21017, 21019, 21023, 21031, 21059, 21061, 21067, 21089, 21101, 21107, 21121, 21139, 21143, 21149, 21157, 21163, 21169, 21179, 21187, 21191, 21193, 21211, 21221, 21227, 21247, 21269, 21277, 21283, 21313, 21317, 21319, 21323, 21341, 21347, 21377, 21379, 21383, 21391, 21397, 21401, 21407, 21419, 21433, 21467, 21481, 21487, 21491, 21493, 21499, 21503, 21517, 21521, 21523, 21529, 21557, 21559, 21563, 21569, 21577, 21587, 21589, 21599, 21601, 21611, 21613, 21617, 21647, 21649, 21661, 21673, 21683, 21701, 21713, 21727, 21737, 21739, 21751, 21757, 21767, 21773, 21787, 21799, 21803, 21817, 21821, 21839, 21841, 21851, 21859, 21863, 21871, 21881, 21893, 21911, 21929, 21937, 21943, 21961, 21977, 21991, 21997, 22003, 22013, 22027, 22031, 22037, 22039, 22051, 22063, 22067, 22073, 22079, 22091, 22093, 22109, 22111, 22123, 22129, 22133, 22147, 22153, 22157, 22159, 22171, 22189, 22193, 22229, 22247, 22259, 22271, 22273, 22277, 22279, 22283, 22291, 22303, 22307, 22343, 22349, 22367, 22369, 22381, 22391, 22397, 22409, 22433, 22441, 22447, 22453, 22469, 22481, 22483, 22501, 22511, 22531, 22541, 22543, 22549, 22567, 22571, 22573, 22613, 22619, 22621, 22637, 22639, 22643, 22651, 22669, 22679, 22691, 22697, 22699, 22709, 22717, 22721, 22727, 22739, 22741, 22751, 22769, 22777, 22783, 22787, 22807, 22811, 22817, 22853, 22859, 22861, 22871, 22877, 22901, 22907, 22921, 22937, 22943, 22961, 22963, 22973, 22993, 23003, 23011, 23017, 23021, 23027, 23029, 23039, 23041, 23053, 23057, 23059, 23063, 23071, 23081, 23087, 23099, 23117, 23131, 23143, 23159, 23167, 23173, 23189, 23197, 23201, 23203, 23209, 23227, 23251, 23269, 23279, 23291, 23293, 23297, 23311, 23321, 23327, 23333, 23339, 23357, 23369, 23371, 23399, 23417, 23431, 23447, 23459, 23473, 23497, 23509, 23531, 23537, 23539, 23549, 23557, 23561, 23563, 23567, 23581, 23593, 23599, 23603, 23609, 23623, 23627, 23629, 23633, 23663, 23669, 23671, 23677, 23687, 23689, 23719, 23741, 23743, 23747, 23753, 23761, 23767, 23773, 23789, 23801, 23813, 23819, 23827, 23831, 23833, 23857, 23869, 23873, 23879, 23887, 23893, 23899, 23909, 23911, 23917, 23929, 23957, 23971, 23977, 23981, 23993, 24001, 24007, 24019, 24023, 24029, 24043, 24049, 24061, 24071, 24077, 24083, 24091, 24097, 24103, 24107, 24109, 24113, 24121, 24133, 24137, 24151, 24169, 24179, 24181, 24197, 24203, 24223, 24229, 24239, 24247, 24251, 24281, 24317, 24329, 24337, 24359, 24371, 24373, 24379, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 24499, 24509, 24517, 24527, 24533, 24547, 24551, 24571, 24593, 24611, 24623, 24631, 24659, 24671, 24677, 24683, 24691, 24697, 24709, 24733, 24749, 24763, 24767, 24781, 24793, 24799, 24809, 24821, 24841, 24847, 24851, 24859, 24877, 24889, 24907, 24917, 24919, 24923, 24943, 24953, 24967, 24971, 24977, 24979, 24989, 25013, 25031, 25033, 25037, 25057, 25073, 25087, 25097, 25111, 25117, 25121, 25127, 25147, 25153, 25163, 25169, 25171, 25183, 25189, 25219, 25229, 25237, 25243, 25247, 25253, 25261, 25301, 25303, 25307, 25309, 25321, 25339, 25343, 25349, 25357, 25367, 25373, 25391, 25409, 25411, 25423, 25439, 25447, 25453, 25457, 25463, 25469, 25471, 25523, 25537, 25541, 25561, 25577, 25579, 25583, 25589, 25601, 25603, 25609, 25621, 25633, 25639, 25643, 25657, 25667, 25673, 25679, 25693, 25703, 25717, 25733, 25741, 25747, 25759, 25763, 25771, 25793, 25799, 25801, 25819, 25841, 25847, 25849, 25867, 25873, 25889, 25903, 25913, 25919, 25931, 25933, 25939, 25943, 25951, 25969, 25981, 25997, 25999, 26003, 26017, 26021, 26029, 26041, 26053, 26083, 26099, 26107, 26111, 26113, 26119, 26141, 26153, 26161, 26171, 26177, 26183, 26189, 26203, 26209, 26227, 26237, 26249, 26251, 26261, 26263, 26267, 26293, 26297, 26309, 26317, 26321, 26339, 26347, 26357, 26371, 26387, 26393, 26399, 26407, 26417, 26423, 26431, 26437, 26449, 26459, 26479, 26489, 26497, 26501, 26513, 26539, 26557, 26561, 26573, 26591, 26597, 26627, 26633, 26641, 26647, 26669, 26681, 26683, 26687, 26693, 26699, 26701, 26711, 26713, 26717, 26723, 26729, 26731, 26737, 26759, 26777, 26783, 26801, 26813, 26821, 26833, 26839, 26849, 26861, 26863, 26879, 26881, 26891, 26893, 26903, 26921, 26927, 26947, 26951, 26953, 26959, 26981, 26987, 26993, 27011, 27017, 27031, 27043, 27059, 27061, 27067, 27073, 27077, 27091, 27103, 27107, 27109, 27127, 27143, 27179, 27191, 27197, 27211, 27239, 27241, 27253, 27259, 27271, 27277, 27281, 27283, 27299, 27329, 27337, 27361, 27367, 27397, 27407, 27409, 27427, 27431, 27437, 27449, 27457, 27479, 27481, 27487, 27509, 27527, 27529, 27539, 27541, 27551, 27581, 27583, 27611, 27617, 27631, 27647, 27653, 27673, 27689, 27691, 27697, 27701, 27733, 27737, 27739, 27743, 27749, 27751, 27763, 27767, 27773, 27779, 27791, 27793, 27799, 27803, 27809, 27817, 27823, 27827, 27847, 27851, 27883, 27893, 27901, 27917, 27919, 27941, 27943, 27947, 27953, 27961, 27967, 27983, 27997, 28001, 28019, 28027, 28031, 28051, 28057, 28069, 28081, 28087, 28097, 28099, 28109, 28111, 28123, 28151, 28163, 28181, 28183, 28201, 28211, 28219, 28229, 28277, 28279, 28283, 28289, 28297, 28307, 28309, 28319, 28349, 28351, 28387, 28393, 28403, 28409, 28411, 28429, 28433, 28439, 28447, 28463, 28477, 28493, 28499, 28513, 28517, 28537, 28541, 28547, 28549, 28559, 28571, 28573, 28579, 28591, 28597, 28603, 28607, 28619, 28621, 28627, 28631, 28643, 28649, 28657, 28661, 28663, 28669, 28687, 28697, 28703, 28711, 28723, 28729, 28751, 28753, 28759, 28771, 28789, 28793, 28807, 28813, 28817, 28837, 28843, 28859, 28867, 28871, 28879, 28901, 28909, 28921, 28927, 28933, 28949, 28961, 28979, 29009, 29017, 29021, 29023, 29027, 29033, 29059, 29063, 29077, 29101, 29123, 29129, 29131, 29137, 29147, 29153, 29167, 29173, 29179, 29191, 29201, 29207, 29209, 29221, 29231, 29243, 29251, 29269, 29287, 29297, 29303, 29311, 29327, 29333, 29339, 29347, 29363, 29383, 29387, 29389, 29399, 29401, 29411, 29423, 29429, 29437, 29443, 29453, 29473, 29483, 29501, 29527, 29531, 29537, 29567, 29569, 29573, 29581, 29587, 29599, 29611, 29629, 29633, 29641, 29663, 29669, 29671, 29683, 29717, 29723, 29741, 29753, 29759, 29761, 29789, 29803, 29819, 29833, 29837, 29851, 29863, 29867, 29873, 29879, 29881, 29917, 29921, 29927, 29947, 29959, 29983, 29989, 30011, 30013, 30029, 30047, 30059, 30071, 30089, 30091, 30097, 30103, 30109, 30113, 30119, 30133, 30137, 30139, 30161, 30169, 30181, 30187, 30197, 30203, 30211, 30223, 30241, 30253, 30259, 30269, 30271, 30293, 30307, 30313, 30319, 30323, 30341, 30347, 30367, 30389, 30391, 30403, 30427, 30431, 30449, 30467, 30469, 30491, 30493, 30497, 30509, 30517, 30529, 30539, 30553, 30557, 30559, 30577, 30593, 30631, 30637, 30643, 30649, 30661, 30671, 30677, 30689, 30697, 30703, 30707, 30713, 30727, 30757, 30763, 30773, 30781, 30803, 30809, 30817, 30829, 30839, 30841, 30851, 30853, 30859, 30869, 30871, 30881, 30893, 30911, 30931, 30937, 30941, 30949, 30971, 30977, 30983, 31013, 31019, 31033, 31039, 31051, 31063, 31069, 31079, 31081, 31091, 31121, 31123, 31139, 31147, 31151, 31153, 31159, 31177, 31181, 31183, 31189, 31193, 31219, 31223, 31231, 31237, 31247, 31249, 31253, 31259, 31267, 31271, 31277, 31307, 31319, 31321, 31327, 31333, 31337, 31357, 31379, 31387, 31391, 31393, 31397, 31469, 31477, 31481, 31489, 31511, 31513, 31517, 31531, 31541, 31543, 31547, 31567, 31573, 31583, 31601, 31607, 31627, 31643, 31649, 31657, 31663, 31667, 31687, 31699, 31721, 31723, 31727, 31729, 31741, 31751, 31769, 31771, 31793, 31799, 31817, 31847, 31849, 31859, 31873, 31883, 31891, 31907, 31957, 31963, 31973, 31981, 31991, 32003, 32009, 32027, 32029, 32051, 32057, 32059, 32063, 32069, 32077, 32083, 32089, 32099, 32117, 32119, 32141, 32143, 32159, 32173, 32183, 32189, 32191, 32203, 32213, 32233, 32237, 32251, 32257, 32261, 32297, 32299, 32303, 32309, 32321, 32323, 32327, 32341, 32353, 32359, 32363, 32369, 32371, 32377, 32381, 32401, 32411, 32413, 32423, 32429, 32441, 32443, 32467, 32479, 32491, 32497, 32503, 32507, 32531, 32533, 32537, 32561, 32563, 32569, 32573, 32579, 32587, 32603, 32609, 32611, 32621, 32633, 32647, 32653, 32687, 32693, 32707, 32713, 32717, 32719, 32749, 32771, 32779, 32783, 32789, 32797, 32801, 32803, 32831, 32833, 32839, 32843, 32869, 32887, 32909, 32911, 32917, 32933, 32939, 32941, 32957, 32969, 32971, 32983, 32987, 32993, 32999, 33013, 33023, 33029, 33037, 33049, 33053, 33071, 33073, 33083, 33091, 33107, 33113, 33119, 33149, 33151, 33161, 33179, 33181, 33191, 33199, 33203, 33211, 33223, 33247, 33287, 33289, 33301, 33311, 33317, 33329, 33331, 33343, 33347, 33349, 33353, 33359, 33377, 33391, 33403, 33409, 33413, 33427, 33457, 33461, 33469, 33479, 33487, 33493, 33503, 33521, 33529, 33533, 33547, 33563, 33569, 33577, 33581, 33587, 33589, 33599, 33601, 33613, 33617, 33619, 33623, 33629, 33637, 33641, 33647, 33679, 33703, 33713, 33721, 33739, 33749, 33751, 33757, 33767, 33769, 33773, 33791, 33797, 33809, 33811, 33827, 33829, 33851, 33857, 33863, 33871, 33889, 33893, 33911, 33923, 33931, 33937, 33941, 33961, 33967, 33997, 34019, 34031, 34033, 34039, 34057, 34061, 34123, 34127, 34129, 34141, 34147, 34157, 34159, 34171, 34183, 34211, 34213, 34217, 34231, 34253, 34259, 34261, 34267, 34273, 34283, 34297, 34301, 34303, 34313, 34319, 34327, 34337, 34351, 34361, 34367, 34369, 34381, 34403, 34421, 34429, 34439, 34457, 34469, 34471, 34483, 34487, 34499, 34501, 34511, 34513, 34519, 34537, 34543, 34549, 34583, 34589, 34591, 34603, 34607, 34613, 34631, 34649, 34651, 34667, 34673, 34679, 34687, 34693, 34703, 34721, 34729, 34739, 34747, 34757, 34759, 34763, 34781, 34807, 34819, 34841, 34843, 34847, 34849, 34871, 34877, 34883, 34897, 34913, 34919, 34939, 34949, 34961, 34963, 34981, 35023, 35027, 35051, 35053, 35059, 35069, 35081, 35083, 35089, 35099, 35107, 35111, 35117, 35129, 35141, 35149, 35153, 35159, 35171, 35201, 35221, 35227, 35251, 35257, 35267, 35279, 35281, 35291, 35311, 35317, 35323, 35327, 35339, 35353, 35363, 35381, 35393, 35401, 35407, 35419, 35423, 35437, 35447, 35449, 35461, 35491, 35507, 35509, 35521, 35527, 35531, 35533, 35537, 35543, 35569, 35573, 35591, 35593, 35597, 35603, 35617, 35671, 35677, 35729, 35731, 35747, 35753, 35759, 35771, 35797, 35801, 35803, 35809, 35831, 35837, 35839, 35851, 35863, 35869, 35879, 35897, 35899, 35911, 35923, 35933, 35951, 35963, 35969, 35977, 35983, 35993, 35999, 36007, 36011, 36013, 36017, 36037, 36061, 36067, 36073, 36083, 36097, 36107, 36109, 36131, 36137, 36151, 36161, 36187, 36191, 36209, 36217, 36229, 36241, 36251, 36263, 36269, 36277, 36293, 36299, 36307, 36313, 36319, 36341, 36343, 36353, 36373, 36383, 36389, 36433, 36451, 36457, 36467, 36469, 36473, 36479, 36493, 36497, 36523, 36527, 36529, 36541, 36551, 36559, 36563, 36571, 36583, 36587, 36599, 36607, 36629, 36637, 36643, 36653, 36671, 36677, 36683, 36691, 36697, 36709, 36713, 36721, 36739, 36749, 36761, 36767, 36779, 36781, 36787, 36791, 36793, 36809, 36821, 36833, 36847, 36857, 36871, 36877, 36887, 36899, 36901, 36913, 36919, 36923, 36929, 36931, 36943, 36947, 36973, 36979, 36997, 37003, 37013, 37019, 37021, 37039, 37049, 37057, 37061, 37087, 37097, 37117, 37123, 37139, 37159, 37171, 37181, 37189, 37199, 37201, 37217, 37223, 37243, 37253, 37273, 37277, 37307, 37309, 37313, 37321, 37337, 37339, 37357, 37361, 37363, 37369, 37379, 37397, 37409, 37423, 37441, 37447, 37463, 37483, 37489, 37493, 37501, 37507, 37511, 37517, 37529, 37537, 37547, 37549, 37561, 37567, 37571, 37573, 37579, 37589, 37591, 37607, 37619, 37633, 37643, 37649, 37657, 37663, 37691, 37693, 37699, 37717, 37747, 37781, 37783, 37799, 37811, 37813, 37831, 37847, 37853, 37861, 37871, 37879, 37889, 37897, 37907, 37951, 37957, 37963, 37967, 37987, 37991, 37993, 37997, 38011, 38039, 38047, 38053, 38069, 38083, 38113, 38119, 38149, 38153, 38167, 38177, 38183, 38189, 38197, 38201, 38219, 38231, 38237, 38239, 38261, 38273, 38281, 38287, 38299, 38303, 38317, 38321, 38327, 38329, 38333, 38351, 38371, 38377, 38393, 38431, 38447, 38449, 38453, 38459, 38461, 38501, 38543, 38557, 38561, 38567, 38569, 38593, 38603, 38609, 38611, 38629, 38639, 38651, 38653, 38669, 38671, 38677, 38693, 38699, 38707, 38711, 38713, 38723, 38729, 38737, 38747, 38749, 38767, 38783, 38791, 38803, 38821, 38833, 38839, 38851, 38861, 38867, 38873, 38891, 38903, 38917, 38921, 38923, 38933, 38953, 38959, 38971, 38977, 38993, 39019, 39023, 39041, 39043, 39047, 39079, 39089, 39097, 39103, 39107, 39113, 39119, 39133, 39139, 39157, 39161, 39163, 39181, 39191, 39199, 39209, 39217, 39227, 39229, 39233, 39239, 39241, 39251, 39293, 39301, 39313, 39317, 39323, 39341, 39343, 39359, 39367, 39371, 39373, 39383, 39397, 39409, 39419, 39439, 39443, 39451, 39461, 39499, 39503, 39509, 39511, 39521, 39541, 39551, 39563, 39569, 39581, 39607, 39619, 39623, 39631, 39659, 39667, 39671, 39679, 39703, 39709, 39719, 39727, 39733, 39749, 39761, 39769, 39779, 39791, 39799, 39821, 39827, 39829, 39839, 39841, 39847, 39857, 39863, 39869, 39877, 39883, 39887, 39901, 39929, 39937, 39953, 39971, 39979, 39983, 39989, 40009, 40013, 40031, 40037, 40039, 40063, 40087, 40093, 40099, 40111, 40123, 40127, 40129, 40151, 40153, 40163, 40169, 40177, 40189, 40193, 40213, 40231, 40237, 40241, 40253, 40277, 40283, 40289, 40343, 40351, 40357, 40361, 40387, 40423, 40427, 40429, 40433, 40459, 40471, 40483, 40487, 40493, 40499, 40507, 40519, 40529, 40531, 40543, 40559, 40577, 40583, 40591, 40597, 40609, 40627, 40637, 40639, 40693, 40697, 40699, 40709, 40739, 40751, 40759, 40763, 40771, 40787, 40801, 40813, 40819, 40823, 40829, 40841, 40847, 40849, 40853, 40867, 40879, 40883, 40897, 40903, 40927, 40933, 40939, 40949, 40961, 40973, 40993, 41011, 41017, 41023, 41039, 41047, 41051, 41057, 41077, 41081, 41113, 41117, 41131, 41141, 41143, 41149, 41161, 41177, 41179, 41183, 41189, 41201, 41203, 41213, 41221, 41227, 41231, 41233, 41243, 41257, 41263, 41269, 41281, 41299, 41333, 41341, 41351, 41357, 41381, 41387, 41389, 41399, 41411, 41413, 41443, 41453, 41467, 41479, 41491, 41507, 41513, 41519, 41521, 41539, 41543, 41549, 41579, 41593, 41597, 41603, 41609, 41611, 41617, 41621, 41627, 41641, 41647, 41651, 41659, 41669, 41681, 41687, 41719, 41729, 41737, 41759, 41761, 41771, 41777, 41801, 41809, 41813, 41843, 41849, 41851, 41863, 41879, 41887, 41893, 41897, 41903, 41911, 41927, 41941, 41947, 41953, 41957, 41959, 41969, 41981, 41983, 41999, 42013, 42017, 42019, 42023, 42043, 42061, 42071, 42073, 42083, 42089, 42101, 42131, 42139, 42157, 42169, 42179, 42181, 42187, 42193, 42197, 42209, 42221, 42223, 42227, 42239, 42257, 42281, 42283, 42293, 42299, 42307, 42323, 42331, 42337, 42349, 42359, 42373, 42379, 42391, 42397, 42403, 42407, 42409, 42433, 42437, 42443, 42451, 42457, 42461, 42463, 42467, 42473, 42487, 42491, 42499, 42509, 42533, 42557, 42569, 42571, 42577, 42589, 42611, 42641, 42643, 42649, 42667, 42677, 42683, 42689, 42697, 42701, 42703, 42709, 42719, 42727, 42737, 42743, 42751, 42767, 42773, 42787, 42793, 42797, 42821, 42829, 42839, 42841, 42853, 42859, 42863, 42899, 42901, 42923, 42929, 42937, 42943, 42953, 42961, 42967, 42979, 42989, 43003, 43013, 43019, 43037, 43049, 43051, 43063, 43067, 43093, 43103, 43117, 43133, 43151, 43159, 43177, 43189, 43201, 43207, 43223, 43237, 43261, 43271, 43283, 43291, 43313, 43319, 43321, 43331, 43391, 43397, 43399, 43403, 43411, 43427, 43441, 43451, 43457, 43481, 43487, 43499, 43517, 43541, 43543, 43573, 43577, 43579, 43591, 43597, 43607, 43609, 43613, 43627, 43633, 43649, 43651, 43661, 43669, 43691, 43711, 43717, 43721, 43753, 43759, 43777, 43781, 43783, 43787, 43789, 43793, 43801, 43853, 43867, 43889, 43891, 43913, 43933, 43943, 43951, 43961, 43963, 43969, 43973, 43987, 43991, 43997, 44017, 44021, 44027, 44029, 44041, 44053, 44059, 44071, 44087, 44089, 44101, 44111, 44119, 44123, 44129, 44131, 44159, 44171, 44179, 44189, 44201, 44203, 44207, 44221, 44249, 44257, 44263, 44267, 44269, 44273, 44279, 44281, 44293, 44351, 44357, 44371, 44381, 44383, 44389, 44417, 44449, 44453, 44483, 44491, 44497, 44501, 44507, 44519, 44531, 44533, 44537, 44543, 44549, 44563, 44579, 44587, 44617, 44621, 44623, 44633, 44641, 44647, 44651, 44657, 44683, 44687, 44699, 44701, 44711, 44729, 44741, 44753, 44771, 44773, 44777, 44789, 44797, 44809, 44819, 44839, 44843, 44851, 44867, 44879, 44887, 44893, 44909, 44917, 44927, 44939, 44953, 44959, 44963, 44971, 44983, 44987, 45007, 45013, 45053, 45061, 45077, 45083, 45119, 45121, 45127, 45131, 45137, 45139, 45161, 45179, 45181, 45191, 45197, 45233, 45247, 45259, 45263, 45281, 45289, 45293, 45307, 45317, 45319, 45329, 45337, 45341, 45343, 45361, 45377, 45389, 45403, 45413, 45427, 45433, 45439, 45481, 45491, 45497, 45503, 45523, 45533, 45541, 45553, 45557, 45569, 45587, 45589, 45599, 45613, 45631, 45641, 45659, 45667, 45673, 45677, 45691, 45697, 45707, 45737, 45751, 45757, 45763, 45767, 45779, 45817, 45821, 45823, 45827, 45833, 45841, 45853, 45863, 45869, 45887, 45893, 45943, 45949, 45953, 45959, 45971, 45979, 45989, 46021, 46027, 46049, 46051, 46061, 46073, 46091, 46093, 46099, 46103, 46133, 46141, 46147, 46153, 46171, 46181, 46183, 46187, 46199, 46219, 46229, 46237, 46261, 46271, 46273, 46279, 46301, 46307, 46309, 46327, 46337, 46349, 46351, 46381, 46399, 46411, 46439, 46441, 46447, 46451, 46457, 46471, 46477, 46489, 46499, 46507, 46511, 46523, 46549, 46559, 46567, 46573, 46589, 46591, 46601, 46619, 46633, 46639, 46643, 46649, 46663, 46679, 46681, 46687, 46691, 46703, 46723, 46727, 46747, 46751, 46757, 46769, 46771, 46807, 46811, 46817, 46819, 46829, 46831, 46853, 46861, 46867, 46877, 46889, 46901, 46919, 46933, 46957, 46993, 46997, 47017, 47041, 47051, 47057, 47059, 47087, 47093, 47111, 47119, 47123, 47129, 47137, 47143, 47147, 47149, 47161, 47189, 47207, 47221, 47237, 47251, 47269, 47279, 47287, 47293, 47297, 47303, 47309, 47317, 47339, 47351, 47353, 47363, 47381, 47387, 47389, 47407, 47417, 47419, 47431, 47441, 47459, 47491, 47497, 47501, 47507, 47513, 47521, 47527, 47533, 47543, 47563, 47569, 47581, 47591, 47599, 47609, 47623, 47629, 47639, 47653, 47657, 47659, 47681, 47699, 47701, 47711, 47713, 47717, 47737, 47741, 47743, 47777, 47779, 47791, 47797, 47807, 47809, 47819, 47837, 47843, 47857, 47869, 47881, 47903, 47911, 47917, 47933, 47939, 47947, 47951, 47963, 47969, 47977, 47981, 48017, 48023, 48029, 48049, 48073, 48079, 48091, 48109, 48119, 48121, 48131, 48157, 48163, 48179, 48187, 48193, 48197, 48221, 48239, 48247, 48259, 48271, 48281, 48299, 48311, 48313, 48337, 48341, 48353, 48371, 48383, 48397, 48407, 48409, 48413, 48437, 48449, 48463, 48473, 48479, 48481, 48487, 48491, 48497, 48523, 48527, 48533, 48539, 48541, 48563, 48571, 48589, 48593, 48611, 48619, 48623, 48647, 48649, 48661, 48673, 48677, 48679, 48731, 48733, 48751, 48757, 48761, 48767, 48779, 48781, 48787, 48799, 48809, 48817, 48821, 48823, 48847, 48857, 48859, 48869, 48871, 48883, 48889, 48907, 48947, 48953, 48973, 48989, 48991, 49003, 49009, 49019, 49031, 49033, 49037, 49043, 49057, 49069, 49081, 49103, 49109, 49117, 49121, 49123, 49139, 49157, 49169, 49171, 49177, 49193, 49199, 49201, 49207, 49211, 49223, 49253, 49261, 49277, 49279, 49297, 49307, 49331, 49333, 49339, 49363, 49367, 49369, 49391, 49393, 49409, 49411, 49417, 49429, 49433, 49451, 49459, 49463, 49477, 49481, 49499, 49523, 49529, 49531, 49537, 49547, 49549, 49559, 49597, 49603, 49613, 49627, 49633, 49639, 49663, 49667, 49669, 49681, 49697, 49711, 49727, 49739, 49741, 49747, 49757, 49783, 49787, 49789, 49801, 49807, 49811, 49823, 49831, 49843, 49853, 49871, 49877, 49891, 49919, 49921, 49927, 49937, 49939, 49943, 49957, 49991, 49993, 49999, 50021, 50023, 50033, 50047, 50051, 50053, 50069, 50077, 50087, 50093, 50101, 50111, 50119, 50123, 50129, 50131, 50147, 50153, 50159, 50177, 50207, 50221, 50227, 50231, 50261, 50263, 50273, 50287, 50291, 50311, 50321, 50329, 50333, 50341, 50359, 50363, 50377, 50383, 50387, 50411, 50417, 50423, 50441, 50459, 50461, 50497, 50503, 50513, 50527, 50539, 50543, 50549, 50551, 50581, 50587, 50591, 50593, 50599, 50627, 50647, 50651, 50671, 50683, 50707, 50723, 50741, 50753, 50767, 50773, 50777, 50789, 50821, 50833, 50839, 50849, 50857, 50867, 50873, 50891, 50893, 50909, 50923, 50929, 50951, 50957, 50969, 50971, 50989, 50993, 51001, 51031, 51043, 51047, 51059, 51061, 51071, 51109, 51131, 51133, 51137, 51151, 51157, 51169, 51193, 51197, 51199, 51203, 51217, 51229, 51239, 51241, 51257, 51263, 51283, 51287, 51307, 51329, 51341, 51343, 51347, 51349, 51361, 51383, 51407, 51413, 51419, 51421, 51427, 51431, 51437, 51439, 51449, 51461, 51473, 51479, 51481, 51487, 51503, 51511, 51517, 51521, 51539, 51551, 51563, 51577, 51581, 51593, 51599, 51607, 51613, 51631, 51637, 51647, 51659, 51673, 51679, 51683, 51691, 51713, 51719, 51721, 51749, 51767, 51769, 51787, 51797, 51803, 51817, 51827, 51829, 51839, 51853, 51859, 51869, 51871, 51893, 51899, 51907, 51913, 51929, 51941, 51949, 51971, 51973, 51977, 51991, 52009, 52021, 52027, 52051, 52057, 52067, 52069, 52081, 52103, 52121, 52127, 52147, 52153, 52163, 52177, 52181, 52183, 52189, 52201, 52223, 52237, 52249, 52253, 52259, 52267, 52289, 52291, 52301, 52313, 52321, 52361, 52363, 52369, 52379, 52387, 52391, 52433, 52453, 52457, 52489, 52501, 52511, 52517, 52529, 52541, 52543, 52553, 52561, 52567, 52571, 52579, 52583, 52609, 52627, 52631, 52639, 52667, 52673, 52691, 52697, 52709, 52711, 52721, 52727, 52733, 52747, 52757, 52769, 52783, 52807, 52813, 52817, 52837, 52859, 52861, 52879, 52883, 52889, 52901, 52903, 52919, 52937, 52951, 52957, 52963, 52967, 52973, 52981, 52999, 53003, 53017, 53047, 53051, 53069, 53077, 53087, 53089, 53093, 53101, 53113, 53117, 53129, 53147, 53149, 53161, 53171, 53173, 53189, 53197, 53201, 53231, 53233, 53239, 53267, 53269, 53279, 53281, 53299, 53309, 53323, 53327, 53353, 53359, 53377, 53381, 53401, 53407, 53411, 53419, 53437, 53441, 53453, 53479, 53503, 53507, 53527, 53549, 53551, 53569, 53591, 53593, 53597, 53609, 53611, 53617, 53623, 53629, 53633, 53639, 53653, 53657, 53681, 53693, 53699, 53717, 53719, 53731, 53759, 53773, 53777, 53783, 53791, 53813, 53819, 53831, 53849, 53857, 53861, 53881, 53887, 53891, 53897, 53899, 53917, 53923, 53927, 53939, 53951, 53959, 53987, 53993, 54001, 54011, 54013, 54037, 54049, 54059, 54083, 54091, 54101, 54121, 54133, 54139, 54151, 54163, 54167, 54181, 54193, 54217, 54251, 54269, 54277, 54287, 54293, 54311, 54319, 54323, 54331, 54347, 54361, 54367, 54371, 54377, 54401, 54403, 54409, 54413, 54419, 54421, 54437, 54443, 54449, 54469, 54493, 54497, 54499, 54503, 54517, 54521, 54539, 54541, 54547, 54559, 54563, 54577, 54581, 54583, 54601, 54617, 54623, 54629, 54631, 54647, 54667, 54673, 54679, 54709, 54713, 54721, 54727, 54751, 54767, 54773, 54779, 54787, 54799, 54829, 54833, 54851, 54869, 54877, 54881, 54907, 54917, 54919, 54941, 54949, 54959, 54973, 54979, 54983, 55001, 55009, 55021, 55049, 55051, 55057, 55061, 55073, 55079, 55103, 55109, 55117, 55127, 55147, 55163, 55171, 55201, 55207, 55213, 55217, 55219, 55229, 55243, 55249, 55259, 55291, 55313, 55331, 55333, 55337, 55339, 55343, 55351, 55373, 55381, 55399, 55411, 55439, 55441, 55457, 55469, 55487, 55501, 55511, 55529, 55541, 55547, 55579, 55589, 55603, 55609, 55619, 55621, 55631, 55633, 55639, 55661, 55663, 55667, 55673, 55681, 55691, 55697, 55711, 55717, 55721, 55733, 55763, 55787, 55793, 55799, 55807, 55813, 55817, 55819, 55823, 55829, 55837, 55843, 55849, 55871, 55889, 55897, 55901, 55903, 55921, 55927, 55931, 55933, 55949, 55967, 55987, 55997, 56003, 56009, 56039, 56041, 56053, 56081, 56087, 56093, 56099, 56101, 56113, 56123, 56131, 56149, 56167, 56171, 56179, 56197, 56207, 56209, 56237, 56239, 56249, 56263, 56267, 56269, 56299, 56311, 56333, 56359, 56369, 56377, 56383, 56393, 56401, 56417, 56431, 56437, 56443, 56453, 56467, 56473, 56477, 56479, 56489, 56501, 56503, 56509, 56519, 56527, 56531, 56533, 56543, 56569, 56591, 56597, 56599, 56611, 56629, 56633, 56659, 56663, 56671, 56681, 56687, 56701, 56711, 56713, 56731, 56737, 56747, 56767, 56773, 56779, 56783, 56807, 56809, 56813, 56821, 56827, 56843, 56857, 56873, 56891, 56893, 56897, 56909, 56911, 56921, 56923, 56929, 56941, 56951, 56957, 56963, 56983, 56989, 56993, 56999, 57037, 57041, 57047, 57059, 57073, 57077, 57089, 57097, 57107, 57119, 57131, 57139, 57143, 57149, 57163, 57173, 57179, 57191, 57193, 57203, 57221, 57223, 57241, 57251, 57259, 57269, 57271, 57283, 57287, 57301, 57329, 57331, 57347, 57349, 57367, 57373, 57383, 57389, 57397, 57413, 57427, 57457, 57467, 57487, 57493, 57503, 57527, 57529, 57557, 57559, 57571, 57587, 57593, 57601, 57637, 57641, 57649, 57653, 57667, 57679, 57689, 57697, 57709, 57713, 57719, 57727, 57731, 57737, 57751, 57773, 57781, 57787, 57791, 57793, 57803, 57809, 57829, 57839, 57847, 57853, 57859, 57881, 57899, 57901, 57917, 57923, 57943, 57947, 57973, 57977, 57991, 58013, 58027, 58031, 58043, 58049, 58057, 58061, 58067, 58073, 58099, 58109, 58111, 58129, 58147, 58151, 58153, 58169, 58171, 58189, 58193, 58199, 58207, 58211, 58217, 58229, 58231, 58237, 58243, 58271, 58309, 58313, 58321, 58337, 58363, 58367, 58369, 58379, 58391, 58393, 58403, 58411, 58417, 58427, 58439, 58441, 58451, 58453, 58477, 58481, 58511, 58537, 58543, 58549, 58567, 58573, 58579, 58601, 58603, 58613, 58631, 58657, 58661, 58679, 58687, 58693, 58699, 58711, 58727, 58733, 58741, 58757, 58763, 58771, 58787, 58789, 58831, 58889, 58897, 58901, 58907, 58909, 58913, 58921, 58937, 58943, 58963, 58967, 58979, 58991, 58997, 59009, 59011, 59021, 59023, 59029, 59051, 59053, 59063, 59069, 59077, 59083, 59093, 59107, 59113, 59119, 59123, 59141, 59149, 59159, 59167, 59183, 59197, 59207, 59209, 59219, 59221, 59233, 59239, 59243, 59263, 59273, 59281, 59333, 59341, 59351, 59357, 59359, 59369, 59377, 59387, 59393, 59399, 59407, 59417, 59419, 59441, 59443, 59447, 59453, 59467, 59471, 59473, 59497, 59509, 59513, 59539, 59557, 59561, 59567, 59581, 59611, 59617, 59621, 59627, 59629, 59651, 59659, 59663, 59669, 59671, 59693, 59699, 59707, 59723, 59729, 59743, 59747, 59753, 59771, 59779, 59791, 59797, 59809, 59833, 59863, 59879, 59887, 59921, 59929, 59951, 59957, 59971, 59981, 59999, 60013, 60017, 60029, 60037, 60041, 60077, 60083, 60089, 60091, 60101, 60103, 60107, 60127, 60133, 60139, 60149, 60161, 60167, 60169, 60209, 60217, 60223, 60251, 60257, 60259, 60271, 60289, 60293, 60317, 60331, 60337, 60343, 60353, 60373, 60383, 60397, 60413, 60427, 60443, 60449, 60457, 60493, 60497, 60509, 60521, 60527, 60539, 60589, 60601, 60607, 60611, 60617, 60623, 60631, 60637, 60647, 60649, 60659, 60661, 60679, 60689, 60703, 60719, 60727, 60733, 60737, 60757, 60761, 60763, 60773, 60779, 60793, 60811, 60821, 60859, 60869, 60887, 60889, 60899, 60901, 60913, 60917, 60919, 60923, 60937, 60943, 60953, 60961, 61001, 61007, 61027, 61031, 61043, 61051, 61057, 61091, 61099, 61121, 61129, 61141, 61151, 61153, 61169, 61211, 61223, 61231, 61253, 61261, 61283, 61291, 61297, 61331, 61333, 61339, 61343, 61357, 61363, 61379, 61381, 61403, 61409, 61417, 61441, 61463, 61469, 61471, 61483, 61487, 61493, 61507, 61511, 61519, 61543, 61547, 61553, 61559, 61561, 61583, 61603, 61609, 61613, 61627, 61631, 61637, 61643, 61651, 61657, 61667, 61673, 61681, 61687, 61703, 61717, 61723, 61729, 61751, 61757, 61781, 61813, 61819, 61837, 61843, 61861, 61871, 61879, 61909, 61927, 61933, 61949, 61961, 61967, 61979, 61981, 61987, 61991, 62003, 62011, 62017, 62039, 62047, 62053, 62057, 62071, 62081, 62099, 62119, 62129, 62131, 62137, 62141, 62143, 62171, 62189, 62191, 62201, 62207, 62213, 62219, 62233, 62273, 62297, 62299, 62303, 62311, 62323, 62327, 62347, 62351, 62383, 62401, 62417, 62423, 62459, 62467, 62473, 62477, 62483, 62497, 62501, 62507, 62533, 62539, 62549, 62563, 62581, 62591, 62597, 62603, 62617, 62627, 62633, 62639, 62653, 62659, 62683, 62687, 62701, 62723, 62731, 62743, 62753, 62761, 62773, 62791, 62801, 62819, 62827, 62851, 62861, 62869, 62873, 62897, 62903, 62921, 62927, 62929, 62939, 62969, 62971, 62981, 62983, 62987, 62989, 63029, 63031, 63059, 63067, 63073, 63079, 63097, 63103, 63113, 63127, 63131, 63149, 63179, 63197, 63199, 63211, 63241, 63247, 63277, 63281, 63299, 63311, 63313, 63317, 63331, 63337, 63347, 63353, 63361, 63367, 63377, 63389, 63391, 63397, 63409, 63419, 63421, 63439, 63443, 63463, 63467, 63473, 63487, 63493, 63499, 63521, 63527, 63533, 63541, 63559, 63577, 63587, 63589, 63599, 63601, 63607, 63611, 63617, 63629, 63647, 63649, 63659, 63667, 63671, 63689, 63691, 63697, 63703, 63709, 63719, 63727, 63737, 63743, 63761, 63773, 63781, 63793, 63799, 63803, 63809, 63823, 63839, 63841, 63853, 63857, 63863, 63901, 63907, 63913, 63929, 63949, 63977, 63997, 64007, 64013, 64019, 64033, 64037, 64063, 64067, 64081, 64091, 64109, 64123, 64151, 64153, 64157, 64171, 64187, 64189, 64217, 64223, 64231, 64237, 64271, 64279, 64283, 64301, 64303, 64319, 64327, 64333, 64373, 64381, 64399, 64403, 64433, 64439, 64451, 64453, 64483, 64489, 64499, 64513, 64553, 64567, 64577, 64579, 64591, 64601, 64609, 64613, 64621, 64627, 64633, 64661, 64663, 64667, 64679, 64693, 64709, 64717, 64747, 64763, 64781, 64783, 64793, 64811, 64817, 64849, 64853, 64871, 64877, 64879, 64891, 64901, 64919, 64921, 64927, 64937, 64951, 64969, 64997, 65003, 65011, 65027, 65029, 65033, 65053, 65063, 65071, 65089, 65099, 65101, 65111, 65119, 65123, 65129, 65141, 65147, 65167, 65171, 65173, 65179, 65183, 65203, 65213, 65239, 65257, 65267, 65269, 65287, 65293, 65309, 65323, 65327, 65353, 65357, 65371, 65381, 65393, 65407, 65413, 65419, 65423, 65437, 65447, 65449, 65479, 65497, 65519, 65521, 65537, 65539, 65543, 65551, 65557, 65563, 65579, 65581, 65587, 65599, 65609, 65617, 65629, 65633, 65647, 65651, 65657, 65677, 65687, 65699, 65701, 65707, 65713, 65717, 65719, 65729, 65731, 65761, 65777, 65789, 65809, 65827, 65831, 65837, 65839, 65843, 65851, 65867, 65881, 65899, 65921, 65927, 65929, 65951, 65957, 65963, 65981, 65983, 65993, 66029, 66037, 66041, 66047, 66067, 66071, 66083, 66089, 66103, 66107, 66109, 66137, 66161, 66169, 66173, 66179, 66191, 66221, 66239, 66271, 66293, 66301, 66337, 66343, 66347, 66359, 66361, 66373, 66377, 66383, 66403, 66413, 66431, 66449, 66457, 66463, 66467, 66491, 66499, 66509, 66523, 66529, 66533, 66541, 66553, 66569, 66571, 66587, 66593, 66601, 66617, 66629, 66643, 66653, 66683, 66697, 66701, 66713, 66721, 66733, 66739, 66749, 66751, 66763, 66791, 66797, 66809, 66821, 66841, 66851, 66853, 66863, 66877, 66883, 66889, 66919, 66923, 66931, 66943, 66947, 66949, 66959, 66973, 66977, 67003, 67021, 67033, 67043, 67049, 67057, 67061, 67073, 67079, 67103, 67121, 67129, 67139, 67141, 67153, 67157, 67169, 67181, 67187, 67189, 67211, 67213, 67217, 67219, 67231, 67247, 67261, 67271, 67273, 67289, 67307, 67339, 67343, 67349, 67369, 67391, 67399, 67409, 67411, 67421, 67427, 67429, 67433, 67447, 67453, 67477, 67481, 67489, 67493, 67499, 67511, 67523, 67531, 67537, 67547, 67559, 67567, 67577, 67579, 67589, 67601, 67607, 67619, 67631, 67651, 67679, 67699, 67709, 67723, 67733, 67741, 67751, 67757, 67759, 67763, 67777, 67783, 67789, 67801, 67807, 67819, 67829, 67843, 67853, 67867, 67883, 67891, 67901, 67927, 67931, 67933, 67939, 67943, 67957, 67961, 67967, 67979, 67987, 67993, 68023, 68041, 68053, 68059, 68071, 68087, 68099, 68111, 68113, 68141, 68147, 68161, 68171, 68207, 68209, 68213, 68219, 68227, 68239, 68261, 68279, 68281, 68311, 68329, 68351, 68371, 68389, 68399, 68437, 68443, 68447, 68449, 68473, 68477, 68483, 68489, 68491, 68501, 68507, 68521, 68531, 68539, 68543, 68567, 68581, 68597, 68611, 68633, 68639, 68659, 68669, 68683, 68687, 68699, 68711, 68713, 68729, 68737, 68743, 68749, 68767, 68771, 68777, 68791, 68813, 68819, 68821, 68863, 68879, 68881, 68891, 68897, 68899, 68903, 68909, 68917, 68927, 68947, 68963, 68993, 69001, 69011, 69019, 69029, 69031, 69061, 69067, 69073, 69109, 69119, 69127, 69143, 69149, 69151, 69163, 69191, 69193, 69197, 69203, 69221, 69233, 69239, 69247, 69257, 69259, 69263, 69313, 69317, 69337, 69341, 69371, 69379, 69383, 69389, 69401, 69403, 69427, 69431, 69439, 69457, 69463, 69467, 69473, 69481, 69491, 69493, 69497, 69499, 69539, 69557, 69593, 69623, 69653, 69661, 69677, 69691, 69697, 69709, 69737, 69739, 69761, 69763, 69767, 69779, 69809, 69821, 69827, 69829, 69833, 69847, 69857, 69859, 69877, 69899, 69911, 69929, 69931, 69941, 69959, 69991, 69997, 70001, 70003, 70009, 70019, 70039, 70051, 70061, 70067, 70079, 70099, 70111, 70117, 70121, 70123, 70139, 70141, 70157, 70163, 70177, 70181, 70183, 70199, 70201, 70207, 70223, 70229, 70237, 70241, 70249, 70271, 70289, 70297, 70309, 70313, 70321, 70327, 70351, 70373, 70379, 70381, 70393, 70423, 70429, 70439, 70451, 70457, 70459, 70481, 70487, 70489, 70501, 70507, 70529, 70537, 70549, 70571, 70573, 70583, 70589, 70607, 70619, 70621, 70627, 70639, 70657, 70663, 70667, 70687, 70709, 70717, 70729, 70753, 70769, 70783, 70793, 70823, 70841, 70843, 70849, 70853, 70867, 70877, 70879, 70891, 70901, 70913, 70919, 70921, 70937, 70949, 70951, 70957, 70969, 70979, 70981, 70991, 70997, 70999, 71011, 71023, 71039, 71059, 71069, 71081, 71089, 71119, 71129, 71143, 71147, 71153, 71161, 71167, 71171, 71191, 71209, 71233, 71237, 71249, 71257, 71261, 71263, 71287, 71293, 71317, 71327, 71329, 71333, 71339, 71341, 71347, 71353, 71359, 71363, 71387, 71389, 71399, 71411, 71413, 71419, 71429, 71437, 71443, 71453, 71471, 71473, 71479, 71483, 71503, 71527, 71537, 71549, 71551, 71563, 71569, 71593, 71597, 71633, 71647, 71663, 71671, 71693, 71699, 71707, 71711, 71713, 71719, 71741, 71761, 71777, 71789, 71807, 71809, 71821, 71837, 71843, 71849, 71861, 71867, 71879, 71881, 71887, 71899, 71909, 71917, 71933, 71941, 71947, 71963, 71971, 71983, 71987, 71993, 71999, 72019, 72031, 72043, 72047, 72053, 72073, 72077, 72089, 72091, 72101, 72103, 72109, 72139, 72161, 72167, 72169, 72173, 72211, 72221, 72223, 72227, 72229, 72251, 72253, 72269, 72271, 72277, 72287, 72307, 72313, 72337, 72341, 72353, 72367, 72379, 72383, 72421, 72431, 72461, 72467, 72469, 72481, 72493, 72497, 72503, 72533, 72547, 72551, 72559, 72577, 72613, 72617, 72623, 72643, 72647, 72649, 72661, 72671, 72673, 72679, 72689, 72701, 72707, 72719, 72727, 72733, 72739, 72763, 72767, 72797, 72817, 72823, 72859, 72869, 72871, 72883, 72889, 72893, 72901, 72907, 72911, 72923, 72931, 72937, 72949, 72953, 72959, 72973, 72977, 72997, 73009, 73013, 73019, 73037, 73039, 73043, 73061, 73063, 73079, 73091, 73121, 73127, 73133, 73141, 73181, 73189, 73237, 73243, 73259, 73277, 73291, 73303, 73309, 73327, 73331, 73351, 73361, 73363, 73369, 73379, 73387, 73417, 73421, 73433, 73453, 73459, 73471, 73477, 73483, 73517, 73523, 73529, 73547, 73553, 73561, 73571, 73583, 73589, 73597, 73607, 73609, 73613, 73637, 73643, 73651, 73673, 73679, 73681, 73693, 73699, 73709, 73721, 73727, 73751, 73757, 73771, 73783, 73819, 73823, 73847, 73849, 73859, 73867, 73877, 73883, 73897, 73907, 73939, 73943, 73951, 73961, 73973, 73999, 74017, 74021, 74027, 74047, 74051, 74071, 74077, 74093, 74099, 74101, 74131, 74143, 74149, 74159, 74161, 74167, 74177, 74189, 74197, 74201, 74203, 74209, 74219, 74231, 74257, 74279, 74287, 74293, 74297, 74311, 74317, 74323, 74353, 74357, 74363, 74377, 74381, 74383, 74411, 74413, 74419, 74441, 74449, 74453, 74471, 74489, 74507, 74509, 74521, 74527, 74531, 74551, 74561, 74567, 74573, 74587, 74597, 74609, 74611, 74623, 74653, 74687, 74699, 74707, 74713, 74717, 74719, 74729, 74731, 74747, 74759, 74761, 74771, 74779, 74797, 74821, 74827, 74831, 74843, 74857, 74861, 74869, 74873, 74887, 74891, 74897, 74903, 74923, 74929, 74933, 74941, 74959, 75011, 75013, 75017, 75029, 75037, 75041, 75079, 75083, 75109, 75133, 75149, 75161, 75167, 75169, 75181, 75193, 75209, 75211, 75217, 75223, 75227, 75239, 75253, 75269, 75277, 75289, 75307, 75323, 75329, 75337, 75347, 75353, 75367, 75377, 75389, 75391, 75401, 75403, 75407, 75431, 75437, 75479, 75503, 75511, 75521, 75527, 75533, 75539, 75541, 75553, 75557, 75571, 75577, 75583, 75611, 75617, 75619, 75629, 75641, 75653, 75659, 75679, 75683, 75689, 75703, 75707, 75709, 75721, 75731, 75743, 75767, 75773, 75781, 75787, 75793, 75797, 75821, 75833, 75853, 75869, 75883, 75913, 75931, 75937, 75941, 75967, 75979, 75983, 75989, 75991, 75997, 76001, 76003, 76031, 76039, 76079, 76081, 76091, 76099, 76103, 76123, 76129, 76147, 76157, 76159, 76163, 76207, 76213, 76231, 76243, 76249, 76253, 76259, 76261, 76283, 76289, 76303, 76333, 76343, 76367, 76369, 76379, 76387, 76403, 76421, 76423, 76441, 76463, 76471, 76481, 76487, 76493, 76507, 76511, 76519, 76537, 76541, 76543, 76561, 76579, 76597, 76603, 76607, 76631, 76649, 76651, 76667, 76673, 76679, 76697, 76717, 76733, 76753, 76757, 76771, 76777, 76781, 76801, 76819, 76829, 76831, 76837, 76847, 76871, 76873, 76883, 76907, 76913, 76919, 76943, 76949, 76961, 76963, 76991, 77003, 77017, 77023, 77029, 77041, 77047, 77069, 77081, 77093, 77101, 77137, 77141, 77153, 77167, 77171, 77191, 77201, 77213, 77237, 77239, 77243, 77249, 77261, 77263, 77267, 77269, 77279, 77291, 77317, 77323, 77339, 77347, 77351, 77359, 77369, 77377, 77383, 77417, 77419, 77431, 77447, 77471, 77477, 77479, 77489, 77491, 77509, 77513, 77521, 77527, 77543, 77549, 77551, 77557, 77563, 77569, 77573, 77587, 77591, 77611, 77617, 77621, 77641, 77647, 77659, 77681, 77687, 77689, 77699, 77711, 77713, 77719, 77723, 77731, 77743, 77747, 77761, 77773, 77783, 77797, 77801, 77813, 77839, 77849, 77863, 77867, 77893, 77899, 77929, 77933, 77951, 77969, 77977, 77983, 77999, 78007, 78017, 78031, 78041, 78049, 78059, 78079, 78101, 78121, 78137, 78139, 78157, 78163, 78167, 78173, 78179, 78191, 78193, 78203, 78229, 78233, 78241, 78259, 78277, 78283, 78301, 78307, 78311, 78317, 78341, 78347, 78367, 78401, 78427, 78437, 78439, 78467, 78479, 78487, 78497, 78509, 78511, 78517, 78539, 78541, 78553, 78569, 78571, 78577, 78583, 78593, 78607, 78623, 78643, 78649, 78653, 78691, 78697, 78707, 78713, 78721, 78737, 78779, 78781, 78787, 78791, 78797, 78803, 78809, 78823, 78839, 78853, 78857, 78877, 78887, 78889, 78893, 78901, 78919, 78929, 78941, 78977, 78979, 78989, 79031, 79039, 79043, 79063, 79087, 79103, 79111, 79133, 79139, 79147, 79151, 79153, 79159, 79181, 79187, 79193, 79201, 79229, 79231, 79241, 79259, 79273, 79279, 79283, 79301, 79309, 79319, 79333, 79337, 79349, 79357, 79367, 79379, 79393, 79397, 79399, 79411, 79423, 79427, 79433, 79451, 79481, 79493, 79531, 79537, 79549, 79559, 79561, 79579, 79589, 79601, 79609, 79613, 79621, 79627, 79631, 79633, 79657, 79669, 79687, 79691, 79693, 79697, 79699, 79757, 79769, 79777, 79801, 79811, 79813, 79817, 79823, 79829, 79841, 79843, 79847, 79861, 79867, 79873, 79889, 79901, 79903, 79907, 79939, 79943, 79967, 79973, 79979, 79987, 79997, 79999, 80021, 80039, 80051, 80071, 80077, 80107, 80111, 80141, 80147, 80149, 80153, 80167, 80173, 80177, 80191, 80207, 80209, 80221, 80231, 80233, 80239, 80251, 80263, 80273, 80279, 80287, 80309, 80317, 80329, 80341, 80347, 80363, 80369, 80387, 80407, 80429, 80447, 80449, 80471, 80473, 80489, 80491, 80513, 80527, 80537, 80557, 80567, 80599, 80603, 80611, 80621, 80627, 80629, 80651, 80657, 80669, 80671, 80677, 80681, 80683, 80687, 80701, 80713, 80737, 80747, 80749, 80761, 80777, 80779, 80783, 80789, 80803, 80809, 80819, 80831, 80833, 80849, 80863, 80897, 80909, 80911, 80917, 80923, 80929, 80933, 80953, 80963, 80989, 81001, 81013, 81017, 81019, 81023, 81031, 81041, 81043, 81047, 81049, 81071, 81077, 81083, 81097, 81101, 81119, 81131, 81157, 81163, 81173, 81181, 81197, 81199, 81203, 81223, 81233, 81239, 81281, 81283, 81293, 81299, 81307, 81331, 81343, 81349, 81353, 81359, 81371, 81373, 81401, 81409, 81421, 81439, 81457, 81463, 81509, 81517, 81527, 81533, 81547, 81551, 81553, 81559, 81563, 81569, 81611, 81619, 81629, 81637, 81647, 81649, 81667, 81671, 81677, 81689, 81701, 81703, 81707, 81727, 81737, 81749, 81761, 81769, 81773, 81799, 81817, 81839, 81847, 81853, 81869, 81883, 81899, 81901, 81919, 81929, 81931, 81937, 81943, 81953, 81967, 81971, 81973, 82003, 82007, 82009, 82013, 82021, 82031, 82037, 82039, 82051, 82067, 82073, 82129, 82139, 82141, 82153, 82163, 82171, 82183, 82189, 82193, 82207, 82217, 82219, 82223, 82231, 82237, 82241, 82261, 82267, 82279, 82301, 82307, 82339, 82349, 82351, 82361, 82373, 82387, 82393, 82421, 82457, 82463, 82469, 82471, 82483, 82487, 82493, 82499, 82507, 82529, 82531, 82549, 82559, 82561, 82567, 82571, 82591, 82601, 82609, 82613, 82619, 82633, 82651, 82657, 82699, 82721, 82723, 82727, 82729, 82757, 82759, 82763, 82781, 82787, 82793, 82799, 82811, 82813, 82837, 82847, 82883, 82889, 82891, 82903, 82913, 82939, 82963, 82981, 82997, 83003, 83009, 83023, 83047, 83059, 83063, 83071, 83077, 83089, 83093, 83101, 83117, 83137, 83177, 83203, 83207, 83219, 83221, 83227, 83231, 83233, 83243, 83257, 83267, 83269, 83273, 83299, 83311, 83339, 83341, 83357, 83383, 83389, 83399, 83401, 83407, 83417, 83423, 83431, 83437, 83443, 83449, 83459, 83471, 83477, 83497, 83537, 83557, 83561, 83563, 83579, 83591, 83597, 83609, 83617, 83621, 83639, 83641, 83653, 83663, 83689, 83701, 83717, 83719, 83737, 83761, 83773, 83777, 83791, 83813, 83833, 83843, 83857, 83869, 83873, 83891, 83903, 83911, 83921, 83933, 83939, 83969, 83983, 83987, 84011, 84017, 84047, 84053, 84059, 84061, 84067, 84089, 84121, 84127, 84131, 84137, 84143, 84163, 84179, 84181, 84191, 84199, 84211, 84221, 84223, 84229, 84239, 84247, 84263, 84299, 84307, 84313, 84317, 84319, 84347, 84349, 84377, 84389, 84391, 84401, 84407, 84421, 84431, 84437, 84443, 84449, 84457, 84463, 84467, 84481, 84499, 84503, 84509, 84521, 84523, 84533, 84551, 84559, 84589, 84629, 84631, 84649, 84653, 84659, 84673, 84691, 84697, 84701, 84713, 84719, 84731, 84737, 84751, 84761, 84787, 84793, 84809, 84811, 84827, 84857, 84859, 84869, 84871, 84913, 84919, 84947, 84961, 84967, 84977, 84979, 84991, 85009, 85021, 85027, 85037, 85049, 85061, 85081, 85087, 85091, 85093, 85103, 85109, 85121, 85133, 85147, 85159, 85193, 85199, 85201, 85213, 85223, 85229, 85237, 85243, 85247, 85259, 85297, 85303, 85313, 85331, 85333, 85361, 85363, 85369, 85381, 85411, 85427, 85429, 85439, 85447, 85451, 85453, 85469, 85487, 85513, 85517, 85523, 85531, 85549, 85571, 85577, 85597, 85601, 85607, 85619, 85621, 85627, 85639, 85643, 85661, 85667, 85669, 85691, 85703, 85711, 85717, 85733, 85751, 85781, 85793, 85817, 85819, 85829, 85831, 85837, 85843, 85847, 85853, 85889, 85903, 85909, 85931, 85933, 85991, 85999, 86011, 86017, 86027, 86029, 86069, 86077, 86083, 86111, 86113, 86117, 86131, 86137, 86143, 86161, 86171, 86179, 86183, 86197, 86201, 86209, 86239, 86243, 86249, 86257, 86263, 86269, 86287, 86291, 86293, 86297, 86311, 86323, 86341, 86351, 86353, 86357, 86369, 86371, 86381, 86389, 86399, 86413, 86423, 86441, 86453, 86461, 86467, 86477, 86491, 86501, 86509, 86531, 86533, 86539, 86561, 86573, 86579, 86587, 86599, 86627, 86629, 86677, 86689, 86693, 86711, 86719, 86729, 86743, 86753, 86767, 86771, 86783, 86813, 86837, 86843, 86851, 86857, 86861, 86869, 86923, 86927, 86929, 86939, 86951, 86959, 86969, 86981, 86993, 87011, 87013, 87037, 87041, 87049, 87071, 87083, 87103, 87107, 87119, 87121, 87133, 87149, 87151, 87179, 87181, 87187, 87211, 87221, 87223, 87251, 87253, 87257, 87277, 87281, 87293, 87299, 87313, 87317, 87323, 87337, 87359, 87383, 87403, 87407, 87421, 87427, 87433, 87443, 87473, 87481, 87491, 87509, 87511, 87517, 87523, 87539, 87541, 87547, 87553, 87557, 87559, 87583, 87587, 87589, 87613, 87623, 87629, 87631, 87641, 87643, 87649, 87671, 87679, 87683, 87691, 87697, 87701, 87719, 87721, 87739, 87743, 87751, 87767, 87793, 87797, 87803, 87811, 87833, 87853, 87869, 87877, 87881, 87887, 87911, 87917, 87931, 87943, 87959, 87961, 87973, 87977, 87991, 88001, 88003, 88007, 88019, 88037, 88069, 88079, 88093, 88117, 88129, 88169, 88177, 88211, 88223, 88237, 88241, 88259, 88261, 88289, 88301, 88321, 88327, 88337, 88339, 88379, 88397, 88411, 88423, 88427, 88463, 88469, 88471, 88493, 88499, 88513, 88523, 88547, 88589, 88591, 88607, 88609, 88643, 88651, 88657, 88661, 88663, 88667, 88681, 88721, 88729, 88741, 88747, 88771, 88789, 88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819, 88843, 88853, 88861, 88867, 88873, 88883, 88897, 88903, 88919, 88937, 88951, 88969, 88993, 88997, 89003, 89009, 89017, 89021, 89041, 89051, 89057, 89069, 89071, 89083, 89087, 89101, 89107, 89113, 89119, 89123, 89137, 89153, 89189, 89203, 89209, 89213, 89227, 89231, 89237, 89261, 89269, 89273, 89293, 89303, 89317, 89329, 89363, 89371, 89381, 89387, 89393, 89399, 89413, 89417, 89431, 89443, 89449, 89459, 89477, 89491, 89501, 89513, 89519, 89521, 89527, 89533, 89561, 89563, 89567, 89591, 89597, 89599, 89603, 89611, 89627, 89633, 89653, 89657, 89659, 89669, 89671, 89681, 89689, 89753, 89759, 89767, 89779, 89783, 89797, 89809, 89819, 89821, 89833, 89839, 89849, 89867, 89891, 89897, 89899, 89909, 89917, 89923, 89939, 89959, 89963, 89977, 89983, 89989, 90001, 90007, 90011, 90017, 90019, 90023, 90031, 90053, 90059, 90067, 90071, 90073, 90089, 90107, 90121, 90127, 90149, 90163, 90173, 90187, 90191, 90197, 90199, 90203, 90217, 90227, 90239, 90247, 90263, 90271, 90281, 90289, 90313, 90353, 90359, 90371, 90373, 90379, 90397, 90401, 90403, 90407, 90437, 90439, 90469, 90473, 90481, 90499, 90511, 90523, 90527, 90529, 90533, 90547, 90583, 90599, 90617, 90619, 90631, 90641, 90647, 90659, 90677, 90679, 90697, 90703, 90709, 90731, 90749, 90787, 90793, 90803, 90821, 90823, 90833, 90841, 90847, 90863, 90887, 90901, 90907, 90911, 90917, 90931, 90947, 90971, 90977, 90989, 90997, 91009, 91019, 91033, 91079, 91081, 91097, 91099, 91121, 91127, 91129, 91139, 91141, 91151, 91153, 91159, 91163, 91183, 91193, 91199, 91229, 91237, 91243, 91249, 91253, 91283, 91291, 91297, 91303, 91309, 91331, 91367, 91369, 91373, 91381, 91387, 91393, 91397, 91411, 91423, 91433, 91453, 91457, 91459, 91463, 91493, 91499, 91513, 91529, 91541, 91571, 91573, 91577, 91583, 91591, 91621, 91631, 91639, 91673, 91691, 91703, 91711, 91733, 91753, 91757, 91771, 91781, 91801, 91807, 91811, 91813, 91823, 91837, 91841, 91867, 91873, 91909, 91921, 91939, 91943, 91951, 91957, 91961, 91967, 91969, 91997, 92003, 92009, 92033, 92041, 92051, 92077, 92083, 92107, 92111, 92119, 92143, 92153, 92173, 92177, 92179, 92189, 92203, 92219, 92221, 92227, 92233, 92237, 92243, 92251, 92269, 92297, 92311, 92317, 92333, 92347, 92353, 92357, 92363, 92369, 92377, 92381, 92383, 92387, 92399, 92401, 92413, 92419, 92431, 92459, 92461, 92467, 92479, 92489, 92503, 92507, 92551, 92557, 92567, 92569, 92581, 92593, 92623, 92627, 92639, 92641, 92647, 92657, 92669, 92671, 92681, 92683, 92693, 92699, 92707, 92717, 92723, 92737, 92753, 92761, 92767, 92779, 92789, 92791, 92801, 92809, 92821, 92831, 92849, 92857, 92861, 92863, 92867, 92893, 92899, 92921, 92927, 92941, 92951, 92957, 92959, 92987, 92993, 93001, 93047, 93053, 93059, 93077, 93083, 93089, 93097, 93103, 93113, 93131, 93133, 93139, 93151, 93169, 93179, 93187, 93199, 93229, 93239, 93241, 93251, 93253, 93257, 93263, 93281, 93283, 93287, 93307, 93319, 93323, 93329, 93337, 93371, 93377, 93383, 93407, 93419, 93427, 93463, 93479, 93481, 93487, 93491, 93493, 93497, 93503, 93523, 93529, 93553, 93557, 93559, 93563, 93581, 93601, 93607, 93629, 93637, 93683, 93701, 93703, 93719, 93739, 93761, 93763, 93787, 93809, 93811, 93827, 93851, 93871, 93887, 93889, 93893, 93901, 93911, 93913, 93923, 93937, 93941, 93949, 93967, 93971, 93979, 93983, 93997, 94007, 94009, 94033, 94049, 94057, 94063, 94079, 94099, 94109, 94111, 94117, 94121, 94151, 94153, 94169, 94201, 94207, 94219, 94229, 94253, 94261, 94273, 94291, 94307, 94309, 94321, 94327, 94331, 94343, 94349, 94351, 94379, 94397, 94399, 94421, 94427, 94433, 94439, 94441, 94447, 94463, 94477, 94483, 94513, 94529, 94531, 94541, 94543, 94547, 94559, 94561, 94573, 94583, 94597, 94603, 94613, 94621, 94649, 94651, 94687, 94693, 94709, 94723, 94727, 94747, 94771, 94777, 94781, 94789, 94793, 94811, 94819, 94823, 94837, 94841, 94847, 94849, 94873, 94889, 94903, 94907, 94933, 94949, 94951, 94961, 94993, 94999, 95003, 95009, 95021, 95027, 95063, 95071, 95083, 95087, 95089, 95093, 95101, 95107, 95111, 95131, 95143, 95153, 95177, 95189, 95191, 95203, 95213, 95219, 95231, 95233, 95239, 95257, 95261, 95267, 95273, 95279, 95287, 95311, 95317, 95327, 95339, 95369, 95383, 95393, 95401, 95413, 95419, 95429, 95441, 95443, 95461, 95467, 95471, 95479, 95483, 95507, 95527, 95531, 95539, 95549, 95561, 95569, 95581, 95597, 95603, 95617, 95621, 95629, 95633, 95651, 95701, 95707, 95713, 95717, 95723, 95731, 95737, 95747, 95773, 95783, 95789, 95791, 95801, 95803, 95813, 95819, 95857, 95869, 95873, 95881, 95891, 95911, 95917, 95923, 95929, 95947, 95957, 95959, 95971, 95987, 95989, 96001, 96013, 96017, 96043, 96053, 96059, 96079, 96097, 96137, 96149, 96157, 96167, 96179, 96181, 96199, 96211, 96221, 96223, 96233, 96259, 96263, 96269, 96281, 96289, 96293, 96323, 96329, 96331, 96337, 96353, 96377, 96401, 96419, 96431, 96443, 96451, 96457, 96461, 96469, 96479, 96487, 96493, 96497, 96517, 96527, 96553, 96557, 96581, 96587, 96589, 96601, 96643, 96661, 96667, 96671, 96697, 96703, 96731, 96737, 96739, 96749, 96757, 96763, 96769, 96779, 96787, 96797, 96799, 96821, 96823, 96827, 96847, 96851, 96857, 96893, 96907, 96911, 96931, 96953, 96959, 96973, 96979, 96989, 96997, 97001, 97003, 97007, 97021, 97039, 97073, 97081, 97103, 97117, 97127, 97151, 97157, 97159, 97169, 97171, 97177, 97187, 97213, 97231, 97241, 97259, 97283, 97301, 97303, 97327, 97367, 97369, 97373, 97379, 97381, 97387, 97397, 97423, 97429, 97441, 97453, 97459, 97463, 97499, 97501, 97511, 97523, 97547, 97549, 97553, 97561, 97571, 97577, 97579, 97583, 97607, 97609, 97613, 97649, 97651, 97673, 97687, 97711, 97729, 97771, 97777, 97787, 97789, 97813, 97829, 97841, 97843, 97847, 97849, 97859, 97861, 97871, 97879, 97883, 97919, 97927, 97931, 97943, 97961, 97967, 97973, 97987, 98009, 98011, 98017, 98041, 98047, 98057, 98081, 98101, 98123, 98129, 98143, 98179, 98207, 98213, 98221, 98227, 98251, 98257, 98269, 98297, 98299, 98317, 98321, 98323, 98327, 98347, 98369, 98377, 98387, 98389, 98407, 98411, 98419, 98429, 98443, 98453, 98459, 98467, 98473, 98479, 98491, 98507, 98519, 98533, 98543, 98561, 98563, 98573, 98597, 98621, 98627, 98639, 98641, 98663, 98669, 98689, 98711, 98713, 98717, 98729, 98731, 98737, 98773, 98779, 98801, 98807, 98809, 98837, 98849, 98867, 98869, 98873, 98887, 98893, 98897, 98899, 98909, 98911, 98927, 98929, 98939, 98947, 98953, 98963, 98981, 98993, 98999, 99013, 99017, 99023, 99041, 99053, 99079, 99083, 99089, 99103, 99109, 99119, 99131, 99133, 99137, 99139, 99149, 99173, 99181, 99191, 99223, 99233, 99241, 99251, 99257, 99259, 99277, 99289, 99317, 99347, 99349, 99367, 99371, 99377, 99391, 99397, 99401, 99409, 99431, 99439, 99469, 99487, 99497, 99523, 99527, 99529, 99551, 99559, 99563, 99571, 99577, 99581, 99607, 99611, 99623, 99643, 99661, 99667, 99679, 99689, 99707, 99709, 99713, 99719, 99721, 99733, 99761, 99767, 99787, 99793, 99809, 99817, 99823, 99829, 99833, 99839, 99859, 99871, 99877, 99881, 99901, 99907, 99923, 99929, 99961, 99971, 99989, 99991, 100003, 100019, 100043, 100049, 100057, 100069, 100103, 100109, 100129, 100151, 100153, 100169, 100183, 100189, 100193, 100207, 100213, 100237, 100267, 100271, 100279, 100291, 100297, 100313, 100333, 100343, 100357, 100361, 100363, 100379, 100391, 100393, 100403, 100411, 100417, 100447, 100459, 100469, 100483, 100493, 100501, 100511, 100517, 100519, 100523, 100537, 100547, 100549, 100559, 100591, 100609, 100613, 100621, 100649, 100669, 100673, 100693, 100699, 100703, 100733, 100741, 100747, 100769, 100787, 100799, 100801, 100811, 100823, 100829, 100847, 100853, 100907, 100913, 100927, 100931, 100937, 100943, 100957, 100981, 100987, 100999, 101009, 101021, 101027, 101051, 101063, 101081, 101089, 101107, 101111, 101113, 101117, 101119, 101141, 101149, 101159, 101161, 101173, 101183, 101197, 101203, 101207, 101209, 101221, 101267, 101273, 101279, 101281, 101287, 101293, 101323, 101333, 101341, 101347, 101359, 101363, 101377, 101383, 101399, 101411, 101419, 101429, 101449, 101467, 101477, 101483, 101489, 101501, 101503, 101513, 101527, 101531, 101533, 101537, 101561, 101573, 101581, 101599, 101603, 101611, 101627, 101641, 101653, 101663, 101681, 101693, 101701, 101719, 101723, 101737, 101741, 101747, 101749, 101771, 101789, 101797, 101807, 101833, 101837, 101839, 101863, 101869, 101873, 101879, 101891, 101917, 101921, 101929, 101939, 101957, 101963, 101977, 101987, 101999, 102001, 102013, 102019, 102023, 102031, 102043, 102059, 102061, 102071, 102077, 102079, 102101, 102103, 102107, 102121, 102139, 102149, 102161, 102181, 102191, 102197, 102199, 102203, 102217, 102229, 102233, 102241, 102251, 102253, 102259, 102293, 102299, 102301, 102317, 102329, 102337, 102359, 102367, 102397, 102407, 102409, 102433, 102437, 102451, 102461, 102481, 102497, 102499, 102503, 102523, 102533, 102539, 102547, 102551, 102559, 102563, 102587, 102593, 102607, 102611, 102643, 102647, 102653, 102667, 102673, 102677, 102679, 102701, 102761, 102763, 102769, 102793, 102797, 102811, 102829, 102841, 102859, 102871, 102877, 102881, 102911, 102913, 102929, 102931, 102953, 102967, 102983, 103001, 103007, 103043, 103049, 103067, 103069, 103079, 103087, 103091, 103093, 103099, 103123, 103141, 103171, 103177, 103183, 103217, 103231, 103237, 103289, 103291, 103307, 103319, 103333, 103349, 103357, 103387, 103391, 103393, 103399, 103409, 103421, 103423, 103451, 103457, 103471, 103483, 103511, 103529, 103549, 103553, 103561, 103567, 103573, 103577, 103583, 103591, 103613, 103619, 103643, 103651, 103657, 103669, 103681, 103687, 103699, 103703, 103723, 103769, 103787, 103801, 103811, 103813, 103837, 103841, 103843, 103867, 103889, 103903, 103913, 103919, 103951, 103963, 103967, 103969, 103979, 103981, 103991, 103993, 103997, 104003, 104009, 104021, 104033, 104047, 104053, 104059, 104087, 104089, 104107, 104113, 104119, 104123, 104147, 104149, 104161, 104173, 104179, 104183, 104207, 104231, 104233, 104239, 104243, 104281, 104287, 104297, 104309, 104311, 104323, 104327, 104347, 104369, 104381, 104383, 104393, 104399, 104417, 104459, 104471, 104473, 104479, 104491, 104513, 104527, 104537, 104543, 104549, 104551, 104561, 104579, 104593, 104597, 104623, 104639, 104651, 104659, 104677, 104681, 104683, 104693, 104701, 104707, 104711, 104717, 104723, 104729, PASS (test prime_generator :time 0.12 :before-memory 17.68 :after-memory 17.68) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839, 17851, 17863, 17881, 17891, 17903, 17909, 17911, 17921, 17923, 17929, 17939, 17957, 17959, 17971, 17977, 17981, 17987, 17989, 18013, 18041, 18043, 18047, 18049, 18059, 18061, 18077, 18089, 18097, 18119, 18121, 18127, 18131, 18133, 18143, 18149, 18169, 18181, 18191, 18199, 18211, 18217, 18223, 18229, 18233, 18251, 18253, 18257, 18269, 18287, 18289, 18301, 18307, 18311, 18313, 18329, 18341, 18353, 18367, 18371, 18379, 18397, 18401, 18413, 18427, 18433, 18439, 18443, 18451, 18457, 18461, 18481, 18493, 18503, 18517, 18521, 18523, 18539, 18541, 18553, 18583, 18587, 18593, 18617, 18637, 18661, 18671, 18679, 18691, 18701, 18713, 18719, 18731, 18743, 18749, 18757, 18773, 18787, 18793, 18797, 18803, 18839, 18859, 18869, 18899, 18911, 18913, 18917, 18919, 18947, 18959, 18973, 18979, 19001, 19009, 19013, 19031, 19037, 19051, 19069, 19073, 19079, 19081, 19087, 19121, 19139, 19141, 19157, 19163, 19181, 19183, 19207, 19211, 19213, 19219, 19231, 19237, 19249, 19259, 19267, 19273, 19289, 19301, 19309, 19319, 19333, 19373, 19379, 19381, 19387, 19391, 19403, 19417, 19421, 19423, 19427, 19429, 19433, 19441, 19447, 19457, 19463, 19469, 19471, 19477, 19483, 19489, 19501, 19507, 19531, 19541, 19543, 19553, 19559, 19571, 19577, 19583, 19597, 19603, 19609, 19661, 19681, 19687, 19697, 19699, 19709, 19717, 19727, 19739, 19751, 19753, 19759, 19763, 19777, 19793, 19801, 19813, 19819, 19841, 19843, 19853, 19861, 19867, 19889, 19891, 19913, 19919, 19927, 19937, 19949, 19961, 19963, 19973, 19979, 19991, 19993, 19997, 20011, 20021, 20023, 20029, 20047, 20051, 20063, 20071, 20089, 20101, 20107, 20113, 20117, 20123, 20129, 20143, 20147, 20149, 20161, 20173, 20177, 20183, 20201, 20219, 20231, 20233, 20249, 20261, 20269, 20287, 20297, 20323, 20327, 20333, 20341, 20347, 20353, 20357, 20359, 20369, 20389, 20393, 20399, 20407, 20411, 20431, 20441, 20443, 20477, 20479, 20483, 20507, 20509, 20521, 20533, 20543, 20549, 20551, 20563, 20593, 20599, 20611, 20627, 20639, 20641, 20663, 20681, 20693, 20707, 20717, 20719, 20731, 20743, 20747, 20749, 20753, 20759, 20771, 20773, 20789, 20807, 20809, 20849, 20857, 20873, 20879, 20887, 20897, 20899, 20903, 20921, 20929, 20939, 20947, 20959, 20963, 20981, 20983, 21001, 21011, 21013, 21017, 21019, 21023, 21031, 21059, 21061, 21067, 21089, 21101, 21107, 21121, 21139, 21143, 21149, 21157, 21163, 21169, 21179, 21187, 21191, 21193, 21211, 21221, 21227, 21247, 21269, 21277, 21283, 21313, 21317, 21319, 21323, 21341, 21347, 21377, 21379, 21383, 21391, 21397, 21401, 21407, 21419, 21433, 21467, 21481, 21487, 21491, 21493, 21499, 21503, 21517, 21521, 21523, 21529, 21557, 21559, 21563, 21569, 21577, 21587, 21589, 21599, 21601, 21611, 21613, 21617, 21647, 21649, 21661, 21673, 21683, 21701, 21713, 21727, 21737, 21739, 21751, 21757, 21767, 21773, 21787, 21799, 21803, 21817, 21821, 21839, 21841, 21851, 21859, 21863, 21871, 21881, 21893, 21911, 21929, 21937, 21943, 21961, 21977, 21991, 21997, 22003, 22013, 22027, 22031, 22037, 22039, 22051, 22063, 22067, 22073, 22079, 22091, 22093, 22109, 22111, 22123, 22129, 22133, 22147, 22153, 22157, 22159, 22171, 22189, 22193, 22229, 22247, 22259, 22271, 22273, 22277, 22279, 22283, 22291, 22303, 22307, 22343, 22349, 22367, 22369, 22381, 22391, 22397, 22409, 22433, 22441, 22447, 22453, 22469, 22481, 22483, 22501, 22511, 22531, 22541, 22543, 22549, 22567, 22571, 22573, 22613, 22619, 22621, 22637, 22639, 22643, 22651, 22669, 22679, 22691, 22697, 22699, 22709, 22717, 22721, 22727, 22739, 22741, 22751, 22769, 22777, 22783, 22787, 22807, 22811, 22817, 22853, 22859, 22861, 22871, 22877, 22901, 22907, 22921, 22937, 22943, 22961, 22963, 22973, 22993, 23003, 23011, 23017, 23021, 23027, 23029, 23039, 23041, 23053, 23057, 23059, 23063, 23071, 23081, 23087, 23099, 23117, 23131, 23143, 23159, 23167, 23173, 23189, 23197, 23201, 23203, 23209, 23227, 23251, 23269, 23279, 23291, 23293, 23297, 23311, 23321, 23327, 23333, 23339, 23357, 23369, 23371, 23399, 23417, 23431, 23447, 23459, 23473, 23497, 23509, 23531, 23537, 23539, 23549, 23557, 23561, 23563, 23567, 23581, 23593, 23599, 23603, 23609, 23623, 23627, 23629, 23633, 23663, 23669, 23671, 23677, 23687, 23689, 23719, 23741, 23743, 23747, 23753, 23761, 23767, 23773, 23789, 23801, 23813, 23819, 23827, 23831, 23833, 23857, 23869, 23873, 23879, 23887, 23893, 23899, 23909, 23911, 23917, 23929, 23957, 23971, 23977, 23981, 23993, 24001, 24007, 24019, 24023, 24029, 24043, 24049, 24061, 24071, 24077, 24083, 24091, 24097, 24103, 24107, 24109, 24113, 24121, 24133, 24137, 24151, 24169, 24179, 24181, 24197, 24203, 24223, 24229, 24239, 24247, 24251, 24281, 24317, 24329, 24337, 24359, 24371, 24373, 24379, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 24499, 24509, 24517, 24527, 24533, 24547, 24551, 24571, 24593, 24611, 24623, 24631, 24659, 24671, 24677, 24683, 24691, 24697, 24709, 24733, 24749, 24763, 24767, 24781, 24793, 24799, 24809, 24821, 24841, 24847, 24851, 24859, 24877, 24889, 24907, 24917, 24919, 24923, 24943, 24953, 24967, 24971, 24977, 24979, 24989, 25013, 25031, 25033, 25037, 25057, 25073, 25087, 25097, 25111, 25117, 25121, 25127, 25147, 25153, 25163, 25169, 25171, 25183, 25189, 25219, 25229, 25237, 25243, 25247, 25253, 25261, 25301, 25303, 25307, 25309, 25321, 25339, 25343, 25349, 25357, 25367, 25373, 25391, 25409, 25411, 25423, 25439, 25447, 25453, 25457, 25463, 25469, 25471, 25523, 25537, 25541, 25561, 25577, 25579, 25583, 25589, 25601, 25603, 25609, 25621, 25633, 25639, 25643, 25657, 25667, 25673, 25679, 25693, 25703, 25717, 25733, 25741, 25747, 25759, 25763, 25771, 25793, 25799, 25801, 25819, 25841, 25847, 25849, 25867, 25873, 25889, 25903, 25913, 25919, 25931, 25933, 25939, 25943, 25951, 25969, 25981, 25997, 25999, 26003, 26017, 26021, 26029, 26041, 26053, 26083, 26099, 26107, 26111, 26113, 26119, 26141, 26153, 26161, 26171, 26177, 26183, 26189, 26203, 26209, 26227, 26237, 26249, 26251, 26261, 26263, 26267, 26293, 26297, 26309, 26317, 26321, 26339, 26347, 26357, 26371, 26387, 26393, 26399, 26407, 26417, 26423, 26431, 26437, 26449, 26459, 26479, 26489, 26497, 26501, 26513, 26539, 26557, 26561, 26573, 26591, 26597, 26627, 26633, 26641, 26647, 26669, 26681, 26683, 26687, 26693, 26699, 26701, 26711, 26713, 26717, 26723, 26729, 26731, 26737, 26759, 26777, 26783, 26801, 26813, 26821, 26833, 26839, 26849, 26861, 26863, 26879, 26881, 26891, 26893, 26903, 26921, 26927, 26947, 26951, 26953, 26959, 26981, 26987, 26993, 27011, 27017, 27031, 27043, 27059, 27061, 27067, 27073, 27077, 27091, 27103, 27107, 27109, 27127, 27143, 27179, 27191, 27197, 27211, 27239, 27241, 27253, 27259, 27271, 27277, 27281, 27283, 27299, 27329, 27337, 27361, 27367, 27397, 27407, 27409, 27427, 27431, 27437, 27449, 27457, 27479, 27481, 27487, 27509, 27527, 27529, 27539, 27541, 27551, 27581, 27583, 27611, 27617, 27631, 27647, 27653, 27673, 27689, 27691, 27697, 27701, 27733, 27737, 27739, 27743, 27749, 27751, 27763, 27767, 27773, 27779, 27791, 27793, 27799, 27803, 27809, 27817, 27823, 27827, 27847, 27851, 27883, 27893, 27901, 27917, 27919, 27941, 27943, 27947, 27953, 27961, 27967, 27983, 27997, 28001, 28019, 28027, 28031, 28051, 28057, 28069, 28081, 28087, 28097, 28099, 28109, 28111, 28123, 28151, 28163, 28181, 28183, 28201, 28211, 28219, 28229, 28277, 28279, 28283, 28289, 28297, 28307, 28309, 28319, 28349, 28351, 28387, 28393, 28403, 28409, 28411, 28429, 28433, 28439, 28447, 28463, 28477, 28493, 28499, 28513, 28517, 28537, 28541, 28547, 28549, 28559, 28571, 28573, 28579, 28591, 28597, 28603, 28607, 28619, 28621, 28627, 28631, 28643, 28649, 28657, 28661, 28663, 28669, 28687, 28697, 28703, 28711, 28723, 28729, 28751, 28753, 28759, 28771, 28789, 28793, 28807, 28813, 28817, 28837, 28843, 28859, 28867, 28871, 28879, 28901, 28909, 28921, 28927, 28933, 28949, 28961, 28979, 29009, 29017, 29021, 29023, 29027, 29033, 29059, 29063, 29077, 29101, 29123, 29129, 29131, 29137, 29147, 29153, 29167, 29173, 29179, 29191, 29201, 29207, 29209, 29221, 29231, 29243, 29251, 29269, 29287, 29297, 29303, 29311, 29327, 29333, 29339, 29347, 29363, 29383, 29387, 29389, 29399, 29401, 29411, 29423, 29429, 29437, 29443, 29453, 29473, 29483, 29501, 29527, 29531, 29537, 29567, 29569, 29573, 29581, 29587, 29599, 29611, 29629, 29633, 29641, 29663, 29669, 29671, 29683, 29717, 29723, 29741, 29753, 29759, 29761, 29789, 29803, 29819, 29833, 29837, 29851, 29863, 29867, 29873, 29879, 29881, 29917, 29921, 29927, 29947, 29959, 29983, 29989, 30011, 30013, 30029, 30047, 30059, 30071, 30089, 30091, 30097, 30103, 30109, 30113, 30119, 30133, 30137, 30139, 30161, 30169, 30181, 30187, 30197, 30203, 30211, 30223, 30241, 30253, 30259, 30269, 30271, 30293, 30307, 30313, 30319, 30323, 30341, 30347, 30367, 30389, 30391, 30403, 30427, 30431, 30449, 30467, 30469, 30491, 30493, 30497, 30509, 30517, 30529, 30539, 30553, 30557, 30559, 30577, 30593, 30631, 30637, 30643, 30649, 30661, 30671, 30677, 30689, 30697, 30703, 30707, 30713, 30727, 30757, 30763, 30773, 30781, 30803, 30809, 30817, 30829, 30839, 30841, 30851, 30853, 30859, 30869, 30871, 30881, 30893, 30911, 30931, 30937, 30941, 30949, 30971, 30977, 30983, 31013, 31019, 31033, 31039, 31051, 31063, 31069, 31079, 31081, 31091, 31121, 31123, 31139, 31147, 31151, 31153, 31159, 31177, 31181, 31183, 31189, 31193, 31219, 31223, 31231, 31237, 31247, 31249, 31253, 31259, 31267, 31271, 31277, 31307, 31319, 31321, 31327, 31333, 31337, 31357, 31379, 31387, 31391, 31393, 31397, 31469, 31477, 31481, 31489, 31511, 31513, 31517, 31531, 31541, 31543, 31547, 31567, 31573, 31583, 31601, 31607, 31627, 31643, 31649, 31657, 31663, 31667, 31687, 31699, 31721, 31723, 31727, 31729, 31741, 31751, 31769, 31771, 31793, 31799, 31817, 31847, 31849, 31859, 31873, 31883, 31891, 31907, 31957, 31963, 31973, 31981, 31991, 32003, 32009, 32027, 32029, 32051, 32057, 32059, 32063, 32069, 32077, 32083, 32089, 32099, 32117, 32119, 32141, 32143, 32159, 32173, 32183, 32189, 32191, 32203, 32213, 32233, 32237, 32251, 32257, 32261, 32297, 32299, 32303, 32309, 32321, 32323, 32327, 32341, 32353, 32359, 32363, 32369, 32371, 32377, 32381, 32401, 32411, 32413, 32423, 32429, 32441, 32443, 32467, 32479, 32491, 32497, 32503, 32507, 32531, 32533, 32537, 32561, 32563, 32569, 32573, 32579, 32587, 32603, 32609, 32611, 32621, 32633, 32647, 32653, 32687, 32693, 32707, 32713, 32717, 32719, 32749, 32771, 32779, 32783, 32789, 32797, 32801, 32803, 32831, 32833, 32839, 32843, 32869, 32887, 32909, 32911, 32917, 32933, 32939, 32941, 32957, 32969, 32971, 32983, 32987, 32993, 32999, 33013, 33023, 33029, 33037, 33049, 33053, 33071, 33073, 33083, 33091, 33107, 33113, 33119, 33149, 33151, 33161, 33179, 33181, 33191, 33199, 33203, 33211, 33223, 33247, 33287, 33289, 33301, 33311, 33317, 33329, 33331, 33343, 33347, 33349, 33353, 33359, 33377, 33391, 33403, 33409, 33413, 33427, 33457, 33461, 33469, 33479, 33487, 33493, 33503, 33521, 33529, 33533, 33547, 33563, 33569, 33577, 33581, 33587, 33589, 33599, 33601, 33613, 33617, 33619, 33623, 33629, 33637, 33641, 33647, 33679, 33703, 33713, 33721, 33739, 33749, 33751, 33757, 33767, 33769, 33773, 33791, 33797, 33809, 33811, 33827, 33829, 33851, 33857, 33863, 33871, 33889, 33893, 33911, 33923, 33931, 33937, 33941, 33961, 33967, 33997, 34019, 34031, 34033, 34039, 34057, 34061, 34123, 34127, 34129, 34141, 34147, 34157, 34159, 34171, 34183, 34211, 34213, 34217, 34231, 34253, 34259, 34261, 34267, 34273, 34283, 34297, 34301, 34303, 34313, 34319, 34327, 34337, 34351, 34361, 34367, 34369, 34381, 34403, 34421, 34429, 34439, 34457, 34469, 34471, 34483, 34487, 34499, 34501, 34511, 34513, 34519, 34537, 34543, 34549, 34583, 34589, 34591, 34603, 34607, 34613, 34631, 34649, 34651, 34667, 34673, 34679, 34687, 34693, 34703, 34721, 34729, 34739, 34747, 34757, 34759, 34763, 34781, 34807, 34819, 34841, 34843, 34847, 34849, 34871, 34877, 34883, 34897, 34913, 34919, 34939, 34949, 34961, 34963, 34981, 35023, 35027, 35051, 35053, 35059, 35069, 35081, 35083, 35089, 35099, 35107, 35111, 35117, 35129, 35141, 35149, 35153, 35159, 35171, 35201, 35221, 35227, 35251, 35257, 35267, 35279, 35281, 35291, 35311, 35317, 35323, 35327, 35339, 35353, 35363, 35381, 35393, 35401, 35407, 35419, 35423, 35437, 35447, 35449, 35461, 35491, 35507, 35509, 35521, 35527, 35531, 35533, 35537, 35543, 35569, 35573, 35591, 35593, 35597, 35603, 35617, 35671, 35677, 35729, 35731, 35747, 35753, 35759, 35771, 35797, 35801, 35803, 35809, 35831, 35837, 35839, 35851, 35863, 35869, 35879, 35897, 35899, 35911, 35923, 35933, 35951, 35963, 35969, 35977, 35983, 35993, 35999, 36007, 36011, 36013, 36017, 36037, 36061, 36067, 36073, 36083, 36097, 36107, 36109, 36131, 36137, 36151, 36161, 36187, 36191, 36209, 36217, 36229, 36241, 36251, 36263, 36269, 36277, 36293, 36299, 36307, 36313, 36319, 36341, 36343, 36353, 36373, 36383, 36389, 36433, 36451, 36457, 36467, 36469, 36473, 36479, 36493, 36497, 36523, 36527, 36529, 36541, 36551, 36559, 36563, 36571, 36583, 36587, 36599, 36607, 36629, 36637, 36643, 36653, 36671, 36677, 36683, 36691, 36697, 36709, 36713, 36721, 36739, 36749, 36761, 36767, 36779, 36781, 36787, 36791, 36793, 36809, 36821, 36833, 36847, 36857, 36871, 36877, 36887, 36899, 36901, 36913, 36919, 36923, 36929, 36931, 36943, 36947, 36973, 36979, 36997, 37003, 37013, 37019, 37021, 37039, 37049, 37057, 37061, 37087, 37097, 37117, 37123, 37139, 37159, 37171, 37181, 37189, 37199, 37201, 37217, 37223, 37243, 37253, 37273, 37277, 37307, 37309, 37313, 37321, 37337, 37339, 37357, 37361, 37363, 37369, 37379, 37397, 37409, 37423, 37441, 37447, 37463, 37483, 37489, 37493, 37501, 37507, 37511, 37517, 37529, 37537, 37547, 37549, 37561, 37567, 37571, 37573, 37579, 37589, 37591, 37607, 37619, 37633, 37643, 37649, 37657, 37663, 37691, 37693, 37699, 37717, 37747, 37781, 37783, 37799, 37811, 37813, 37831, 37847, 37853, 37861, 37871, 37879, 37889, 37897, 37907, 37951, 37957, 37963, 37967, 37987, 37991, 37993, 37997, 38011, 38039, 38047, 38053, 38069, 38083, 38113, 38119, 38149, 38153, 38167, 38177, 38183, 38189, 38197, 38201, 38219, 38231, 38237, 38239, 38261, 38273, 38281, 38287, 38299, 38303, 38317, 38321, 38327, 38329, 38333, 38351, 38371, 38377, 38393, 38431, 38447, 38449, 38453, 38459, 38461, 38501, 38543, 38557, 38561, 38567, 38569, 38593, 38603, 38609, 38611, 38629, 38639, 38651, 38653, 38669, 38671, 38677, 38693, 38699, 38707, 38711, 38713, 38723, 38729, 38737, 38747, 38749, 38767, 38783, 38791, 38803, 38821, 38833, 38839, 38851, 38861, 38867, 38873, 38891, 38903, 38917, 38921, 38923, 38933, 38953, 38959, 38971, 38977, 38993, 39019, 39023, 39041, 39043, 39047, 39079, 39089, 39097, 39103, 39107, 39113, 39119, 39133, 39139, 39157, 39161, 39163, 39181, 39191, 39199, 39209, 39217, 39227, 39229, 39233, 39239, 39241, 39251, 39293, 39301, 39313, 39317, 39323, 39341, 39343, 39359, 39367, 39371, 39373, 39383, 39397, 39409, 39419, 39439, 39443, 39451, 39461, 39499, 39503, 39509, 39511, 39521, 39541, 39551, 39563, 39569, 39581, 39607, 39619, 39623, 39631, 39659, 39667, 39671, 39679, 39703, 39709, 39719, 39727, 39733, 39749, 39761, 39769, 39779, 39791, 39799, 39821, 39827, 39829, 39839, 39841, 39847, 39857, 39863, 39869, 39877, 39883, 39887, 39901, 39929, 39937, 39953, 39971, 39979, 39983, 39989, 40009, 40013, 40031, 40037, 40039, 40063, 40087, 40093, 40099, 40111, 40123, 40127, 40129, 40151, 40153, 40163, 40169, 40177, 40189, 40193, 40213, 40231, 40237, 40241, 40253, 40277, 40283, 40289, 40343, 40351, 40357, 40361, 40387, 40423, 40427, 40429, 40433, 40459, 40471, 40483, 40487, 40493, 40499, 40507, 40519, 40529, 40531, 40543, 40559, 40577, 40583, 40591, 40597, 40609, 40627, 40637, 40639, 40693, 40697, 40699, 40709, 40739, 40751, 40759, 40763, 40771, 40787, 40801, 40813, 40819, 40823, 40829, 40841, 40847, 40849, 40853, 40867, 40879, 40883, 40897, 40903, 40927, 40933, 40939, 40949, 40961, 40973, 40993, 41011, 41017, 41023, 41039, 41047, 41051, 41057, 41077, 41081, 41113, 41117, 41131, 41141, 41143, 41149, 41161, 41177, 41179, 41183, 41189, 41201, 41203, 41213, 41221, 41227, 41231, 41233, 41243, 41257, 41263, 41269, 41281, 41299, 41333, 41341, 41351, 41357, 41381, 41387, 41389, 41399, 41411, 41413, 41443, 41453, 41467, 41479, 41491, 41507, 41513, 41519, 41521, 41539, 41543, 41549, 41579, 41593, 41597, 41603, 41609, 41611, 41617, 41621, 41627, 41641, 41647, 41651, 41659, 41669, 41681, 41687, 41719, 41729, 41737, 41759, 41761, 41771, 41777, 41801, 41809, 41813, 41843, 41849, 41851, 41863, 41879, 41887, 41893, 41897, 41903, 41911, 41927, 41941, 41947, 41953, 41957, 41959, 41969, 41981, 41983, 41999, 42013, 42017, 42019, 42023, 42043, 42061, 42071, 42073, 42083, 42089, 42101, 42131, 42139, 42157, 42169, 42179, 42181, 42187, 42193, 42197, 42209, 42221, 42223, 42227, 42239, 42257, 42281, 42283, 42293, 42299, 42307, 42323, 42331, 42337, 42349, 42359, 42373, 42379, 42391, 42397, 42403, 42407, 42409, 42433, 42437, 42443, 42451, 42457, 42461, 42463, 42467, 42473, 42487, 42491, 42499, 42509, 42533, 42557, 42569, 42571, 42577, 42589, 42611, 42641, 42643, 42649, 42667, 42677, 42683, 42689, 42697, 42701, 42703, 42709, 42719, 42727, 42737, 42743, 42751, 42767, 42773, 42787, 42793, 42797, 42821, 42829, 42839, 42841, 42853, 42859, 42863, 42899, 42901, 42923, 42929, 42937, 42943, 42953, 42961, 42967, 42979, 42989, 43003, 43013, 43019, 43037, 43049, 43051, 43063, 43067, 43093, 43103, 43117, 43133, 43151, 43159, 43177, 43189, 43201, 43207, 43223, 43237, 43261, 43271, 43283, 43291, 43313, 43319, 43321, 43331, 43391, 43397, 43399, 43403, 43411, 43427, 43441, 43451, 43457, 43481, 43487, 43499, 43517, 43541, 43543, 43573, 43577, 43579, 43591, 43597, 43607, 43609, 43613, 43627, 43633, 43649, 43651, 43661, 43669, 43691, 43711, 43717, 43721, 43753, 43759, 43777, 43781, 43783, 43787, 43789, 43793, 43801, 43853, 43867, 43889, 43891, 43913, 43933, 43943, 43951, 43961, 43963, 43969, 43973, 43987, 43991, 43997, 44017, 44021, 44027, 44029, 44041, 44053, 44059, 44071, 44087, 44089, 44101, 44111, 44119, 44123, 44129, 44131, 44159, 44171, 44179, 44189, 44201, 44203, 44207, 44221, 44249, 44257, 44263, 44267, 44269, 44273, 44279, 44281, 44293, 44351, 44357, 44371, 44381, 44383, 44389, 44417, 44449, 44453, 44483, 44491, 44497, 44501, 44507, 44519, 44531, 44533, 44537, 44543, 44549, 44563, 44579, 44587, 44617, 44621, 44623, 44633, 44641, 44647, 44651, 44657, 44683, 44687, 44699, 44701, 44711, 44729, 44741, 44753, 44771, 44773, 44777, 44789, 44797, 44809, 44819, 44839, 44843, 44851, 44867, 44879, 44887, 44893, 44909, 44917, 44927, 44939, 44953, 44959, 44963, 44971, 44983, 44987, 45007, 45013, 45053, 45061, 45077, 45083, 45119, 45121, 45127, 45131, 45137, 45139, 45161, 45179, 45181, 45191, 45197, 45233, 45247, 45259, 45263, 45281, 45289, 45293, 45307, 45317, 45319, 45329, 45337, 45341, 45343, 45361, 45377, 45389, 45403, 45413, 45427, 45433, 45439, 45481, 45491, 45497, 45503, 45523, 45533, 45541, 45553, 45557, 45569, 45587, 45589, 45599, 45613, 45631, 45641, 45659, 45667, 45673, 45677, 45691, 45697, 45707, 45737, 45751, 45757, 45763, 45767, 45779, 45817, 45821, 45823, 45827, 45833, 45841, 45853, 45863, 45869, 45887, 45893, 45943, 45949, 45953, 45959, 45971, 45979, 45989, 46021, 46027, 46049, 46051, 46061, 46073, 46091, 46093, 46099, 46103, 46133, 46141, 46147, 46153, 46171, 46181, 46183, 46187, 46199, 46219, 46229, 46237, 46261, 46271, 46273, 46279, 46301, 46307, 46309, 46327, 46337, 46349, 46351, 46381, 46399, 46411, 46439, 46441, 46447, 46451, 46457, 46471, 46477, 46489, 46499, 46507, 46511, 46523, 46549, 46559, 46567, 46573, 46589, 46591, 46601, 46619, 46633, 46639, 46643, 46649, 46663, 46679, 46681, 46687, 46691, 46703, 46723, 46727, 46747, 46751, 46757, 46769, 46771, 46807, 46811, 46817, 46819, 46829, 46831, 46853, 46861, 46867, 46877, 46889, 46901, 46919, 46933, 46957, 46993, 46997, 47017, 47041, 47051, 47057, 47059, 47087, 47093, 47111, 47119, 47123, 47129, 47137, 47143, 47147, 47149, 47161, 47189, 47207, 47221, 47237, 47251, 47269, 47279, 47287, 47293, 47297, 47303, 47309, 47317, 47339, 47351, 47353, 47363, 47381, 47387, 47389, 47407, 47417, 47419, 47431, 47441, 47459, 47491, 47497, 47501, 47507, 47513, 47521, 47527, 47533, 47543, 47563, 47569, 47581, 47591, 47599, 47609, 47623, 47629, 47639, 47653, 47657, 47659, 47681, 47699, 47701, 47711, 47713, 47717, 47737, 47741, 47743, 47777, 47779, 47791, 47797, 47807, 47809, 47819, 47837, 47843, 47857, 47869, 47881, 47903, 47911, 47917, 47933, 47939, 47947, 47951, 47963, 47969, 47977, 47981, 48017, 48023, 48029, 48049, 48073, 48079, 48091, 48109, 48119, 48121, 48131, 48157, 48163, 48179, 48187, 48193, 48197, 48221, 48239, 48247, 48259, 48271, 48281, 48299, 48311, 48313, 48337, 48341, 48353, 48371, 48383, 48397, 48407, 48409, 48413, 48437, 48449, 48463, 48473, 48479, 48481, 48487, 48491, 48497, 48523, 48527, 48533, 48539, 48541, 48563, 48571, 48589, 48593, 48611, 48619, 48623, 48647, 48649, 48661, 48673, 48677, 48679, 48731, 48733, 48751, 48757, 48761, 48767, 48779, 48781, 48787, 48799, 48809, 48817, 48821, 48823, 48847, 48857, 48859, 48869, 48871, 48883, 48889, 48907, 48947, 48953, 48973, 48989, 48991, 49003, 49009, 49019, 49031, 49033, 49037, 49043, 49057, 49069, 49081, 49103, 49109, 49117, 49121, 49123, 49139, 49157, 49169, 49171, 49177, 49193, 49199, 49201, 49207, 49211, 49223, 49253, 49261, 49277, 49279, 49297, 49307, 49331, 49333, 49339, 49363, 49367, 49369, 49391, 49393, 49409, 49411, 49417, 49429, 49433, 49451, 49459, 49463, 49477, 49481, 49499, 49523, 49529, 49531, 49537, 49547, 49549, 49559, 49597, 49603, 49613, 49627, 49633, 49639, 49663, 49667, 49669, 49681, 49697, 49711, 49727, 49739, 49741, 49747, 49757, 49783, 49787, 49789, 49801, 49807, 49811, 49823, 49831, 49843, 49853, 49871, 49877, 49891, 49919, 49921, 49927, 49937, 49939, 49943, 49957, 49991, 49993, 49999, 50021, 50023, 50033, 50047, 50051, 50053, 50069, 50077, 50087, 50093, 50101, 50111, 50119, 50123, 50129, 50131, 50147, 50153, 50159, 50177, 50207, 50221, 50227, 50231, 50261, 50263, 50273, 50287, 50291, 50311, 50321, 50329, 50333, 50341, 50359, 50363, 50377, 50383, 50387, 50411, 50417, 50423, 50441, 50459, 50461, 50497, 50503, 50513, 50527, 50539, 50543, 50549, 50551, 50581, 50587, 50591, 50593, 50599, 50627, 50647, 50651, 50671, 50683, 50707, 50723, 50741, 50753, 50767, 50773, 50777, 50789, 50821, 50833, 50839, 50849, 50857, 50867, 50873, 50891, 50893, 50909, 50923, 50929, 50951, 50957, 50969, 50971, 50989, 50993, 51001, 51031, 51043, 51047, 51059, 51061, 51071, 51109, 51131, 51133, 51137, 51151, 51157, 51169, 51193, 51197, 51199, 51203, 51217, 51229, 51239, 51241, 51257, 51263, 51283, 51287, 51307, 51329, 51341, 51343, 51347, 51349, 51361, 51383, 51407, 51413, 51419, 51421, 51427, 51431, 51437, 51439, 51449, 51461, 51473, 51479, 51481, 51487, 51503, 51511, 51517, 51521, 51539, 51551, 51563, 51577, 51581, 51593, 51599, 51607, 51613, 51631, 51637, 51647, 51659, 51673, 51679, 51683, 51691, 51713, 51719, 51721, 51749, 51767, 51769, 51787, 51797, 51803, 51817, 51827, 51829, 51839, 51853, 51859, 51869, 51871, 51893, 51899, 51907, 51913, 51929, 51941, 51949, 51971, 51973, 51977, 51991, 52009, 52021, 52027, 52051, 52057, 52067, 52069, 52081, 52103, 52121, 52127, 52147, 52153, 52163, 52177, 52181, 52183, 52189, 52201, 52223, 52237, 52249, 52253, 52259, 52267, 52289, 52291, 52301, 52313, 52321, 52361, 52363, 52369, 52379, 52387, 52391, 52433, 52453, 52457, 52489, 52501, 52511, 52517, 52529, 52541, 52543, 52553, 52561, 52567, 52571, 52579, 52583, 52609, 52627, 52631, 52639, 52667, 52673, 52691, 52697, 52709, 52711, 52721, 52727, 52733, 52747, 52757, 52769, 52783, 52807, 52813, 52817, 52837, 52859, 52861, 52879, 52883, 52889, 52901, 52903, 52919, 52937, 52951, 52957, 52963, 52967, 52973, 52981, 52999, 53003, 53017, 53047, 53051, 53069, 53077, 53087, 53089, 53093, 53101, 53113, 53117, 53129, 53147, 53149, 53161, 53171, 53173, 53189, 53197, 53201, 53231, 53233, 53239, 53267, 53269, 53279, 53281, 53299, 53309, 53323, 53327, 53353, 53359, 53377, 53381, 53401, 53407, 53411, 53419, 53437, 53441, 53453, 53479, 53503, 53507, 53527, 53549, 53551, 53569, 53591, 53593, 53597, 53609, 53611, 53617, 53623, 53629, 53633, 53639, 53653, 53657, 53681, 53693, 53699, 53717, 53719, 53731, 53759, 53773, 53777, 53783, 53791, 53813, 53819, 53831, 53849, 53857, 53861, 53881, 53887, 53891, 53897, 53899, 53917, 53923, 53927, 53939, 53951, 53959, 53987, 53993, 54001, 54011, 54013, 54037, 54049, 54059, 54083, 54091, 54101, 54121, 54133, 54139, 54151, 54163, 54167, 54181, 54193, 54217, 54251, 54269, 54277, 54287, 54293, 54311, 54319, 54323, 54331, 54347, 54361, 54367, 54371, 54377, 54401, 54403, 54409, 54413, 54419, 54421, 54437, 54443, 54449, 54469, 54493, 54497, 54499, 54503, 54517, 54521, 54539, 54541, 54547, 54559, 54563, 54577, 54581, 54583, 54601, 54617, 54623, 54629, 54631, 54647, 54667, 54673, 54679, 54709, 54713, 54721, 54727, 54751, 54767, 54773, 54779, 54787, 54799, 54829, 54833, 54851, 54869, 54877, 54881, 54907, 54917, 54919, 54941, 54949, 54959, 54973, 54979, 54983, 55001, 55009, 55021, 55049, 55051, 55057, 55061, 55073, 55079, 55103, 55109, 55117, 55127, 55147, 55163, 55171, 55201, 55207, 55213, 55217, 55219, 55229, 55243, 55249, 55259, 55291, 55313, 55331, 55333, 55337, 55339, 55343, 55351, 55373, 55381, 55399, 55411, 55439, 55441, 55457, 55469, 55487, 55501, 55511, 55529, 55541, 55547, 55579, 55589, 55603, 55609, 55619, 55621, 55631, 55633, 55639, 55661, 55663, 55667, 55673, 55681, 55691, 55697, 55711, 55717, 55721, 55733, 55763, 55787, 55793, 55799, 55807, 55813, 55817, 55819, 55823, 55829, 55837, 55843, 55849, 55871, 55889, 55897, 55901, 55903, 55921, 55927, 55931, 55933, 55949, 55967, 55987, 55997, 56003, 56009, 56039, 56041, 56053, 56081, 56087, 56093, 56099, 56101, 56113, 56123, 56131, 56149, 56167, 56171, 56179, 56197, 56207, 56209, 56237, 56239, 56249, 56263, 56267, 56269, 56299, 56311, 56333, 56359, 56369, 56377, 56383, 56393, 56401, 56417, 56431, 56437, 56443, 56453, 56467, 56473, 56477, 56479, 56489, 56501, 56503, 56509, 56519, 56527, 56531, 56533, 56543, 56569, 56591, 56597, 56599, 56611, 56629, 56633, 56659, 56663, 56671, 56681, 56687, 56701, 56711, 56713, 56731, 56737, 56747, 56767, 56773, 56779, 56783, 56807, 56809, 56813, 56821, 56827, 56843, 56857, 56873, 56891, 56893, 56897, 56909, 56911, 56921, 56923, 56929, 56941, 56951, 56957, 56963, 56983, 56989, 56993, 56999, 57037, 57041, 57047, 57059, 57073, 57077, 57089, 57097, 57107, 57119, 57131, 57139, 57143, 57149, 57163, 57173, 57179, 57191, 57193, 57203, 57221, 57223, 57241, 57251, 57259, 57269, 57271, 57283, 57287, 57301, 57329, 57331, 57347, 57349, 57367, 57373, 57383, 57389, 57397, 57413, 57427, 57457, 57467, 57487, 57493, 57503, 57527, 57529, 57557, 57559, 57571, 57587, 57593, 57601, 57637, 57641, 57649, 57653, 57667, 57679, 57689, 57697, 57709, 57713, 57719, 57727, 57731, 57737, 57751, 57773, 57781, 57787, 57791, 57793, 57803, 57809, 57829, 57839, 57847, 57853, 57859, 57881, 57899, 57901, 57917, 57923, 57943, 57947, 57973, 57977, 57991, 58013, 58027, 58031, 58043, 58049, 58057, 58061, 58067, 58073, 58099, 58109, 58111, 58129, 58147, 58151, 58153, 58169, 58171, 58189, 58193, 58199, 58207, 58211, 58217, 58229, 58231, 58237, 58243, 58271, 58309, 58313, 58321, 58337, 58363, 58367, 58369, 58379, 58391, 58393, 58403, 58411, 58417, 58427, 58439, 58441, 58451, 58453, 58477, 58481, 58511, 58537, 58543, 58549, 58567, 58573, 58579, 58601, 58603, 58613, 58631, 58657, 58661, 58679, 58687, 58693, 58699, 58711, 58727, 58733, 58741, 58757, 58763, 58771, 58787, 58789, 58831, 58889, 58897, 58901, 58907, 58909, 58913, 58921, 58937, 58943, 58963, 58967, 58979, 58991, 58997, 59009, 59011, 59021, 59023, 59029, 59051, 59053, 59063, 59069, 59077, 59083, 59093, 59107, 59113, 59119, 59123, 59141, 59149, 59159, 59167, 59183, 59197, 59207, 59209, 59219, 59221, 59233, 59239, 59243, 59263, 59273, 59281, 59333, 59341, 59351, 59357, 59359, 59369, 59377, 59387, 59393, 59399, 59407, 59417, 59419, 59441, 59443, 59447, 59453, 59467, 59471, 59473, 59497, 59509, 59513, 59539, 59557, 59561, 59567, 59581, 59611, 59617, 59621, 59627, 59629, 59651, 59659, 59663, 59669, 59671, 59693, 59699, 59707, 59723, 59729, 59743, 59747, 59753, 59771, 59779, 59791, 59797, 59809, 59833, 59863, 59879, 59887, 59921, 59929, 59951, 59957, 59971, 59981, 59999, 60013, 60017, 60029, 60037, 60041, 60077, 60083, 60089, 60091, 60101, 60103, 60107, 60127, 60133, 60139, 60149, 60161, 60167, 60169, 60209, 60217, 60223, 60251, 60257, 60259, 60271, 60289, 60293, 60317, 60331, 60337, 60343, 60353, 60373, 60383, 60397, 60413, 60427, 60443, 60449, 60457, 60493, 60497, 60509, 60521, 60527, 60539, 60589, 60601, 60607, 60611, 60617, 60623, 60631, 60637, 60647, 60649, 60659, 60661, 60679, 60689, 60703, 60719, 60727, 60733, 60737, 60757, 60761, 60763, 60773, 60779, 60793, 60811, 60821, 60859, 60869, 60887, 60889, 60899, 60901, 60913, 60917, 60919, 60923, 60937, 60943, 60953, 60961, 61001, 61007, 61027, 61031, 61043, 61051, 61057, 61091, 61099, 61121, 61129, 61141, 61151, 61153, 61169, 61211, 61223, 61231, 61253, 61261, 61283, 61291, 61297, 61331, 61333, 61339, 61343, 61357, 61363, 61379, 61381, 61403, 61409, 61417, 61441, 61463, 61469, 61471, 61483, 61487, 61493, 61507, 61511, 61519, 61543, 61547, 61553, 61559, 61561, 61583, 61603, 61609, 61613, 61627, 61631, 61637, 61643, 61651, 61657, 61667, 61673, 61681, 61687, 61703, 61717, 61723, 61729, 61751, 61757, 61781, 61813, 61819, 61837, 61843, 61861, 61871, 61879, 61909, 61927, 61933, 61949, 61961, 61967, 61979, 61981, 61987, 61991, 62003, 62011, 62017, 62039, 62047, 62053, 62057, 62071, 62081, 62099, 62119, 62129, 62131, 62137, 62141, 62143, 62171, 62189, 62191, 62201, 62207, 62213, 62219, 62233, 62273, 62297, 62299, 62303, 62311, 62323, 62327, 62347, 62351, 62383, 62401, 62417, 62423, 62459, 62467, 62473, 62477, 62483, 62497, 62501, 62507, 62533, 62539, 62549, 62563, 62581, 62591, 62597, 62603, 62617, 62627, 62633, 62639, 62653, 62659, 62683, 62687, 62701, 62723, 62731, 62743, 62753, 62761, 62773, 62791, 62801, 62819, 62827, 62851, 62861, 62869, 62873, 62897, 62903, 62921, 62927, 62929, 62939, 62969, 62971, 62981, 62983, 62987, 62989, 63029, 63031, 63059, 63067, 63073, 63079, 63097, 63103, 63113, 63127, 63131, 63149, 63179, 63197, 63199, 63211, 63241, 63247, 63277, 63281, 63299, 63311, 63313, 63317, 63331, 63337, 63347, 63353, 63361, 63367, 63377, 63389, 63391, 63397, 63409, 63419, 63421, 63439, 63443, 63463, 63467, 63473, 63487, 63493, 63499, 63521, 63527, 63533, 63541, 63559, 63577, 63587, 63589, 63599, 63601, 63607, 63611, 63617, 63629, 63647, 63649, 63659, 63667, 63671, 63689, 63691, 63697, 63703, 63709, 63719, 63727, 63737, 63743, 63761, 63773, 63781, 63793, 63799, 63803, 63809, 63823, 63839, 63841, 63853, 63857, 63863, 63901, 63907, 63913, 63929, 63949, 63977, 63997, 64007, 64013, 64019, 64033, 64037, 64063, 64067, 64081, 64091, 64109, 64123, 64151, 64153, 64157, 64171, 64187, 64189, 64217, 64223, 64231, 64237, 64271, 64279, 64283, 64301, 64303, 64319, 64327, 64333, 64373, 64381, 64399, 64403, 64433, 64439, 64451, 64453, 64483, 64489, 64499, 64513, 64553, 64567, 64577, 64579, 64591, 64601, 64609, 64613, 64621, 64627, 64633, 64661, 64663, 64667, 64679, 64693, 64709, 64717, 64747, 64763, 64781, 64783, 64793, 64811, 64817, 64849, 64853, 64871, 64877, 64879, 64891, 64901, 64919, 64921, 64927, 64937, 64951, 64969, 64997, 65003, 65011, 65027, 65029, 65033, 65053, 65063, 65071, 65089, 65099, 65101, 65111, 65119, 65123, 65129, 65141, 65147, 65167, 65171, 65173, 65179, 65183, 65203, 65213, 65239, 65257, 65267, 65269, 65287, 65293, 65309, 65323, 65327, 65353, 65357, 65371, 65381, 65393, 65407, 65413, 65419, 65423, 65437, 65447, 65449, 65479, 65497, 65519, 65521, 65537, 65539, 65543, 65551, 65557, 65563, 65579, 65581, 65587, 65599, 65609, 65617, 65629, 65633, 65647, 65651, 65657, 65677, 65687, 65699, 65701, 65707, 65713, 65717, 65719, 65729, 65731, 65761, 65777, 65789, 65809, 65827, 65831, 65837, 65839, 65843, 65851, 65867, 65881, 65899, 65921, 65927, 65929, 65951, 65957, 65963, 65981, 65983, 65993, 66029, 66037, 66041, 66047, 66067, 66071, 66083, 66089, 66103, 66107, 66109, 66137, 66161, 66169, 66173, 66179, 66191, 66221, 66239, 66271, 66293, 66301, 66337, 66343, 66347, 66359, 66361, 66373, 66377, 66383, 66403, 66413, 66431, 66449, 66457, 66463, 66467, 66491, 66499, 66509, 66523, 66529, 66533, 66541, 66553, 66569, 66571, 66587, 66593, 66601, 66617, 66629, 66643, 66653, 66683, 66697, 66701, 66713, 66721, 66733, 66739, 66749, 66751, 66763, 66791, 66797, 66809, 66821, 66841, 66851, 66853, 66863, 66877, 66883, 66889, 66919, 66923, 66931, 66943, 66947, 66949, 66959, 66973, 66977, 67003, 67021, 67033, 67043, 67049, 67057, 67061, 67073, 67079, 67103, 67121, 67129, 67139, 67141, 67153, 67157, 67169, 67181, 67187, 67189, 67211, 67213, 67217, 67219, 67231, 67247, 67261, 67271, 67273, 67289, 67307, 67339, 67343, 67349, 67369, 67391, 67399, 67409, 67411, 67421, 67427, 67429, 67433, 67447, 67453, 67477, 67481, 67489, 67493, 67499, 67511, 67523, 67531, 67537, 67547, 67559, 67567, 67577, 67579, 67589, 67601, 67607, 67619, 67631, 67651, 67679, 67699, 67709, 67723, 67733, 67741, 67751, 67757, 67759, 67763, 67777, 67783, 67789, 67801, 67807, 67819, 67829, 67843, 67853, 67867, 67883, 67891, 67901, 67927, 67931, 67933, 67939, 67943, 67957, 67961, 67967, 67979, 67987, 67993, 68023, 68041, 68053, 68059, 68071, 68087, 68099, 68111, 68113, 68141, 68147, 68161, 68171, 68207, 68209, 68213, 68219, 68227, 68239, 68261, 68279, 68281, 68311, 68329, 68351, 68371, 68389, 68399, 68437, 68443, 68447, 68449, 68473, 68477, 68483, 68489, 68491, 68501, 68507, 68521, 68531, 68539, 68543, 68567, 68581, 68597, 68611, 68633, 68639, 68659, 68669, 68683, 68687, 68699, 68711, 68713, 68729, 68737, 68743, 68749, 68767, 68771, 68777, 68791, 68813, 68819, 68821, 68863, 68879, 68881, 68891, 68897, 68899, 68903, 68909, 68917, 68927, 68947, 68963, 68993, 69001, 69011, 69019, 69029, 69031, 69061, 69067, 69073, 69109, 69119, 69127, 69143, 69149, 69151, 69163, 69191, 69193, 69197, 69203, 69221, 69233, 69239, 69247, 69257, 69259, 69263, 69313, 69317, 69337, 69341, 69371, 69379, 69383, 69389, 69401, 69403, 69427, 69431, 69439, 69457, 69463, 69467, 69473, 69481, 69491, 69493, 69497, 69499, 69539, 69557, 69593, 69623, 69653, 69661, 69677, 69691, 69697, 69709, 69737, 69739, 69761, 69763, 69767, 69779, 69809, 69821, 69827, 69829, 69833, 69847, 69857, 69859, 69877, 69899, 69911, 69929, 69931, 69941, 69959, 69991, 69997, 70001, 70003, 70009, 70019, 70039, 70051, 70061, 70067, 70079, 70099, 70111, 70117, 70121, 70123, 70139, 70141, 70157, 70163, 70177, 70181, 70183, 70199, 70201, 70207, 70223, 70229, 70237, 70241, 70249, 70271, 70289, 70297, 70309, 70313, 70321, 70327, 70351, 70373, 70379, 70381, 70393, 70423, 70429, 70439, 70451, 70457, 70459, 70481, 70487, 70489, 70501, 70507, 70529, 70537, 70549, 70571, 70573, 70583, 70589, 70607, 70619, 70621, 70627, 70639, 70657, 70663, 70667, 70687, 70709, 70717, 70729, 70753, 70769, 70783, 70793, 70823, 70841, 70843, 70849, 70853, 70867, 70877, 70879, 70891, 70901, 70913, 70919, 70921, 70937, 70949, 70951, 70957, 70969, 70979, 70981, 70991, 70997, 70999, 71011, 71023, 71039, 71059, 71069, 71081, 71089, 71119, 71129, 71143, 71147, 71153, 71161, 71167, 71171, 71191, 71209, 71233, 71237, 71249, 71257, 71261, 71263, 71287, 71293, 71317, 71327, 71329, 71333, 71339, 71341, 71347, 71353, 71359, 71363, 71387, 71389, 71399, 71411, 71413, 71419, 71429, 71437, 71443, 71453, 71471, 71473, 71479, 71483, 71503, 71527, 71537, 71549, 71551, 71563, 71569, 71593, 71597, 71633, 71647, 71663, 71671, 71693, 71699, 71707, 71711, 71713, 71719, 71741, 71761, 71777, 71789, 71807, 71809, 71821, 71837, 71843, 71849, 71861, 71867, 71879, 71881, 71887, 71899, 71909, 71917, 71933, 71941, 71947, 71963, 71971, 71983, 71987, 71993, 71999, 72019, 72031, 72043, 72047, 72053, 72073, 72077, 72089, 72091, 72101, 72103, 72109, 72139, 72161, 72167, 72169, 72173, 72211, 72221, 72223, 72227, 72229, 72251, 72253, 72269, 72271, 72277, 72287, 72307, 72313, 72337, 72341, 72353, 72367, 72379, 72383, 72421, 72431, 72461, 72467, 72469, 72481, 72493, 72497, 72503, 72533, 72547, 72551, 72559, 72577, 72613, 72617, 72623, 72643, 72647, 72649, 72661, 72671, 72673, 72679, 72689, 72701, 72707, 72719, 72727, 72733, 72739, 72763, 72767, 72797, 72817, 72823, 72859, 72869, 72871, 72883, 72889, 72893, 72901, 72907, 72911, 72923, 72931, 72937, 72949, 72953, 72959, 72973, 72977, 72997, 73009, 73013, 73019, 73037, 73039, 73043, 73061, 73063, 73079, 73091, 73121, 73127, 73133, 73141, 73181, 73189, 73237, 73243, 73259, 73277, 73291, 73303, 73309, 73327, 73331, 73351, 73361, 73363, 73369, 73379, 73387, 73417, 73421, 73433, 73453, 73459, 73471, 73477, 73483, 73517, 73523, 73529, 73547, 73553, 73561, 73571, 73583, 73589, 73597, 73607, 73609, 73613, 73637, 73643, 73651, 73673, 73679, 73681, 73693, 73699, 73709, 73721, 73727, 73751, 73757, 73771, 73783, 73819, 73823, 73847, 73849, 73859, 73867, 73877, 73883, 73897, 73907, 73939, 73943, 73951, 73961, 73973, 73999, 74017, 74021, 74027, 74047, 74051, 74071, 74077, 74093, 74099, 74101, 74131, 74143, 74149, 74159, 74161, 74167, 74177, 74189, 74197, 74201, 74203, 74209, 74219, 74231, 74257, 74279, 74287, 74293, 74297, 74311, 74317, 74323, 74353, 74357, 74363, 74377, 74381, 74383, 74411, 74413, 74419, 74441, 74449, 74453, 74471, 74489, 74507, 74509, 74521, 74527, 74531, 74551, 74561, 74567, 74573, 74587, 74597, 74609, 74611, 74623, 74653, 74687, 74699, 74707, 74713, 74717, 74719, 74729, 74731, 74747, 74759, 74761, 74771, 74779, 74797, 74821, 74827, 74831, 74843, 74857, 74861, 74869, 74873, 74887, 74891, 74897, 74903, 74923, 74929, 74933, 74941, 74959, 75011, 75013, 75017, 75029, 75037, 75041, 75079, 75083, 75109, 75133, 75149, 75161, 75167, 75169, 75181, 75193, 75209, 75211, 75217, 75223, 75227, 75239, 75253, 75269, 75277, 75289, 75307, 75323, 75329, 75337, 75347, 75353, 75367, 75377, 75389, 75391, 75401, 75403, 75407, 75431, 75437, 75479, 75503, 75511, 75521, 75527, 75533, 75539, 75541, 75553, 75557, 75571, 75577, 75583, 75611, 75617, 75619, 75629, 75641, 75653, 75659, 75679, 75683, 75689, 75703, 75707, 75709, 75721, 75731, 75743, 75767, 75773, 75781, 75787, 75793, 75797, 75821, 75833, 75853, 75869, 75883, 75913, 75931, 75937, 75941, 75967, 75979, 75983, 75989, 75991, 75997, 76001, 76003, 76031, 76039, 76079, 76081, 76091, 76099, 76103, 76123, 76129, 76147, 76157, 76159, 76163, 76207, 76213, 76231, 76243, 76249, 76253, 76259, 76261, 76283, 76289, 76303, 76333, 76343, 76367, 76369, 76379, 76387, 76403, 76421, 76423, 76441, 76463, 76471, 76481, 76487, 76493, 76507, 76511, 76519, 76537, 76541, 76543, 76561, 76579, 76597, 76603, 76607, 76631, 76649, 76651, 76667, 76673, 76679, 76697, 76717, 76733, 76753, 76757, 76771, 76777, 76781, 76801, 76819, 76829, 76831, 76837, 76847, 76871, 76873, 76883, 76907, 76913, 76919, 76943, 76949, 76961, 76963, 76991, 77003, 77017, 77023, 77029, 77041, 77047, 77069, 77081, 77093, 77101, 77137, 77141, 77153, 77167, 77171, 77191, 77201, 77213, 77237, 77239, 77243, 77249, 77261, 77263, 77267, 77269, 77279, 77291, 77317, 77323, 77339, 77347, 77351, 77359, 77369, 77377, 77383, 77417, 77419, 77431, 77447, 77471, 77477, 77479, 77489, 77491, 77509, 77513, 77521, 77527, 77543, 77549, 77551, 77557, 77563, 77569, 77573, 77587, 77591, 77611, 77617, 77621, 77641, 77647, 77659, 77681, 77687, 77689, 77699, 77711, 77713, 77719, 77723, 77731, 77743, 77747, 77761, 77773, 77783, 77797, 77801, 77813, 77839, 77849, 77863, 77867, 77893, 77899, 77929, 77933, 77951, 77969, 77977, 77983, 77999, 78007, 78017, 78031, 78041, 78049, 78059, 78079, 78101, 78121, 78137, 78139, 78157, 78163, 78167, 78173, 78179, 78191, 78193, 78203, 78229, 78233, 78241, 78259, 78277, 78283, 78301, 78307, 78311, 78317, 78341, 78347, 78367, 78401, 78427, 78437, 78439, 78467, 78479, 78487, 78497, 78509, 78511, 78517, 78539, 78541, 78553, 78569, 78571, 78577, 78583, 78593, 78607, 78623, 78643, 78649, 78653, 78691, 78697, 78707, 78713, 78721, 78737, 78779, 78781, 78787, 78791, 78797, 78803, 78809, 78823, 78839, 78853, 78857, 78877, 78887, 78889, 78893, 78901, 78919, 78929, 78941, 78977, 78979, 78989, 79031, 79039, 79043, 79063, 79087, 79103, 79111, 79133, 79139, 79147, 79151, 79153, 79159, 79181, 79187, 79193, 79201, 79229, 79231, 79241, 79259, 79273, 79279, 79283, 79301, 79309, 79319, 79333, 79337, 79349, 79357, 79367, 79379, 79393, 79397, 79399, 79411, 79423, 79427, 79433, 79451, 79481, 79493, 79531, 79537, 79549, 79559, 79561, 79579, 79589, 79601, 79609, 79613, 79621, 79627, 79631, 79633, 79657, 79669, 79687, 79691, 79693, 79697, 79699, 79757, 79769, 79777, 79801, 79811, 79813, 79817, 79823, 79829, 79841, 79843, 79847, 79861, 79867, 79873, 79889, 79901, 79903, 79907, 79939, 79943, 79967, 79973, 79979, 79987, 79997, 79999, 80021, 80039, 80051, 80071, 80077, 80107, 80111, 80141, 80147, 80149, 80153, 80167, 80173, 80177, 80191, 80207, 80209, 80221, 80231, 80233, 80239, 80251, 80263, 80273, 80279, 80287, 80309, 80317, 80329, 80341, 80347, 80363, 80369, 80387, 80407, 80429, 80447, 80449, 80471, 80473, 80489, 80491, 80513, 80527, 80537, 80557, 80567, 80599, 80603, 80611, 80621, 80627, 80629, 80651, 80657, 80669, 80671, 80677, 80681, 80683, 80687, 80701, 80713, 80737, 80747, 80749, 80761, 80777, 80779, 80783, 80789, 80803, 80809, 80819, 80831, 80833, 80849, 80863, 80897, 80909, 80911, 80917, 80923, 80929, 80933, 80953, 80963, 80989, 81001, 81013, 81017, 81019, 81023, 81031, 81041, 81043, 81047, 81049, 81071, 81077, 81083, 81097, 81101, 81119, 81131, 81157, 81163, 81173, 81181, 81197, 81199, 81203, 81223, 81233, 81239, 81281, 81283, 81293, 81299, 81307, 81331, 81343, 81349, 81353, 81359, 81371, 81373, 81401, 81409, 81421, 81439, 81457, 81463, 81509, 81517, 81527, 81533, 81547, 81551, 81553, 81559, 81563, 81569, 81611, 81619, 81629, 81637, 81647, 81649, 81667, 81671, 81677, 81689, 81701, 81703, 81707, 81727, 81737, 81749, 81761, 81769, 81773, 81799, 81817, 81839, 81847, 81853, 81869, 81883, 81899, 81901, 81919, 81929, 81931, 81937, 81943, 81953, 81967, 81971, 81973, 82003, 82007, 82009, 82013, 82021, 82031, 82037, 82039, 82051, 82067, 82073, 82129, 82139, 82141, 82153, 82163, 82171, 82183, 82189, 82193, 82207, 82217, 82219, 82223, 82231, 82237, 82241, 82261, 82267, 82279, 82301, 82307, 82339, 82349, 82351, 82361, 82373, 82387, 82393, 82421, 82457, 82463, 82469, 82471, 82483, 82487, 82493, 82499, 82507, 82529, 82531, 82549, 82559, 82561, 82567, 82571, 82591, 82601, 82609, 82613, 82619, 82633, 82651, 82657, 82699, 82721, 82723, 82727, 82729, 82757, 82759, 82763, 82781, 82787, 82793, 82799, 82811, 82813, 82837, 82847, 82883, 82889, 82891, 82903, 82913, 82939, 82963, 82981, 82997, 83003, 83009, 83023, 83047, 83059, 83063, 83071, 83077, 83089, 83093, 83101, 83117, 83137, 83177, 83203, 83207, 83219, 83221, 83227, 83231, 83233, 83243, 83257, 83267, 83269, 83273, 83299, 83311, 83339, 83341, 83357, 83383, 83389, 83399, 83401, 83407, 83417, 83423, 83431, 83437, 83443, 83449, 83459, 83471, 83477, 83497, 83537, 83557, 83561, 83563, 83579, 83591, 83597, 83609, 83617, 83621, 83639, 83641, 83653, 83663, 83689, 83701, 83717, 83719, 83737, 83761, 83773, 83777, 83791, 83813, 83833, 83843, 83857, 83869, 83873, 83891, 83903, 83911, 83921, 83933, 83939, 83969, 83983, 83987, 84011, 84017, 84047, 84053, 84059, 84061, 84067, 84089, 84121, 84127, 84131, 84137, 84143, 84163, 84179, 84181, 84191, 84199, 84211, 84221, 84223, 84229, 84239, 84247, 84263, 84299, 84307, 84313, 84317, 84319, 84347, 84349, 84377, 84389, 84391, 84401, 84407, 84421, 84431, 84437, 84443, 84449, 84457, 84463, 84467, 84481, 84499, 84503, 84509, 84521, 84523, 84533, 84551, 84559, 84589, 84629, 84631, 84649, 84653, 84659, 84673, 84691, 84697, 84701, 84713, 84719, 84731, 84737, 84751, 84761, 84787, 84793, 84809, 84811, 84827, 84857, 84859, 84869, 84871, 84913, 84919, 84947, 84961, 84967, 84977, 84979, 84991, 85009, 85021, 85027, 85037, 85049, 85061, 85081, 85087, 85091, 85093, 85103, 85109, 85121, 85133, 85147, 85159, 85193, 85199, 85201, 85213, 85223, 85229, 85237, 85243, 85247, 85259, 85297, 85303, 85313, 85331, 85333, 85361, 85363, 85369, 85381, 85411, 85427, 85429, 85439, 85447, 85451, 85453, 85469, 85487, 85513, 85517, 85523, 85531, 85549, 85571, 85577, 85597, 85601, 85607, 85619, 85621, 85627, 85639, 85643, 85661, 85667, 85669, 85691, 85703, 85711, 85717, 85733, 85751, 85781, 85793, 85817, 85819, 85829, 85831, 85837, 85843, 85847, 85853, 85889, 85903, 85909, 85931, 85933, 85991, 85999, 86011, 86017, 86027, 86029, 86069, 86077, 86083, 86111, 86113, 86117, 86131, 86137, 86143, 86161, 86171, 86179, 86183, 86197, 86201, 86209, 86239, 86243, 86249, 86257, 86263, 86269, 86287, 86291, 86293, 86297, 86311, 86323, 86341, 86351, 86353, 86357, 86369, 86371, 86381, 86389, 86399, 86413, 86423, 86441, 86453, 86461, 86467, 86477, 86491, 86501, 86509, 86531, 86533, 86539, 86561, 86573, 86579, 86587, 86599, 86627, 86629, 86677, 86689, 86693, 86711, 86719, 86729, 86743, 86753, 86767, 86771, 86783, 86813, 86837, 86843, 86851, 86857, 86861, 86869, 86923, 86927, 86929, 86939, 86951, 86959, 86969, 86981, 86993, 87011, 87013, 87037, 87041, 87049, 87071, 87083, 87103, 87107, 87119, 87121, 87133, 87149, 87151, 87179, 87181, 87187, 87211, 87221, 87223, 87251, 87253, 87257, 87277, 87281, 87293, 87299, 87313, 87317, 87323, 87337, 87359, 87383, 87403, 87407, 87421, 87427, 87433, 87443, 87473, 87481, 87491, 87509, 87511, 87517, 87523, 87539, 87541, 87547, 87553, 87557, 87559, 87583, 87587, 87589, 87613, 87623, 87629, 87631, 87641, 87643, 87649, 87671, 87679, 87683, 87691, 87697, 87701, 87719, 87721, 87739, 87743, 87751, 87767, 87793, 87797, 87803, 87811, 87833, 87853, 87869, 87877, 87881, 87887, 87911, 87917, 87931, 87943, 87959, 87961, 87973, 87977, 87991, 88001, 88003, 88007, 88019, 88037, 88069, 88079, 88093, 88117, 88129, 88169, 88177, 88211, 88223, 88237, 88241, 88259, 88261, 88289, 88301, 88321, 88327, 88337, 88339, 88379, 88397, 88411, 88423, 88427, 88463, 88469, 88471, 88493, 88499, 88513, 88523, 88547, 88589, 88591, 88607, 88609, 88643, 88651, 88657, 88661, 88663, 88667, 88681, 88721, 88729, 88741, 88747, 88771, 88789, 88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819, 88843, 88853, 88861, 88867, 88873, 88883, 88897, 88903, 88919, 88937, 88951, 88969, 88993, 88997, 89003, 89009, 89017, 89021, 89041, 89051, 89057, 89069, 89071, 89083, 89087, 89101, 89107, 89113, 89119, 89123, 89137, 89153, 89189, 89203, 89209, 89213, 89227, 89231, 89237, 89261, 89269, 89273, 89293, 89303, 89317, 89329, 89363, 89371, 89381, 89387, 89393, 89399, 89413, 89417, 89431, 89443, 89449, 89459, 89477, 89491, 89501, 89513, 89519, 89521, 89527, 89533, 89561, 89563, 89567, 89591, 89597, 89599, 89603, 89611, 89627, 89633, 89653, 89657, 89659, 89669, 89671, 89681, 89689, 89753, 89759, 89767, 89779, 89783, 89797, 89809, 89819, 89821, 89833, 89839, 89849, 89867, 89891, 89897, 89899, 89909, 89917, 89923, 89939, 89959, 89963, 89977, 89983, 89989, 90001, 90007, 90011, 90017, 90019, 90023, 90031, 90053, 90059, 90067, 90071, 90073, 90089, 90107, 90121, 90127, 90149, 90163, 90173, 90187, 90191, 90197, 90199, 90203, 90217, 90227, 90239, 90247, 90263, 90271, 90281, 90289, 90313, 90353, 90359, 90371, 90373, 90379, 90397, 90401, 90403, 90407, 90437, 90439, 90469, 90473, 90481, 90499, 90511, 90523, 90527, 90529, 90533, 90547, 90583, 90599, 90617, 90619, 90631, 90641, 90647, 90659, 90677, 90679, 90697, 90703, 90709, 90731, 90749, 90787, 90793, 90803, 90821, 90823, 90833, 90841, 90847, 90863, 90887, 90901, 90907, 90911, 90917, 90931, 90947, 90971, 90977, 90989, 90997, 91009, 91019, 91033, 91079, 91081, 91097, 91099, 91121, 91127, 91129, 91139, 91141, 91151, 91153, 91159, 91163, 91183, 91193, 91199, 91229, 91237, 91243, 91249, 91253, 91283, 91291, 91297, 91303, 91309, 91331, 91367, 91369, 91373, 91381, 91387, 91393, 91397, 91411, 91423, 91433, 91453, 91457, 91459, 91463, 91493, 91499, 91513, 91529, 91541, 91571, 91573, 91577, 91583, 91591, 91621, 91631, 91639, 91673, 91691, 91703, 91711, 91733, 91753, 91757, 91771, 91781, 91801, 91807, 91811, 91813, 91823, 91837, 91841, 91867, 91873, 91909, 91921, 91939, 91943, 91951, 91957, 91961, 91967, 91969, 91997, 92003, 92009, 92033, 92041, 92051, 92077, 92083, 92107, 92111, 92119, 92143, 92153, 92173, 92177, 92179, 92189, 92203, 92219, 92221, 92227, 92233, 92237, 92243, 92251, 92269, 92297, 92311, 92317, 92333, 92347, 92353, 92357, 92363, 92369, 92377, 92381, 92383, 92387, 92399, 92401, 92413, 92419, 92431, 92459, 92461, 92467, 92479, 92489, 92503, 92507, 92551, 92557, 92567, 92569, 92581, 92593, 92623, 92627, 92639, 92641, 92647, 92657, 92669, 92671, 92681, 92683, 92693, 92699, 92707, 92717, 92723, 92737, 92753, 92761, 92767, 92779, 92789, 92791, 92801, 92809, 92821, 92831, 92849, 92857, 92861, 92863, 92867, 92893, 92899, 92921, 92927, 92941, 92951, 92957, 92959, 92987, 92993, 93001, 93047, 93053, 93059, 93077, 93083, 93089, 93097, 93103, 93113, 93131, 93133, 93139, 93151, 93169, 93179, 93187, 93199, 93229, 93239, 93241, 93251, 93253, 93257, 93263, 93281, 93283, 93287, 93307, 93319, 93323, 93329, 93337, 93371, 93377, 93383, 93407, 93419, 93427, 93463, 93479, 93481, 93487, 93491, 93493, 93497, 93503, 93523, 93529, 93553, 93557, 93559, 93563, 93581, 93601, 93607, 93629, 93637, 93683, 93701, 93703, 93719, 93739, 93761, 93763, 93787, 93809, 93811, 93827, 93851, 93871, 93887, 93889, 93893, 93901, 93911, 93913, 93923, 93937, 93941, 93949, 93967, 93971, 93979, 93983, 93997, 94007, 94009, 94033, 94049, 94057, 94063, 94079, 94099, 94109, 94111, 94117, 94121, 94151, 94153, 94169, 94201, 94207, 94219, 94229, 94253, 94261, 94273, 94291, 94307, 94309, 94321, 94327, 94331, 94343, 94349, 94351, 94379, 94397, 94399, 94421, 94427, 94433, 94439, 94441, 94447, 94463, 94477, 94483, 94513, 94529, 94531, 94541, 94543, 94547, 94559, 94561, 94573, 94583, 94597, 94603, 94613, 94621, 94649, 94651, 94687, 94693, 94709, 94723, 94727, 94747, 94771, 94777, 94781, 94789, 94793, 94811, 94819, 94823, 94837, 94841, 94847, 94849, 94873, 94889, 94903, 94907, 94933, 94949, 94951, 94961, 94993, 94999, 95003, 95009, 95021, 95027, 95063, 95071, 95083, 95087, 95089, 95093, 95101, 95107, 95111, 95131, 95143, 95153, 95177, 95189, 95191, 95203, 95213, 95219, 95231, 95233, 95239, 95257, 95261, 95267, 95273, 95279, 95287, 95311, 95317, 95327, 95339, 95369, 95383, 95393, 95401, 95413, 95419, 95429, 95441, 95443, 95461, 95467, 95471, 95479, 95483, 95507, 95527, 95531, 95539, 95549, 95561, 95569, 95581, 95597, 95603, 95617, 95621, 95629, 95633, 95651, 95701, 95707, 95713, 95717, 95723, 95731, 95737, 95747, 95773, 95783, 95789, 95791, 95801, 95803, 95813, 95819, 95857, 95869, 95873, 95881, 95891, 95911, 95917, 95923, 95929, 95947, 95957, 95959, 95971, 95987, 95989, 96001, 96013, 96017, 96043, 96053, 96059, 96079, 96097, 96137, 96149, 96157, 96167, 96179, 96181, 96199, 96211, 96221, 96223, 96233, 96259, 96263, 96269, 96281, 96289, 96293, 96323, 96329, 96331, 96337, 96353, 96377, 96401, 96419, 96431, 96443, 96451, 96457, 96461, 96469, 96479, 96487, 96493, 96497, 96517, 96527, 96553, 96557, 96581, 96587, 96589, 96601, 96643, 96661, 96667, 96671, 96697, 96703, 96731, 96737, 96739, 96749, 96757, 96763, 96769, 96779, 96787, 96797, 96799, 96821, 96823, 96827, 96847, 96851, 96857, 96893, 96907, 96911, 96931, 96953, 96959, 96973, 96979, 96989, 96997, 97001, 97003, 97007, 97021, 97039, 97073, 97081, 97103, 97117, 97127, 97151, 97157, 97159, 97169, 97171, 97177, 97187, 97213, 97231, 97241, 97259, 97283, 97301, 97303, 97327, 97367, 97369, 97373, 97379, 97381, 97387, 97397, 97423, 97429, 97441, 97453, 97459, 97463, 97499, 97501, 97511, 97523, 97547, 97549, 97553, 97561, 97571, 97577, 97579, 97583, 97607, 97609, 97613, 97649, 97651, 97673, 97687, 97711, 97729, 97771, 97777, 97787, 97789, 97813, 97829, 97841, 97843, 97847, 97849, 97859, 97861, 97871, 97879, 97883, 97919, 97927, 97931, 97943, 97961, 97967, 97973, 97987, 98009, 98011, 98017, 98041, 98047, 98057, 98081, 98101, 98123, 98129, 98143, 98179, 98207, 98213, 98221, 98227, 98251, 98257, 98269, 98297, 98299, 98317, 98321, 98323, 98327, 98347, 98369, 98377, 98387, 98389, 98407, 98411, 98419, 98429, 98443, 98453, 98459, 98467, 98473, 98479, 98491, 98507, 98519, 98533, 98543, 98561, 98563, 98573, 98597, 98621, 98627, 98639, 98641, 98663, 98669, 98689, 98711, 98713, 98717, 98729, 98731, 98737, 98773, 98779, 98801, 98807, 98809, 98837, 98849, 98867, 98869, 98873, 98887, 98893, 98897, 98899, 98909, 98911, 98927, 98929, 98939, 98947, 98953, 98963, 98981, 98993, 98999, 99013, 99017, 99023, 99041, 99053, 99079, 99083, 99089, 99103, 99109, 99119, 99131, 99133, 99137, 99139, 99149, 99173, 99181, 99191, 99223, 99233, 99241, 99251, 99257, 99259, 99277, 99289, 99317, 99347, 99349, 99367, 99371, 99377, 99391, 99397, 99401, 99409, 99431, 99439, 99469, 99487, 99497, 99523, 99527, 99529, 99551, 99559, 99563, 99571, 99577, 99581, 99607, 99611, 99623, 99643, 99661, 99667, 99679, 99689, 99707, 99709, 99713, 99719, 99721, 99733, 99761, 99767, 99787, 99793, 99809, 99817, 99823, 99829, 99833, 99839, 99859, 99871, 99877, 99881, 99901, 99907, 99923, 99929, 99961, 99971, 99989, 99991, 100003, 100019, 100043, 100049, 100057, 100069, 100103, 100109, 100129, 100151, 100153, 100169, 100183, 100189, 100193, 100207, 100213, 100237, 100267, 100271, 100279, 100291, 100297, 100313, 100333, 100343, 100357, 100361, 100363, 100379, 100391, 100393, 100403, 100411, 100417, 100447, 100459, 100469, 100483, 100493, 100501, 100511, 100517, 100519, 100523, 100537, 100547, 100549, 100559, 100591, 100609, 100613, 100621, 100649, 100669, 100673, 100693, 100699, 100703, 100733, 100741, 100747, 100769, 100787, 100799, 100801, 100811, 100823, 100829, 100847, 100853, 100907, 100913, 100927, 100931, 100937, 100943, 100957, 100981, 100987, 100999, 101009, 101021, 101027, 101051, 101063, 101081, 101089, 101107, 101111, 101113, 101117, 101119, 101141, 101149, 101159, 101161, 101173, 101183, 101197, 101203, 101207, 101209, 101221, 101267, 101273, 101279, 101281, 101287, 101293, 101323, 101333, 101341, 101347, 101359, 101363, 101377, 101383, 101399, 101411, 101419, 101429, 101449, 101467, 101477, 101483, 101489, 101501, 101503, 101513, 101527, 101531, 101533, 101537, 101561, 101573, 101581, 101599, 101603, 101611, 101627, 101641, 101653, 101663, 101681, 101693, 101701, 101719, 101723, 101737, 101741, 101747, 101749, 101771, 101789, 101797, 101807, 101833, 101837, 101839, 101863, 101869, 101873, 101879, 101891, 101917, 101921, 101929, 101939, 101957, 101963, 101977, 101987, 101999, 102001, 102013, 102019, 102023, 102031, 102043, 102059, 102061, 102071, 102077, 102079, 102101, 102103, 102107, 102121, 102139, 102149, 102161, 102181, 102191, 102197, 102199, 102203, 102217, 102229, 102233, 102241, 102251, 102253, 102259, 102293, 102299, 102301, 102317, 102329, 102337, 102359, 102367, 102397, 102407, 102409, 102433, 102437, 102451, 102461, 102481, 102497, 102499, 102503, 102523, 102533, 102539, 102547, 102551, 102559, 102563, 102587, 102593, 102607, 102611, 102643, 102647, 102653, 102667, 102673, 102677, 102679, 102701, 102761, 102763, 102769, 102793, 102797, 102811, 102829, 102841, 102859, 102871, 102877, 102881, 102911, 102913, 102929, 102931, 102953, 102967, 102983, 103001, 103007, 103043, 103049, 103067, 103069, 103079, 103087, 103091, 103093, 103099, 103123, 103141, 103171, 103177, 103183, 103217, 103231, 103237, 103289, 103291, 103307, 103319, 103333, 103349, 103357, 103387, 103391, 103393, 103399, 103409, 103421, 103423, 103451, 103457, 103471, 103483, 103511, 103529, 103549, 103553, 103561, 103567, 103573, 103577, 103583, 103591, 103613, 103619, 103643, 103651, 103657, 103669, 103681, 103687, 103699, 103703, 103723, 103769, 103787, 103801, 103811, 103813, 103837, 103841, 103843, 103867, 103889, 103903, 103913, 103919, 103951, 103963, 103967, 103969, 103979, 103981, 103991, 103993, 103997, 104003, 104009, 104021, 104033, 104047, 104053, 104059, 104087, 104089, 104107, 104113, 104119, 104123, 104147, 104149, 104161, 104173, 104179, 104183, 104207, 104231, 104233, 104239, 104243, 104281, 104287, 104297, 104309, 104311, 104323, 104327, 104347, 104369, 104381, 104383, 104393, 104399, 104417, 104459, 104471, 104473, 104479, 104491, 104513, 104527, 104537, 104543, 104549, 104551, 104561, 104579, 104593, 104597, 104623, 104639, 104651, 104659, 104677, 104681, 104683, 104693, 104701, 104707, 104711, 104717, 104723, 104729, PASS (test prime_generator :time 0.12 :before-memory 17.68 :after-memory 17.68) PASS (test permutation :time 0.00 :before-memory 17.68 :after-memory 17.68) PASS (test permutation :time 0.00 :before-memory 17.68 :after-memory 17.68) Project (polynomial-factorization :distinct-factors 1) (or !(x1 = 0) !(4 x1 + x0^2 > 0) !(x2 - x0 > 0) !(x2^2 - x0 x2 - x1 = 0)) Project (or - x1 + 4 x0^2 < 0 !(x2^2 - 2 x0 x2 - x1 + x0^2 < 0) !(x2 + x0 = 0)) ------------------ PASS (test nlsat :time 0.00 :before-memory 17.68 :after-memory 17.68) Project (polynomial-factorization :distinct-factors 1) (or !(x1 = 0) !(4 x1 + x0^2 > 0) !(x2 - x0 > 0) !(x2^2 - x0 x2 - x1 = 0)) Project (or - x1 + 4 x0^2 < 0 !(x2^2 - 2 x0 x2 - x1 + x0^2 < 0) !(x2 + x0 = 0)) ------------------ PASS (test nlsat :time 0.00 :before-memory 17.68 :after-memory 17.68) PASS (test zstring :time 0.00 :before-memory 17.68 :after-memory 17.68) PASS (test zstring :time 0.00 :before-memory 17.68 :after-memory 17.68) >>> z3: Entering fakeroot... -- Install configuration: "MinSizeRel" -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/cmake/z3/Z3Targets.cmake -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/cmake/z3/Z3Targets-minsizerel.cmake -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/cmake/z3/Z3Config.cmake -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/cmake/z3/Z3ConfigVersion.cmake -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/pkgconfig/z3.pc -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/libz3.so.4.11.2.0 -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/libz3.so.4.11 -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/libz3.so -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_algebraic.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_api.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_ast_containers.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_fixedpoint.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_fpa.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3++.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_macros.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_optimization.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_polynomial.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_rcf.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_v1.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_spacer.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/include/z3_version.h -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/bin/z3 -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/__init__.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3num.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3poly.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3printer.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3rcf.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3test.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3types.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3util.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3core.py -- Installing: /home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10/site-packages/z3/z3consts.py >>> z3-dev*: Running split function dev... >>> z3-dev*: Preparing subpackage z3-dev... >>> z3-dev*: Stripping binaries >>> z3-dev*: Running postcheck for z3-dev >>> py3-z3*: Running split function py3... '/home/buildozer/aports/community/z3/pkg/z3/usr/lib/python3.10' -> '/home/buildozer/aports/community/z3/pkg/py3-z3/usr/lib/python3.10' >>> py3-z3*: Preparing subpackage py3-z3... >>> py3-z3*: Running postcheck for py3-z3 >>> z3*: Running postcheck for z3 >>> z3*: Preparing package z3... >>> z3*: Stripping binaries >>> py3-z3*: Scanning shared objects >>> z3-dev*: Scanning shared objects >>> z3*: Scanning shared objects >>> py3-z3*: Tracing dependencies... >>> py3-z3*: Package size: 648.0 KB >>> py3-z3*: Compressing data... >>> py3-z3*: Create checksum... >>> py3-z3*: Create py3-z3-4.11.2-r0.apk >>> z3-dev*: Tracing dependencies... pkgconfig z3=4.11.2-r0 >>> z3-dev*: Package size: 604.0 KB >>> z3-dev*: Compressing data... >>> z3-dev*: Create checksum... >>> z3-dev*: Create z3-dev-4.11.2-r0.apk >>> z3*: Tracing dependencies... so:libc.musl-armv7.so.1 so:libgcc_s.so.1 so:libstdc++.so.6 >>> z3*: Package size: 16.0 MB >>> z3*: Compressing data... >>> z3*: Create checksum... >>> z3*: Create z3-4.11.2-r0.apk >>> z3: Build complete at Fri, 28 Oct 2022 00:01:59 +0000 elapsed time 0h 2m 36s >>> z3: Cleaning up srcdir >>> z3: Cleaning up pkgdir >>> z3: Uninstalling dependencies... (1/14) Purging .makedepends-z3 (20221027.235927) (2/14) Purging cmake (3.24.2-r0) (3/14) Purging python3 (3.10.8-r3) (4/14) Purging samurai (1.2-r2) (5/14) Purging libarchive (3.6.1-r1) (6/14) Purging libbz2 (1.0.8-r3) (7/14) Purging xz-libs (5.2.7-r0) (8/14) Purging rhash-libs (1.4.3-r1) (9/14) Purging libuv (1.44.2-r0) (10/14) Purging libffi (3.4.4-r0) (11/14) Purging gdbm (1.23-r0) (12/14) Purging mpdecimal (2.5.1-r1) (13/14) Purging readline (8.2.0-r0) (14/14) Purging sqlite-libs (3.39.4-r0) Executing busybox-1.35.0-r27.trigger OK: 189 MiB in 93 packages >>> z3: Updating the community/armv7 repository index... >>> z3: Signing the index...